uvm_fault.c revision 1.150 1 /* $NetBSD: uvm_fault.c,v 1.150 2010/02/02 01:54:48 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.150 2010/02/02 01:54:48 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0 ; lcv < n ; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 struct uvm_faultctx {
696 vm_prot_t access_type;
697 vm_prot_t enter_prot;
698 vaddr_t startva;
699 int npages;
700 int centeridx;
701 struct vm_anon *anon_spare;
702 bool wire_mapping;
703 bool narrow;
704 bool wire_paging;
705 bool maxprot;
706 bool cow_now;
707 };
708
709 static int uvm_fault_check(
710 struct uvm_faultinfo *, struct uvm_faultctx *,
711 struct vm_anon ***, struct vm_page ***);
712 typedef int uvm_fault_upper_subfunc_t(
713 struct uvm_faultinfo *, struct uvm_faultctx *,
714 struct vm_anon **, struct vm_page **);
715 static uvm_fault_upper_subfunc_t uvm_fault_upper_lookup;
716 typedef int uvm_fault_lower_subfunc_t(
717 struct uvm_faultinfo *, struct uvm_faultctx *,
718 struct vm_page **);
719 static uvm_fault_lower_subfunc_t uvm_fault_lower;
720 static uvm_fault_lower_subfunc_t uvm_fault_lower_special;
721 static uvm_fault_lower_subfunc_t uvm_fault_lower_generic_lookup;
722 static uvm_fault_lower_subfunc_t uvm_fault_lower_generic;
723 static int uvm_fault_upper(
724 struct uvm_faultinfo *, struct uvm_faultctx *,
725 struct vm_anon **);
726 static int uvm_fault_lower_generic1(
727 struct uvm_faultinfo *, struct uvm_faultctx *,
728 struct vm_page *);
729 static int uvm_fault_lower_generic2(
730 struct uvm_faultinfo *, struct uvm_faultctx *,
731 struct vm_page *);
732
733 int
734 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
735 vm_prot_t access_type, int fault_flag)
736 {
737 struct uvm_faultinfo ufi;
738 struct uvm_faultctx flt = {
739 .access_type = access_type,
740
741 /* don't look for neighborhood * pages on "wire" fault */
742 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
743
744 /* "wire" fault causes wiring of both mapping and paging */
745 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
746 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
747
748 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
749 };
750 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
751 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
752 int error;
753 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
754
755 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
756 orig_map, vaddr, access_type, fault_flag);
757
758 uvmexp.faults++; /* XXX: locking? */
759
760 /*
761 * init the IN parameters in the ufi
762 */
763
764 ufi.orig_map = orig_map;
765 ufi.orig_rvaddr = trunc_page(vaddr);
766 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
767
768 error = ERESTART;
769 while (error == ERESTART) {
770 anons = anons_store;
771 pages = pages_store;
772
773 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
774 if (error != 0)
775 continue;
776
777 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
778 if (error != 0)
779 continue;
780
781 if (pages[flt.centeridx] == PGO_DONTCARE)
782 error = uvm_fault_upper(&ufi, &flt, anons);
783 else
784 error = uvm_fault_lower(&ufi, &flt, pages);
785 }
786
787 if (flt.anon_spare != NULL) {
788 flt.anon_spare->an_ref--;
789 uvm_anfree(flt.anon_spare);
790 }
791 return error;
792 }
793
794 static int
795 uvm_fault_check(
796 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
797 struct vm_anon ***ranons, struct vm_page ***rpages)
798 {
799 struct vm_amap *amap;
800 struct uvm_object *uobj;
801 vm_prot_t check_prot;
802 int nback, nforw;
803
804 /*
805 * lookup and lock the maps
806 */
807
808 if (uvmfault_lookup(ufi, false) == false) {
809 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
810 return EFAULT;
811 }
812 /* locked: maps(read) */
813
814 #ifdef DIAGNOSTIC
815 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
816 printf("Page fault on non-pageable map:\n");
817 printf("ufi->map = %p\n", ufi->map);
818 printf("ufi->orig_map = %p\n", ufi->orig_map);
819 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
820 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
821 }
822 #endif
823
824 /*
825 * check protection
826 */
827
828 check_prot = flt->maxprot ?
829 ufi->entry->max_protection : ufi->entry->protection;
830 if ((check_prot & flt->access_type) != flt->access_type) {
831 UVMHIST_LOG(maphist,
832 "<- protection failure (prot=0x%x, access=0x%x)",
833 ufi->entry->protection, flt->access_type, 0, 0);
834 uvmfault_unlockmaps(ufi, false);
835 return EACCES;
836 }
837
838 /*
839 * "enter_prot" is the protection we want to enter the page in at.
840 * for certain pages (e.g. copy-on-write pages) this protection can
841 * be more strict than ufi->entry->protection. "wired" means either
842 * the entry is wired or we are fault-wiring the pg.
843 */
844
845 flt->enter_prot = ufi->entry->protection;
846 if (VM_MAPENT_ISWIRED(ufi->entry))
847 flt->wire_mapping = true;
848
849 if (flt->wire_mapping) {
850 flt->access_type = flt->enter_prot; /* full access for wired */
851 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
852 } else {
853 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
854 }
855
856 /*
857 * handle "needs_copy" case. if we need to copy the amap we will
858 * have to drop our readlock and relock it with a write lock. (we
859 * need a write lock to change anything in a map entry [e.g.
860 * needs_copy]).
861 */
862
863 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
864 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
865 KASSERT(!flt->maxprot);
866 /* need to clear */
867 UVMHIST_LOG(maphist,
868 " need to clear needs_copy and refault",0,0,0,0);
869 uvmfault_unlockmaps(ufi, false);
870 uvmfault_amapcopy(ufi);
871 uvmexp.fltamcopy++;
872 return ERESTART;
873
874 } else {
875
876 /*
877 * ensure that we pmap_enter page R/O since
878 * needs_copy is still true
879 */
880
881 flt->enter_prot &= ~VM_PROT_WRITE;
882 }
883 }
884
885 /*
886 * identify the players
887 */
888
889 amap = ufi->entry->aref.ar_amap; /* upper layer */
890 uobj = ufi->entry->object.uvm_obj; /* lower layer */
891
892 /*
893 * check for a case 0 fault. if nothing backing the entry then
894 * error now.
