Home | History | Annotate | Line # | Download | only in uvm
uvm_fault.c revision 1.148
      1 /*	$NetBSD: uvm_fault.c,v 1.148 2010/02/01 16:08:27 uebayasi Exp $	*/
      2 
      3 /*
      4  *
      5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
     35  */
     36 
     37 /*
     38  * uvm_fault.c: fault handler
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.148 2010/02/01 16:08:27 uebayasi Exp $");
     43 
     44 #include "opt_uvmhist.h"
     45 
     46 #include <sys/param.h>
     47 #include <sys/systm.h>
     48 #include <sys/kernel.h>
     49 #include <sys/proc.h>
     50 #include <sys/malloc.h>
     51 #include <sys/mman.h>
     52 
     53 #include <uvm/uvm.h>
     54 
     55 /*
     56  *
     57  * a word on page faults:
     58  *
     59  * types of page faults we handle:
     60  *
     61  * CASE 1: upper layer faults                   CASE 2: lower layer faults
     62  *
     63  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
     64  *    read/write1     write>1                  read/write   +-cow_write/zero
     65  *         |             |                         |        |
     66  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
     67  * amap |  V  |       |  ---------> new |          |        | |  ^  |
     68  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
     69  *                                                 |        |    |
     70  *      +-----+       +-----+                   +--|--+     | +--|--+
     71  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
     72  *      +-----+       +-----+                   +-----+       +-----+
     73  *
     74  * d/c = don't care
     75  *
     76  *   case [0]: layerless fault
     77  *	no amap or uobj is present.   this is an error.
     78  *
     79  *   case [1]: upper layer fault [anon active]
     80  *     1A: [read] or [write with anon->an_ref == 1]
     81  *		I/O takes place in upper level anon and uobj is not touched.
     82  *     1B: [write with anon->an_ref > 1]
     83  *		new anon is alloc'd and data is copied off ["COW"]
     84  *
     85  *   case [2]: lower layer fault [uobj]
     86  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
     87  *		I/O takes place directly in object.
     88  *     2B: [write to copy_on_write] or [read on NULL uobj]
     89  *		data is "promoted" from uobj to a new anon.
     90  *		if uobj is null, then we zero fill.
     91  *
     92  * we follow the standard UVM locking protocol ordering:
     93  *
     94  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
     95  * we hold a PG_BUSY page if we unlock for I/O
     96  *
     97  *
     98  * the code is structured as follows:
     99  *
    100  *     - init the "IN" params in the ufi structure
    101  *   ReFault:
    102  *     - do lookups [locks maps], check protection, handle needs_copy
    103  *     - check for case 0 fault (error)
    104  *     - establish "range" of fault
    105  *     - if we have an amap lock it and extract the anons
    106  *     - if sequential advice deactivate pages behind us
    107  *     - at the same time check pmap for unmapped areas and anon for pages
    108  *	 that we could map in (and do map it if found)
    109  *     - check object for resident pages that we could map in
    110  *     - if (case 2) goto Case2
    111  *     - >>> handle case 1
    112  *           - ensure source anon is resident in RAM
    113  *           - if case 1B alloc new anon and copy from source
    114  *           - map the correct page in
    115  *   Case2:
    116  *     - >>> handle case 2
    117  *           - ensure source page is resident (if uobj)
    118  *           - if case 2B alloc new anon and copy from source (could be zero
    119  *		fill if uobj == NULL)
    120  *           - map the correct page in
    121  *     - done!
    122  *
    123  * note on paging:
    124  *   if we have to do I/O we place a PG_BUSY page in the correct object,
    125  * unlock everything, and do the I/O.   when I/O is done we must reverify
    126  * the state of the world before assuming that our data structures are
    127  * valid.   [because mappings could change while the map is unlocked]
    128  *
    129  *  alternative 1: unbusy the page in question and restart the page fault
    130  *    from the top (ReFault).   this is easy but does not take advantage
    131  *    of the information that we already have from our previous lookup,
    132  *    although it is possible that the "hints" in the vm_map will help here.
    133  *
    134  * alternative 2: the system already keeps track of a "version" number of
    135  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
    136  *    mapping) you bump the version number up by one...]   so, we can save
    137  *    the version number of the map before we release the lock and start I/O.
    138  *    then when I/O is done we can relock and check the version numbers
    139  *    to see if anything changed.    this might save us some over 1 because
    140  *    we don't have to unbusy the page and may be less compares(?).
    141  *
    142  * alternative 3: put in backpointers or a way to "hold" part of a map
    143  *    in place while I/O is in progress.   this could be complex to
    144  *    implement (especially with structures like amap that can be referenced
    145  *    by multiple map entries, and figuring out what should wait could be
    146  *    complex as well...).
    147  *
    148  * we use alternative 2.  given that we are multi-threaded now we may want
    149  * to reconsider the choice.
    150  */
    151 
    152 /*
    153  * local data structures
    154  */
    155 
    156 struct uvm_advice {
    157 	int advice;
    158 	int nback;
    159 	int nforw;
    160 };
    161 
    162 /*
    163  * page range array:
    164  * note: index in array must match "advice" value
    165  * XXX: borrowed numbers from freebsd.   do they work well for us?
    166  */
    167 
    168 static const struct uvm_advice uvmadvice[] = {
    169 	{ MADV_NORMAL, 3, 4 },
    170 	{ MADV_RANDOM, 0, 0 },
    171 	{ MADV_SEQUENTIAL, 8, 7},
    172 };
    173 
    174 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
    175 
    176 /*
    177  * private prototypes
    178  */
    179 
    180 /*
    181  * inline functions
    182  */
    183 
    184 /*
    185  * uvmfault_anonflush: try and deactivate pages in specified anons
    186  *
    187  * => does not have to deactivate page if it is busy
    188  */
    189 
    190 static inline void
    191 uvmfault_anonflush(struct vm_anon **anons, int n)
    192 {
    193 	int lcv;
    194 	struct vm_page *pg;
    195 
    196 	for (lcv = 0 ; lcv < n ; lcv++) {
    197 		if (anons[lcv] == NULL)
    198 			continue;
    199 		mutex_enter(&anons[lcv]->an_lock);
    200 		pg = anons[lcv]->an_page;
    201 		if (pg && (pg->flags & PG_BUSY) == 0) {
    202 			mutex_enter(&uvm_pageqlock);
    203 			if (pg->wire_count == 0) {
    204 				uvm_pagedeactivate(pg);
    205 			}
    206 			mutex_exit(&uvm_pageqlock);
    207 		}
    208 		mutex_exit(&anons[lcv]->an_lock);
    209 	}
    210 }
    211 
    212 /*
    213  * normal functions
    214  */
    215 
    216 /*
    217  * uvmfault_amapcopy: clear "needs_copy" in a map.
    218  *
    219  * => called with VM data structures unlocked (usually, see below)
    220  * => we get a write lock on the maps and clear needs_copy for a VA
    221  * => if we are out of RAM we sleep (waiting for more)
    222  */
    223 
    224 static void
    225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
    226 {
    227 	for (;;) {
    228 
    229 		/*
    230 		 * no mapping?  give up.
    231 		 */
    232 
    233 		if (uvmfault_lookup(ufi, true) == false)
    234 			return;
    235 
    236 		/*
    237 		 * copy if needed.
    238 		 */
    239 
    240 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
    241 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
    242 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
    243 
    244 		/*
    245 		 * didn't work?  must be out of RAM.   unlock and sleep.
    246 		 */
    247 
    248 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
    249 			uvmfault_unlockmaps(ufi, true);
    250 			uvm_wait("fltamapcopy");
    251 			continue;
    252 		}
    253 
    254 		/*
    255 		 * got it!   unlock and return.
    256 		 */
    257 
    258 		uvmfault_unlockmaps(ufi, true);
    259 		return;
    260 	}
    261 	/*NOTREACHED*/
    262 }
    263 
    264 /*
    265  * uvmfault_anonget: get data in an anon into a non-busy, non-released
    266  * page in that anon.
    267  *
    268  * => maps, amap, and anon locked by caller.
    269  * => if we fail (result != 0) we unlock everything.
    270  * => if we are successful, we return with everything still locked.
    271  * => we don't move the page on the queues [gets moved later]
    272  * => if we allocate a new page [we_own], it gets put on the queues.
    273  *    either way, the result is that the page is on the queues at return time
    274  * => for pages which are on loan from a uvm_object (and thus are not
    275  *    owned by the anon): if successful, we return with the owning object
    276  *    locked.   the caller must unlock this object when it unlocks everything
    277  *    else.
    278  */
    279 
    280 int
    281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
    282     struct vm_anon *anon)
    283 {
    284 	bool we_own;	/* we own anon's page? */
    285 	bool locked;	/* did we relock? */
    286 	struct vm_page *pg;
    287 	int error;
    288 	UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
    289 
    290 	KASSERT(mutex_owned(&anon->an_lock));
    291 
    292 	error = 0;
    293 	uvmexp.fltanget++;
    294         /* bump rusage counters */
    295 	if (anon->an_page)
    296 		curlwp->l_ru.ru_minflt++;
    297 	else
    298 		curlwp->l_ru.ru_majflt++;
    299 
    300 	/*
    301 	 * loop until we get it, or fail.
    302 	 */
    303 
    304 	for (;;) {
    305 		we_own = false;		/* true if we set PG_BUSY on a page */
    306 		pg = anon->an_page;
    307 
    308 		/*
    309 		 * if there is a resident page and it is loaned, then anon
    310 		 * may not own it.   call out to uvm_anon_lockpage() to ensure
    311 		 * the real owner of the page has been identified and locked.
    312 		 */
    313 
    314 		if (pg && pg->loan_count)
    315 			pg = uvm_anon_lockloanpg(anon);
    316 
    317 		/*
    318 		 * page there?   make sure it is not busy/released.
