uvm_fault.c revision 1.155 1 /* $NetBSD: uvm_fault.c,v 1.155 2010/02/02 17:40:43 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.155 2010/02/02 17:40:43 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0 ; lcv < n ; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 struct uvm_faultctx {
696 vm_prot_t access_type;
697 vm_prot_t enter_prot;
698 vaddr_t startva;
699 int npages;
700 int centeridx;
701 struct vm_anon *anon_spare;
702 bool wire_mapping;
703 bool narrow;
704 bool wire_paging;
705 bool maxprot;
706 bool cow_now;
707 };
708
709 static int uvm_fault_check(
710 struct uvm_faultinfo *, struct uvm_faultctx *,
711 struct vm_anon ***, struct vm_page ***);
712 typedef int uvm_fault_upper_subfunc_t(
713 struct uvm_faultinfo *, struct uvm_faultctx *,
714 struct vm_anon **, struct vm_page **);
715 static uvm_fault_upper_subfunc_t uvm_fault_upper_lookup;
716 typedef int uvm_fault_lower_subfunc_t(
717 struct uvm_faultinfo *, struct uvm_faultctx *,
718 struct vm_page **);
719 static uvm_fault_lower_subfunc_t uvm_fault_lower;
720 static uvm_fault_lower_subfunc_t uvm_fault_lower_special;
721 static uvm_fault_lower_subfunc_t uvm_fault_lower_generic_lookup;
722 static uvm_fault_lower_subfunc_t uvm_fault_lower_generic;
723 static int uvm_fault_upper(
724 struct uvm_faultinfo *, struct uvm_faultctx *,
725 struct vm_anon **);
726 static int uvm_fault_lower_generic1(
727 struct uvm_faultinfo *, struct uvm_faultctx *,
728 struct vm_page *);
729 static int uvm_fault_lower_generic2(
730 struct uvm_faultinfo *, struct uvm_faultctx *,
731 struct vm_page *);
732
733 int
734 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
735 vm_prot_t access_type, int fault_flag)
736 {
737 struct uvm_faultinfo ufi;
738 struct uvm_faultctx flt = {
739 .access_type = access_type,
740
741 /* don't look for neighborhood * pages on "wire" fault */
742 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
743
744 /* "wire" fault causes wiring of both mapping and paging */
745 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
746 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
747
748 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
749 };
750 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
751 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
752 int error;
753 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
754
755 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
756 orig_map, vaddr, access_type, fault_flag);
757
758 uvmexp.faults++; /* XXX: locking? */
759
760 /*
761 * init the IN parameters in the ufi
762 */
763
764 ufi.orig_map = orig_map;
765 ufi.orig_rvaddr = trunc_page(vaddr);
766 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
767
768 error = ERESTART;
769 while (error == ERESTART) {
770 anons = anons_store;
771 pages = pages_store;
772
773 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
774 if (error != 0)
775 continue;
776
777 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
778 if (error != 0)
779 continue;
780
781 if (pages[flt.centeridx] == PGO_DONTCARE)
782 error = uvm_fault_upper(&ufi, &flt, anons);
783 else
784 error = uvm_fault_lower(&ufi, &flt, pages);
785 }
786
787 if (flt.anon_spare != NULL) {
788 flt.anon_spare->an_ref--;
789 uvm_anfree(flt.anon_spare);
790 }
791 return error;
792 }
793
794 static int
795 uvm_fault_check(
796 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
797 struct vm_anon ***ranons, struct vm_page ***rpages)
798 {
799 struct vm_amap *amap;
800 struct uvm_object *uobj;
801 vm_prot_t check_prot;
802 int nback, nforw;
803
804 /*
805 * lookup and lock the maps
806 */
807
808 if (uvmfault_lookup(ufi, false) == false) {
809 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
810 return EFAULT;
811 }
812 /* locked: maps(read) */
813
814 #ifdef DIAGNOSTIC
815 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
816 printf("Page fault on non-pageable map:\n");
817 printf("ufi->map = %p\n", ufi->map);
818 printf("ufi->orig_map = %p\n", ufi->orig_map);
819 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
820 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
821 }
822 #endif
823
824 /*
825 * check protection
826 */
827
828 check_prot = flt->maxprot ?
829 ufi->entry->max_protection : ufi->entry->protection;
830 if ((check_prot & flt->access_type) != flt->access_type) {
831 UVMHIST_LOG(maphist,
832 "<- protection failure (prot=0x%x, access=0x%x)",
833 ufi->entry->protection, flt->access_type, 0, 0);
834 uvmfault_unlockmaps(ufi, false);
835 return EACCES;
836 }
837
838 /*
839 * "enter_prot" is the protection we want to enter the page in at.
840 * for certain pages (e.g. copy-on-write pages) this protection can
841 * be more strict than ufi->entry->protection. "wired" means either
842 * the entry is wired or we are fault-wiring the pg.
843 */
844
845 flt->enter_prot = ufi->entry->protection;
846 if (VM_MAPENT_ISWIRED(ufi->entry))
847 flt->wire_mapping = true;
848
849 if (flt->wire_mapping) {
850 flt->access_type = flt->enter_prot; /* full access for wired */
851 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
852 } else {
853 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
854 }
855
856 /*
857 * handle "needs_copy" case. if we need to copy the amap we will
858 * have to drop our readlock and relock it with a write lock. (we
859 * need a write lock to change anything in a map entry [e.g.
860 * needs_copy]).
861 */
862
863 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
864 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
865 KASSERT(!flt->maxprot);
866 /* need to clear */
867 UVMHIST_LOG(maphist,
868 " need to clear needs_copy and refault",0,0,0,0);
869 uvmfault_unlockmaps(ufi, false);
870 uvmfault_amapcopy(ufi);
871 uvmexp.fltamcopy++;
872 return ERESTART;
873
874 } else {
875
876 /*
877 * ensure that we pmap_enter page R/O since
878 * needs_copy is still true
879 */
880
881 flt->enter_prot &= ~VM_PROT_WRITE;
882 }
883 }
884
885 /*
886 * identify the players
887 */
888
889 amap = ufi->entry->aref.ar_amap; /* upper layer */
890 uobj = ufi->entry->object.uvm_obj; /* lower layer */
891
892 /*
893 * check for a case 0 fault. if nothing backing the entry then
894 * error now.