895 */
896
897 if (amap == NULL && uobj == NULL) {
898 uvmfault_unlockmaps(ufi, false);
899 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
900 return EFAULT;
901 }
902
903 /*
904 * establish range of interest based on advice from mapper
905 * and then clip to fit map entry. note that we only want
906 * to do this the first time through the fault. if we
907 * ReFault we will disable this by setting "narrow" to true.
908 */
909
910 if (flt->narrow == false) {
911
912 /* wide fault (!narrow) */
913 KASSERT(uvmadvice[ufi->entry->advice].advice ==
914 ufi->entry->advice);
915 nback = MIN(uvmadvice[ufi->entry->advice].nback,
916 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
917 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
918 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
919 ((ufi->entry->end - ufi->orig_rvaddr) >>
920 PAGE_SHIFT) - 1);
921 /*
922 * note: "-1" because we don't want to count the
923 * faulting page as forw
924 */
925 flt->npages = nback + nforw + 1;
926 flt->centeridx = nback;
927
928 flt->narrow = true; /* ensure only once per-fault */
929
930 } else {
931
932 /* narrow fault! */
933 nback = nforw = 0;
934 flt->startva = ufi->orig_rvaddr;
935 flt->npages = 1;
936 flt->centeridx = 0;
937
938 }
939 /* offset from entry's start to pgs' start */
940 const voff_t eoff = flt->startva - ufi->entry->start;
941
942 /* locked: maps(read) */
943 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
944 flt->narrow, nback, nforw, flt->startva);
945 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
946 amap, uobj, 0);
947
948 /*
949 * if we've got an amap, lock it and extract current anons.
950 */
951
952 if (amap) {
953 amap_lock(amap);
954 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
955 } else {
956 *ranons = NULL; /* to be safe */
957 }
958
959 /* locked: maps(read), amap(if there) */
960 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
961
962 /*
963 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
964 * now and then forget about them (for the rest of the fault).
965 */
966
967 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
968
969 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
970 0,0,0,0);
971 /* flush back-page anons? */
972 if (amap)
973 uvmfault_anonflush(*ranons, nback);
974
975 /* flush object? */
976 if (uobj) {
977 voff_t uoff;
978
979 uoff = ufi->entry->offset + eoff;
980 mutex_enter(&uobj->vmobjlock);
981 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
982 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
983 }
984
985 /* now forget about the backpages */
986 if (amap)
987 *ranons += nback;
988 #if 0
989 /* XXXUEBS */
990 if (uobj)
991 *rpages += nback;
992 #endif
993 flt->startva += (nback << PAGE_SHIFT);
994 flt->npages -= nback;
995 flt->centeridx = 0;
996 }
997 /*
998 * => startva is fixed
999 * => npages is fixed
1000 */
1001
1002 return 0;
1003 }
1004
1005 static int
1006 uvm_fault_upper_lookup(
1007 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1008 struct vm_anon **anons, struct vm_page **pages)
1009 {
1010 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1011 int lcv;
1012 vaddr_t currva;
1013 bool shadowed;
1014
1015 /* locked: maps(read), amap(if there) */
1016 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1017
1018 /*
1019 * map in the backpages and frontpages we found in the amap in hopes
1020 * of preventing future faults. we also init the pages[] array as
1021 * we go.
1022 */
1023
1024 currva = flt->startva;
1025 shadowed = false;
1026 for (lcv = 0 ; lcv < flt->npages ; lcv++, currva += PAGE_SIZE) {
1027 struct vm_anon *anon;
1028
1029 /*
1030 * dont play with VAs that are already mapped
1031 * except for center)
1032 */
1033 if (lcv != flt->centeridx &&
1034 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1035 pages[lcv] = PGO_DONTCARE;
1036 continue;
1037 }
1038
1039 /*
1040 * unmapped or center page. check if any anon at this level.
1041 */
1042 if (amap == NULL || anons[lcv] == NULL) {
1043 pages[lcv] = NULL;
1044 continue;
1045 }
1046
1047 /*
1048 * check for present page and map if possible. re-activate it.
1049 */
1050
1051 pages[lcv] = PGO_DONTCARE;
1052 if (lcv == flt->centeridx) { /* save center for later! */
1053 shadowed = true;
1054 continue;
1055 }
1056 anon = anons[lcv];
1057 mutex_enter(&anon->an_lock);
1058
1059 /* ignore loaned and busy pages */
1060 if (anon->an_page == NULL || anon->an_page->loan_count != 0 ||
1061 (anon->an_page->flags & PG_BUSY) != 0)
1062 goto uvm_fault_upper_lookup_enter_done;
1063
1064 mutex_enter(&uvm_pageqlock);
1065 uvm_pageenqueue(anon->an_page);
1066 mutex_exit(&uvm_pageqlock);
1067 UVMHIST_LOG(maphist,
1068 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1069 ufi->orig_map->pmap, currva, anon->an_page, 0);
1070 uvmexp.fltnamap++;
1071
1072 /*
1073 * Since this isn't the page that's actually faulting,
1074 * ignore pmap_enter() failures; it's not critical
1075 * that we enter these right now.
1076 */
1077
1078 (void) pmap_enter(ufi->orig_map->pmap, currva,
1079 VM_PAGE_TO_PHYS(anon->an_page),
1080 (anon->an_ref > 1) ? (flt->enter_prot & ~VM_PROT_WRITE) :
1081 flt->enter_prot,
1082 PMAP_CANFAIL |
1083 (VM_MAPENT_ISWIRED(ufi->entry) ? PMAP_WIRED : 0));
1084
1085 uvm_fault_upper_lookup_enter_done:
1086 pmap_update(ufi->orig_map->pmap);
1087 mutex_exit(&anon->an_lock);
1088 }
1089
1090 /* locked: maps(read), amap(if there) */
1091 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1092 /* (shadowed == true) if there is an anon at the faulting address */
1093 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1094 (uobj && shadowed != false),0,0);
1095
1096 /*
1097 * note that if we are really short of RAM we could sleep in the above
1098 * call to pmap_enter with everything locked. bad?
