uvm_fault.c revision 1.146 1 /* $NetBSD: uvm_fault.c,v 1.146 2010/02/01 10:22:40 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.146 2010/02/01 10:22:40 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0 ; lcv < n ; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 struct uvm_faultctx {
696 vm_prot_t access_type;
697 vm_prot_t enter_prot;
698 bool wire_mapping;
699 bool narrow;
700 bool wire_paging;
701 bool maxprot;
702 bool cow_now;
703 int npages;
704 int centeridx;
705 vaddr_t startva;
706 struct vm_anon *anon_spare;
707 };
708
709 static int uvm_fault_check(
710 struct uvm_faultinfo *, struct uvm_faultctx *,
711 struct vm_anon ***, struct vm_page ***);
712 typedef int uvm_fault_upper_subfunc_t(
713 struct uvm_faultinfo *, struct uvm_faultctx *,
714 struct vm_anon **, struct vm_page **);
715 static uvm_fault_upper_subfunc_t uvm_fault_upper_lookup;
716 static uvm_fault_upper_subfunc_t uvm_fault_upper;
717 typedef int uvm_fault_lower_subfunc_t(
718 struct uvm_faultinfo *, struct uvm_faultctx *,
719 struct vm_page **);
720 static uvm_fault_lower_subfunc_t uvm_fault_lower;
721 static uvm_fault_lower_subfunc_t uvm_fault_lower_special;
722 static uvm_fault_lower_subfunc_t uvm_fault_lower_generic_lookup;
723 static uvm_fault_lower_subfunc_t uvm_fault_lower_generic;
724 static uvm_fault_lower_subfunc_t uvm_fault_lower_generic1;
725 static uvm_fault_lower_subfunc_t uvm_fault_lower_generic2;
726
727 int
728 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
729 vm_prot_t access_type, int fault_flag)
730 {
731 struct uvm_faultinfo ufi;
732 struct uvm_faultctx flt = {
733 .access_type = access_type,
734
735 /* don't look for neighborhood * pages on "wire" fault */
736 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
737
738 /* "wire" fault causes wiring of both mapping and paging */
739 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
740 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
741
742 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
743 };
744 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
745 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
746 int error;
747 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
748
749 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
750 orig_map, vaddr, access_type, fault_flag);
751
752 uvmexp.faults++; /* XXX: locking? */
753
754 /*
755 * init the IN parameters in the ufi
756 */
757
758 ufi.orig_map = orig_map;
759 ufi.orig_rvaddr = trunc_page(vaddr);
760 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
761
762 error = ERESTART;
763 while (error == ERESTART) {
764 anons = anons_store;
765 pages = pages_store;
766
767 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
768 if (error != 0)
769 continue;
770
771 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
772 if (error != 0)
773 continue;
774
775 if (pages[flt.centeridx] == PGO_DONTCARE)
776 error = uvm_fault_upper(&ufi, &flt, anons, pages);
777 else
778 error = uvm_fault_lower(&ufi, &flt, pages);
779 }
780
781 if (flt.anon_spare != NULL) {
782 flt.anon_spare->an_ref--;
783 uvm_anfree(flt.anon_spare);
784 }
785 return error;
786 }
787
788 static int
789 uvm_fault_check(
790 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
791 struct vm_anon ***ranons, struct vm_page ***rpages)
792 {
793 struct vm_amap *amap;
794 struct uvm_object *uobj;
795 vm_prot_t check_prot;
796 int nback, nforw;
797
798 /*
799 * lookup and lock the maps
800 */
801
802 if (uvmfault_lookup(ufi, false) == false) {
803 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
804 return EFAULT;
805 }
806 /* locked: maps(read) */
807
808 #ifdef DIAGNOSTIC
809 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
810 printf("Page fault on non-pageable map:\n");
811 printf("ufi->map = %p\n", ufi->map);
812 printf("ufi->orig_map = %p\n", ufi->orig_map);
813 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
814 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
815 }
816 #endif
817
818 /*
819 * check protection
820 */
821
822 check_prot = flt->maxprot ?
823 ufi->entry->max_protection : ufi->entry->protection;
824 if ((check_prot & flt->access_type) != flt->access_type) {
825 UVMHIST_LOG(maphist,
826 "<- protection failure (prot=0x%x, access=0x%x)",
827 ufi->entry->protection, flt->access_type, 0, 0);
828 uvmfault_unlockmaps(ufi, false);
829 return EACCES;
830 }
831
832 /*
833 * "enter_prot" is the protection we want to enter the page in at.
834 * for certain pages (e.g. copy-on-write pages) this protection can
835 * be more strict than ufi->entry->protection. "wired" means either
836 * the entry is wired or we are fault-wiring the pg.
837 */
838
839 flt->enter_prot = ufi->entry->protection;
840 if (VM_MAPENT_ISWIRED(ufi->entry))
841 flt->wire_mapping = true;
842
843 if (flt->wire_mapping) {
844 flt->access_type = flt->enter_prot; /* full access for wired */
845 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
846 } else {
847 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
848 }
849
850 /*
851 * handle "needs_copy" case. if we need to copy the amap we will
852 * have to drop our readlock and relock it with a write lock. (we
853 * need a write lock to change anything in a map entry [e.g.
854 * needs_copy]).