895 */
896
897 if (amap == NULL && uobj == NULL) {
898 uvmfault_unlockmaps(ufi, false);
899 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
900 return EFAULT;
901 }
902
903 /*
904 * establish range of interest based on advice from mapper
905 * and then clip to fit map entry. note that we only want
906 * to do this the first time through the fault. if we
907 * ReFault we will disable this by setting "narrow" to true.
908 */
909
910 if (flt->narrow == false) {
911
912 /* wide fault (!narrow) */
913 KASSERT(uvmadvice[ufi->entry->advice].advice ==
914 ufi->entry->advice);
915 nback = MIN(uvmadvice[ufi->entry->advice].nback,
916 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
917 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
918 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
919 ((ufi->entry->end - ufi->orig_rvaddr) >>
920 PAGE_SHIFT) - 1);
921 /*
922 * note: "-1" because we don't want to count the
923 * faulting page as forw
924 */
925 flt->npages = nback + nforw + 1;
926 flt->centeridx = nback;
927
928 flt->narrow = true; /* ensure only once per-fault */
929
930 } else {
931
932 /* narrow fault! */
933 nback = nforw = 0;
934 flt->startva = ufi->orig_rvaddr;
935 flt->npages = 1;
936 flt->centeridx = 0;
937
938 }
939 /* offset from entry's start to pgs' start */
940 const voff_t eoff = flt->startva - ufi->entry->start;
941
942 /* locked: maps(read) */
943 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
944 flt->narrow, nback, nforw, flt->startva);
945 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
946 amap, uobj, 0);
947
948 /*
949 * if we've got an amap, lock it and extract current anons.
950 */
951
952 if (amap) {
953 amap_lock(amap);
954 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
955 } else {
956 *ranons = NULL; /* to be safe */
957 }
958
959 /* locked: maps(read), amap(if there) */
960 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
961
962 /*
963 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
964 * now and then forget about them (for the rest of the fault).
965 */
966
967 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
968
969 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
970 0,0,0,0);
971 /* flush back-page anons? */
972 if (amap)
973 uvmfault_anonflush(*ranons, nback);
974
975 /* flush object? */
976 if (uobj) {
977 voff_t uoff;
978
979 uoff = ufi->entry->offset + eoff;
980 mutex_enter(&uobj->vmobjlock);
981 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
982 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
983 }
984
985 /* now forget about the backpages */
986 if (amap)
987 *ranons += nback;
988 #if 0
989 /* XXXUEBS */
990 if (uobj)
991 *rpages += nback;
992 #endif
993 flt->startva += (nback << PAGE_SHIFT);
994 flt->npages -= nback;
995 flt->centeridx = 0;
996 }
997 /*
998 * => startva is fixed
999 * => npages is fixed
1000 */
1001
1002 return 0;
1003 }
1004
1005 static inline void
1006 uvm_fault_upper_lookup1(
1007 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1008 bool shadowed);
1009 static void
1010 uvm_fault_upper_lookup_neighbor(
1011 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1012 vaddr_t currva, struct vm_anon *anon);
1013
1014 static int
1015 uvm_fault_upper_lookup(
1016 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1017 struct vm_anon **anons, struct vm_page **pages)
1018 {
1019 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1020 int lcv;
1021 vaddr_t currva;
1022 bool shadowed;
1023
1024 /* locked: maps(read), amap(if there) */
1025 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1026
1027 /*
1028 * map in the backpages and frontpages we found in the amap in hopes
1029 * of preventing future faults. we also init the pages[] array as
1030 * we go.
1031 */
1032
1033 currva = flt->startva;
1034 shadowed = false;
1035 for (lcv = 0 ; lcv < flt->npages ; lcv++, currva += PAGE_SIZE) {
1036 /*
1037 * dont play with VAs that are already mapped
1038 * except for center)
1039 */
1040 if (lcv != flt->centeridx &&
1041 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1042 pages[lcv] = PGO_DONTCARE;
1043 continue;
1044 }
1045
1046 /*
1047 * unmapped or center page. check if any anon at this level.
1048 */
1049 if (amap == NULL || anons[lcv] == NULL) {
1050 pages[lcv] = NULL;
1051 continue;
1052 }
1053
1054 /*
1055 * check for present page and map if possible. re-activate it.
1056 */
1057
1058 pages[lcv] = PGO_DONTCARE;
1059 if (lcv == flt->centeridx) { /* save center for later! */
1060 shadowed = true;
1061 } else {
1062 uvm_fault_upper_lookup_neighbor(ufi, flt, currva, anons[lcv]);
1063 }
1064 }
1065
1066 uvm_fault_upper_lookup1(ufi, flt, shadowed);
1067
1068 return 0;
1069 }
1070
1071 static void
1072 uvm_fault_upper_lookup_neighbor(
1073 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1074 vaddr_t currva, struct vm_anon *anon)
1075 {
1076
1077 mutex_enter(&anon->an_lock);
1078
1079 /* ignore loaned and busy pages */
1080 if (anon->an_page == NULL || anon->an_page->loan_count != 0 ||
1081 (anon->an_page->flags & PG_BUSY) != 0)
1082 goto uvm_fault_upper_lookup_enter_done;
1083
1084 mutex_enter(&uvm_pageqlock);
1085 uvm_pageenqueue(anon->an_page);
1086 mutex_exit(&uvm_pageqlock);
1087 UVMHIST_LOG(maphist,
1088 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1089 ufi->orig_map->pmap, currva, anon->an_page, 0);
1090 uvmexp.fltnamap++;
1091
1092 /*
1093 * Since this isn't the page that's actually faulting,
1094 * ignore pmap_enter() failures; it's not critical
1095 * that we enter these right now.