    319 		 */
    320 
    321 		if (pg) {
    322 
    323 			/*
    324 			 * at this point, if the page has a uobject [meaning
    325 			 * we have it on loan], then that uobject is locked
    326 			 * by us!   if the page is busy, we drop all the
    327 			 * locks (including uobject) and try again.
    328 			 */
    329 
    330 			if ((pg->flags & PG_BUSY) == 0) {
    331 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
    332 				return (0);
    333 			}
    334 			pg->flags |= PG_WANTED;
    335 			uvmexp.fltpgwait++;
    336 
    337 			/*
    338 			 * the last unlock must be an atomic unlock+wait on
    339 			 * the owner of page
    340 			 */
    341 
    342 			if (pg->uobject) {	/* owner is uobject ? */
    343 				uvmfault_unlockall(ufi, amap, NULL, anon);
    344 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
    345 				    0,0,0);
    346 				UVM_UNLOCK_AND_WAIT(pg,
    347 				    &pg->uobject->vmobjlock,
    348 				    false, "anonget1",0);
    349 			} else {
    350 				/* anon owns page */
    351 				uvmfault_unlockall(ufi, amap, NULL, NULL);
    352 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
    353 				    0,0,0);
    354 				UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
    355 				    "anonget2",0);
    356 			}
    357 		} else {
    358 #if defined(VMSWAP)
    359 
    360 			/*
    361 			 * no page, we must try and bring it in.
    362 			 */
    363 
    364 			pg = uvm_pagealloc(NULL, 0, anon, 0);
    365 			if (pg == NULL) {		/* out of RAM.  */
    366 				uvmfault_unlockall(ufi, amap, NULL, anon);
    367 				uvmexp.fltnoram++;
    368 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
    369 				    0,0,0);
    370 				if (!uvm_reclaimable()) {
    371 					return ENOMEM;
    372 				}
    373 				uvm_wait("flt_noram1");
    374 			} else {
    375 				/* we set the PG_BUSY bit */
    376 				we_own = true;
    377 				uvmfault_unlockall(ufi, amap, NULL, anon);
    378 
    379 				/*
    380 				 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
    381 				 * page into the uvm_swap_get function with
    382 				 * all data structures unlocked.  note that
    383 				 * it is ok to read an_swslot here because
    384 				 * we hold PG_BUSY on the page.
    385 				 */
    386 				uvmexp.pageins++;
    387 				error = uvm_swap_get(pg, anon->an_swslot,
    388 				    PGO_SYNCIO);
    389 
    390 				/*
    391 				 * we clean up after the i/o below in the
    392 				 * "we_own" case
    393 				 */
    394 			}
    395 #else /* defined(VMSWAP) */
    396 			panic("%s: no page", __func__);
    397 #endif /* defined(VMSWAP) */
    398 		}
    399 
    400 		/*
    401 		 * now relock and try again
    402 		 */
    403 
    404 		locked = uvmfault_relock(ufi);
    405 		if (locked && amap != NULL) {
    406 			amap_lock(amap);
    407 		}
    408 		if (locked || we_own)
    409 			mutex_enter(&anon->an_lock);
    410 
    411 		/*
    412 		 * if we own the page (i.e. we set PG_BUSY), then we need
    413 		 * to clean up after the I/O. there are three cases to
    414 		 * consider:
    415 		 *   [1] page released during I/O: free anon and ReFault.
    416 		 *   [2] I/O not OK.   free the page and cause the fault
    417 		 *       to fail.
    418 		 *   [3] I/O OK!   activate the page and sync with the
    419 		 *       non-we_own case (i.e. drop anon lock if not locked).
    420 		 */
    421 
    422 		if (we_own) {
    423 #if defined(VMSWAP)
    424 			if (pg->flags & PG_WANTED) {
    425 				wakeup(pg);
    426 			}
    427 			if (error) {
    428 
    429 				/*
    430 				 * remove the swap slot from the anon
    431 				 * and mark the anon as having no real slot.
    432 				 * don't free the swap slot, thus preventing
    433 				 * it from being used again.
    434 				 */
    435 
    436 				if (anon->an_swslot > 0)
    437 					uvm_swap_markbad(anon->an_swslot, 1);
    438 				anon->an_swslot = SWSLOT_BAD;
    439 
    440 				if ((pg->flags & PG_RELEASED) != 0)
    441 					goto released;
    442 
    443 				/*
    444 				 * note: page was never !PG_BUSY, so it
    445 				 * can't be mapped and thus no need to
    446 				 * pmap_page_protect it...
    447 				 */
    448 
    449 				mutex_enter(&uvm_pageqlock);
    450 				uvm_pagefree(pg);
    451 				mutex_exit(&uvm_pageqlock);
    452 
    453 				if (locked)
    454 					uvmfault_unlockall(ufi, amap, NULL,
    455 					    anon);
    456 				else
    457 					mutex_exit(&anon->an_lock);
    458 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
    459 				return error;
    460 			}
    461 
    462 			if ((pg->flags & PG_RELEASED) != 0) {
    463 released:
    464 				KASSERT(anon->an_ref == 0);
    465 
    466 				/*
    467 				 * released while we unlocked amap.
    468 				 */
    469 
    470 				if (locked)
    471 					uvmfault_unlockall(ufi, amap, NULL,
    472 					    NULL);
    473 
    474 				uvm_anon_release(anon);
    475 
    476 				if (error) {
    477 					UVMHIST_LOG(maphist,
    478 					    "<- ERROR/RELEASED", 0,0,0,0);
    479 					return error;
    480 				}
    481 
    482 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
    483 				return ERESTART;
    484 			}
    485 
    486 			/*
    487 			 * we've successfully read the page, activate it.
    488 			 */
    489 
    490 			mutex_enter(&uvm_pageqlock);
    491 			uvm_pageactivate(pg);
    492 			mutex_exit(&uvm_pageqlock);
    493 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    494 			UVM_PAGE_OWN(pg, NULL);
    495 			if (!locked)
    496 				mutex_exit(&anon->an_lock);
    497 #else /* defined(VMSWAP) */
    498 			panic("%s: we_own", __func__);
    499 #endif /* defined(VMSWAP) */
    500 		}
    501 
    502 		/*
    503 		 * we were not able to relock.   restart fault.
    504 		 */
    505 
    506 		if (!locked) {
    507 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    508 			return (ERESTART);
    509 		}
    510 
    511 		/*
    512 		 * verify no one has touched the amap and moved the anon on us.
    513 		 */
    514 
    515 		if (ufi != NULL &&
    516 		    amap_lookup(&ufi->entry->aref,
    517 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
    518 
    519 			uvmfault_unlockall(ufi, amap, NULL, anon);
    520 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    521 			return (ERESTART);
    522 		}
    523 
    524 		/*
    525 		 * try it again!
    526 		 */
    527 
    528 		uvmexp.fltanretry++;
    529 		continue;
    530 	}
    531 	/*NOTREACHED*/
    532 }
    533 
    534 /*
    535  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
    536  *
    537  *	1. allocate an anon and a page.
    538  *	2. fill its contents.
    539  *	3. put it into amap.
    540  *
    541  * => if we fail (result != 0) we unlock everything.
    542  * => on success, return a new locked anon via 'nanon'.
    543  *    (*nanon)->an_page will be a resident, locked, dirty page.
    544  */
    545 
    546 static int
    547 uvmfault_promote(struct uvm_faultinfo *ufi,
    548     struct vm_anon *oanon,
    549     struct vm_page *uobjpage,
    550     struct vm_anon **nanon, /* OUT: allocated anon */
    551     struct vm_anon **spare)
    552 {
    553 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
    554 	struct uvm_object *uobj;
    555 	struct vm_anon *anon;
    556 	struct vm_page *pg;
    557 	struct vm_page *opg;
    558 	int error;
    559 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    560 
    561 	if (oanon) {
    562 		/* anon COW */
    563 		opg = oanon->an_page;
    564 		KASSERT(opg != NULL);
    565 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
    566 	} else if (uobjpage != PGO_DONTCARE) {
    567 		/* object-backed COW */
    568 		opg = uobjpage;
    569 	} else {
    570 		/* ZFOD */
    571 		opg = NULL;
    572 	}
    573 	if (opg != NULL) {
    574 		uobj = opg->uobject;
    575 	} else {
    576 		uobj = NULL;
    577 	}
    578 
    579 	KASSERT(amap != NULL);
    580 	KASSERT(uobjpage != NULL);
    581 	KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
    582 	KASSERT(mutex_owned(&amap->am_l));
    583 	KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
    584 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
    585 #if 0
    586 	KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
    587 #endif
    588 
    589 	if (*spare != NULL) {
    590 		anon = *spare;
    591 		*spare = NULL;
    592 		mutex_enter(&anon->an_lock);
    593 	} else if (ufi->map != kernel_map) {
    594 		anon = uvm_analloc();
    595 	} else {
    596 		UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
    597 
    598 		/*
    599 		 * we can't allocate anons with kernel_map locked.
    600 		 */
    601 
    602 		uvm_page_unbusy(&uobjpage, 1);
    603 		uvmfault_unlockall(ufi, amap, uobj, oanon);
    604 
    605 		*spare = uvm_analloc();
    606 		if (*spare == NULL) {
    607 			goto nomem;
    608 		}
    609 		mutex_exit(&(*spare)->an_lock);
    610 		error = ERESTART;
    611 		goto done;
    612 	}
    613 	if (anon) {
    614 
    615 		/*
    616 		 * The new anon is locked.
    617 		 *
    618 		 * if opg == NULL, we want a zero'd, dirty page,
    619 		 * so have uvm_pagealloc() do that for us.
    620 		 */
    621 
    622 		pg = uvm_pagealloc(NULL, 0, anon,
    623 		    (opg == NULL) ? UVM_PGA_ZERO : 0);
    624 	} else {
    625 		pg = NULL;
    626 	}
    627 
    628 	/*
    629 	 * out of memory resources?