855 */
856
857 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
858 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
859 KASSERT(!flt->maxprot);
860 /* need to clear */
861 UVMHIST_LOG(maphist,
862 " need to clear needs_copy and refault",0,0,0,0);
863 uvmfault_unlockmaps(ufi, false);
864 uvmfault_amapcopy(ufi);
865 uvmexp.fltamcopy++;
866 return ERESTART;
867
868 } else {
869
870 /*
871 * ensure that we pmap_enter page R/O since
872 * needs_copy is still true
873 */
874
875 flt->enter_prot &= ~VM_PROT_WRITE;
876 }
877 }
878
879 /*
880 * identify the players
881 */
882
883 amap = ufi->entry->aref.ar_amap; /* upper layer */
884 uobj = ufi->entry->object.uvm_obj; /* lower layer */
885
886 /*
887 * check for a case 0 fault. if nothing backing the entry then
888 * error now.
889 */
890
891 if (amap == NULL && uobj == NULL) {
892 uvmfault_unlockmaps(ufi, false);
893 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
894 return EFAULT;
895 }
896
897 /*
898 * establish range of interest based on advice from mapper
899 * and then clip to fit map entry. note that we only want
900 * to do this the first time through the fault. if we
901 * ReFault we will disable this by setting "narrow" to true.
902 */
903
904 if (flt->narrow == false) {
905
906 /* wide fault (!narrow) */
907 KASSERT(uvmadvice[ufi->entry->advice].advice ==
908 ufi->entry->advice);
909 nback = MIN(uvmadvice[ufi->entry->advice].nback,
910 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
911 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
912 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
913 ((ufi->entry->end - ufi->orig_rvaddr) >>
914 PAGE_SHIFT) - 1);
915 /*
916 * note: "-1" because we don't want to count the
917 * faulting page as forw
918 */
919 flt->npages = nback + nforw + 1;
920 flt->centeridx = nback;
921
922 flt->narrow = true; /* ensure only once per-fault */
923
924 } else {
925
926 /* narrow fault! */
927 nback = nforw = 0;
928 flt->startva = ufi->orig_rvaddr;
929 flt->npages = 1;
930 flt->centeridx = 0;
931
932 }
933 /* offset from entry's start to pgs' start */
934 const voff_t eoff = flt->startva - ufi->entry->start;
935
936 /* locked: maps(read) */
937 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
938 flt->narrow, nback, nforw, flt->startva);
939 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
940 amap, uobj, 0);
941
942 /*
943 * if we've got an amap, lock it and extract current anons.
944 */
945
946 if (amap) {
947 amap_lock(amap);
948 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
949 } else {
950 *ranons = NULL; /* to be safe */
951 }
952
953 /* locked: maps(read), amap(if there) */
954 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
955
956 /*
957 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
958 * now and then forget about them (for the rest of the fault).
959 */
960
961 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
962
963 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
964 0,0,0,0);
965 /* flush back-page anons? */
966 if (amap)
967 uvmfault_anonflush(*ranons, nback);
968
969 /* flush object? */
970 if (uobj) {
971 voff_t uoff;
972
973 uoff = ufi->entry->offset + eoff;
974 mutex_enter(&uobj->vmobjlock);
975 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
976 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
977 }
978
979 /* now forget about the backpages */
980 if (amap)
981 *ranons += nback;
982 #if 0
983 /* XXXUEBS */
984 if (uobj)
985 *rpages += nback;
986 #endif
987 flt->startva += (nback << PAGE_SHIFT);
988 flt->npages -= nback;
989 flt->centeridx = 0;
990 }
991 /*
992 * => startva is fixed
993 * => npages is fixed
994 */
995
996 return 0;
997 }
998
999 static int
1000 uvm_fault_upper_lookup(
1001 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1002 struct vm_anon **anons, struct vm_page **pages)
1003 {
1004 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1005 int lcv;
1006 vaddr_t currva;
1007 bool shadowed;
1008
1009 /* locked: maps(read), amap(if there) */
1010 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1011
1012 /*
1013 * map in the backpages and frontpages we found in the amap in hopes
1014 * of preventing future faults. we also init the pages[] array as
1015 * we go.
1016 */
1017
1018 currva = flt->startva;
1019 shadowed = false;
1020 for (lcv = 0 ; lcv < flt->npages ; lcv++, currva += PAGE_SIZE) {
1021 struct vm_anon *anon;
1022
1023 /*
1024 * dont play with VAs that are already mapped
1025 * except for center)
1026 */
1027 if (lcv != flt->centeridx &&
1028 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1029 pages[lcv] = PGO_DONTCARE;
1030 continue;
1031 }
1032
1033 /*
1034 * unmapped or center page. check if any anon at this level.
1035 */
1036 if (amap == NULL || anons[lcv] == NULL) {
1037 pages[lcv] = NULL;
1038 continue;
1039 }
1040
1041 /*
1042 * check for present page and map if possible. re-activate it.
1043 */
1044
1045 pages[lcv] = PGO_DONTCARE;
1046 if (lcv == flt->centeridx) { /* save center for later! */
1047 shadowed = true;
1048 continue;
1049 }
1050 anon = anons[lcv];
1051 mutex_enter(&anon->an_lock);
1052
1053 /* ignore loaned and busy pages */
1054 if (anon->an_page == NULL || anon->an_page->loan_count != 0 ||
1055 (anon->an_page->flags & PG_BUSY) != 0)
1056 goto uvm_fault_upper_lookup_enter_done;
1057
1058 mutex_enter(&uvm_pageqlock);
1059 uvm_pageenqueue(anon->an_page);
1060 mutex_exit(&uvm_pageqlock);
1061 UVMHIST_LOG(maphist,
1062 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1063 ufi->orig_map->pmap, currva, anon->an_page, 0);
1064 uvmexp.fltnamap++;
1065
1066 /*
1067 * Since this isn't the page that's actually faulting,
1068 * ignore pmap_enter() failures; it's not critical
1069 * that we enter these right now.