1096 */
1097
1098 (void) pmap_enter(ufi->orig_map->pmap, currva,
1099 VM_PAGE_TO_PHYS(anon->an_page),
1100 (anon->an_ref > 1) ? (flt->enter_prot & ~VM_PROT_WRITE) :
1101 flt->enter_prot,
1102 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1103
1104 uvm_fault_upper_lookup_enter_done:
1105 pmap_update(ufi->orig_map->pmap);
1106 mutex_exit(&anon->an_lock);
1107 }
1108
1109 static inline void
1110 uvm_fault_upper_lookup1(
1111 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1112 bool shadowed)
1113 {
1114 #ifdef DIAGNOSTIC
1115 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1116 #endif
1117 #ifdef UVMHIST
1118 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1119 #endif
1120
1121 /* locked: maps(read), amap(if there) */
1122 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1123 /* (shadowed == true) if there is an anon at the faulting address */
1124 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1125 (uobj && shadowed != false),0,0);
1126
1127 /*
1128 * note that if we are really short of RAM we could sleep in the above
1129 * call to pmap_enter with everything locked. bad?
1130 *
1131 * XXX Actually, that is bad; pmap_enter() should just fail in that
1132 * XXX case. --thorpej
1133 */
1134 }
1135
1136 static int
1137 uvm_fault_lower(
1138 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1139 struct vm_page **pages)
1140 {
1141 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1142 int error;
1143
1144 /*
1145 * if the desired page is not shadowed by the amap and we have a
1146 * backing object, then we check to see if the backing object would
1147 * prefer to handle the fault itself (rather than letting us do it
1148 * with the usual pgo_get hook). the backing object signals this by
1149 * providing a pgo_fault routine.
1150 */
1151
1152 if (uobj && uobj->pgops->pgo_fault != NULL) {
1153 error = uvm_fault_lower_special(ufi, flt, pages);
1154 } else {
1155 error = uvm_fault_lower_generic(ufi, flt, pages);
1156 }
1157 return error;
1158 }
1159
1160 static int
1161 uvm_fault_lower_special(
1162 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1163 struct vm_page **pages)
1164 {
1165 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1166 int error;
1167
1168 mutex_enter(&uobj->vmobjlock);
1169 /* locked: maps(read), amap (if there), uobj */
1170 error = uobj->pgops->pgo_fault(ufi, flt->startva, pages, flt->npages,
1171 flt->centeridx, flt->access_type, PGO_LOCKED|PGO_SYNCIO);
1172
1173 /* locked: nothing, pgo_fault has unlocked everything */
1174
1175 if (error == ERESTART)
1176 error = ERESTART; /* try again! */
1177 /*
1178 * object fault routine responsible for pmap_update().
1179 */
1180
1181 return error;
1182 }
1183
1184 static void uvm_fault_lower_generic_lookup_neighbor(
1185 struct uvm_faultinfo *, struct uvm_faultctx *,
1186 vaddr_t, struct vm_page *);
1187
1188 static int
1189 uvm_fault_lower_generic(
1190 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1191 struct vm_page **pages)
1192 {
1193 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1194
1195 /*
1196 * now, if the desired page is not shadowed by the amap and we have
1197 * a backing object that does not have a special fault routine, then
1198 * we ask (with pgo_get) the object for resident pages that we care
1199 * about and attempt to map them in. we do not let pgo_get block
1200 * (PGO_LOCKED).
1201 */
1202
1203 if (uobj == NULL) {
1204 /* zero fill; don't care neighbor pages */
1205 pages[flt->centeridx] = NULL;
1206 } else {
1207 uvm_fault_lower_generic_lookup(ufi, flt, pages);
1208 }
1209 return uvm_fault_lower_generic1(ufi, flt, pages[flt->centeridx]);
1210 }
1211
1212 static int
1213 uvm_fault_lower_generic_lookup(
1214 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1215 struct vm_page **pages)
1216 {
1217 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1218 int lcv, gotpages;
1219 vaddr_t currva;
1220
1221 mutex_enter(&uobj->vmobjlock);
1222 /* locked (!shadowed): maps(read), amap (if there), uobj */
1223 /*
1224 * the following call to pgo_get does _not_ change locking state
1225 */
1226
1227 uvmexp.fltlget++;
1228 gotpages = flt->npages;
1229 (void) uobj->pgops->pgo_get(uobj,
1230 ufi->entry->offset + flt->startva - ufi->entry->start,
1231 pages, &gotpages, flt->centeridx,
1232 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1233
1234 /*
1235 * check for pages to map, if we got any
1236 */
1237
1238 if (gotpages == 0) {
1239 pages[flt->centeridx] = NULL;
1240 return 0;
1241 }
1242
1243 currva = flt->startva;
1244 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1245 struct vm_page *curpg;
1246
1247 curpg = pages[lcv];
1248 if (curpg == NULL || curpg == PGO_DONTCARE) {
1249 continue;
1250 }
1251 KASSERT(curpg->uobject == uobj);
1252
1253 /*
1254 * if center page is resident and not PG_BUSY|PG_RELEASED
1255 * then pgo_get made it PG_BUSY for us and gave us a handle
1256 * to it. remember this page as "uobjpage." (for later use).
1257 */
1258
1259 if (lcv == flt->centeridx) {
1260 UVMHIST_LOG(maphist, " got uobjpage "
1261 "(0x%x) with locked get",
1262 curpg, 0,0,0);
1263 } else
1264 uvm_fault_lower_generic_lookup_neighbor(ufi, flt,
1265 currva, curpg);
1266 }
1267 pmap_update(ufi->orig_map->pmap);
1268 return 0;
1269 }
1270
1271 static void
1272 uvm_fault_lower_generic_lookup_neighbor(
1273 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1274 vaddr_t currva, struct vm_page *curpg)
1275 {
1276 bool readonly;
1277
1278 /*
1279 * calling pgo_get with PGO_LOCKED returns us pages which
1280 * are neither busy nor released, so we don't need to check
1281 * for this. we can just directly enter the pages.
1282 */
1283
1284 mutex_enter(&uvm_pageqlock);
1285 uvm_pageenqueue(curpg);
1286 mutex_exit(&uvm_pageqlock);
1287 UVMHIST_LOG(maphist,
1288 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1289 ufi->orig_map->pmap, currva, curpg, 0);
1290 uvmexp.fltnomap++;
1291
1292 /*
1293 * Since this page isn't the page that's actually faulting,
1294 * ignore pmap_enter() failures; it's not critical that we
1295 * enter these right now.