    630 	 */
    631 
    632 	if (pg == NULL) {
    633 		/* save anon for the next try. */
    634 		if (anon != NULL) {
    635 			mutex_exit(&anon->an_lock);
    636 			*spare = anon;
    637 		}
    638 
    639 		/* unlock and fail ... */
    640 		uvm_page_unbusy(&uobjpage, 1);
    641 		uvmfault_unlockall(ufi, amap, uobj, oanon);
    642 nomem:
    643 		if (!uvm_reclaimable()) {
    644 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
    645 			uvmexp.fltnoanon++;
    646 			error = ENOMEM;
    647 			goto done;
    648 		}
    649 
    650 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
    651 		uvmexp.fltnoram++;
    652 		uvm_wait("flt_noram5");
    653 		error = ERESTART;
    654 		goto done;
    655 	}
    656 
    657 	/* copy page [pg now dirty] */
    658 	if (opg) {
    659 		uvm_pagecopy(opg, pg);
    660 	}
    661 
    662 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
    663 	    oanon != NULL);
    664 
    665 	*nanon = anon;
    666 	error = 0;
    667 done:
    668 	return error;
    669 }
    670 
    671 
    672 /*
    673  *   F A U L T   -   m a i n   e n t r y   p o i n t
    674  */
    675 
    676 /*
    677  * uvm_fault: page fault handler
    678  *
    679  * => called from MD code to resolve a page fault
    680  * => VM data structures usually should be unlocked.   however, it is
    681  *	possible to call here with the main map locked if the caller
    682  *	gets a write lock, sets it recusive, and then calls us (c.f.
    683  *	uvm_map_pageable).   this should be avoided because it keeps
    684  *	the map locked off during I/O.
    685  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
    686  */
    687 
    688 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
    689 			 ~VM_PROT_WRITE : VM_PROT_ALL)
    690 
    691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
    692 #define UVM_FAULT_WIRE		(1 << 0)
    693 #define UVM_FAULT_MAXPROT	(1 << 1)
    694 
    695 struct uvm_faultctx {
    696 	vm_prot_t access_type;
    697 	vm_prot_t enter_prot;
    698 	bool wire_mapping;
    699 	bool narrow;
    700 	bool wire_paging;
    701 	bool maxprot;
    702 	bool cow_now;
    703 	int npages;
    704 	int centeridx;
    705 	vaddr_t startva;
    706 	struct vm_anon *anon_spare;
    707 };
    708 
    709 static int uvm_fault_check(
    710     struct uvm_faultinfo *, struct uvm_faultctx *,
    711     struct vm_anon ***, struct vm_page ***);
    712 typedef int uvm_fault_upper_subfunc_t(
    713     struct uvm_faultinfo *, struct uvm_faultctx *,
    714     struct vm_anon **, struct vm_page **);
    715 static uvm_fault_upper_subfunc_t uvm_fault_upper_lookup;
    716 typedef int uvm_fault_lower_subfunc_t(
    717     struct uvm_faultinfo *, struct uvm_faultctx *,
    718     struct vm_page **);
    719 static uvm_fault_lower_subfunc_t uvm_fault_lower;
    720 static uvm_fault_lower_subfunc_t uvm_fault_lower_special;
    721 static uvm_fault_lower_subfunc_t uvm_fault_lower_generic_lookup;
    722 static uvm_fault_lower_subfunc_t uvm_fault_lower_generic;
    723 static int uvm_fault_upper(
    724     struct uvm_faultinfo *, struct uvm_faultctx *,
    725     struct vm_anon **);
    726 static int uvm_fault_lower_generic1(
    727     struct uvm_faultinfo *, struct uvm_faultctx *,
    728     struct vm_page *);
    729 static int uvm_fault_lower_generic2(
    730     struct uvm_faultinfo *, struct uvm_faultctx *,
    731     struct vm_page *);
    732 
    733 int
    734 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
    735     vm_prot_t access_type, int fault_flag)
    736 {
    737 	struct uvm_faultinfo ufi;
    738 	struct uvm_faultctx flt = {
    739 		.access_type = access_type,
    740 
    741 		/* don't look for neighborhood * pages on "wire" fault */
    742 		.narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
    743 
    744 		/* "wire" fault causes wiring of both mapping and paging */
    745 		.wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
    746 		.wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
    747 
    748 		.maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
    749 	};
    750 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
    751 	struct vm_page *pages_store[UVM_MAXRANGE], **pages;
    752 	int error;
    753 	UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
    754 
    755 	UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
    756 	      orig_map, vaddr, access_type, fault_flag);
    757 
    758 	uvmexp.faults++;	/* XXX: locking? */
    759 
    760 	/*
    761 	 * init the IN parameters in the ufi
    762 	 */
    763 
    764 	ufi.orig_map = orig_map;
    765 	ufi.orig_rvaddr = trunc_page(vaddr);
    766 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
    767 
    768 	error = ERESTART;
    769 	while (error == ERESTART) {
    770 		anons = anons_store;
    771 		pages = pages_store;
    772 
    773 		error = uvm_fault_check(&ufi, &flt, &anons, &pages);
    774 		if (error != 0)
    775 			continue;
    776 
    777 		error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
    778 		if (error != 0)
    779 			continue;
    780 
    781 		if (pages[flt.centeridx] == PGO_DONTCARE)
    782 			error = uvm_fault_upper(&ufi, &flt, anons);
    783 		else
    784 			error = uvm_fault_lower(&ufi, &flt, pages);
    785 	}
    786 
    787 	if (flt.anon_spare != NULL) {
    788 		flt.anon_spare->an_ref--;
    789 		uvm_anfree(flt.anon_spare);
    790 	}
    791 	return error;
    792 }
    793 
    794 static int
    795 uvm_fault_check(
    796 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
    797 	struct vm_anon ***ranons, struct vm_page ***rpages)
    798 {
    799 	struct vm_amap *amap;
    800 	struct uvm_object *uobj;
    801 	vm_prot_t check_prot;
    802 	int nback, nforw;
    803 
    804 	/*
    805 	 * lookup and lock the maps
    806 	 */
    807 
    808 	if (uvmfault_lookup(ufi, false) == false) {
    809 		UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
    810 		return EFAULT;
    811 	}
    812 	/* locked: maps(read) */
    813 
    814 #ifdef DIAGNOSTIC
    815 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
    816 		printf("Page fault on non-pageable map:\n");
    817 		printf("ufi->map = %p\n", ufi->map);
    818 		printf("ufi->orig_map = %p\n", ufi->orig_map);
    819 		printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
    820 		panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
    821 	}
    822 #endif
    823 
    824 	/*
    825 	 * check protection
    826 	 */
    827 
    828 	check_prot = flt->maxprot ?
    829 	    ufi->entry->max_protection : ufi->entry->protection;
    830 	if ((check_prot & flt->access_type) != flt->access_type) {
    831 		UVMHIST_LOG(maphist,
    832 		    "<- protection failure (prot=0x%x, access=0x%x)",
    833 		    ufi->entry->protection, flt->access_type, 0, 0);
    834 		uvmfault_unlockmaps(ufi, false);
    835 		return EACCES;
    836 	}
    837 
    838 	/*
    839 	 * "enter_prot" is the protection we want to enter the page in at.
    840 	 * for certain pages (e.g. copy-on-write pages) this protection can
    841 	 * be more strict than ufi->entry->protection.  "wired" means either
    842 	 * the entry is wired or we are fault-wiring the pg.
    843 	 */
    844 
    845 	flt->enter_prot = ufi->entry->protection;
    846 	if (VM_MAPENT_ISWIRED(ufi->entry))
    847 		flt->wire_mapping = true;
    848 
    849 	if (flt->wire_mapping) {
    850 		flt->access_type = flt->enter_prot; /* full access for wired */
    851 		flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
    852 	} else {
    853 		flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
    854 	}
    855 
    856 	/*
    857 	 * handle "needs_copy" case.   if we need to copy the amap we will
    858 	 * have to drop our readlock and relock it with a write lock.  (we
    859 	 * need a write lock to change anything in a map entry [e.g.
    860 	 * needs_copy]).
    861 	 */
    862 
    863 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
    864 		if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
    865 			KASSERT(!flt->maxprot);
    866 			/* need to clear */
    867 			UVMHIST_LOG(maphist,
    868 			    "  need to clear needs_copy and refault",0,0,0,0);
    869 			uvmfault_unlockmaps(ufi, false);
    870 			uvmfault_amapcopy(ufi);
    871 			uvmexp.fltamcopy++;
    872 			return ERESTART;
    873 
    874 		} else {
    875 
    876 			/*
    877 			 * ensure that we pmap_enter page R/O since
    878 			 * needs_copy is still true
    879 			 */
    880 
    881 			flt->enter_prot &= ~VM_PROT_WRITE;
    882 		}
    883 	}
    884 
    885 	/*
    886 	 * identify the players
    887 	 */
    888 
    889 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
    890 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
    891 
    892 	/*
    893 	 * check for a case 0 fault.  if nothing backing the entry then
    894 	 * error now.
    895 	 */
    896 
    897 	if (amap == NULL && uobj == NULL) {
    898 		uvmfault_unlockmaps(ufi, false);
    899 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
    900 		return EFAULT;
    901 	}
    902 
    903 	/*
    904 	 * establish range of interest based on advice from mapper
    905 	 * and then clip to fit map entry.   note that we only want
    906 	 * to do this the first time through the fault.   if we
    907 	 * ReFault we will disable this by setting "narrow" to true.