1070 */
1071
1072 (void) pmap_enter(ufi->orig_map->pmap, currva,
1073 VM_PAGE_TO_PHYS(anon->an_page),
1074 (anon->an_ref > 1) ? (flt->enter_prot & ~VM_PROT_WRITE) :
1075 flt->enter_prot,
1076 PMAP_CANFAIL |
1077 (VM_MAPENT_ISWIRED(ufi->entry) ? PMAP_WIRED : 0));
1078
1079 uvm_fault_upper_lookup_enter_done:
1080 pmap_update(ufi->orig_map->pmap);
1081 mutex_exit(&anon->an_lock);
1082 }
1083
1084 /* locked: maps(read), amap(if there) */
1085 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1086 /* (shadowed == true) if there is an anon at the faulting address */
1087 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1088 (uobj && shadowed != false),0,0);
1089
1090 /*
1091 * note that if we are really short of RAM we could sleep in the above
1092 * call to pmap_enter with everything locked. bad?
1093 *
1094 * XXX Actually, that is bad; pmap_enter() should just fail in that
1095 * XXX case. --thorpej
1096 */
1097
1098 return 0;
1099 }
1100
1101 static int
1102 uvm_fault_lower(
1103 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1104 struct vm_page **pages)
1105 {
1106 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1107 int error;
1108
1109 /*
1110 * if the desired page is not shadowed by the amap and we have a
1111 * backing object, then we check to see if the backing object would
1112 * prefer to handle the fault itself (rather than letting us do it
1113 * with the usual pgo_get hook). the backing object signals this by
1114 * providing a pgo_fault routine.
1115 */
1116
1117 if (uobj && uobj->pgops->pgo_fault != NULL) {
1118 error = uvm_fault_lower_special(ufi, flt, pages);
1119 } else {
1120 error = uvm_fault_lower_generic(ufi, flt, pages);
1121 }
1122 return error;
1123 }
1124
1125 static int
1126 uvm_fault_lower_special(
1127 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1128 struct vm_page **pages)
1129 {
1130 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1131 int error;
1132
1133 mutex_enter(&uobj->vmobjlock);
1134 /* locked: maps(read), amap (if there), uobj */
1135 error = uobj->pgops->pgo_fault(ufi, flt->startva, pages, flt->npages,
1136 flt->centeridx, flt->access_type, PGO_LOCKED|PGO_SYNCIO);
1137
1138 /* locked: nothing, pgo_fault has unlocked everything */
1139
1140 if (error == ERESTART)
1141 error = ERESTART; /* try again! */
1142 /*
1143 * object fault routine responsible for pmap_update().
1144 */
1145
1146 return error;
1147 }
1148
1149 static int
1150 uvm_fault_lower_generic(
1151 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1152 struct vm_page **pages)
1153 {
1154 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1155
1156 /*
1157 * now, if the desired page is not shadowed by the amap and we have
1158 * a backing object that does not have a special fault routine, then
1159 * we ask (with pgo_get) the object for resident pages that we care
1160 * about and attempt to map them in. we do not let pgo_get block
1161 * (PGO_LOCKED).
1162 */
1163
1164 if (uobj == NULL) {
1165 /* zero fill; don't care neighbor pages */
1166 pages[flt->centeridx] = NULL;
1167 } else {
1168 uvm_fault_lower_generic_lookup(ufi, flt, pages);
1169 }
1170 return uvm_fault_lower_generic1(ufi, flt, pages);
1171 }
1172
1173 static int
1174 uvm_fault_lower_generic_lookup(
1175 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1176 struct vm_page **pages)
1177 {
1178 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1179 int lcv, gotpages;
1180 vaddr_t currva;
1181
1182 mutex_enter(&uobj->vmobjlock);
1183 /* locked (!shadowed): maps(read), amap (if there), uobj */
1184 /*
1185 * the following call to pgo_get does _not_ change locking state
1186 */
1187
1188 uvmexp.fltlget++;
1189 gotpages = flt->npages;
1190 (void) uobj->pgops->pgo_get(uobj,
1191 ufi->entry->offset + flt->startva - ufi->entry->start,
1192 pages, &gotpages, flt->centeridx,
1193 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1194
1195 /*
1196 * check for pages to map, if we got any
1197 */
1198
1199 if (gotpages == 0) {
1200 pages[flt->centeridx] = NULL;
1201 return 0;
1202 }
1203
1204 currva = flt->startva;
1205 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1206 struct vm_page *curpg;
1207 bool readonly;
1208
1209 curpg = pages[lcv];
1210 if (curpg == NULL || curpg == PGO_DONTCARE) {
1211 continue;
1212 }
1213 KASSERT(curpg->uobject == uobj);
1214
1215 /*
1216 * if center page is resident and not PG_BUSY|PG_RELEASED
1217 * then pgo_get made it PG_BUSY for us and gave us a handle
1218 * to it. remember this page as "uobjpage." (for later use).