1099 *
1100 * XXX Actually, that is bad; pmap_enter() should just fail in that
1101 * XXX case. --thorpej
1102 */
1103
1104 return 0;
1105 }
1106
1107 static int
1108 uvm_fault_lower(
1109 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1110 struct vm_page **pages)
1111 {
1112 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1113 int error;
1114
1115 /*
1116 * if the desired page is not shadowed by the amap and we have a
1117 * backing object, then we check to see if the backing object would
1118 * prefer to handle the fault itself (rather than letting us do it
1119 * with the usual pgo_get hook). the backing object signals this by
1120 * providing a pgo_fault routine.
1121 */
1122
1123 if (uobj && uobj->pgops->pgo_fault != NULL) {
1124 error = uvm_fault_lower_special(ufi, flt, pages);
1125 } else {
1126 error = uvm_fault_lower_generic(ufi, flt, pages);
1127 }
1128 return error;
1129 }
1130
1131 static int
1132 uvm_fault_lower_special(
1133 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1134 struct vm_page **pages)
1135 {
1136 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1137 int error;
1138
1139 mutex_enter(&uobj->vmobjlock);
1140 /* locked: maps(read), amap (if there), uobj */
1141 error = uobj->pgops->pgo_fault(ufi, flt->startva, pages, flt->npages,
1142 flt->centeridx, flt->access_type, PGO_LOCKED|PGO_SYNCIO);
1143
1144 /* locked: nothing, pgo_fault has unlocked everything */
1145
1146 if (error == ERESTART)
1147 error = ERESTART; /* try again! */
1148 /*
1149 * object fault routine responsible for pmap_update().
1150 */
1151
1152 return error;
1153 }
1154
1155 static int
1156 uvm_fault_lower_generic(
1157 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1158 struct vm_page **pages)
1159 {
1160 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1161
1162 /*
1163 * now, if the desired page is not shadowed by the amap and we have
1164 * a backing object that does not have a special fault routine, then
1165 * we ask (with pgo_get) the object for resident pages that we care
1166 * about and attempt to map them in. we do not let pgo_get block
1167 * (PGO_LOCKED).
1168 */
1169
1170 if (uobj == NULL) {
1171 /* zero fill; don't care neighbor pages */
1172 pages[flt->centeridx] = NULL;
1173 } else {
1174 uvm_fault_lower_generic_lookup(ufi, flt, pages);
1175 }
1176 return uvm_fault_lower_generic1(ufi, flt, pages[flt->centeridx]);
1177 }
1178
1179 static int
1180 uvm_fault_lower_generic_lookup(
1181 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1182 struct vm_page **pages)
1183 {
1184 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1185 int lcv, gotpages;
1186 vaddr_t currva;
1187
1188 mutex_enter(&uobj->vmobjlock);
1189 /* locked (!shadowed): maps(read), amap (if there), uobj */
1190 /*
1191 * the following call to pgo_get does _not_ change locking state
1192 */
1193
1194 uvmexp.fltlget++;
1195 gotpages = flt->npages;
1196 (void) uobj->pgops->pgo_get(uobj,
1197 ufi->entry->offset + flt->startva - ufi->entry->start,
1198 pages, &gotpages, flt->centeridx,
1199 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1200
1201 /*
1202 * check for pages to map, if we got any
1203 */
1204
1205 if (gotpages == 0) {
1206 pages[flt->centeridx] = NULL;
1207 return 0;
1208 }
1209
1210 currva = flt->startva;
1211 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1212 struct vm_page *curpg;
1213 bool readonly;
1214
1215 curpg = pages[lcv];
1216 if (curpg == NULL || curpg == PGO_DONTCARE) {
1217 continue;
1218 }
1219 KASSERT(curpg->uobject == uobj);
1220
1221 /*
1222 * if center page is resident and not PG_BUSY|PG_RELEASED
1223 * then pgo_get made it PG_BUSY for us and gave us a handle
1224 * to it. remember this page as "uobjpage." (for later use).
1225 */
1226
1227 if (lcv == flt->centeridx) {
1228 UVMHIST_LOG(maphist, " got uobjpage "
1229 "(0x%x) with locked get",
1230 curpg, 0,0,0);
1231 continue;
1232 }
1233
1234 /*
1235 * calling pgo_get with PGO_LOCKED returns us pages which
1236 * are neither busy nor released, so we don't need to check
1237 * for this. we can just directly enter the pages.
1238 */
1239
1240 mutex_enter(&uvm_pageqlock);
1241 uvm_pageenqueue(curpg);
1242 mutex_exit(&uvm_pageqlock);
1243 UVMHIST_LOG(maphist,
1244 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1245 ufi->orig_map->pmap, currva, curpg, 0);
1246 uvmexp.fltnomap++;
1247
1248 /*
1249 * Since this page isn't the page that's actually faulting,
1250 * ignore pmap_enter() failures; it's not critical that we
1251 * enter these right now.
1252 */
1253 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1254 KASSERT((curpg->flags & PG_RELEASED) == 0);
1255 KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1256 (curpg->flags & PG_CLEAN) != 0);
1257 readonly = (curpg->flags & PG_RDONLY)
1258 || (curpg->loan_count > 0)
1259 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1260
1261 (void) pmap_enter(ufi->orig_map->pmap, currva,
1262 VM_PAGE_TO_PHYS(curpg),
1263 readonly ? flt->enter_prot & ~VM_PROT_WRITE :
1264 flt->enter_prot & MASK(ufi->entry),
1265 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1266
1267 /*
1268 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1269 * held the lock the whole time we've had the handle.