    908 	 */
    909 
    910 	if (flt->narrow == false) {
    911 
    912 		/* wide fault (!narrow) */
    913 		KASSERT(uvmadvice[ufi->entry->advice].advice ==
    914 			 ufi->entry->advice);
    915 		nback = MIN(uvmadvice[ufi->entry->advice].nback,
    916 			    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
    917 		flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
    918 		nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
    919 			    ((ufi->entry->end - ufi->orig_rvaddr) >>
    920 			     PAGE_SHIFT) - 1);
    921 		/*
    922 		 * note: "-1" because we don't want to count the
    923 		 * faulting page as forw
    924 		 */
    925 		flt->npages = nback + nforw + 1;
    926 		flt->centeridx = nback;
    927 
    928 		flt->narrow = true;	/* ensure only once per-fault */
    929 
    930 	} else {
    931 
    932 		/* narrow fault! */
    933 		nback = nforw = 0;
    934 		flt->startva = ufi->orig_rvaddr;
    935 		flt->npages = 1;
    936 		flt->centeridx = 0;
    937 
    938 	}
    939 	/* offset from entry's start to pgs' start */
    940 	const voff_t eoff = flt->startva - ufi->entry->start;
    941 
    942 	/* locked: maps(read) */
    943 	UVMHIST_LOG(maphist, "  narrow=%d, back=%d, forw=%d, startva=0x%x",
    944 		    flt->narrow, nback, nforw, flt->startva);
    945 	UVMHIST_LOG(maphist, "  entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
    946 		    amap, uobj, 0);
    947 
    948 	/*
    949 	 * if we've got an amap, lock it and extract current anons.
    950 	 */
    951 
    952 	if (amap) {
    953 		amap_lock(amap);
    954 		amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
    955 	} else {
    956 		*ranons = NULL;	/* to be safe */
    957 	}
    958 
    959 	/* locked: maps(read), amap(if there) */
    960 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
    961 
    962 	/*
    963 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
    964 	 * now and then forget about them (for the rest of the fault).
    965 	 */
    966 
    967 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
    968 
    969 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
    970 		    0,0,0,0);
    971 		/* flush back-page anons? */
    972 		if (amap)
    973 			uvmfault_anonflush(*ranons, nback);
    974 
    975 		/* flush object? */
    976 		if (uobj) {
    977 			voff_t uoff;
    978 
    979 			uoff = ufi->entry->offset + eoff;
    980 			mutex_enter(&uobj->vmobjlock);
    981 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
    982 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
    983 		}
    984 
    985 		/* now forget about the backpages */
    986 		if (amap)
    987 			*ranons += nback;
    988 #if 0
    989 		/* XXXUEBS */
    990 		if (uobj)
    991 			*rpages += nback;
    992 #endif
    993 		flt->startva += (nback << PAGE_SHIFT);
    994 		flt->npages -= nback;
    995 		flt->centeridx = 0;
    996 	}
    997 	/*
    998 	 * => startva is fixed
    999 	 * => npages is fixed
   1000 	 */
   1001 
   1002 	return 0;
   1003 }
   1004 
   1005 static int
   1006 uvm_fault_upper_lookup(
   1007 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1008 	struct vm_anon **anons, struct vm_page **pages)
   1009 {
   1010 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1011 	int lcv;
   1012 	vaddr_t currva;
   1013 	bool shadowed;
   1014 
   1015 	/* locked: maps(read), amap(if there) */
   1016 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1017 
   1018 	/*
   1019 	 * map in the backpages and frontpages we found in the amap in hopes
   1020 	 * of preventing future faults.    we also init the pages[] array as
   1021 	 * we go.
   1022 	 */
   1023 
   1024 	currva = flt->startva;
   1025 	shadowed = false;
   1026 	for (lcv = 0 ; lcv < flt->npages ; lcv++, currva += PAGE_SIZE) {
   1027 		struct vm_anon *anon;
   1028 
   1029 		/*
   1030 		 * dont play with VAs that are already mapped
   1031 		 * except for center)
   1032 		 */
   1033 		if (lcv != flt->centeridx &&
   1034 		    pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
   1035 			pages[lcv] = PGO_DONTCARE;
   1036 			continue;
   1037 		}
   1038 
   1039 		/*
   1040 		 * unmapped or center page.   check if any anon at this level.
   1041 		 */
   1042 		if (amap == NULL || anons[lcv] == NULL) {
   1043 			pages[lcv] = NULL;
   1044 			continue;
   1045 		}
   1046 
   1047 		/*
   1048 		 * check for present page and map if possible.   re-activate it.
   1049 		 */
   1050 
   1051 		pages[lcv] = PGO_DONTCARE;
   1052 		if (lcv == flt->centeridx) {		/* save center for later! */
   1053 			shadowed = true;
   1054 			continue;
   1055 		}
   1056 		anon = anons[lcv];
   1057 		mutex_enter(&anon->an_lock);
   1058 
   1059 		/* ignore loaned and busy pages */
   1060 		if (anon->an_page == NULL || anon->an_page->loan_count != 0 ||
   1061 		    (anon->an_page->flags & PG_BUSY) != 0)
   1062 			goto uvm_fault_upper_lookup_enter_done;
   1063 
   1064 		mutex_enter(&uvm_pageqlock);
   1065 		uvm_pageenqueue(anon->an_page);
   1066 		mutex_exit(&uvm_pageqlock);
   1067 		UVMHIST_LOG(maphist,
   1068 		    "  MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
   1069 		    ufi->orig_map->pmap, currva, anon->an_page, 0);
   1070 		uvmexp.fltnamap++;
   1071 
   1072 		/*
   1073 		 * Since this isn't the page that's actually faulting,
   1074 		 * ignore pmap_enter() failures; it's not critical
   1075 		 * that we enter these right now.
   1076 		 */
   1077 
   1078 		(void) pmap_enter(ufi->orig_map->pmap, currva,
   1079 		    VM_PAGE_TO_PHYS(anon->an_page),
   1080 		    (anon->an_ref > 1) ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1081 		    flt->enter_prot,
   1082 		    PMAP_CANFAIL |
   1083 		     (VM_MAPENT_ISWIRED(ufi->entry) ? PMAP_WIRED : 0));
   1084 
   1085 uvm_fault_upper_lookup_enter_done:
   1086 		pmap_update(ufi->orig_map->pmap);
   1087 		mutex_exit(&anon->an_lock);
   1088 	}
   1089 
   1090 	/* locked: maps(read), amap(if there) */
   1091 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1092 	/* (shadowed == true) if there is an anon at the faulting address */
   1093 	UVMHIST_LOG(maphist, "  shadowed=%d, will_get=%d", shadowed,
   1094 	    (uobj && shadowed != false),0,0);
   1095 
   1096 	/*
   1097 	 * note that if we are really short of RAM we could sleep in the above
   1098 	 * call to pmap_enter with everything locked.   bad?
   1099 	 *
   1100 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
   1101 	 * XXX case.  --thorpej
   1102 	 */
   1103 
   1104 	return 0;
   1105 }
   1106 
   1107 static int
   1108 uvm_fault_lower(
   1109 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1110 	struct vm_page **pages)
   1111 {
   1112 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1113 	int error;
   1114 
   1115 	/*
   1116 	 * if the desired page is not shadowed by the amap and we have a
   1117 	 * backing object, then we check to see if the backing object would
   1118 	 * prefer to handle the fault itself (rather than letting us do it
   1119 	 * with the usual pgo_get hook).  the backing object signals this by
   1120 	 * providing a pgo_fault routine.
   1121 	 */
   1122 
   1123 	if (uobj && uobj->pgops->pgo_fault != NULL) {
   1124 		error = uvm_fault_lower_special(ufi, flt, pages);
   1125 	} else {
   1126 		error = uvm_fault_lower_generic(ufi, flt, pages);
   1127 	}
   1128 	return error;
   1129 }
   1130 
   1131 static int
   1132 uvm_fault_lower_special(
   1133 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1134 	struct vm_page **pages)
   1135 {
   1136 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1137 	int error;
   1138 
   1139 	mutex_enter(&uobj->vmobjlock);
   1140 	/* locked: maps(read), amap (if there), uobj */
   1141 	error = uobj->pgops->pgo_fault(ufi, flt->startva, pages, flt->npages,
   1142 	    flt->centeridx, flt->access_type, PGO_LOCKED|PGO_SYNCIO);
   1143 
   1144 	/* locked: nothing, pgo_fault has unlocked everything */
   1145 
   1146 	if (error == ERESTART)
   1147 		error = ERESTART;		/* try again! */
   1148 	/*
   1149 	 * object fault routine responsible for pmap_update().
   1150 	 */
   1151 
   1152 	return error;
   1153 }
   1154 
   1155 static int
   1156 uvm_fault_lower_generic(
   1157 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1158 	struct vm_page **pages)
   1159 {
   1160 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1161 
   1162 	/*
   1163 	 * now, if the desired page is not shadowed by the amap and we have
   1164 	 * a backing object that does not have a special fault routine, then
   1165 	 * we ask (with pgo_get) the object for resident pages that we care
   1166 	 * about and attempt to map them in.  we do not let pgo_get block
   1167 	 * (PGO_LOCKED).