1219 */
1220
1221 if (lcv == flt->centeridx) {
1222 UVMHIST_LOG(maphist, " got uobjpage "
1223 "(0x%x) with locked get",
1224 curpg, 0,0,0);
1225 continue;
1226 }
1227
1228 /*
1229 * calling pgo_get with PGO_LOCKED returns us pages which
1230 * are neither busy nor released, so we don't need to check
1231 * for this. we can just directly enter the pages.
1232 */
1233
1234 mutex_enter(&uvm_pageqlock);
1235 uvm_pageenqueue(curpg);
1236 mutex_exit(&uvm_pageqlock);
1237 UVMHIST_LOG(maphist,
1238 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1239 ufi->orig_map->pmap, currva, curpg, 0);
1240 uvmexp.fltnomap++;
1241
1242 /*
1243 * Since this page isn't the page that's actually faulting,
1244 * ignore pmap_enter() failures; it's not critical that we
1245 * enter these right now.
1246 */
1247 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1248 KASSERT((curpg->flags & PG_RELEASED) == 0);
1249 KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1250 (curpg->flags & PG_CLEAN) != 0);
1251 readonly = (curpg->flags & PG_RDONLY)
1252 || (curpg->loan_count > 0)
1253 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1254
1255 (void) pmap_enter(ufi->orig_map->pmap, currva,
1256 VM_PAGE_TO_PHYS(curpg),
1257 readonly ? flt->enter_prot & ~VM_PROT_WRITE :
1258 flt->enter_prot & MASK(ufi->entry),
1259 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1260
1261 /*
1262 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1263 * held the lock the whole time we've had the handle.
1264 */
1265 KASSERT((curpg->flags & PG_WANTED) == 0);
1266 KASSERT((curpg->flags & PG_RELEASED) == 0);
1267
1268 curpg->flags &= ~(PG_BUSY);
1269 UVM_PAGE_OWN(curpg, NULL);
1270 }
1271 pmap_update(ufi->orig_map->pmap);
1272 return 0;
1273 }
1274
1275 static int
1276 uvm_fault_lower_generic1(
1277 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1278 struct vm_page **pages)
1279 {
1280 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1281 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1282 struct vm_page *uobjpage = pages[flt->centeridx];
1283
1284 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1285 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1286 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1287 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1288
1289 /*
1290 * note that at this point we are done with any front or back pages.
1291 * we are now going to focus on the center page (i.e. the one we've
1292 * faulted on). if we have faulted on the upper (anon) layer
1293 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1294 * not touched it yet). if we have faulted on the bottom (uobj)
1295 * layer [i.e. case 2] and the page was both present and available,
1296 * then we've got a pointer to it as "uobjpage" and we've already
1297 * made it BUSY.
1298 */
1299
1300 /*
1301 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1302 */
1303
1304 /*
1305 * redirect case 2: if we are not shadowed, go to case 2.
1306 */
1307
1308 return uvm_fault_lower_generic2(ufi, flt, pages);
1309 }
1310
1311 static int
1312 uvm_fault_upper(
1313 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1314 struct vm_anon **anons, struct vm_page **pages)
1315 {
1316 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1317 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1318 struct vm_anon *anon, *oanon;
1319 int error;
1320
1321 /* locked: maps(read), amap */
1322 KASSERT(mutex_owned(&amap->am_l));
1323
1324 /*
1325 * handle case 1: fault on an anon in our amap
1326 */
1327
1328 anon = anons[flt->centeridx];
1329 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1330 mutex_enter(&anon->an_lock);
1331
1332 /* locked: maps(read), amap, anon */
1333 KASSERT(mutex_owned(&amap->am_l));
1334 KASSERT(mutex_owned(&anon->an_lock));
1335
1336 /*
1337 * no matter if we have case 1A or case 1B we are going to need to
1338 * have the anon's memory resident. ensure that now.
1339 */
1340
1341 /*
1342 * let uvmfault_anonget do the dirty work.
1343 * if it fails (!OK) it will unlock everything for us.
1344 * if it succeeds, locks are still valid and locked.
1345 * also, if it is OK, then the anon's page is on the queues.
1346 * if the page is on loan from a uvm_object, then anonget will
1347 * lock that object for us if it does not fail.
1348 */
1349
1350 error = uvmfault_anonget(ufi, amap, anon);
1351 switch (error) {
1352 case 0:
1353 break;
1354
1355 case ERESTART:
1356 return ERESTART;
1357
1358 case EAGAIN:
1359 kpause("fltagain1", false, hz/2, NULL);
1360 return ERESTART;
1361
1362 default:
1363 return error;
1364 }
1365
1366 /*
1367 * uobj is non null if the page is on loan from an object (i.e. uobj)
1368 */
1369
1370 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1371
1372 /* locked: maps(read), amap, anon, uobj(if one) */
1373 KASSERT(mutex_owned(&amap->am_l));
1374 KASSERT(mutex_owned(&anon->an_lock));
1375 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1376
1377 /*
1378 * special handling for loaned pages
1379 */
1380
1381 if (anon->an_page->loan_count) {
1382
1383 if (!flt->cow_now) {
1384
1385 /*
1386 * for read faults on loaned pages we just cap the
1387 * protection at read-only.
1388 */
1389
1390 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1391
1392 } else {
1393 /*
1394 * note that we can't allow writes into a loaned page!
