uvm_fault.c revision 1.159 1 /* $NetBSD: uvm_fault.c,v 1.159 2010/02/04 03:19:08 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.159 2010/02/04 03:19:08 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0 ; lcv < n ; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 struct uvm_faultctx {
696 vm_prot_t access_type;
697 vm_prot_t enter_prot;
698 vaddr_t startva;
699 int npages;
700 int centeridx;
701 struct vm_anon *anon_spare;
702 bool wire_mapping;
703 bool narrow;
704 bool wire_paging;
705 bool maxprot;
706 bool cow_now;
707 };
708
709 static int uvm_fault_check(
710 struct uvm_faultinfo *, struct uvm_faultctx *,
711 struct vm_anon ***, struct vm_page ***);
712
713 static int uvm_fault_upper(
714 struct uvm_faultinfo *, struct uvm_faultctx *,
715 struct vm_anon **);
716 static inline int uvm_fault_upper_lookup(
717 struct uvm_faultinfo *, struct uvm_faultctx *,
718 struct vm_anon **, struct vm_page **);
719 static inline void uvm_fault_upper_lookup1(
720 struct uvm_faultinfo *, struct uvm_faultctx *, bool);
721 static void uvm_fault_upper_lookup_neighbor(
722 struct uvm_faultinfo *, struct uvm_faultctx *,
723 vaddr_t, struct vm_anon *);
724 static int uvm_fault_upper_loan(
725 struct uvm_faultinfo *, struct uvm_faultctx *,
726 struct vm_anon *, struct uvm_object **);
727 static int uvm_fault_upper1(
728 struct uvm_faultinfo *, struct uvm_faultctx *,
729 struct uvm_object *, struct vm_anon *);
730 static int uvm_fault_upper_promote(
731 struct uvm_faultinfo *, struct uvm_faultctx *,
732 struct uvm_object *, struct vm_anon *);
733 static int uvm_fault_upper_direct(
734 struct uvm_faultinfo *, struct uvm_faultctx *,
735 struct uvm_object *, struct vm_anon *);
736 static int uvm_fault_upper_enter(
737 struct uvm_faultinfo *, struct uvm_faultctx *,
738 struct uvm_object *, struct vm_anon *,
739 struct vm_page *, struct vm_anon *);
740 static int uvm_fault_upper_done(
741 struct uvm_faultinfo *, struct uvm_faultctx *,
742 struct uvm_object *, struct vm_anon *,
743 struct vm_page *, struct vm_anon *);
744
745 static int uvm_fault_lower(
746 struct uvm_faultinfo *, struct uvm_faultctx *,
747 struct vm_page **);
748 static int uvm_fault_lower_special(
749 struct uvm_faultinfo *, struct uvm_faultctx *,
750 struct vm_page **);
751 static int uvm_fault_lower_generic_lookup(
752 struct uvm_faultinfo *, struct uvm_faultctx *,
753 struct vm_page **);
754 static void uvm_fault_lower_generic_lookup_neighbor(
755 struct uvm_faultinfo *, struct uvm_faultctx *,
756 vaddr_t, struct vm_page *);
757 static int uvm_fault_lower_generic(
758 struct uvm_faultinfo *, struct uvm_faultctx *,
759 struct vm_page **);
760 static int uvm_fault_lower_generic1(
761 struct uvm_faultinfo *, struct uvm_faultctx *,
762 struct uvm_object *, struct vm_page *);
763 static int uvm_fault_lower_generic2(
764 struct uvm_faultinfo *, struct uvm_faultctx *,
765 struct uvm_object *, struct vm_page *);
766 static int uvm_fault_lower_generic3(
767 struct uvm_faultinfo *, struct uvm_faultctx *,
768 struct uvm_object *, struct vm_page *, bool);
769 static int uvm_fault_lower_generic_io(
770 struct uvm_faultinfo *, struct uvm_faultctx *,
771 struct uvm_object **, struct vm_page **);
772 static int uvm_fault_lower_generic_direct(
773 struct uvm_faultinfo *, struct uvm_faultctx *,
774 struct uvm_object *, struct vm_page *);
775 static int uvm_fault_lower_generic_promote(
776 struct uvm_faultinfo *, struct uvm_faultctx *,
777 struct uvm_object *, struct vm_page *);
778 static int uvm_fault_lower_generic_enter(
779 struct uvm_faultinfo *, struct uvm_faultctx *,
780 struct uvm_object *,
781 struct vm_anon *, struct vm_page *, struct vm_page *);
782 static int uvm_fault_lower_generic_done(
783 struct uvm_faultinfo *, struct uvm_faultctx *,
784 struct uvm_object *,
785 struct vm_anon *, struct vm_page *);
786
787 int
788 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
789 vm_prot_t access_type, int fault_flag)
790 {
791 struct uvm_faultinfo ufi;
792 struct uvm_faultctx flt = {
793 .access_type = access_type,
794
795 /* don't look for neighborhood * pages on "wire" fault */
796 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
797
798 /* "wire" fault causes wiring of both mapping and paging */
799 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
800 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
801
802 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
803 };
804 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
805 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
806 int error;
807 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
808
809 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
810 orig_map, vaddr, access_type, fault_flag);
811
812 uvmexp.faults++; /* XXX: locking? */
813
814 /*
815 * init the IN parameters in the ufi
816 */
817
818 ufi.orig_map = orig_map;
819 ufi.orig_rvaddr = trunc_page(vaddr);
820 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
821
822 error = ERESTART;
823 while (error == ERESTART) {