1270 */
1271 KASSERT((curpg->flags & PG_WANTED) == 0);
1272 KASSERT((curpg->flags & PG_RELEASED) == 0);
1273
1274 curpg->flags &= ~(PG_BUSY);
1275 UVM_PAGE_OWN(curpg, NULL);
1276 }
1277 pmap_update(ufi->orig_map->pmap);
1278 return 0;
1279 }
1280
1281 static int
1282 uvm_fault_lower_generic1(
1283 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1284 struct vm_page *uobjpage)
1285 {
1286 #ifdef DIAGNOSTIC
1287 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1288 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1289 #endif
1290
1291 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1292 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1293 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1294 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1295
1296 /*
1297 * note that at this point we are done with any front or back pages.
1298 * we are now going to focus on the center page (i.e. the one we've
1299 * faulted on). if we have faulted on the upper (anon) layer
1300 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1301 * not touched it yet). if we have faulted on the bottom (uobj)
1302 * layer [i.e. case 2] and the page was both present and available,
1303 * then we've got a pointer to it as "uobjpage" and we've already
1304 * made it BUSY.
1305 */
1306
1307 /*
1308 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1309 */
1310
1311 /*
1312 * redirect case 2: if we are not shadowed, go to case 2.
1313 */
1314
1315 return uvm_fault_lower_generic2(ufi, flt, uobjpage);
1316 }
1317
1318 static int
1319 uvm_fault_upper_loan(
1320 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1321 struct vm_anon *anon, struct uvm_object **ruobj);
1322 static int
1323 uvm_fault_upper1(
1324 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1325 struct uvm_object *uobj, struct vm_anon *anon);
1326 static int
1327 uvm_fault_upper_promote(
1328 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1329 struct uvm_object *uobj, struct vm_anon *anon);
1330 static int
1331 uvm_fault_upper_direct(
1332 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1333 struct uvm_object *uobj, struct vm_anon *anon);
1334 static int
1335 uvm_fault_upper_enter(
1336 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1337 struct uvm_object *uobj, struct vm_anon *anon,
1338 struct vm_page *pg, struct vm_anon *oanon);
1339 static int
1340 uvm_fault_upper_done(
1341 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1342 struct uvm_object *uobj, struct vm_anon *anon,
1343 struct vm_page *pg, struct vm_anon *oanon);
1344
1345 static int
1346 uvm_fault_upper(
1347 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1348 struct vm_anon **anons)
1349 {
1350 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1351 struct vm_anon * const anon = anons[flt->centeridx];
1352 struct uvm_object *uobj;
1353 int error;
1354
1355 /* locked: maps(read), amap */
1356 KASSERT(mutex_owned(&amap->am_l));
1357
1358 /*
1359 * handle case 1: fault on an anon in our amap
1360 */
1361
1362 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1363 mutex_enter(&anon->an_lock);
1364
1365 /* locked: maps(read), amap, anon */
1366 KASSERT(mutex_owned(&amap->am_l));
1367 KASSERT(mutex_owned(&anon->an_lock));
1368
1369 /*
1370 * no matter if we have case 1A or case 1B we are going to need to
1371 * have the anon's memory resident. ensure that now.
1372 */
1373
1374 /*
1375 * let uvmfault_anonget do the dirty work.
1376 * if it fails (!OK) it will unlock everything for us.
1377 * if it succeeds, locks are still valid and locked.
1378 * also, if it is OK, then the anon's page is on the queues.
1379 * if the page is on loan from a uvm_object, then anonget will
1380 * lock that object for us if it does not fail.
1381 */
1382
1383 error = uvmfault_anonget(ufi, amap, anon);
1384 switch (error) {
1385 case 0:
1386 break;
1387
1388 case ERESTART:
1389 return ERESTART;
1390
1391 case EAGAIN:
1392 kpause("fltagain1", false, hz/2, NULL);
1393 return ERESTART;
1394
1395 default:
1396 return error;
1397 }
1398
1399 /*
1400 * uobj is non null if the page is on loan from an object (i.e. uobj)
1401 */
1402
1403 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1404
1405 /* locked: maps(read), amap, anon, uobj(if one) */
1406 KASSERT(mutex_owned(&amap->am_l));
1407 KASSERT(mutex_owned(&anon->an_lock));
1408 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1409
1410 /*
1411 * special handling for loaned pages
1412 */
1413
1414 if (anon->an_page->loan_count) {
1415 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1416 if (error != 0)
1417 return error;
1418 }
1419 return uvm_fault_upper1(ufi, flt, uobj, anon);
1420 }
1421
1422 static int
1423 uvm_fault_upper_loan(
1424 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1425 struct vm_anon *anon, struct uvm_object **ruobj)
1426 {
1427 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1428 struct uvm_object *uobj = *ruobj;
1429
1430 if (!flt->cow_now) {
1431
1432 /*
1433 * for read faults on loaned pages we just cap the
1434 * protection at read-only.
1435 */
1436
1437 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1438
1439 } else {
1440 /*
1441 * note that we can't allow writes into a loaned page!
1442 *
1443 * if we have a write fault on a loaned page in an
1444 * anon then we need to look at the anon's ref count.
1445 * if it is greater than one then we are going to do
1446 * a normal copy-on-write fault into a new anon (this
1447 * is not a problem). however, if the reference count
1448 * is one (a case where we would normally allow a
1449 * write directly to the page) then we need to kill
1450 * the loan before we continue.
1451 */
1452
1453 /* >1 case is already ok */
1454 if (anon->an_ref == 1) {
1455 struct vm_page *pg;
1456
1457 /* get new un-owned replacement page */
1458 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1459 if (pg == NULL) {
1460 uvmfault_unlockall(ufi, amap, uobj, anon);
1461 uvm_wait("flt_noram2");
1462 return ERESTART;
1463 }
1464
1465 /*
1466 * copy data, kill loan, and drop uobj lock
1467 * (if any)
1468 */
1469 /* copy old -> new */
1470 uvm_pagecopy(anon->an_page, pg);
1471
1472 /* force reload */
1473 pmap_page_protect(anon->an_page, VM_PROT_NONE);
1474 mutex_enter(&uvm_pageqlock); /* KILL loan */
1475
1476 anon->an_page->uanon = NULL;
1477 /* in case we owned */
1478 anon->an_page->pqflags &= ~PQ_ANON;
1479
1480 if (uobj) {
1481 /* if we were receiver of loan */
1482 anon->an_page->loan_count--;
1483 } else {
1484 /*
1485 * we were the lender (A->K); need
1486 * to remove the page from pageq's.