1395 *
1396 * if we have a write fault on a loaned page in an
1397 * anon then we need to look at the anon's ref count.
1398 * if it is greater than one then we are going to do
1399 * a normal copy-on-write fault into a new anon (this
1400 * is not a problem). however, if the reference count
1401 * is one (a case where we would normally allow a
1402 * write directly to the page) then we need to kill
1403 * the loan before we continue.
1404 */
1405
1406 /* >1 case is already ok */
1407 if (anon->an_ref == 1) {
1408 struct vm_page *pg;
1409
1410 /* get new un-owned replacement page */
1411 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1412 if (pg == NULL) {
1413 uvmfault_unlockall(ufi, amap, uobj,
1414 anon);
1415 uvm_wait("flt_noram2");
1416 return ERESTART;
1417 }
1418
1419 /*
1420 * copy data, kill loan, and drop uobj lock
1421 * (if any)
1422 */
1423 /* copy old -> new */
1424 uvm_pagecopy(anon->an_page, pg);
1425
1426 /* force reload */
1427 pmap_page_protect(anon->an_page, VM_PROT_NONE);
1428 mutex_enter(&uvm_pageqlock); /* KILL loan */
1429
1430 anon->an_page->uanon = NULL;
1431 /* in case we owned */
1432 anon->an_page->pqflags &= ~PQ_ANON;
1433
1434 if (uobj) {
1435 /* if we were receiver of loan */
1436 anon->an_page->loan_count--;
1437 } else {
1438 /*
1439 * we were the lender (A->K); need
1440 * to remove the page from pageq's.
1441 */
1442 uvm_pagedequeue(anon->an_page);
1443 }
1444
1445 if (uobj) {
1446 mutex_exit(&uobj->vmobjlock);
1447 uobj = NULL;
1448 }
1449
1450 /* install new page in anon */
1451 anon->an_page = pg;
1452 pg->uanon = anon;
1453 pg->pqflags |= PQ_ANON;
1454
1455 uvm_pageactivate(pg);
1456 mutex_exit(&uvm_pageqlock);
1457
1458 pg->flags &= ~(PG_BUSY|PG_FAKE);
1459 UVM_PAGE_OWN(pg, NULL);
1460
1461 /* done! */
1462 } /* ref == 1 */
1463 } /* write fault */
1464 } /* loan count */
1465
1466 /*
1467 * if we are case 1B then we will need to allocate a new blank
1468 * anon to transfer the data into. note that we have a lock
1469 * on anon, so no one can busy or release the page until we are done.
1470 * also note that the ref count can't drop to zero here because
1471 * it is > 1 and we are only dropping one ref.
1472 *
1473 * in the (hopefully very rare) case that we are out of RAM we
1474 * will unlock, wait for more RAM, and refault.
1475 *
1476 * if we are out of anon VM we kill the process (XXX: could wait?).
1477 */
1478
1479 struct vm_page *pg;
1480 if (flt->cow_now && anon->an_ref > 1) {
1481
1482 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1483 uvmexp.flt_acow++;
1484 oanon = anon; /* oanon = old, locked anon */
1485
1486 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1487 &anon, &flt->anon_spare);
1488 switch (error) {
1489 case 0:
1490 break;
1491 case ERESTART:
1492 return ERESTART;
1493 default:
1494 return error;
1495 }
1496
1497 pg = anon->an_page;
1498 mutex_enter(&uvm_pageqlock);
1499 uvm_pageactivate(pg);
1500 mutex_exit(&uvm_pageqlock);
1501 pg->flags &= ~(PG_BUSY|PG_FAKE);
1502 UVM_PAGE_OWN(pg, NULL);
1503
1504 /* deref: can not drop to zero here by defn! */
1505 oanon->an_ref--;
1506
1507 /*
1508 * note: oanon is still locked, as is the new anon. we
1509 * need to check for this later when we unlock oanon; if
1510 * oanon != anon, we'll have to unlock anon, too.
1511 */
1512
1513 } else {
1514
1515 uvmexp.flt_anon++;
1516 oanon = anon; /* old, locked anon is same as anon */
1517 pg = anon->an_page;
1518 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1519 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1520
1521 }
1522
1523 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1524 KASSERT(mutex_owned(&amap->am_l));
1525 KASSERT(mutex_owned(&anon->an_lock));
1526 KASSERT(mutex_owned(&oanon->an_lock));
1527
1528 /*
1529 * now map the page in.
1530 */
1531
1532 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1533 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
1534 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1535 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1536 != 0) {
1537
1538 /*
1539 * No need to undo what we did; we can simply think of
1540 * this as the pmap throwing away the mapping information.
1541 *
1542 * We do, however, have to go through the ReFault path,
1543 * as the map may change while we're asleep.
1544 */
1545
1546 if (anon != oanon)
1547 mutex_exit(&anon->an_lock);
1548 uvmfault_unlockall(ufi, amap, uobj, oanon);
1549 if (!uvm_reclaimable()) {
1550 UVMHIST_LOG(maphist,
1551 "<- failed. out of VM",0,0,0,0);
1552 /* XXX instrumentation */
1553 error = ENOMEM;
1554 return error;
1555 }
1556 /* XXX instrumentation */
1557 uvm_wait("flt_pmfail1");
1558 return ERESTART;
1559 }
1560
1561 /*
1562 * ... update the page queues.