   1168 	 */
   1169 
   1170 	if (uobj == NULL) {
   1171 		/* zero fill; don't care neighbor pages */
   1172 		pages[flt->centeridx] = NULL;
   1173 	} else {
   1174 		uvm_fault_lower_generic_lookup(ufi, flt, pages);
   1175 	}
   1176 	return uvm_fault_lower_generic1(ufi, flt, pages[flt->centeridx]);
   1177 }
   1178 
   1179 static int
   1180 uvm_fault_lower_generic_lookup(
   1181 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1182 	struct vm_page **pages)
   1183 {
   1184 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1185 	int lcv, gotpages;
   1186 	vaddr_t currva;
   1187 
   1188 	mutex_enter(&uobj->vmobjlock);
   1189 	/* locked (!shadowed): maps(read), amap (if there), uobj */
   1190 	/*
   1191 	 * the following call to pgo_get does _not_ change locking state
   1192 	 */
   1193 
   1194 	uvmexp.fltlget++;
   1195 	gotpages = flt->npages;
   1196 	(void) uobj->pgops->pgo_get(uobj,
   1197 	    ufi->entry->offset + flt->startva - ufi->entry->start,
   1198 	    pages, &gotpages, flt->centeridx,
   1199 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
   1200 
   1201 	/*
   1202 	 * check for pages to map, if we got any
   1203 	 */
   1204 
   1205 	if (gotpages == 0) {
   1206 		pages[flt->centeridx] = NULL;
   1207 		return 0;
   1208 	}
   1209 
   1210 	currva = flt->startva;
   1211 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1212 		struct vm_page *curpg;
   1213 		bool readonly;
   1214 
   1215 		curpg = pages[lcv];
   1216 		if (curpg == NULL || curpg == PGO_DONTCARE) {
   1217 			continue;
   1218 		}
   1219 		KASSERT(curpg->uobject == uobj);
   1220 
   1221 		/*
   1222 		 * if center page is resident and not PG_BUSY|PG_RELEASED
   1223 		 * then pgo_get made it PG_BUSY for us and gave us a handle
   1224 		 * to it.  remember this page as "uobjpage." (for later use).
   1225 		 */
   1226 
   1227 		if (lcv == flt->centeridx) {
   1228 			UVMHIST_LOG(maphist, "  got uobjpage "
   1229 			    "(0x%x) with locked get",
   1230 			    curpg, 0,0,0);
   1231 			continue;
   1232 		}
   1233 
   1234 		/*
   1235 		 * calling pgo_get with PGO_LOCKED returns us pages which
   1236 		 * are neither busy nor released, so we don't need to check
   1237 		 * for this.  we can just directly enter the pages.
   1238 		 */
   1239 
   1240 		mutex_enter(&uvm_pageqlock);
   1241 		uvm_pageenqueue(curpg);
   1242 		mutex_exit(&uvm_pageqlock);
   1243 		UVMHIST_LOG(maphist,
   1244 		  "  MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
   1245 		  ufi->orig_map->pmap, currva, curpg, 0);
   1246 		uvmexp.fltnomap++;
   1247 
   1248 		/*
   1249 		 * Since this page isn't the page that's actually faulting,
   1250 		 * ignore pmap_enter() failures; it's not critical that we
   1251 		 * enter these right now.
   1252 		 */
   1253 		KASSERT((curpg->flags & PG_PAGEOUT) == 0);
   1254 		KASSERT((curpg->flags & PG_RELEASED) == 0);
   1255 		KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
   1256 		    (curpg->flags & PG_CLEAN) != 0);
   1257 		readonly = (curpg->flags & PG_RDONLY)
   1258 		    || (curpg->loan_count > 0)
   1259 		    || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
   1260 
   1261 		(void) pmap_enter(ufi->orig_map->pmap, currva,
   1262 		    VM_PAGE_TO_PHYS(curpg),
   1263 		    readonly ?  flt->enter_prot & ~VM_PROT_WRITE :
   1264 		    flt->enter_prot & MASK(ufi->entry),
   1265 		    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
   1266 
   1267 		/*
   1268 		 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
   1269 		 * held the lock the whole time we've had the handle.
   1270 		 */
   1271 		KASSERT((curpg->flags & PG_WANTED) == 0);
   1272 		KASSERT((curpg->flags & PG_RELEASED) == 0);
   1273 
   1274 		curpg->flags &= ~(PG_BUSY);
   1275 		UVM_PAGE_OWN(curpg, NULL);
   1276 	}
   1277 	pmap_update(ufi->orig_map->pmap);
   1278 	return 0;
   1279 }
   1280 
   1281 static int
   1282 uvm_fault_lower_generic1(
   1283 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1284 	struct vm_page *uobjpage)
   1285 {
   1286 #ifdef DIAGNOSTIC
   1287 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1288 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1289 #endif
   1290 
   1291 	/* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
   1292 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1293 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   1294 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1295 
   1296 	/*
   1297 	 * note that at this point we are done with any front or back pages.
   1298 	 * we are now going to focus on the center page (i.e. the one we've
   1299 	 * faulted on).  if we have faulted on the upper (anon) layer
   1300 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
   1301 	 * not touched it yet).  if we have faulted on the bottom (uobj)
   1302 	 * layer [i.e. case 2] and the page was both present and available,
   1303 	 * then we've got a pointer to it as "uobjpage" and we've already
   1304 	 * made it BUSY.
   1305 	 */
   1306 
   1307 	/*
   1308 	 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
   1309 	 */
   1310 
   1311 	/*
   1312 	 * redirect case 2: if we are not shadowed, go to case 2.
   1313 	 */
   1314 
   1315 	return uvm_fault_lower_generic2(ufi, flt, uobjpage);
   1316 }
   1317 
   1318 static int
   1319 uvm_fault_upper_loan(
   1320 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1321 	struct vm_anon *anon, struct uvm_object **ruobj);
   1322 static int
   1323 uvm_fault_upper1(
   1324 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1325 	struct uvm_object *uobj, struct vm_anon *anon);
   1326 static int
   1327 uvm_fault_upper_promote(
   1328 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1329 	struct uvm_object *uobj, struct vm_anon *anon);
   1330 static int
   1331 uvm_fault_upper_direct(
   1332 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1333 	struct uvm_object *uobj, struct vm_anon *anon);
   1334 static int
   1335 uvm_fault_upper_enter(
   1336 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1337 	struct uvm_object *uobj, struct vm_anon *anon,
   1338 	struct vm_page *pg, struct vm_anon *oanon);
   1339 static int
   1340 uvm_fault_upper_done(
   1341 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1342 	struct uvm_object *uobj, struct vm_anon *anon,
   1343 	struct vm_page *pg, struct vm_anon *oanon);
   1344 
   1345 static int
   1346 uvm_fault_upper(
   1347 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1348 	struct vm_anon **anons)
   1349 {
   1350 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1351 	struct vm_anon * const anon = anons[flt->centeridx];
   1352 	struct uvm_object *uobj;
   1353 	int error;
   1354 
   1355 	/* locked: maps(read), amap */
   1356 	KASSERT(mutex_owned(&amap->am_l));
   1357 
   1358 	/*
   1359 	 * handle case 1: fault on an anon in our amap
   1360 	 */
   1361 
   1362 	UVMHIST_LOG(maphist, "  case 1 fault: anon=0x%x", anon, 0,0,0);
   1363 	mutex_enter(&anon->an_lock);
   1364 
   1365 	/* locked: maps(read), amap, anon */
   1366 	KASSERT(mutex_owned(&amap->am_l));
   1367 	KASSERT(mutex_owned(&anon->an_lock));
   1368 
   1369 	/*
   1370 	 * no matter if we have case 1A or case 1B we are going to need to
   1371 	 * have the anon's memory resident.   ensure that now.
   1372 	 */
   1373 
   1374 	/*
   1375 	 * let uvmfault_anonget do the dirty work.
   1376 	 * if it fails (!OK) it will unlock everything for us.
   1377 	 * if it succeeds, locks are still valid and locked.
   1378 	 * also, if it is OK, then the anon's page is on the queues.
   1379 	 * if the page is on loan from a uvm_object, then anonget will
   1380 	 * lock that object for us if it does not fail.
   1381 	 */
   1382 
   1383 	error = uvmfault_anonget(ufi, amap, anon);
   1384 	switch (error) {
   1385 	case 0:
   1386 		break;
   1387 
   1388 	case ERESTART:
   1389 		return ERESTART;
   1390 
   1391 	case EAGAIN:
   1392 		kpause("fltagain1", false, hz/2, NULL);
   1393 		return ERESTART;
   1394 
   1395 	default:
   1396 		return error;
   1397 	}
   1398 
   1399 	/*
   1400 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
   1401 	 */
   1402 
   1403 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
   1404 
   1405 	/* locked: maps(read), amap, anon, uobj(if one) */
   1406 	KASSERT(mutex_owned(&amap->am_l));
   1407 	KASSERT(mutex_owned(&anon->an_lock));
   1408 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   1409 
   1410 	/*
   1411 	 * special handling for loaned pages
   1412 	 */
   1413 
   1414 	if (anon->an_page->loan_count) {
   1415 		error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
   1416 		if (error != 0)
   1417 			return error;
   1418 	}
   1419 	return uvm_fault_upper1(ufi, flt, uobj, anon);
   1420 }
   1421 
   1422 static int
   1423 uvm_fault_upper_loan(
   1424 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1425 	struct vm_anon *anon, struct uvm_object **ruobj)
   1426 {
   1427 		struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1428 		struct uvm_object *uobj = *ruobj;
   1429 
   1430 		if (!flt->cow_now) {
   1431 
   1432 			/*
   1433 			 * for read faults on loaned pages we just cap the
   1434 			 * protection at read-only.
   1435 			 */
   1436 
   1437 			flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1438 
   1439 		} else {
   1440 			/*
   1441 			 * note that we can't allow writes into a loaned page!
   1442 			 *
   1443 			 * if we have a write fault on a loaned page in an
   1444 			 * anon then we need to look at the anon's ref count.
   1445 			 * if it is greater than one then we are going to do
   1446 			 * a normal copy-on-write fault into a new anon (this
   1447 			 * is not a problem).  however, if the reference count
   1448 			 * is one (a case where we would normally allow a
   1449 			 * write directly to the page) then we need to kill
   1450 			 * the loan before we continue.