1296 */
1297 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1298 KASSERT((curpg->flags & PG_RELEASED) == 0);
1299 KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1300 (curpg->flags & PG_CLEAN) != 0);
1301 readonly = (curpg->flags & PG_RDONLY)
1302 || (curpg->loan_count > 0)
1303 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1304
1305 (void) pmap_enter(ufi->orig_map->pmap, currva,
1306 VM_PAGE_TO_PHYS(curpg),
1307 readonly ? flt->enter_prot & ~VM_PROT_WRITE :
1308 flt->enter_prot & MASK(ufi->entry),
1309 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1310
1311 /*
1312 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1313 * held the lock the whole time we've had the handle.
1314 */
1315 KASSERT((curpg->flags & PG_WANTED) == 0);
1316 KASSERT((curpg->flags & PG_RELEASED) == 0);
1317
1318 curpg->flags &= ~(PG_BUSY);
1319 UVM_PAGE_OWN(curpg, NULL);
1320 }
1321
1322 static int
1323 uvm_fault_lower_generic1(
1324 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1325 struct vm_page *uobjpage)
1326 {
1327 #ifdef DIAGNOSTIC
1328 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1329 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1330 #endif
1331
1332 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1333 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1334 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1335 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1336
1337 /*
1338 * note that at this point we are done with any front or back pages.
1339 * we are now going to focus on the center page (i.e. the one we've
1340 * faulted on). if we have faulted on the upper (anon) layer
1341 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1342 * not touched it yet). if we have faulted on the bottom (uobj)
1343 * layer [i.e. case 2] and the page was both present and available,
1344 * then we've got a pointer to it as "uobjpage" and we've already
1345 * made it BUSY.
1346 */
1347
1348 /*
1349 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1350 */
1351
1352 /*
1353 * redirect case 2: if we are not shadowed, go to case 2.
1354 */
1355
1356 return uvm_fault_lower_generic2(ufi, flt, uobjpage);
1357 }
1358
1359 static int
1360 uvm_fault_upper_loan(
1361 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1362 struct vm_anon *anon, struct uvm_object **ruobj);
1363 static int
1364 uvm_fault_upper1(
1365 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1366 struct uvm_object *uobj, struct vm_anon *anon);
1367 static int
1368 uvm_fault_upper_promote(
1369 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1370 struct uvm_object *uobj, struct vm_anon *anon);
1371 static int
1372 uvm_fault_upper_direct(
1373 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1374 struct uvm_object *uobj, struct vm_anon *anon);
1375 static int
1376 uvm_fault_upper_enter(
1377 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1378 struct uvm_object *uobj, struct vm_anon *anon,
1379 struct vm_page *pg, struct vm_anon *oanon);
1380 static int
1381 uvm_fault_upper_done(
1382 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1383 struct uvm_object *uobj, struct vm_anon *anon,
1384 struct vm_page *pg, struct vm_anon *oanon);
1385
1386 static int
1387 uvm_fault_upper(
1388 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1389 struct vm_anon **anons)
1390 {
1391 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1392 struct vm_anon * const anon = anons[flt->centeridx];
1393 struct uvm_object *uobj;
1394 int error;
1395
1396 /* locked: maps(read), amap */
1397 KASSERT(mutex_owned(&amap->am_l));
1398
1399 /*
1400 * handle case 1: fault on an anon in our amap
1401 */
1402
1403 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1404 mutex_enter(&anon->an_lock);
1405
1406 /* locked: maps(read), amap, anon */
1407 KASSERT(mutex_owned(&amap->am_l));
1408 KASSERT(mutex_owned(&anon->an_lock));
1409
1410 /*
1411 * no matter if we have case 1A or case 1B we are going to need to
1412 * have the anon's memory resident. ensure that now.
1413 */
1414
1415 /*
1416 * let uvmfault_anonget do the dirty work.
1417 * if it fails (!OK) it will unlock everything for us.
1418 * if it succeeds, locks are still valid and locked.
1419 * also, if it is OK, then the anon's page is on the queues.
1420 * if the page is on loan from a uvm_object, then anonget will
1421 * lock that object for us if it does not fail.
1422 */
1423
1424 error = uvmfault_anonget(ufi, amap, anon);
1425 switch (error) {
1426 case 0:
1427 break;
1428
1429 case ERESTART:
1430 return ERESTART;
1431
1432 case EAGAIN:
1433 kpause("fltagain1", false, hz/2, NULL);
1434 return ERESTART;
1435
1436 default:
1437 return error;
1438 }
1439
1440 /*
1441 * uobj is non null if the page is on loan from an object (i.e. uobj)
1442 */
1443
1444 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1445
1446 /* locked: maps(read), amap, anon, uobj(if one) */
1447 KASSERT(mutex_owned(&amap->am_l));
1448 KASSERT(mutex_owned(&anon->an_lock));
1449 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1450
1451 /*
1452 * special handling for loaned pages
1453 */
1454
1455 if (anon->an_page->loan_count) {
1456 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1457 if (error != 0)
1458 return error;
1459 }
1460 return uvm_fault_upper1(ufi, flt, uobj, anon);
1461 }
1462
1463 static int
1464 uvm_fault_upper_loan(
1465 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1466 struct vm_anon *anon, struct uvm_object **ruobj)
1467 {
1468 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1469 int error = 0;
1470
1471 if (!flt->cow_now) {
1472
1473 /*
1474 * for read faults on loaned pages we just cap the
1475 * protection at read-only.
1476 */
1477
1478 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1479
1480 } else {
1481 /*
1482 * note that we can't allow writes into a loaned page!
1483 *
1484 * if we have a write fault on a loaned page in an
1485 * anon then we need to look at the anon's ref count.
1486 * if it is greater than one then we are going to do
1487 * a normal copy-on-write fault into a new anon (this
1488 * is not a problem). however, if the reference count
1489 * is one (a case where we would normally allow a
1490 * write directly to the page) then we need to kill
1491 * the loan before we continue.