1563 */
1564
1565 mutex_enter(&uvm_pageqlock);
1566 if (flt->wire_paging) {
1567 uvm_pagewire(pg);
1568
1569 /*
1570 * since the now-wired page cannot be paged out,
1571 * release its swap resources for others to use.
1572 * since an anon with no swap cannot be PG_CLEAN,
1573 * clear its clean flag now.
1574 */
1575
1576 pg->flags &= ~(PG_CLEAN);
1577 uvm_anon_dropswap(anon);
1578 } else {
1579 uvm_pageactivate(pg);
1580 }
1581 mutex_exit(&uvm_pageqlock);
1582
1583 /*
1584 * done case 1! finish up by unlocking everything and returning success
1585 */
1586
1587 if (anon != oanon)
1588 mutex_exit(&anon->an_lock);
1589 uvmfault_unlockall(ufi, amap, uobj, oanon);
1590 pmap_update(ufi->orig_map->pmap);
1591 return 0;
1592 }
1593
1594 static int
1595 uvm_fault_lower_generic2(
1596 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1597 struct vm_page **pages)
1598 {
1599 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1600 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1601 struct vm_page *uobjpage = pages[flt->centeridx];
1602 struct vm_anon *anon;
1603 bool promote;
1604 int error;
1605
1606 /*
1607 * handle case 2: faulting on backing object or zero fill
1608 */
1609
1610 /*
1611 * locked:
1612 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1613 */
1614 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1615 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1616 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1617
1618 /*
1619 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1620 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1621 * have a backing object, check and see if we are going to promote
1622 * the data up to an anon during the fault.
1623 */
1624
1625 if (uobj == NULL) {
1626 uobjpage = PGO_DONTCARE;
1627 promote = true; /* always need anon here */
1628 } else {
1629 KASSERT(uobjpage != PGO_DONTCARE);
1630 promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1631 }
1632 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1633 promote, (uobj == NULL), 0,0);
1634
1635 /*
1636 * if uobjpage is not null then we do not need to do I/O to get the
1637 * uobjpage.
1638 *
1639 * if uobjpage is null, then we need to unlock and ask the pager to
1640 * get the data for us. once we have the data, we need to reverify
1641 * the state the world. we are currently not holding any resources.
1642 */
1643
1644 if (uobjpage) {
1645 /* update rusage counters */
1646 curlwp->l_ru.ru_minflt++;
1647 } else {
1648 bool locked;
1649 int gotpages;
1650 voff_t uoff;
1651
1652 /* update rusage counters */
1653 curlwp->l_ru.ru_majflt++;
1654
1655 /* locked: maps(read), amap(if there), uobj */
1656 uvmfault_unlockall(ufi, amap, NULL, NULL);
1657 /* locked: uobj */
1658
1659 uvmexp.fltget++;
1660 gotpages = 1;
1661 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1662 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1663 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1664 PGO_SYNCIO);
1665 /* locked: uobjpage(if no error) */
1666 KASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
1667
1668 /*
1669 * recover from I/O
1670 */
1671
1672 if (error) {
1673 if (error == EAGAIN) {
1674 UVMHIST_LOG(maphist,
1675 " pgo_get says TRY AGAIN!",0,0,0,0);
1676 kpause("fltagain2", false, hz/2, NULL);
1677 return ERESTART;
1678 }
1679
1680 #if 0
1681 KASSERT(error != ERESTART);
1682 #else
1683 /* XXXUEBS don't re-fault? */
1684 if (error == ERESTART)
1685 error = EIO;
1686 #endif
1687
1688 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1689 error, 0,0,0);
1690 return error;
1691 }
1692
1693 /* locked: uobjpage */
1694
1695 mutex_enter(&uvm_pageqlock);
1696 uvm_pageactivate(uobjpage);
1697 mutex_exit(&uvm_pageqlock);
1698
1699 /*
1700 * re-verify the state of the world by first trying to relock
1701 * the maps. always relock the object.
1702 */
1703
1704 locked = uvmfault_relock(ufi);
1705 if (locked && amap)
1706 amap_lock(amap);
1707 uobj = uobjpage->uobject;
1708 mutex_enter(&uobj->vmobjlock);
1709
1710 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1711 /* locked(!locked): uobj, uobjpage */
1712
1713 /*
1714 * verify that the page has not be released and re-verify
1715 * that amap slot is still free. if there is a problem,
1716 * we unlock and clean up.
1717 */
1718
1719 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1720 (locked && amap &&
1721 amap_lookup(&ufi->entry->aref,
1722 ufi->orig_rvaddr - ufi->entry->start))) {
1723 if (locked)
1724 uvmfault_unlockall(ufi, amap, NULL, NULL);
1725 locked = false;
1726 }
1727
1728 /*
1729 * didn't get the lock? release the page and retry.
1730 */
1731
1732 if (locked == false) {
1733 UVMHIST_LOG(maphist,
1734 " wasn't able to relock after fault: retry",
1735 0,0,0,0);
1736 if (uobjpage->flags & PG_WANTED)
1737 wakeup(uobjpage);
1738 if (uobjpage->flags & PG_RELEASED) {
1739 uvmexp.fltpgrele++;
1740 uvm_pagefree(uobjpage);
1741 return ERESTART;
1742 }
1743 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1744 UVM_PAGE_OWN(uobjpage, NULL);
1745 mutex_exit(&uobj->vmobjlock);
1746 return ERESTART;
1747 }
1748
1749 /*
1750 * we have the data in uobjpage which is busy and
1751 * not released. we are holding object lock (so the page
1752 * can't be released on us).