1487 */
1488 uvm_pagedequeue(anon->an_page);
1489 }
1490
1491 if (uobj) {
1492 mutex_exit(&uobj->vmobjlock);
1493 *ruobj = NULL;
1494 }
1495
1496 /* install new page in anon */
1497 anon->an_page = pg;
1498 pg->uanon = anon;
1499 pg->pqflags |= PQ_ANON;
1500
1501 uvm_pageactivate(pg);
1502 mutex_exit(&uvm_pageqlock);
1503
1504 pg->flags &= ~(PG_BUSY|PG_FAKE);
1505 UVM_PAGE_OWN(pg, NULL);
1506
1507 /* done! */
1508 } /* ref == 1 */
1509 } /* write fault */
1510
1511 return 0;
1512 }
1513
1514 static int
1515 uvm_fault_upper1(
1516 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1517 struct uvm_object *uobj, struct vm_anon *anon)
1518 {
1519 int error;
1520
1521 /*
1522 * if we are case 1B then we will need to allocate a new blank
1523 * anon to transfer the data into. note that we have a lock
1524 * on anon, so no one can busy or release the page until we are done.
1525 * also note that the ref count can't drop to zero here because
1526 * it is > 1 and we are only dropping one ref.
1527 *
1528 * in the (hopefully very rare) case that we are out of RAM we
1529 * will unlock, wait for more RAM, and refault.
1530 *
1531 * if we are out of anon VM we kill the process (XXX: could wait?).
1532 */
1533
1534 if (flt->cow_now && anon->an_ref > 1) {
1535 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1536 } else {
1537 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1538 }
1539 return error;
1540 }
1541
1542 static int
1543 uvm_fault_upper_promote(
1544 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1545 struct uvm_object *uobj, struct vm_anon *anon)
1546 {
1547 struct vm_anon * const oanon = anon;
1548 struct vm_page *pg;
1549 int error;
1550
1551 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1552 uvmexp.flt_acow++;
1553
1554 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1555 &anon, &flt->anon_spare);
1556 switch (error) {
1557 case 0:
1558 break;
1559 case ERESTART:
1560 return ERESTART;
1561 default:
1562 return error;
1563 }
1564
1565 pg = anon->an_page;
1566 mutex_enter(&uvm_pageqlock);
1567 uvm_pageactivate(pg);
1568 mutex_exit(&uvm_pageqlock);
1569 pg->flags &= ~(PG_BUSY|PG_FAKE);
1570 UVM_PAGE_OWN(pg, NULL);
1571
1572 /* deref: can not drop to zero here by defn! */
1573 oanon->an_ref--;
1574
1575 /*
1576 * note: oanon is still locked, as is the new anon. we
1577 * need to check for this later when we unlock oanon; if
1578 * oanon != anon, we'll have to unlock anon, too.
1579 */
1580
1581 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1582 }
1583
1584 static int
1585 uvm_fault_upper_direct(
1586 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1587 struct uvm_object *uobj, struct vm_anon *anon)
1588 {
1589 struct vm_anon * const oanon = anon;
1590 struct vm_page *pg;
1591
1592 uvmexp.flt_anon++;
1593 pg = anon->an_page;
1594 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1595 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1596
1597 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1598 }
1599
1600 static int
1601 uvm_fault_upper_enter(
1602 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1603 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1604 struct vm_anon *oanon)
1605 {
1606 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1607
1608 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1609 KASSERT(mutex_owned(&amap->am_l));
1610 KASSERT(mutex_owned(&anon->an_lock));
1611 KASSERT(mutex_owned(&oanon->an_lock));
1612
1613 /*
1614 * now map the page in.
1615 */
1616
1617 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1618 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
1619 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1620 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1621 != 0) {
1622
1623 /*
1624 * No need to undo what we did; we can simply think of
1625 * this as the pmap throwing away the mapping information.
1626 *
1627 * We do, however, have to go through the ReFault path,
1628 * as the map may change while we're asleep.
1629 */
1630
1631 if (anon != oanon)
1632 mutex_exit(&anon->an_lock);
1633 uvmfault_unlockall(ufi, amap, uobj, oanon);
1634 if (!uvm_reclaimable()) {
1635 UVMHIST_LOG(maphist,
1636 "<- failed. out of VM",0,0,0,0);
1637 /* XXX instrumentation */
1638 return ENOMEM;
1639 }
1640 /* XXX instrumentation */
1641 uvm_wait("flt_pmfail1");
1642 return ERESTART;
1643 }
1644
1645 return uvm_fault_upper_done(ufi, flt, uobj, anon, pg, oanon);
1646 }
1647
1648 static int
1649 uvm_fault_upper_done(
1650 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1651 struct uvm_object *uobj, struct vm_anon *anon,
1652 struct vm_page *pg, struct vm_anon *oanon)
1653 {
1654 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1655
1656 /*
1657 * ... update the page queues.
1658 */
1659
1660 mutex_enter(&uvm_pageqlock);
1661 if (flt->wire_paging) {
1662 uvm_pagewire(pg);
1663
1664 /*
1665 * since the now-wired page cannot be paged out,
1666 * release its swap resources for others to use.
1667 * since an anon with no swap cannot be PG_CLEAN,
1668 * clear its clean flag now.