   1451 			 */
   1452 
   1453 			/* >1 case is already ok */
   1454 			if (anon->an_ref == 1) {
   1455 				struct vm_page *pg;
   1456 
   1457 				/* get new un-owned replacement page */
   1458 				pg = uvm_pagealloc(NULL, 0, NULL, 0);
   1459 				if (pg == NULL) {
   1460 					uvmfault_unlockall(ufi, amap, uobj,
   1461 					    anon);
   1462 					uvm_wait("flt_noram2");
   1463 					return ERESTART;
   1464 				}
   1465 
   1466 				/*
   1467 				 * copy data, kill loan, and drop uobj lock
   1468 				 * (if any)
   1469 				 */
   1470 				/* copy old -> new */
   1471 				uvm_pagecopy(anon->an_page, pg);
   1472 
   1473 				/* force reload */
   1474 				pmap_page_protect(anon->an_page, VM_PROT_NONE);
   1475 				mutex_enter(&uvm_pageqlock);	  /* KILL loan */
   1476 
   1477 				anon->an_page->uanon = NULL;
   1478 				/* in case we owned */
   1479 				anon->an_page->pqflags &= ~PQ_ANON;
   1480 
   1481 				if (uobj) {
   1482 					/* if we were receiver of loan */
   1483 					anon->an_page->loan_count--;
   1484 				} else {
   1485 					/*
   1486 					 * we were the lender (A->K); need
   1487 					 * to remove the page from pageq's.
   1488 					 */
   1489 					uvm_pagedequeue(anon->an_page);
   1490 				}
   1491 
   1492 				if (uobj) {
   1493 					mutex_exit(&uobj->vmobjlock);
   1494 					*ruobj = NULL;
   1495 				}
   1496 
   1497 				/* install new page in anon */
   1498 				anon->an_page = pg;
   1499 				pg->uanon = anon;
   1500 				pg->pqflags |= PQ_ANON;
   1501 
   1502 				uvm_pageactivate(pg);
   1503 				mutex_exit(&uvm_pageqlock);
   1504 
   1505 				pg->flags &= ~(PG_BUSY|PG_FAKE);
   1506 				UVM_PAGE_OWN(pg, NULL);
   1507 
   1508 				/* done! */
   1509 			}     /* ref == 1 */
   1510 		}       /* write fault */
   1511 
   1512 		return 0;
   1513 }
   1514 
   1515 static int
   1516 uvm_fault_upper1(
   1517 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1518 	struct uvm_object *uobj, struct vm_anon *anon)
   1519 {
   1520 	int error;
   1521 
   1522 	/*
   1523 	 * if we are case 1B then we will need to allocate a new blank
   1524 	 * anon to transfer the data into.   note that we have a lock
   1525 	 * on anon, so no one can busy or release the page until we are done.
   1526 	 * also note that the ref count can't drop to zero here because
   1527 	 * it is > 1 and we are only dropping one ref.
   1528 	 *
   1529 	 * in the (hopefully very rare) case that we are out of RAM we
   1530 	 * will unlock, wait for more RAM, and refault.
   1531 	 *
   1532 	 * if we are out of anon VM we kill the process (XXX: could wait?).
   1533 	 */
   1534 
   1535 	if (flt->cow_now && anon->an_ref > 1) {
   1536 		error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
   1537 	} else {
   1538 		error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
   1539 	}
   1540 	return error;
   1541 }
   1542 
   1543 static int
   1544 uvm_fault_upper_promote(
   1545 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1546 	struct uvm_object *uobj, struct vm_anon *anon)
   1547 {
   1548 		struct vm_anon * const oanon = anon;
   1549 		struct vm_page *pg;
   1550 		int error;
   1551 
   1552 		UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
   1553 		uvmexp.flt_acow++;
   1554 
   1555 		error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
   1556 		    &anon, &flt->anon_spare);
   1557 		switch (error) {
   1558 		case 0:
   1559 			break;
   1560 		case ERESTART:
   1561 			return ERESTART;
   1562 		default:
   1563 			return error;
   1564 		}
   1565 
   1566 		pg = anon->an_page;
   1567 		mutex_enter(&uvm_pageqlock);
   1568 		uvm_pageactivate(pg);
   1569 		mutex_exit(&uvm_pageqlock);
   1570 		pg->flags &= ~(PG_BUSY|PG_FAKE);
   1571 		UVM_PAGE_OWN(pg, NULL);
   1572 
   1573 		/* deref: can not drop to zero here by defn! */
   1574 		oanon->an_ref--;
   1575 
   1576 		/*
   1577 		 * note: oanon is still locked, as is the new anon.  we
   1578 		 * need to check for this later when we unlock oanon; if
   1579 		 * oanon != anon, we'll have to unlock anon, too.
   1580 		 */
   1581 
   1582 		return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1583 }
   1584 
   1585 static int
   1586 uvm_fault_upper_direct(
   1587 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1588 	struct uvm_object *uobj, struct vm_anon *anon)
   1589 {
   1590 		struct vm_anon * const oanon = anon;
   1591 		struct vm_page *pg;
   1592 
   1593 		uvmexp.flt_anon++;
   1594 		pg = anon->an_page;
   1595 		if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
   1596 			flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1597 
   1598 		return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1599 }
   1600 
   1601 static int
   1602 uvm_fault_upper_enter(
   1603 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1604 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
   1605 	struct vm_anon *oanon)
   1606 {
   1607 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1608 
   1609 	/* locked: maps(read), amap, oanon, anon (if different from oanon) */
   1610 	KASSERT(mutex_owned(&amap->am_l));
   1611 	KASSERT(mutex_owned(&anon->an_lock));
   1612 	KASSERT(mutex_owned(&oanon->an_lock));
   1613 
   1614 	/*
   1615 	 * now map the page in.
   1616 	 */
   1617 
   1618 	UVMHIST_LOG(maphist, "  MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
   1619 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
   1620 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
   1621 	    flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
   1622 	    != 0) {
   1623 
   1624 		/*
   1625 		 * No need to undo what we did; we can simply think of
   1626 		 * this as the pmap throwing away the mapping information.
   1627 		 *
   1628 		 * We do, however, have to go through the ReFault path,
   1629 		 * as the map may change while we're asleep.
   1630 		 */
   1631 
   1632 		if (anon != oanon)
   1633 			mutex_exit(&anon->an_lock);
   1634 		uvmfault_unlockall(ufi, amap, uobj, oanon);
   1635 		if (!uvm_reclaimable()) {
   1636 			UVMHIST_LOG(maphist,
   1637 			    "<- failed.  out of VM",0,0,0,0);
   1638 			/* XXX instrumentation */
   1639 			return ENOMEM;
   1640 		}
   1641 		/* XXX instrumentation */
   1642 		uvm_wait("flt_pmfail1");
   1643 		return ERESTART;
   1644 	}
   1645 
   1646 	return uvm_fault_upper_done(ufi, flt, uobj, anon, pg, oanon);
   1647 }
   1648 
   1649 static int
   1650 uvm_fault_upper_done(
   1651 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1652 	struct uvm_object *uobj, struct vm_anon *anon,
   1653 	struct vm_page *pg, struct vm_anon *oanon)
   1654 {
   1655 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1656 
   1657 	/*
   1658 	 * ... update the page queues.
   1659 	 */
   1660 
   1661 	mutex_enter(&uvm_pageqlock);
   1662 	if (flt->wire_paging) {
   1663 		uvm_pagewire(pg);
   1664 
   1665 		/*
   1666 		 * since the now-wired page cannot be paged out,
   1667 		 * release its swap resources for others to use.
   1668 		 * since an anon with no swap cannot be PG_CLEAN,
   1669 		 * clear its clean flag now.
   1670 		 */
   1671 
   1672 		pg->flags &= ~(PG_CLEAN);
   1673 		uvm_anon_dropswap(anon);
   1674 	} else {
   1675 		uvm_pageactivate(pg);
   1676 	}
   1677 	mutex_exit(&uvm_pageqlock);
   1678 
   1679 	/*
   1680 	 * done case 1!  finish up by unlocking everything and returning success
   1681 	 */
   1682 
   1683 	if (anon != oanon)
   1684 		mutex_exit(&anon->an_lock);
   1685 	uvmfault_unlockall(ufi, amap, uobj, oanon);
   1686 	pmap_update(ufi->orig_map->pmap);
   1687 	return 0;
   1688 }
   1689 
   1690 static int
   1691 uvm_fault_lower_generic_io(
   1692 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1693 	struct vm_page **ruobjpage);
   1694 static int
   1695 uvm_fault_lower_generic_uobjpage(
   1696 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1697 	struct vm_page *uobjpage, bool promote);
   1698 static int
   1699 uvm_fault_lower_generic_direct(
   1700 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1701 	struct vm_page *uobjpage);
   1702 static int
   1703 uvm_fault_lower_generic_promote(
   1704 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1705 	struct vm_page *uobjpage);
   1706 static int
   1707 uvm_fault_lower_generic_enter(
   1708 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1709 	struct uvm_object *uobj,
   1710 	struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage);
   1711 static int
   1712 uvm_fault_lower_generic_done(
   1713 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1714 	struct uvm_object *uobj,
   1715 	struct vm_anon *anon, struct vm_page *pg);
   1716 
   1717 static int
   1718 uvm_fault_lower_generic2(
   1719 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1720 	struct vm_page *uobjpage)
   1721 {
   1722 #ifdef DIAGNOSTIC
   1723 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1724 #endif
   1725 	struct uvm_object * const uobj = ufi->entry->object.uvm_obj;
   1726 	bool promote;
   1727 	int error;
   1728 
   1729 	/*
   1730 	 * handle case 2: faulting on backing object or zero fill
   1731 	 */
   1732 
   1733 	/*
   1734 	 * locked:
   1735 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
   1736 	 */
   1737 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1738 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   1739 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1740 
   1741 	/*
   1742 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
   1743 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
   1744 	 * have a backing object, check and see if we are going to promote
   1745 	 * the data up to an anon during the fault.
   1746 	 */
   1747 
   1748 	if (uobj == NULL) {
   1749 		uobjpage = PGO_DONTCARE;
   1750 		promote = true;		/* always need anon here */
   1751 	} else {
   1752 		KASSERT(uobjpage != PGO_DONTCARE);
   1753 		promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
   1754 	}
   1755 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%d, zfill=%d",
   1756 	    promote, (uobj == NULL), 0,0);
   1757 
   1758 	/*
   1759 	 * if uobjpage is not null then we do not need to do I/O to get the
   1760 	 * uobjpage.