1753 */
1754
1755 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1756 }
1757
1758 /*
1759 * locked:
1760 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1761 */
1762 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1763 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1764 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1765
1766 /*
1767 * notes:
1768 * - at this point uobjpage can not be NULL
1769 * - at this point uobjpage can not be PG_RELEASED (since we checked
1770 * for it above)
1771 * - at this point uobjpage could be PG_WANTED (handle later)
1772 */
1773
1774 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1775 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1776 (uobjpage->flags & PG_CLEAN) != 0);
1777 struct vm_page *pg;
1778 if (promote == false) {
1779
1780 /*
1781 * we are not promoting. if the mapping is COW ensure that we
1782 * don't give more access than we should (e.g. when doing a read
1783 * fault on a COPYONWRITE mapping we want to map the COW page in
1784 * R/O even though the entry protection could be R/W).
1785 *
1786 * set "pg" to the page we want to map in (uobjpage, usually)
1787 */
1788
1789 /* no anon in this case. */
1790 anon = NULL;
1791
1792 uvmexp.flt_obj++;
1793 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1794 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1795 flt->enter_prot &= ~VM_PROT_WRITE;
1796 pg = uobjpage; /* map in the actual object */
1797
1798 KASSERT(uobjpage != PGO_DONTCARE);
1799
1800 /*
1801 * we are faulting directly on the page. be careful
1802 * about writing to loaned pages...
1803 */
1804
1805 if (uobjpage->loan_count) {
1806 if (!flt->cow_now) {
1807 /* read fault: cap the protection at readonly */
1808 /* cap! */
1809 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1810 } else {
1811 /* write fault: must break the loan here */
1812
1813 pg = uvm_loanbreak(uobjpage);
1814 if (pg == NULL) {
1815
1816 /*
1817 * drop ownership of page, it can't
1818 * be released
1819 */
1820
1821 if (uobjpage->flags & PG_WANTED)
1822 wakeup(uobjpage);
1823 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1824 UVM_PAGE_OWN(uobjpage, NULL);
1825
1826 uvmfault_unlockall(ufi, amap, uobj,
1827 NULL);
1828 UVMHIST_LOG(maphist,
1829 " out of RAM breaking loan, waiting",
1830 0,0,0,0);
1831 uvmexp.fltnoram++;
1832 uvm_wait("flt_noram4");
1833 return ERESTART;
1834 }
1835 uobjpage = pg;
1836 }
1837 }
1838 } else {
1839
1840 /*
1841 * if we are going to promote the data to an anon we
1842 * allocate a blank anon here and plug it into our amap.
1843 */
1844 #if DIAGNOSTIC
1845 if (amap == NULL)
1846 panic("uvm_fault: want to promote data, but no anon");
1847 #endif
1848 error = uvmfault_promote(ufi, NULL, uobjpage,
1849 &anon, &flt->anon_spare);
1850 switch (error) {
1851 case 0:
1852 break;
1853 case ERESTART:
1854 return ERESTART;
1855 default:
1856 return error;
1857 }
1858
1859 pg = anon->an_page;
1860
1861 /*
1862 * fill in the data
1863 */
1864
1865 if (uobjpage != PGO_DONTCARE) {
1866 uvmexp.flt_prcopy++;
1867
1868 /*
1869 * promote to shared amap? make sure all sharing
1870 * procs see it
1871 */
1872
1873 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1874 pmap_page_protect(uobjpage, VM_PROT_NONE);
1875 /*
1876 * XXX: PAGE MIGHT BE WIRED!
1877 */
1878 }
1879
1880 /*
1881 * dispose of uobjpage. it can't be PG_RELEASED
1882 * since we still hold the object lock.
1883 * drop handle to uobj as well.
1884 */
1885
1886 if (uobjpage->flags & PG_WANTED)
1887 /* still have the obj lock */
1888 wakeup(uobjpage);
1889 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1890 UVM_PAGE_OWN(uobjpage, NULL);
1891 mutex_exit(&uobj->vmobjlock);
1892 uobj = NULL;
1893
1894 UVMHIST_LOG(maphist,
1895 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1896 uobjpage, anon, pg, 0);
1897
1898 } else {
1899 uvmexp.flt_przero++;
1900
1901 /*
1902 * Page is zero'd and marked dirty by
1903 * uvmfault_promote().
1904 */
1905
1906 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1907 anon, pg, 0, 0);
1908 }
1909 }
1910
1911 /*
1912 * locked:
1913 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1914 * anon(if !null), pg(if anon)
1915 *
1916 * note: pg is either the uobjpage or the new page in the new anon
1917 */
1918 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1919 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1920 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1921 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1922 KASSERT((pg->flags & PG_BUSY) != 0);
1923
1924 /*
1925 * all resources are present. we can now map it in and free our
1926 * resources.
1927 */
1928
1929 UVMHIST_LOG(maphist,
1930 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1931 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, promote);
1932 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
1933 (pg->flags & PG_RDONLY) == 0);
1934 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1935 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
1936 flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1937
1938 /*
1939 * No need to undo what we did; we can simply think of
1940 * this as the pmap throwing away the mapping information.
1941 *
1942 * We do, however, have to go through the ReFault path,
1943 * as the map may change while we're asleep.