1492 */
1493
1494 /* >1 case is already ok */
1495 if (anon->an_ref == 1) {
1496 error = uvm_loanbreak_anon(anon, *ruobj);
1497 if (error != 0) {
1498 uvmfault_unlockall(ufi, amap, *ruobj, anon);
1499 uvm_wait("flt_noram2");
1500 return ERESTART;
1501 }
1502 /* if we were a loan reciever uobj is gone */
1503 if (*ruobj)
1504 *ruobj = NULL;
1505 }
1506 }
1507 return error;
1508 }
1509
1510 static int
1511 uvm_fault_upper1(
1512 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1513 struct uvm_object *uobj, struct vm_anon *anon)
1514 {
1515 int error;
1516
1517 /*
1518 * if we are case 1B then we will need to allocate a new blank
1519 * anon to transfer the data into. note that we have a lock
1520 * on anon, so no one can busy or release the page until we are done.
1521 * also note that the ref count can't drop to zero here because
1522 * it is > 1 and we are only dropping one ref.
1523 *
1524 * in the (hopefully very rare) case that we are out of RAM we
1525 * will unlock, wait for more RAM, and refault.
1526 *
1527 * if we are out of anon VM we kill the process (XXX: could wait?).
1528 */
1529
1530 if (flt->cow_now && anon->an_ref > 1) {
1531 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1532 } else {
1533 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1534 }
1535 return error;
1536 }
1537
1538 static int
1539 uvm_fault_upper_promote(
1540 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1541 struct uvm_object *uobj, struct vm_anon *anon)
1542 {
1543 struct vm_anon * const oanon = anon;
1544 struct vm_page *pg;
1545 int error;
1546
1547 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1548 uvmexp.flt_acow++;
1549
1550 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1551 &anon, &flt->anon_spare);
1552 switch (error) {
1553 case 0:
1554 break;
1555 case ERESTART:
1556 return ERESTART;
1557 default:
1558 return error;
1559 }
1560
1561 pg = anon->an_page;
1562 mutex_enter(&uvm_pageqlock);
1563 uvm_pageactivate(pg);
1564 mutex_exit(&uvm_pageqlock);
1565 pg->flags &= ~(PG_BUSY|PG_FAKE);
1566 UVM_PAGE_OWN(pg, NULL);
1567
1568 /* deref: can not drop to zero here by defn! */
1569 oanon->an_ref--;
1570
1571 /*
1572 * note: oanon is still locked, as is the new anon. we
1573 * need to check for this later when we unlock oanon; if
1574 * oanon != anon, we'll have to unlock anon, too.
1575 */
1576
1577 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1578 }
1579
1580 static int
1581 uvm_fault_upper_direct(
1582 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1583 struct uvm_object *uobj, struct vm_anon *anon)
1584 {
1585 struct vm_anon * const oanon = anon;
1586 struct vm_page *pg;
1587
1588 uvmexp.flt_anon++;
1589 pg = anon->an_page;
1590 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1591 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1592
1593 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1594 }
1595
1596 static int
1597 uvm_fault_upper_enter(
1598 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1599 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1600 struct vm_anon *oanon)
1601 {
1602 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1603
1604 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1605 KASSERT(mutex_owned(&amap->am_l));
1606 KASSERT(mutex_owned(&anon->an_lock));
1607 KASSERT(mutex_owned(&oanon->an_lock));
1608
1609 /*
1610 * now map the page in.
1611 */
1612
1613 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1614 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
1615 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1616 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1617 != 0) {
1618
1619 /*
1620 * No need to undo what we did; we can simply think of
1621 * this as the pmap throwing away the mapping information.
1622 *
1623 * We do, however, have to go through the ReFault path,
1624 * as the map may change while we're asleep.
1625 */
1626
1627 if (anon != oanon)
1628 mutex_exit(&anon->an_lock);
1629 uvmfault_unlockall(ufi, amap, uobj, oanon);
1630 if (!uvm_reclaimable()) {
1631 UVMHIST_LOG(maphist,
1632 "<- failed. out of VM",0,0,0,0);
1633 /* XXX instrumentation */
1634 return ENOMEM;
1635 }
1636 /* XXX instrumentation */
1637 uvm_wait("flt_pmfail1");
1638 return ERESTART;
1639 }
1640
1641 return uvm_fault_upper_done(ufi, flt, uobj, anon, pg, oanon);
1642 }
1643
1644 static int
1645 uvm_fault_upper_done(
1646 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1647 struct uvm_object *uobj, struct vm_anon *anon,
1648 struct vm_page *pg, struct vm_anon *oanon)
1649 {
1650 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1651
1652 /*
1653 * ... update the page queues.
1654 */
1655
1656 mutex_enter(&uvm_pageqlock);
1657 if (flt->wire_paging) {
1658 uvm_pagewire(pg);
1659
1660 /*
1661 * since the now-wired page cannot be paged out,
1662 * release its swap resources for others to use.
1663 * since an anon with no swap cannot be PG_CLEAN,
1664 * clear its clean flag now.
1665 */
1666
1667 pg->flags &= ~(PG_CLEAN);
1668 uvm_anon_dropswap(anon);
1669 } else {
1670 uvm_pageactivate(pg);
1671 }
1672 mutex_exit(&uvm_pageqlock);
1673
1674 /*
1675 * done case 1! finish up by unlocking everything and returning success
1676 */
1677
1678 if (anon != oanon)
1679 mutex_exit(&anon->an_lock);
1680 uvmfault_unlockall(ufi, amap, uobj, oanon);
1681 pmap_update(ufi->orig_map->pmap);
1682 return 0;
1683 }
1684
1685 static int
1686 uvm_fault_lower_generic_io(
1687 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1688 struct vm_page **ruobjpage);
1689 static int
1690 uvm_fault_lower_generic3(
1691 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1692 struct vm_page *uobjpage, bool promote);
1693 static int
1694 uvm_fault_lower_generic_direct(
1695 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1696 struct vm_page *uobjpage);
1697 static int
1698 uvm_fault_lower_generic_promote(
1699 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1700 struct vm_page *uobjpage);
1701 static int
1702 uvm_fault_lower_generic_enter(
1703 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1704 struct uvm_object *uobj,
1705 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage);
1706 static int
1707 uvm_fault_lower_generic_done(
1708 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1709 struct uvm_object *uobj,
1710 struct vm_anon *anon, struct vm_page *pg);
1711
1712 static int
1713 uvm_fault_lower_generic2(
1714 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1715 struct vm_page *uobjpage)
1716 {
1717 #ifdef DIAGNOSTIC
1718 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1719 #endif
1720 struct uvm_object * const uobj = ufi->entry->object.uvm_obj;
1721 bool promote;
1722 int error;
1723
1724 /*
1725 * handle case 2: faulting on backing object or zero fill
1726 */
1727
1728 /*
1729 * locked:
1730 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1731 */
1732 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1733 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1734 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1735
1736 /*
1737 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1738 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1739 * have a backing object, check and see if we are going to promote
1740 * the data up to an anon during the fault.