   1761 	 *
   1762 	 * if uobjpage is null, then we need to unlock and ask the pager to
   1763 	 * get the data for us.   once we have the data, we need to reverify
   1764 	 * the state the world.   we are currently not holding any resources.
   1765 	 */
   1766 
   1767 	if (uobjpage) {
   1768 		/* update rusage counters */
   1769 		curlwp->l_ru.ru_minflt++;
   1770 	} else {
   1771 		error = uvm_fault_lower_generic_io(ufi, flt, &uobjpage);
   1772 		if (error != 0)
   1773 			return error;
   1774 	}
   1775 	return uvm_fault_lower_generic_uobjpage(ufi, flt, uobjpage, promote);
   1776 }
   1777 
   1778 static int
   1779 uvm_fault_lower_generic_io(
   1780 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1781 	struct vm_page **ruobjpage)
   1782 {
   1783 		struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1784 		struct uvm_object * const uobj = ufi->entry->object.uvm_obj;
   1785 		struct vm_page *uobjpage;
   1786 		bool locked;
   1787 		int gotpages;
   1788 		int error;
   1789 		voff_t uoff;
   1790 
   1791 		/* update rusage counters */
   1792 		curlwp->l_ru.ru_majflt++;
   1793 
   1794 		/* locked: maps(read), amap(if there), uobj */
   1795 		uvmfault_unlockall(ufi, amap, NULL, NULL);
   1796 		/* locked: uobj */
   1797 
   1798 		uvmexp.fltget++;
   1799 		gotpages = 1;
   1800 		uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
   1801 		error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
   1802 		    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
   1803 		    PGO_SYNCIO);
   1804 		/* locked: uobjpage(if no error) */
   1805 		KASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
   1806 
   1807 		/*
   1808 		 * recover from I/O
   1809 		 */
   1810 
   1811 		if (error) {
   1812 			if (error == EAGAIN) {
   1813 				UVMHIST_LOG(maphist,
   1814 				    "  pgo_get says TRY AGAIN!",0,0,0,0);
   1815 				kpause("fltagain2", false, hz/2, NULL);
   1816 				return ERESTART;
   1817 			}
   1818 
   1819 #if 0
   1820 			KASSERT(error != ERESTART);
   1821 #else
   1822 			/* XXXUEBS don't re-fault? */
   1823 			if (error == ERESTART)
   1824 				error = EIO;
   1825 #endif
   1826 
   1827 			UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
   1828 			    error, 0,0,0);
   1829 			return error;
   1830 		}
   1831 
   1832 		/* locked: uobjpage */
   1833 
   1834 		mutex_enter(&uvm_pageqlock);
   1835 		uvm_pageactivate(uobjpage);
   1836 		mutex_exit(&uvm_pageqlock);
   1837 
   1838 		/*
   1839 		 * re-verify the state of the world by first trying to relock
   1840 		 * the maps.  always relock the object.
   1841 		 */
   1842 
   1843 		locked = uvmfault_relock(ufi);
   1844 		if (locked && amap)
   1845 			amap_lock(amap);
   1846 		KASSERT(uobj == uobjpage->uobject);
   1847 		mutex_enter(&uobj->vmobjlock);
   1848 
   1849 		/* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
   1850 		/* locked(!locked): uobj, uobjpage */
   1851 
   1852 		/*
   1853 		 * verify that the page has not be released and re-verify
   1854 		 * that amap slot is still free.   if there is a problem,
   1855 		 * we unlock and clean up.
   1856 		 */
   1857 
   1858 		if ((uobjpage->flags & PG_RELEASED) != 0 ||
   1859 		    (locked && amap &&
   1860 		    amap_lookup(&ufi->entry->aref,
   1861 		      ufi->orig_rvaddr - ufi->entry->start))) {
   1862 			if (locked)
   1863 				uvmfault_unlockall(ufi, amap, NULL, NULL);
   1864 			locked = false;
   1865 		}
   1866 
   1867 		/*
   1868 		 * didn't get the lock?   release the page and retry.
   1869 		 */
   1870 
   1871 		if (locked == false) {
   1872 			UVMHIST_LOG(maphist,
   1873 			    "  wasn't able to relock after fault: retry",
   1874 			    0,0,0,0);
   1875 			if (uobjpage->flags & PG_WANTED)
   1876 				wakeup(uobjpage);
   1877 			if (uobjpage->flags & PG_RELEASED) {
   1878 				uvmexp.fltpgrele++;
   1879 				uvm_pagefree(uobjpage);
   1880 				return ERESTART;
   1881 			}
   1882 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   1883 			UVM_PAGE_OWN(uobjpage, NULL);
   1884 			mutex_exit(&uobj->vmobjlock);
   1885 			return ERESTART;
   1886 		}
   1887 
   1888 		/*
   1889 		 * we have the data in uobjpage which is busy and
   1890 		 * not released.  we are holding object lock (so the page
   1891 		 * can't be released on us).
   1892 		 */
   1893 
   1894 		/* locked: maps(read), amap(if !null), uobj, uobjpage */
   1895 
   1896 	*ruobjpage = uobjpage;
   1897 	return 0;
   1898 }
   1899 
   1900 int
   1901 uvm_fault_lower_generic_uobjpage(
   1902 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1903 	struct vm_page *uobjpage, bool promote)
   1904 {
   1905 #ifdef DIAGNOSTIC
   1906 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1907 	struct uvm_object * const uobj = ufi->entry->object.uvm_obj;
   1908 #endif
   1909 	int error;
   1910 
   1911 	/*
   1912 	 * locked:
   1913 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
   1914 	 */
   1915 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1916 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   1917 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1918 
   1919 	/*
   1920 	 * notes:
   1921 	 *  - at this point uobjpage can not be NULL
   1922 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
   1923 	 *  for it above)
   1924 	 *  - at this point uobjpage could be PG_WANTED (handle later)
   1925 	 */
   1926 
   1927 	KASSERT(uobj == NULL || uobj == uobjpage->uobject);
   1928 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
   1929 	    (uobjpage->flags & PG_CLEAN) != 0);
   1930 
   1931 	if (promote == false) {
   1932 		error = uvm_fault_lower_generic_direct(ufi, flt, uobjpage);
   1933 	} else {
   1934 		error = uvm_fault_lower_generic_promote(ufi, flt, uobjpage);
   1935 	}
   1936 	return error;
   1937 }
   1938 
   1939 int
   1940 uvm_fault_lower_generic_direct(
   1941 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1942 	struct vm_page *uobjpage)
   1943 {
   1944 		struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1945 		struct uvm_object * const uobj = ufi->entry->object.uvm_obj;
   1946 		struct vm_page *pg;
   1947 
   1948 		/*
   1949 		 * we are not promoting.   if the mapping is COW ensure that we
   1950 		 * don't give more access than we should (e.g. when doing a read
   1951 		 * fault on a COPYONWRITE mapping we want to map the COW page in
   1952 		 * R/O even though the entry protection could be R/W).
   1953 		 *
   1954 		 * set "pg" to the page we want to map in (uobjpage, usually)
   1955 		 */
   1956 
   1957 		uvmexp.flt_obj++;
   1958 		if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
   1959 		    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
   1960 			flt->enter_prot &= ~VM_PROT_WRITE;
   1961 		pg = uobjpage;		/* map in the actual object */
   1962 
   1963 		KASSERT(uobjpage != PGO_DONTCARE);
   1964 
   1965 		/*
   1966 		 * we are faulting directly on the page.   be careful
   1967 		 * about writing to loaned pages...
   1968 		 */
   1969 
   1970 		if (uobjpage->loan_count) {
   1971 			if (!flt->cow_now) {
   1972 				/* read fault: cap the protection at readonly */
   1973 				/* cap! */
   1974 				flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1975 			} else {
   1976 				/* write fault: must break the loan here */
   1977 
   1978 				pg = uvm_loanbreak(uobjpage);
   1979 				if (pg == NULL) {
   1980 
   1981 					/*
   1982 					 * drop ownership of page, it can't
   1983 					 * be released
   1984 					 */
   1985 
   1986 					if (uobjpage->flags & PG_WANTED)
   1987 						wakeup(uobjpage);
   1988 					uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   1989 					UVM_PAGE_OWN(uobjpage, NULL);
   1990 
   1991 					uvmfault_unlockall(ufi, amap, uobj,
   1992 					  NULL);
   1993 					UVMHIST_LOG(maphist,
   1994 					  "  out of RAM breaking loan, waiting",
   1995 					  0,0,0,0);
   1996 					uvmexp.fltnoram++;
   1997 					uvm_wait("flt_noram4");
   1998 					return ERESTART;
   1999 				}
   2000 				uobjpage = pg;
   2001 			}
   2002 		}
   2003 
   2004 	return uvm_fault_lower_generic_enter(ufi, flt, uobj, NULL, pg, uobjpage);
   2005 }
   2006 
   2007 int
   2008 uvm_fault_lower_generic_promote(
   2009 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2010 	struct vm_page *uobjpage)
   2011 {
   2012 		struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2013 		struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   2014 		struct vm_anon *anon;
   2015 		struct vm_page *pg;
   2016 		int error;
   2017 
   2018 		/*
   2019 		 * if we are going to promote the data to an anon we
   2020 		 * allocate a blank anon here and plug it into our amap.