1944 */
1945
1946 if (pg->flags & PG_WANTED)
1947 wakeup(pg);
1948
1949 /*
1950 * note that pg can't be PG_RELEASED since we did not drop
1951 * the object lock since the last time we checked.
1952 */
1953 KASSERT((pg->flags & PG_RELEASED) == 0);
1954
1955 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1956 UVM_PAGE_OWN(pg, NULL);
1957 uvmfault_unlockall(ufi, amap, uobj, anon);
1958 if (!uvm_reclaimable()) {
1959 UVMHIST_LOG(maphist,
1960 "<- failed. out of VM",0,0,0,0);
1961 /* XXX instrumentation */
1962 error = ENOMEM;
1963 return error;
1964 }
1965 /* XXX instrumentation */
1966 uvm_wait("flt_pmfail2");
1967 return ERESTART;
1968 }
1969
1970 mutex_enter(&uvm_pageqlock);
1971 if (flt->wire_paging) {
1972 uvm_pagewire(pg);
1973 if (pg->pqflags & PQ_AOBJ) {
1974
1975 /*
1976 * since the now-wired page cannot be paged out,
1977 * release its swap resources for others to use.
1978 * since an aobj page with no swap cannot be PG_CLEAN,
1979 * clear its clean flag now.
1980 */
1981
1982 KASSERT(uobj != NULL);
1983 pg->flags &= ~(PG_CLEAN);
1984 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1985 }
1986 } else {
1987 uvm_pageactivate(pg);
1988 }
1989 mutex_exit(&uvm_pageqlock);
1990 if (pg->flags & PG_WANTED)
1991 wakeup(pg);
1992
1993 /*
1994 * note that pg can't be PG_RELEASED since we did not drop the object
1995 * lock since the last time we checked.
1996 */
1997 KASSERT((pg->flags & PG_RELEASED) == 0);
1998
1999 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2000 UVM_PAGE_OWN(pg, NULL);
2001 uvmfault_unlockall(ufi, amap, uobj, anon);
2002 pmap_update(ufi->orig_map->pmap);
2003 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2004 return 0;
2005 }
2006
2007
2008 /*
2009 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2010 *
2011 * => map may be read-locked by caller, but MUST NOT be write-locked.
2012 * => if map is read-locked, any operations which may cause map to
2013 * be write-locked in uvm_fault() must be taken care of by
2014 * the caller. See uvm_map_pageable().
2015 */
2016
2017 int
2018 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2019 vm_prot_t access_type, int maxprot)
2020 {
2021 vaddr_t va;
2022 int error;
2023
2024 /*
2025 * now fault it in a page at a time. if the fault fails then we have
2026 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2027 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2028 */
2029
2030 /*
2031 * XXX work around overflowing a vaddr_t. this prevents us from
2032 * wiring the last page in the address space, though.
2033 */
2034 if (start > end) {
2035 return EFAULT;
2036 }
2037
2038 for (va = start ; va < end ; va += PAGE_SIZE) {
2039 error = uvm_fault_internal(map, va, access_type,
2040 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2041 if (error) {
2042 if (va != start) {
2043 uvm_fault_unwire(map, start, va);
2044 }
2045 return error;
2046 }
2047 }
2048 return 0;
2049 }
2050
2051 /*
2052 * uvm_fault_unwire(): unwire range of virtual space.
2053 */
2054
2055 void
2056 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2057 {
2058 vm_map_lock_read(map);
2059 uvm_fault_unwire_locked(map, start, end);
2060 vm_map_unlock_read(map);
2061 }
2062
2063 /*
2064 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2065 *
2066 * => map must be at least read-locked.
2067 */
2068
2069 void
2070 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2071 {
2072 struct vm_map_entry *entry;
2073 pmap_t pmap = vm_map_pmap(map);
2074 vaddr_t va;
2075 paddr_t pa;
2076 struct vm_page *pg;
2077
2078 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2079
2080 /*
2081 * we assume that the area we are unwiring has actually been wired
2082 * in the first place. this means that we should be able to extract
2083 * the PAs from the pmap. we also lock out the page daemon so that
2084 * we can call uvm_pageunwire.
2085 */
2086
2087 mutex_enter(&uvm_pageqlock);
2088
2089 /*
2090 * find the beginning map entry for the region.
2091 */
2092
2093 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2094 if (uvm_map_lookup_entry(map, start, &entry) == false)
2095 panic("uvm_fault_unwire_locked: address not in map");
2096
2097 for (va = start; va < end; va += PAGE_SIZE) {
2098 if (pmap_extract(pmap, va, &pa) == false)
2099 continue;
2100
2101 /*
2102 * find the map entry for the current address.
2103 */
2104
2105 KASSERT(va >= entry->start);
2106 while (va >= entry->end) {
2107 KASSERT(entry->next != &map->header &&
2108 entry->next->start <= entry->end);
2109 entry = entry->next;
2110 }
2111
2112 /*
2113 * if the entry is no longer wired, tell the pmap.
2114 */
2115
2116 if (VM_MAPENT_ISWIRED(entry) == 0)
2117 pmap_unwire(pmap, va);
2118
2119 pg = PHYS_TO_VM_PAGE(pa);
2120 if (pg)
2121 uvm_pageunwire(pg);
2122 }
2123
2124 mutex_exit(&uvm_pageqlock);
2125 }
2126