1669 */
1670
1671 pg->flags &= ~(PG_CLEAN);
1672 uvm_anon_dropswap(anon);
1673 } else {
1674 uvm_pageactivate(pg);
1675 }
1676 mutex_exit(&uvm_pageqlock);
1677
1678 /*
1679 * done case 1! finish up by unlocking everything and returning success
1680 */
1681
1682 if (anon != oanon)
1683 mutex_exit(&anon->an_lock);
1684 uvmfault_unlockall(ufi, amap, uobj, oanon);
1685 pmap_update(ufi->orig_map->pmap);
1686 return 0;
1687 }
1688
1689 static int
1690 uvm_fault_lower_generic_io(
1691 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1692 struct vm_page **ruobjpage);
1693 static int
1694 uvm_fault_lower_generic_uobjpage(
1695 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1696 struct vm_page *uobjpage, bool promote);
1697 static int
1698 uvm_fault_lower_generic_direct(
1699 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1700 struct vm_page *uobjpage);
1701 static int
1702 uvm_fault_lower_generic_promote(
1703 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1704 struct vm_page *uobjpage);
1705 static int
1706 uvm_fault_lower_generic_enter(
1707 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1708 struct uvm_object *uobj,
1709 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage);
1710 static int
1711 uvm_fault_lower_generic_done(
1712 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1713 struct uvm_object *uobj,
1714 struct vm_anon *anon, struct vm_page *pg);
1715
1716 static int
1717 uvm_fault_lower_generic2(
1718 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1719 struct vm_page *uobjpage)
1720 {
1721 #ifdef DIAGNOSTIC
1722 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1723 #endif
1724 struct uvm_object * const uobj = ufi->entry->object.uvm_obj;
1725 bool promote;
1726 int error;
1727
1728 /*
1729 * handle case 2: faulting on backing object or zero fill
1730 */
1731
1732 /*
1733 * locked:
1734 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1735 */
1736 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1737 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1738 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1739
1740 /*
1741 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1742 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1743 * have a backing object, check and see if we are going to promote
1744 * the data up to an anon during the fault.
1745 */
1746
1747 if (uobj == NULL) {
1748 uobjpage = PGO_DONTCARE;
1749 promote = true; /* always need anon here */
1750 } else {
1751 KASSERT(uobjpage != PGO_DONTCARE);
1752 promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1753 }
1754 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1755 promote, (uobj == NULL), 0,0);
1756
1757 /*
1758 * if uobjpage is not null then we do not need to do I/O to get the
1759 * uobjpage.
1760 *
1761 * if uobjpage is null, then we need to unlock and ask the pager to
1762 * get the data for us. once we have the data, we need to reverify
1763 * the state the world. we are currently not holding any resources.
1764 */
1765
1766 if (uobjpage) {
1767 /* update rusage counters */
1768 curlwp->l_ru.ru_minflt++;
1769 } else {
1770 error = uvm_fault_lower_generic_io(ufi, flt, &uobjpage);
1771 if (error != 0)
1772 return error;
1773 }
1774 return uvm_fault_lower_generic_uobjpage(ufi, flt, uobjpage, promote);
1775 }
1776
1777 static int
1778 uvm_fault_lower_generic_io(
1779 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1780 struct vm_page **ruobjpage)
1781 {
1782 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1783 struct uvm_object * const uobj = ufi->entry->object.uvm_obj;
1784 struct vm_page *uobjpage;
1785 bool locked;
1786 int gotpages;
1787 int error;
1788 voff_t uoff;
1789
1790 /* update rusage counters */
1791 curlwp->l_ru.ru_majflt++;
1792
1793 /* locked: maps(read), amap(if there), uobj */
1794 uvmfault_unlockall(ufi, amap, NULL, NULL);
1795 /* locked: uobj */
1796
1797 uvmexp.fltget++;
1798 gotpages = 1;
1799 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1800 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1801 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1802 PGO_SYNCIO);
1803 /* locked: uobjpage(if no error) */
1804 KASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
1805
1806 /*
1807 * recover from I/O
1808 */
1809
1810 if (error) {
1811 if (error == EAGAIN) {
1812 UVMHIST_LOG(maphist,
1813 " pgo_get says TRY AGAIN!",0,0,0,0);
1814 kpause("fltagain2", false, hz/2, NULL);
1815 return ERESTART;
1816 }
1817
1818 #if 0
1819 KASSERT(error != ERESTART);
1820 #else
1821 /* XXXUEBS don't re-fault? */
1822 if (error == ERESTART)
1823 error = EIO;
1824 #endif
1825
1826 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1827 error, 0,0,0);
1828 return error;
1829 }
1830
1831 /* locked: uobjpage */
1832
1833 mutex_enter(&uvm_pageqlock);
1834 uvm_pageactivate(uobjpage);
1835 mutex_exit(&uvm_pageqlock);
1836
1837 /*
1838 * re-verify the state of the world by first trying to relock
1839 * the maps. always relock the object.
1840 */
1841
1842 locked = uvmfault_relock(ufi);
1843 if (locked && amap)
1844 amap_lock(amap);
1845 KASSERT(uobj == uobjpage->uobject);
1846 mutex_enter(&uobj->vmobjlock);
1847
1848 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1849 /* locked(!locked): uobj, uobjpage */
1850
1851 /*
1852 * verify that the page has not be released and re-verify
1853 * that amap slot is still free. if there is a problem,
1854 * we unlock and clean up.
1855 */
1856
1857 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1858 (locked && amap &&
1859 amap_lookup(&ufi->entry->aref,
1860 ufi->orig_rvaddr - ufi->entry->start))) {
1861 if (locked)
1862 uvmfault_unlockall(ufi, amap, NULL, NULL);
1863 locked = false;
1864 }
1865
1866 /*
1867 * didn't get the lock? release the page and retry.
1868 */
1869
1870 if (locked == false) {
1871 UVMHIST_LOG(maphist,
1872 " wasn't able to relock after fault: retry",
1873 0,0,0,0);
1874 if (uobjpage->flags & PG_WANTED)
1875 wakeup(uobjpage);
1876 if (uobjpage->flags & PG_RELEASED) {
1877 uvmexp.fltpgrele++;
1878 uvm_pagefree(uobjpage);
1879 return ERESTART;
1880 }
1881 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1882 UVM_PAGE_OWN(uobjpage, NULL);
1883 mutex_exit(&uobj->vmobjlock);
1884 return ERESTART;
1885 }
1886
1887 /*
1888 * we have the data in uobjpage which is busy and
1889 * not released. we are holding object lock (so the page
1890 * can't be released on us).