   2021 		 */
   2022 #if DIAGNOSTIC
   2023 		if (amap == NULL)
   2024 			panic("uvm_fault: want to promote data, but no anon");
   2025 #endif
   2026 		error = uvmfault_promote(ufi, NULL, uobjpage,
   2027 		    &anon, &flt->anon_spare);
   2028 		switch (error) {
   2029 		case 0:
   2030 			break;
   2031 		case ERESTART:
   2032 			return ERESTART;
   2033 		default:
   2034 			return error;
   2035 		}
   2036 
   2037 		pg = anon->an_page;
   2038 
   2039 		/*
   2040 		 * fill in the data
   2041 		 */
   2042 
   2043 		if (uobjpage != PGO_DONTCARE) {
   2044 			uvmexp.flt_prcopy++;
   2045 
   2046 			/*
   2047 			 * promote to shared amap?  make sure all sharing
   2048 			 * procs see it
   2049 			 */
   2050 
   2051 			if ((amap_flags(amap) & AMAP_SHARED) != 0) {
   2052 				pmap_page_protect(uobjpage, VM_PROT_NONE);
   2053 				/*
   2054 				 * XXX: PAGE MIGHT BE WIRED!
   2055 				 */
   2056 			}
   2057 
   2058 			/*
   2059 			 * dispose of uobjpage.  it can't be PG_RELEASED
   2060 			 * since we still hold the object lock.
   2061 			 * drop handle to uobj as well.
   2062 			 */
   2063 
   2064 			if (uobjpage->flags & PG_WANTED)
   2065 				/* still have the obj lock */
   2066 				wakeup(uobjpage);
   2067 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   2068 			UVM_PAGE_OWN(uobjpage, NULL);
   2069 			mutex_exit(&uobj->vmobjlock);
   2070 			uobj = NULL;
   2071 
   2072 			UVMHIST_LOG(maphist,
   2073 			    "  promote uobjpage 0x%x to anon/page 0x%x/0x%x",
   2074 			    uobjpage, anon, pg, 0);
   2075 
   2076 		} else {
   2077 			uvmexp.flt_przero++;
   2078 
   2079 			/*
   2080 			 * Page is zero'd and marked dirty by
   2081 			 * uvmfault_promote().
   2082 			 */
   2083 
   2084 			UVMHIST_LOG(maphist,"  zero fill anon/page 0x%x/0%x",
   2085 			    anon, pg, 0, 0);
   2086 		}
   2087 
   2088 	return uvm_fault_lower_generic_enter(ufi, flt, uobj, anon, pg, uobjpage);
   2089 }
   2090 
   2091 int
   2092 uvm_fault_lower_generic_enter(
   2093 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2094 	struct uvm_object *uobj,
   2095 	struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
   2096 {
   2097 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2098 	int error;
   2099 
   2100 	/*
   2101 	 * locked:
   2102 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
   2103 	 *   anon(if !null), pg(if anon)
   2104 	 *
   2105 	 * note: pg is either the uobjpage or the new page in the new anon
   2106 	 */
   2107 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   2108 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   2109 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   2110 	KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
   2111 	KASSERT((pg->flags & PG_BUSY) != 0);
   2112 
   2113 	/*
   2114 	 * all resources are present.   we can now map it in and free our
   2115 	 * resources.
   2116 	 */
   2117 
   2118 	UVMHIST_LOG(maphist,
   2119 	    "  MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
   2120 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, promote);
   2121 	KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
   2122 		(pg->flags & PG_RDONLY) == 0);
   2123 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
   2124 	    pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
   2125 	    flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   2126 
   2127 		/*
   2128 		 * No need to undo what we did; we can simply think of
   2129 		 * this as the pmap throwing away the mapping information.
   2130 		 *
   2131 		 * We do, however, have to go through the ReFault path,
   2132 		 * as the map may change while we're asleep.
   2133 		 */
   2134 
   2135 		if (pg->flags & PG_WANTED)
   2136 			wakeup(pg);
   2137 
   2138 		/*
   2139 		 * note that pg can't be PG_RELEASED since we did not drop
   2140 		 * the object lock since the last time we checked.
   2141 		 */
   2142 		KASSERT((pg->flags & PG_RELEASED) == 0);
   2143 
   2144 		pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2145 		UVM_PAGE_OWN(pg, NULL);
   2146 		uvmfault_unlockall(ufi, amap, uobj, anon);
   2147 		if (!uvm_reclaimable()) {
   2148 			UVMHIST_LOG(maphist,
   2149 			    "<- failed.  out of VM",0,0,0,0);
   2150 			/* XXX instrumentation */
   2151 			error = ENOMEM;
   2152 			return error;
   2153 		}
   2154 		/* XXX instrumentation */
   2155 		uvm_wait("flt_pmfail2");
   2156 		return ERESTART;
   2157 	}
   2158 
   2159 	return uvm_fault_lower_generic_done(ufi, flt, uobj, anon, pg);
   2160 }
   2161 
   2162 int
   2163 uvm_fault_lower_generic_done(
   2164 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2165 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
   2166 {
   2167 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2168 
   2169 	mutex_enter(&uvm_pageqlock);
   2170 	if (flt->wire_paging) {
   2171 		uvm_pagewire(pg);
   2172 		if (pg->pqflags & PQ_AOBJ) {
   2173 
   2174 			/*
   2175 			 * since the now-wired page cannot be paged out,
   2176 			 * release its swap resources for others to use.
   2177 			 * since an aobj page with no swap cannot be PG_CLEAN,
   2178 			 * clear its clean flag now.
   2179 			 */
   2180 
   2181 			KASSERT(uobj != NULL);
   2182 			pg->flags &= ~(PG_CLEAN);
   2183 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
   2184 		}
   2185 	} else {
   2186 		uvm_pageactivate(pg);
   2187 	}
   2188 	mutex_exit(&uvm_pageqlock);
   2189 	if (pg->flags & PG_WANTED)
   2190 		wakeup(pg);
   2191 
   2192 	/*
   2193 	 * note that pg can't be PG_RELEASED since we did not drop the object
   2194 	 * lock since the last time we checked.
   2195 	 */
   2196 	KASSERT((pg->flags & PG_RELEASED) == 0);
   2197 
   2198 	pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2199 	UVM_PAGE_OWN(pg, NULL);
   2200 	uvmfault_unlockall(ufi, amap, uobj, anon);
   2201 	pmap_update(ufi->orig_map->pmap);
   2202 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
   2203 	return 0;
   2204 }
   2205 
   2206 
   2207 /*
   2208  * uvm_fault_wire: wire down a range of virtual addresses in a map.
   2209  *
   2210  * => map may be read-locked by caller, but MUST NOT be write-locked.
   2211  * => if map is read-locked, any operations which may cause map to
   2212  *	be write-locked in uvm_fault() must be taken care of by
   2213  *	the caller.  See uvm_map_pageable().
   2214  */
   2215 
   2216 int
   2217 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
   2218     vm_prot_t access_type, int maxprot)
   2219 {
   2220 	vaddr_t va;
   2221 	int error;
   2222 
   2223 	/*
   2224 	 * now fault it in a page at a time.   if the fault fails then we have
   2225 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
   2226 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
   2227 	 */
   2228 
   2229 	/*
   2230 	 * XXX work around overflowing a vaddr_t.  this prevents us from
   2231 	 * wiring the last page in the address space, though.
   2232 	 */
   2233 	if (start > end) {
   2234 		return EFAULT;
   2235 	}
   2236 
   2237 	for (va = start ; va < end ; va += PAGE_SIZE) {
   2238 		error = uvm_fault_internal(map, va, access_type,
   2239 				(maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
   2240 		if (error) {
   2241 			if (va != start) {
   2242 				uvm_fault_unwire(map, start, va);
   2243 			}
   2244 			return error;
   2245 		}
   2246 	}
   2247 	return 0;
   2248 }
   2249 
   2250 /*
   2251  * uvm_fault_unwire(): unwire range of virtual space.
   2252  */
   2253 
   2254 void
   2255 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
   2256 {
   2257 	vm_map_lock_read(map);
   2258 	uvm_fault_unwire_locked(map, start, end);
   2259 	vm_map_unlock_read(map);
   2260 }
   2261 
   2262 /*
   2263  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
   2264  *
   2265  * => map must be at least read-locked.
   2266  */
   2267 
   2268 void
   2269 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
   2270 {
   2271 	struct vm_map_entry *entry;
   2272 	pmap_t pmap = vm_map_pmap(map);
   2273 	vaddr_t va;
   2274 	paddr_t pa;
   2275 	struct vm_page *pg;
   2276 
   2277 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
   2278 
   2279 	/*
   2280 	 * we assume that the area we are unwiring has actually been wired
   2281 	 * in the first place.   this means that we should be able to extract
   2282 	 * the PAs from the pmap.   we also lock out the page daemon so that
   2283 	 * we can call uvm_pageunwire.
   2284 	 */
   2285 
   2286 	mutex_enter(&uvm_pageqlock);
   2287 
   2288 	/*
   2289 	 * find the beginning map entry for the region.
   2290 	 */
   2291 
   2292 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
   2293 	if (uvm_map_lookup_entry(map, start, &entry) == false)
   2294 		panic("uvm_fault_unwire_locked: address not in map");
   2295 
   2296 	for (va = start; va < end; va += PAGE_SIZE) {
   2297 		if (pmap_extract(pmap, va, &pa) == false)
   2298 			continue;
   2299 
   2300 		/*
   2301 		 * find the map entry for the current address.
   2302 		 */
   2303 
   2304 		KASSERT(va >= entry->start);
   2305 		while (va >= entry->end) {
   2306 			KASSERT(entry->next != &map->header &&
   2307 				entry->next->start <= entry->end);
   2308 			entry = entry->next;
   2309 		}
   2310 
   2311 		/*
   2312 		 * if the entry is no longer wired, tell the pmap.
   2313 		 */
   2314 
   2315 		if (VM_MAPENT_ISWIRED(entry) == 0)
   2316 			pmap_unwire(pmap, va);
   2317 
   2318 		pg = PHYS_TO_VM_PAGE(pa);
   2319 		if (pg)
   2320 			uvm_pageunwire(pg);
   2321 	}
   2322 
   2323 	mutex_exit(&uvm_pageqlock);
   2324 }
   2325