1741 */
1742
1743 if (uobj == NULL) {
1744 uobjpage = PGO_DONTCARE;
1745 promote = true; /* always need anon here */
1746 } else {
1747 KASSERT(uobjpage != PGO_DONTCARE);
1748 promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1749 }
1750 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1751 promote, (uobj == NULL), 0,0);
1752
1753 /*
1754 * if uobjpage is not null then we do not need to do I/O to get the
1755 * uobjpage.
1756 *
1757 * if uobjpage is null, then we need to unlock and ask the pager to
1758 * get the data for us. once we have the data, we need to reverify
1759 * the state the world. we are currently not holding any resources.
1760 */
1761
1762 if (uobjpage) {
1763 /* update rusage counters */
1764 curlwp->l_ru.ru_minflt++;
1765 } else {
1766 error = uvm_fault_lower_generic_io(ufi, flt, &uobjpage);
1767 if (error != 0)
1768 return error;
1769 }
1770 return uvm_fault_lower_generic3(ufi, flt, uobjpage, promote);
1771 }
1772
1773 static int
1774 uvm_fault_lower_generic_io(
1775 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1776 struct vm_page **ruobjpage)
1777 {
1778 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1779 struct uvm_object * const uobj = ufi->entry->object.uvm_obj;
1780 struct vm_page *uobjpage;
1781 bool locked;
1782 int gotpages;
1783 int error;
1784 voff_t uoff;
1785
1786 /* update rusage counters */
1787 curlwp->l_ru.ru_majflt++;
1788
1789 /* locked: maps(read), amap(if there), uobj */
1790 uvmfault_unlockall(ufi, amap, NULL, NULL);
1791 /* locked: uobj */
1792
1793 uvmexp.fltget++;
1794 gotpages = 1;
1795 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1796 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1797 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1798 PGO_SYNCIO);
1799 /* locked: uobjpage(if no error) */
1800 KASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
1801
1802 /*
1803 * recover from I/O
1804 */
1805
1806 if (error) {
1807 if (error == EAGAIN) {
1808 UVMHIST_LOG(maphist,
1809 " pgo_get says TRY AGAIN!",0,0,0,0);
1810 kpause("fltagain2", false, hz/2, NULL);
1811 return ERESTART;
1812 }
1813
1814 #if 0
1815 KASSERT(error != ERESTART);
1816 #else
1817 /* XXXUEBS don't re-fault? */
1818 if (error == ERESTART)
1819 error = EIO;
1820 #endif
1821
1822 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1823 error, 0,0,0);
1824 return error;
1825 }
1826
1827 /* locked: uobjpage */
1828
1829 mutex_enter(&uvm_pageqlock);
1830 uvm_pageactivate(uobjpage);
1831 mutex_exit(&uvm_pageqlock);
1832
1833 /*
1834 * re-verify the state of the world by first trying to relock
1835 * the maps. always relock the object.
1836 */
1837
1838 locked = uvmfault_relock(ufi);
1839 if (locked && amap)
1840 amap_lock(amap);
1841 KASSERT(uobj == uobjpage->uobject);
1842 mutex_enter(&uobj->vmobjlock);
1843
1844 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1845 /* locked(!locked): uobj, uobjpage */
1846
1847 /*
1848 * verify that the page has not be released and re-verify
1849 * that amap slot is still free. if there is a problem,
1850 * we unlock and clean up.
1851 */
1852
1853 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1854 (locked && amap &&
1855 amap_lookup(&ufi->entry->aref,
1856 ufi->orig_rvaddr - ufi->entry->start))) {
1857 if (locked)
1858 uvmfault_unlockall(ufi, amap, NULL, NULL);
1859 locked = false;
1860 }
1861
1862 /*
1863 * didn't get the lock? release the page and retry.
1864 */
1865
1866 if (locked == false) {
1867 UVMHIST_LOG(maphist,
1868 " wasn't able to relock after fault: retry",
1869 0,0,0,0);
1870 if (uobjpage->flags & PG_WANTED)
1871 wakeup(uobjpage);
1872 if (uobjpage->flags & PG_RELEASED) {
1873 uvmexp.fltpgrele++;
1874 uvm_pagefree(uobjpage);
1875 return ERESTART;
1876 }
1877 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1878 UVM_PAGE_OWN(uobjpage, NULL);
1879 mutex_exit(&uobj->vmobjlock);
1880 return ERESTART;
1881 }
1882
1883 /*
1884 * we have the data in uobjpage which is busy and
1885 * not released. we are holding object lock (so the page
1886 * can't be released on us).