1891 */
1892
1893 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1894
1895 *ruobjpage = uobjpage;
1896 return 0;
1897 }
1898
1899 int
1900 uvm_fault_lower_generic_uobjpage(
1901 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1902 struct vm_page *uobjpage, bool promote)
1903 {
1904 #ifdef DIAGNOSTIC
1905 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1906 struct uvm_object * const uobj = ufi->entry->object.uvm_obj;
1907 #endif
1908 int error;
1909
1910 /*
1911 * locked:
1912 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1913 */
1914 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1915 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1916 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1917
1918 /*
1919 * notes:
1920 * - at this point uobjpage can not be NULL
1921 * - at this point uobjpage can not be PG_RELEASED (since we checked
1922 * for it above)
1923 * - at this point uobjpage could be PG_WANTED (handle later)
1924 */
1925
1926 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1927 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1928 (uobjpage->flags & PG_CLEAN) != 0);
1929
1930 if (promote == false) {
1931 error = uvm_fault_lower_generic_direct(ufi, flt, uobjpage);
1932 } else {
1933 error = uvm_fault_lower_generic_promote(ufi, flt, uobjpage);
1934 }
1935 return error;
1936 }
1937
1938 int
1939 uvm_fault_lower_generic_direct(
1940 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1941 struct vm_page *uobjpage)
1942 {
1943 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1944 struct uvm_object * const uobj = ufi->entry->object.uvm_obj;
1945 struct vm_page *pg;
1946
1947 /*
1948 * we are not promoting. if the mapping is COW ensure that we
1949 * don't give more access than we should (e.g. when doing a read
1950 * fault on a COPYONWRITE mapping we want to map the COW page in
1951 * R/O even though the entry protection could be R/W).
1952 *
1953 * set "pg" to the page we want to map in (uobjpage, usually)
1954 */
1955
1956 uvmexp.flt_obj++;
1957 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1958 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1959 flt->enter_prot &= ~VM_PROT_WRITE;
1960 pg = uobjpage; /* map in the actual object */
1961
1962 KASSERT(uobjpage != PGO_DONTCARE);
1963
1964 /*
1965 * we are faulting directly on the page. be careful
1966 * about writing to loaned pages...
1967 */
1968
1969 if (uobjpage->loan_count) {
1970 if (!flt->cow_now) {
1971 /* read fault: cap the protection at readonly */
1972 /* cap! */
1973 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1974 } else {
1975 /* write fault: must break the loan here */
1976
1977 pg = uvm_loanbreak(uobjpage);
1978 if (pg == NULL) {
1979
1980 /*
1981 * drop ownership of page, it can't
1982 * be released
1983 */
1984
1985 if (uobjpage->flags & PG_WANTED)
1986 wakeup(uobjpage);
1987 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1988 UVM_PAGE_OWN(uobjpage, NULL);
1989
1990 uvmfault_unlockall(ufi, amap, uobj,
1991 NULL);
1992 UVMHIST_LOG(maphist,
1993 " out of RAM breaking loan, waiting",
1994 0,0,0,0);
1995 uvmexp.fltnoram++;
1996 uvm_wait("flt_noram4");
1997 return ERESTART;
1998 }
1999 uobjpage = pg;
2000 }
2001 }
2002
2003 return uvm_fault_lower_generic_enter(ufi, flt, uobj, NULL, pg, uobjpage);
2004 }
2005
2006 int
2007 uvm_fault_lower_generic_promote(
2008 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2009 struct vm_page *uobjpage)
2010 {
2011 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2012 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
2013 struct vm_anon *anon;
2014 struct vm_page *pg;
2015 int error;
2016
2017 /*
2018 * if we are going to promote the data to an anon we
2019 * allocate a blank anon here and plug it into our amap.
2020 */
2021 #if DIAGNOSTIC
2022 if (amap == NULL)
2023 panic("uvm_fault: want to promote data, but no anon");
2024 #endif
2025 error = uvmfault_promote(ufi, NULL, uobjpage,
2026 &anon, &flt->anon_spare);
2027 switch (error) {
2028 case 0:
2029 break;
2030 case ERESTART:
2031 return ERESTART;
2032 default:
2033 return error;
2034 }
2035
2036 pg = anon->an_page;
2037
2038 /*
2039 * fill in the data
2040 */
2041
2042 if (uobjpage != PGO_DONTCARE) {
2043 uvmexp.flt_prcopy++;
2044
2045 /*
2046 * promote to shared amap? make sure all sharing
2047 * procs see it
2048 */
2049
2050 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2051 pmap_page_protect(uobjpage, VM_PROT_NONE);
2052 /*
2053 * XXX: PAGE MIGHT BE WIRED!
2054 */
2055 }
2056
2057 /*
2058 * dispose of uobjpage. it can't be PG_RELEASED
2059 * since we still hold the object lock.
2060 * drop handle to uobj as well.
2061 */
2062
2063 if (uobjpage->flags & PG_WANTED)
2064 /* still have the obj lock */
2065 wakeup(uobjpage);
2066 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2067 UVM_PAGE_OWN(uobjpage, NULL);
2068 mutex_exit(&uobj->vmobjlock);
2069 uobj = NULL;
2070
2071 UVMHIST_LOG(maphist,
2072 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2073 uobjpage, anon, pg, 0);
2074
2075 } else {
2076 uvmexp.flt_przero++;
2077
2078 /*
2079 * Page is zero'd and marked dirty by
2080 * uvmfault_promote().
2081 */
2082
2083 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2084 anon, pg, 0, 0);
2085 }
2086
2087 return uvm_fault_lower_generic_enter(ufi, flt, uobj, anon, pg, uobjpage);
2088 }
2089
2090 int
2091 uvm_fault_lower_generic_enter(
2092 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2093 struct uvm_object *uobj,
2094 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2095 {
2096 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2097 int error;
2098
2099 /*
2100 * locked:
2101 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2102 * anon(if !null), pg(if anon)
2103 *
2104 * note: pg is either the uobjpage or the new page in the new anon
2105 */
2106 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2107 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2108 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2109 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2110 KASSERT((pg->flags & PG_BUSY) != 0);
2111
2112 /*
2113 * all resources are present. we can now map it in and free our
2114 * resources.
2115 */
2116
2117 UVMHIST_LOG(maphist,
2118 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2119 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, promote);
2120 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2121 (pg->flags & PG_RDONLY) == 0);
2122 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
2123 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2124 flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2125
2126 /*
2127 * No need to undo what we did; we can simply think of
2128 * this as the pmap throwing away the mapping information.
2129 *
2130 * We do, however, have to go through the ReFault path,
2131 * as the map may change while we're asleep.
2132 */
2133
2134 if (pg->flags & PG_WANTED)
2135 wakeup(pg);
2136
2137 /*
2138 * note that pg can't be PG_RELEASED since we did not drop
2139 * the object lock since the last time we checked.
2140 */
2141 KASSERT((pg->flags & PG_RELEASED) == 0);
2142
2143 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2144 UVM_PAGE_OWN(pg, NULL);
2145 uvmfault_unlockall(ufi, amap, uobj, anon);
2146 if (!uvm_reclaimable()) {
2147 UVMHIST_LOG(maphist,
2148 "<- failed. out of VM",0,0,0,0);
2149 /* XXX instrumentation */
2150 error = ENOMEM;
2151 return error;
2152 }
2153 /* XXX instrumentation */
2154 uvm_wait("flt_pmfail2");
2155 return ERESTART;
2156 }
2157
2158 return uvm_fault_lower_generic_done(ufi, flt, uobj, anon, pg);
2159 }
2160
2161 int
2162 uvm_fault_lower_generic_done(
2163 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2164 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2165 {
2166 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2167
2168 mutex_enter(&uvm_pageqlock);
2169 if (flt->wire_paging) {
2170 uvm_pagewire(pg);
2171 if (pg->pqflags & PQ_AOBJ) {
2172
2173 /*
2174 * since the now-wired page cannot be paged out,
2175 * release its swap resources for others to use.
2176 * since an aobj page with no swap cannot be PG_CLEAN,
2177 * clear its clean flag now.
2178 */
2179
2180 KASSERT(uobj != NULL);
2181 pg->flags &= ~(PG_CLEAN);
2182 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2183 }
2184 } else {
2185 uvm_pageactivate(pg);
2186 }
2187 mutex_exit(&uvm_pageqlock);
2188 if (pg->flags & PG_WANTED)
2189 wakeup(pg);
2190
2191 /*
2192 * note that pg can't be PG_RELEASED since we did not drop the object
2193 * lock since the last time we checked.
2194 */
2195 KASSERT((pg->flags & PG_RELEASED) == 0);
2196
2197 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2198 UVM_PAGE_OWN(pg, NULL);
2199 uvmfault_unlockall(ufi, amap, uobj, anon);
2200 pmap_update(ufi->orig_map->pmap);
2201 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2202 return 0;
2203 }
2204
2205
2206 /*
2207 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2208 *
2209 * => map may be read-locked by caller, but MUST NOT be write-locked.
2210 * => if map is read-locked, any operations which may cause map to
2211 * be write-locked in uvm_fault() must be taken care of by
2212 * the caller. See uvm_map_pageable().
2213 */
2214
2215 int
2216 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2217 vm_prot_t access_type, int maxprot)
2218 {
2219 vaddr_t va;
2220 int error;
2221
2222 /*
2223 * now fault it in a page at a time. if the fault fails then we have
2224 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2225 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2226 */
2227
2228 /*
2229 * XXX work around overflowing a vaddr_t. this prevents us from
2230 * wiring the last page in the address space, though.
2231 */
2232 if (start > end) {
2233 return EFAULT;
2234 }
2235
2236 for (va = start ; va < end ; va += PAGE_SIZE) {
2237 error = uvm_fault_internal(map, va, access_type,
2238 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2239 if (error) {
2240 if (va != start) {
2241 uvm_fault_unwire(map, start, va);
2242 }
2243 return error;
2244 }
2245 }
2246 return 0;
2247 }
2248
2249 /*
2250 * uvm_fault_unwire(): unwire range of virtual space.
2251 */
2252
2253 void
2254 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2255 {
2256 vm_map_lock_read(map);
2257 uvm_fault_unwire_locked(map, start, end);
2258 vm_map_unlock_read(map);
2259 }
2260
2261 /*
2262 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2263 *
2264 * => map must be at least read-locked.
2265 */
2266
2267 void
2268 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2269 {
2270 struct vm_map_entry *entry;
2271 pmap_t pmap = vm_map_pmap(map);
2272 vaddr_t va;
2273 paddr_t pa;
2274 struct vm_page *pg;
2275
2276 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2277
2278 /*
2279 * we assume that the area we are unwiring has actually been wired
2280 * in the first place. this means that we should be able to extract
2281 * the PAs from the pmap. we also lock out the page daemon so that
2282 * we can call uvm_pageunwire.
2283 */
2284
2285 mutex_enter(&uvm_pageqlock);
2286
2287 /*
2288 * find the beginning map entry for the region.
2289 */
2290
2291 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2292 if (uvm_map_lookup_entry(map, start, &entry) == false)
2293 panic("uvm_fault_unwire_locked: address not in map");
2294
2295 for (va = start; va < end; va += PAGE_SIZE) {
2296 if (pmap_extract(pmap, va, &pa) == false)
2297 continue;
2298
2299 /*
2300 * find the map entry for the current address.
2301 */
2302
2303 KASSERT(va >= entry->start);
2304 while (va >= entry->end) {
2305 KASSERT(entry->next != &map->header &&
2306 entry->next->start <= entry->end);
2307 entry = entry->next;
2308 }
2309
2310 /*
2311 * if the entry is no longer wired, tell the pmap.
2312 */
2313
2314 if (VM_MAPENT_ISWIRED(entry) == 0)
2315 pmap_unwire(pmap, va);
2316
2317 pg = PHYS_TO_VM_PAGE(pa);
2318 if (pg)
2319 uvm_pageunwire(pg);
2320 }
2321
2322 mutex_exit(&uvm_pageqlock);
2323 }
2324