1887 */
1888
1889 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1890
1891 *ruobjpage = uobjpage;
1892 return 0;
1893 }
1894
1895 int
1896 uvm_fault_lower_generic3(
1897 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1898 struct vm_page *uobjpage, bool promote)
1899 {
1900 #ifdef DIAGNOSTIC
1901 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1902 struct uvm_object * const uobj = ufi->entry->object.uvm_obj;
1903 #endif
1904 int error;
1905
1906 /*
1907 * locked:
1908 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1909 */
1910 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1911 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1912 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1913
1914 /*
1915 * notes:
1916 * - at this point uobjpage can not be NULL
1917 * - at this point uobjpage can not be PG_RELEASED (since we checked
1918 * for it above)
1919 * - at this point uobjpage could be PG_WANTED (handle later)
1920 */
1921
1922 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1923 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1924 (uobjpage->flags & PG_CLEAN) != 0);
1925
1926 if (promote == false) {
1927 error = uvm_fault_lower_generic_direct(ufi, flt, uobjpage);
1928 } else {
1929 error = uvm_fault_lower_generic_promote(ufi, flt, uobjpage);
1930 }
1931 return error;
1932 }
1933
1934 static int
1935 uvm_fault_lower_generic_direct_loan(
1936 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1937 struct vm_page **rpg, struct vm_page **ruobjpage);
1938
1939 int
1940 uvm_fault_lower_generic_direct(
1941 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1942 struct vm_page *uobjpage)
1943 {
1944 struct uvm_object * const uobj = ufi->entry->object.uvm_obj;
1945 struct vm_page *pg;
1946
1947 /*
1948 * we are not promoting. if the mapping is COW ensure that we
1949 * don't give more access than we should (e.g. when doing a read
1950 * fault on a COPYONWRITE mapping we want to map the COW page in
1951 * R/O even though the entry protection could be R/W).
1952 *
1953 * set "pg" to the page we want to map in (uobjpage, usually)
1954 */
1955
1956 uvmexp.flt_obj++;
1957 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1958 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1959 flt->enter_prot &= ~VM_PROT_WRITE;
1960 pg = uobjpage; /* map in the actual object */
1961
1962 KASSERT(uobjpage != PGO_DONTCARE);
1963
1964 /*
1965 * we are faulting directly on the page. be careful
1966 * about writing to loaned pages...
1967 */
1968
1969 if (uobjpage->loan_count) {
1970 uvm_fault_lower_generic_direct_loan(ufi, flt, &pg, &uobjpage);
1971 }
1972 KASSERT(pg == uobjpage);
1973
1974 return uvm_fault_lower_generic_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1975 }
1976
1977 static int
1978 uvm_fault_lower_generic_direct_loan(
1979 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1980 struct vm_page **rpg, struct vm_page **ruobjpage)
1981 {
1982 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1983 struct uvm_object * const uobj = ufi->entry->object.uvm_obj;
1984 struct vm_page *pg;
1985 struct vm_page *uobjpage = *ruobjpage;
1986
1987 if (!flt->cow_now) {
1988 /* read fault: cap the protection at readonly */
1989 /* cap! */
1990 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1991 } else {
1992 /* write fault: must break the loan here */
1993
1994 pg = uvm_loanbreak(uobjpage);
1995 if (pg == NULL) {
1996
1997 /*
1998 * drop ownership of page, it can't be released
1999 */
2000
2001 if (uobjpage->flags & PG_WANTED)
2002 wakeup(uobjpage);
2003 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2004 UVM_PAGE_OWN(uobjpage, NULL);
2005
2006 uvmfault_unlockall(ufi, amap, uobj, NULL);
2007 UVMHIST_LOG(maphist,
2008 " out of RAM breaking loan, waiting",
2009 0,0,0,0);
2010 uvmexp.fltnoram++;
2011 uvm_wait("flt_noram4");
2012 return ERESTART;
2013 }
2014 *rpg = pg;
2015 *ruobjpage = pg;
2016 }
2017 return 0;
2018 }
2019
2020 int
2021 uvm_fault_lower_generic_promote(
2022 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2023 struct vm_page *uobjpage)
2024 {
2025 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2026 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
2027 struct vm_anon *anon;
2028 struct vm_page *pg;
2029 int error;
2030
2031 /*
2032 * if we are going to promote the data to an anon we
2033 * allocate a blank anon here and plug it into our amap.
2034 */
2035 #if DIAGNOSTIC
2036 if (amap == NULL)
2037 panic("uvm_fault: want to promote data, but no anon");
2038 #endif
2039 error = uvmfault_promote(ufi, NULL, uobjpage,
2040 &anon, &flt->anon_spare);
2041 switch (error) {
2042 case 0:
2043 break;
2044 case ERESTART:
2045 return ERESTART;
2046 default:
2047 return error;
2048 }
2049
2050 pg = anon->an_page;
2051
2052 /*
2053 * fill in the data
2054 */
2055
2056 if (uobjpage != PGO_DONTCARE) {
2057 uvmexp.flt_prcopy++;
2058
2059 /*
2060 * promote to shared amap? make sure all sharing
2061 * procs see it
2062 */
2063
2064 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2065 pmap_page_protect(uobjpage, VM_PROT_NONE);
2066 /*
2067 * XXX: PAGE MIGHT BE WIRED!
2068 */
2069 }
2070
2071 /*
2072 * dispose of uobjpage. it can't be PG_RELEASED
2073 * since we still hold the object lock.
2074 * drop handle to uobj as well.
2075 */
2076
2077 if (uobjpage->flags & PG_WANTED)
2078 /* still have the obj lock */
2079 wakeup(uobjpage);
2080 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2081 UVM_PAGE_OWN(uobjpage, NULL);
2082 mutex_exit(&uobj->vmobjlock);
2083 uobj = NULL;
2084
2085 UVMHIST_LOG(maphist,
2086 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2087 uobjpage, anon, pg, 0);
2088
2089 } else {
2090 uvmexp.flt_przero++;
2091
2092 /*
2093 * Page is zero'd and marked dirty by
2094 * uvmfault_promote().
2095 */
2096
2097 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2098 anon, pg, 0, 0);
2099 }
2100
2101 return uvm_fault_lower_generic_enter(ufi, flt, uobj, anon, pg, uobjpage);
2102 }
2103
2104 int
2105 uvm_fault_lower_generic_enter(
2106 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2107 struct uvm_object *uobj,
2108 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2109 {
2110 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2111 int error;
2112
2113 /*
2114 * locked:
2115 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2116 * anon(if !null), pg(if anon)
2117 *
2118 * note: pg is either the uobjpage or the new page in the new anon
2119 */
2120 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2121 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2122 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2123 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2124 KASSERT((pg->flags & PG_BUSY) != 0);
2125
2126 /*
2127 * all resources are present. we can now map it in and free our
2128 * resources.
2129 */
2130
2131 UVMHIST_LOG(maphist,
2132 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2133 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, promote);
2134 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2135 (pg->flags & PG_RDONLY) == 0);
2136 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
2137 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2138 flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2139
2140 /*
2141 * No need to undo what we did; we can simply think of
2142 * this as the pmap throwing away the mapping information.
2143 *
2144 * We do, however, have to go through the ReFault path,
2145 * as the map may change while we're asleep.
2146 */
2147
2148 if (pg->flags & PG_WANTED)
2149 wakeup(pg);
2150
2151 /*
2152 * note that pg can't be PG_RELEASED since we did not drop
2153 * the object lock since the last time we checked.
2154 */
2155 KASSERT((pg->flags & PG_RELEASED) == 0);
2156
2157 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2158 UVM_PAGE_OWN(pg, NULL);
2159 uvmfault_unlockall(ufi, amap, uobj, anon);
2160 if (!uvm_reclaimable()) {
2161 UVMHIST_LOG(maphist,
2162 "<- failed. out of VM",0,0,0,0);
2163 /* XXX instrumentation */
2164 error = ENOMEM;
2165 return error;
2166 }
2167 /* XXX instrumentation */
2168 uvm_wait("flt_pmfail2");
2169 return ERESTART;
2170 }
2171
2172 return uvm_fault_lower_generic_done(ufi, flt, uobj, anon, pg);
2173 }
2174
2175 int
2176 uvm_fault_lower_generic_done(
2177 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2178 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2179 {
2180 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2181
2182 mutex_enter(&uvm_pageqlock);
2183 if (flt->wire_paging) {
2184 uvm_pagewire(pg);
2185 if (pg->pqflags & PQ_AOBJ) {
2186
2187 /*
2188 * since the now-wired page cannot be paged out,
2189 * release its swap resources for others to use.
2190 * since an aobj page with no swap cannot be PG_CLEAN,
2191 * clear its clean flag now.
2192 */
2193
2194 KASSERT(uobj != NULL);
2195 pg->flags &= ~(PG_CLEAN);
2196 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2197 }
2198 } else {
2199 uvm_pageactivate(pg);
2200 }
2201 mutex_exit(&uvm_pageqlock);
2202 if (pg->flags & PG_WANTED)
2203 wakeup(pg);
2204
2205 /*
2206 * note that pg can't be PG_RELEASED since we did not drop the object
2207 * lock since the last time we checked.
2208 */
2209 KASSERT((pg->flags & PG_RELEASED) == 0);
2210
2211 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2212 UVM_PAGE_OWN(pg, NULL);
2213 uvmfault_unlockall(ufi, amap, uobj, anon);
2214 pmap_update(ufi->orig_map->pmap);
2215 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2216 return 0;
2217 }
2218
2219
2220 /*
2221 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2222 *
2223 * => map may be read-locked by caller, but MUST NOT be write-locked.
2224 * => if map is read-locked, any operations which may cause map to
2225 * be write-locked in uvm_fault() must be taken care of by
2226 * the caller. See uvm_map_pageable().
2227 */
2228
2229 int
2230 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2231 vm_prot_t access_type, int maxprot)
2232 {
2233 vaddr_t va;
2234 int error;
2235
2236 /*
2237 * now fault it in a page at a time. if the fault fails then we have
2238 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2239 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2240 */
2241
2242 /*
2243 * XXX work around overflowing a vaddr_t. this prevents us from
2244 * wiring the last page in the address space, though.
2245 */
2246 if (start > end) {
2247 return EFAULT;
2248 }
2249
2250 for (va = start ; va < end ; va += PAGE_SIZE) {
2251 error = uvm_fault_internal(map, va, access_type,
2252 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2253 if (error) {
2254 if (va != start) {
2255 uvm_fault_unwire(map, start, va);
2256 }
2257 return error;
2258 }
2259 }
2260 return 0;
2261 }
2262
2263 /*
2264 * uvm_fault_unwire(): unwire range of virtual space.
2265 */
2266
2267 void
2268 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2269 {
2270 vm_map_lock_read(map);
2271 uvm_fault_unwire_locked(map, start, end);
2272 vm_map_unlock_read(map);
2273 }
2274
2275 /*
2276 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2277 *
2278 * => map must be at least read-locked.
2279 */
2280
2281 void
2282 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2283 {
2284 struct vm_map_entry *entry;
2285 pmap_t pmap = vm_map_pmap(map);
2286 vaddr_t va;
2287 paddr_t pa;
2288 struct vm_page *pg;
2289
2290 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2291
2292 /*
2293 * we assume that the area we are unwiring has actually been wired
2294 * in the first place. this means that we should be able to extract
2295 * the PAs from the pmap. we also lock out the page daemon so that
2296 * we can call uvm_pageunwire.
2297 */
2298
2299 mutex_enter(&uvm_pageqlock);
2300
2301 /*
2302 * find the beginning map entry for the region.
2303 */
2304
2305 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2306 if (uvm_map_lookup_entry(map, start, &entry) == false)
2307 panic("uvm_fault_unwire_locked: address not in map");
2308
2309 for (va = start; va < end; va += PAGE_SIZE) {
2310 if (pmap_extract(pmap, va, &pa) == false)
2311 continue;
2312
2313 /*
2314 * find the map entry for the current address.
2315 */
2316
2317 KASSERT(va >= entry->start);
2318 while (va >= entry->end) {
2319 KASSERT(entry->next != &map->header &&
2320 entry->next->start <= entry->end);
2321 entry = entry->next;
2322 }
2323
2324 /*
2325 * if the entry is no longer wired, tell the pmap.
2326 */
2327
2328 if (VM_MAPENT_ISWIRED(entry) == 0)
2329 pmap_unwire(pmap, va);
2330
2331 pg = PHYS_TO_VM_PAGE(pa);
2332 if (pg)
2333 uvm_pageunwire(pg);
2334 }
2335
2336 mutex_exit(&uvm_pageqlock);
2337 }
2338