824 anons = anons_store;
825 pages = pages_store;
826
827 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
828 if (error != 0)
829 continue;
830
831 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
832 if (error != 0)
833 continue;
834
835 if (pages[flt.centeridx] == PGO_DONTCARE)
836 error = uvm_fault_upper(&ufi, &flt, anons);
837 else
838 error = uvm_fault_lower(&ufi, &flt, pages);
839 }
840
841 if (flt.anon_spare != NULL) {
842 flt.anon_spare->an_ref--;
843 uvm_anfree(flt.anon_spare);
844 }
845 return error;
846 }
847
848 static int
849 uvm_fault_check(
850 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
851 struct vm_anon ***ranons, struct vm_page ***rpages)
852 {
853 struct vm_amap *amap;
854 struct uvm_object *uobj;
855 vm_prot_t check_prot;
856 int nback, nforw;
857
858 /*
859 * lookup and lock the maps
860 */
861
862 if (uvmfault_lookup(ufi, false) == false) {
863 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
864 return EFAULT;
865 }
866 /* locked: maps(read) */
867
868 #ifdef DIAGNOSTIC
869 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
870 printf("Page fault on non-pageable map:\n");
871 printf("ufi->map = %p\n", ufi->map);
872 printf("ufi->orig_map = %p\n", ufi->orig_map);
873 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
874 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
875 }
876 #endif
877
878 /*
879 * check protection
880 */
881
882 check_prot = flt->maxprot ?
883 ufi->entry->max_protection : ufi->entry->protection;
884 if ((check_prot & flt->access_type) != flt->access_type) {
885 UVMHIST_LOG(maphist,
886 "<- protection failure (prot=0x%x, access=0x%x)",
887 ufi->entry->protection, flt->access_type, 0, 0);
888 uvmfault_unlockmaps(ufi, false);
889 return EACCES;
890 }
891
892 /*
893 * "enter_prot" is the protection we want to enter the page in at.
894 * for certain pages (e.g. copy-on-write pages) this protection can
895 * be more strict than ufi->entry->protection. "wired" means either
896 * the entry is wired or we are fault-wiring the pg.
897 */
898
899 flt->enter_prot = ufi->entry->protection;
900 if (VM_MAPENT_ISWIRED(ufi->entry))
901 flt->wire_mapping = true;
902
903 if (flt->wire_mapping) {
904 flt->access_type = flt->enter_prot; /* full access for wired */
905 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
906 } else {
907 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
908 }
909
910 /*
911 * handle "needs_copy" case. if we need to copy the amap we will
912 * have to drop our readlock and relock it with a write lock. (we
913 * need a write lock to change anything in a map entry [e.g.
914 * needs_copy]).
915 */
916
917 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
918 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
919 KASSERT(!flt->maxprot);
920 /* need to clear */
921 UVMHIST_LOG(maphist,
922 " need to clear needs_copy and refault",0,0,0,0);
923 uvmfault_unlockmaps(ufi, false);
924 uvmfault_amapcopy(ufi);
925 uvmexp.fltamcopy++;
926 return ERESTART;
927
928 } else {
929
930 /*
931 * ensure that we pmap_enter page R/O since
932 * needs_copy is still true
933 */
934
935 flt->enter_prot &= ~VM_PROT_WRITE;
936 }
937 }
938
939 /*
940 * identify the players
941 */
942
943 amap = ufi->entry->aref.ar_amap; /* upper layer */
944 uobj = ufi->entry->object.uvm_obj; /* lower layer */
945
946 /*
947 * check for a case 0 fault. if nothing backing the entry then
948 * error now.
949 */
950
951 if (amap == NULL && uobj == NULL) {
952 uvmfault_unlockmaps(ufi, false);
953 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
954 return EFAULT;
955 }
956
957 /*
958 * establish range of interest based on advice from mapper
959 * and then clip to fit map entry. note that we only want
960 * to do this the first time through the fault. if we
961 * ReFault we will disable this by setting "narrow" to true.
962 */
963
964 if (flt->narrow == false) {
965
966 /* wide fault (!narrow) */
967 KASSERT(uvmadvice[ufi->entry->advice].advice ==
968 ufi->entry->advice);
969 nback = MIN(uvmadvice[ufi->entry->advice].nback,
970 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
971 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
972 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
973 ((ufi->entry->end - ufi->orig_rvaddr) >>
974 PAGE_SHIFT) - 1);
975 /*
976 * note: "-1" because we don't want to count the
977 * faulting page as forw
978 */
979 flt->npages = nback + nforw + 1;
980 flt->centeridx = nback;
981
982 flt->narrow = true; /* ensure only once per-fault */
983
984 } else {
985
986 /* narrow fault! */
987 nback = nforw = 0;
988 flt->startva = ufi->orig_rvaddr;
989 flt->npages = 1;
990 flt->centeridx = 0;
991
992 }
993 /* offset from entry's start to pgs' start */
994 const voff_t eoff = flt->startva - ufi->entry->start;
995
996 /* locked: maps(read) */
997 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
998 flt->narrow, nback, nforw, flt->startva);
999 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1000 amap, uobj, 0);
1001
1002 /*
1003 * if we've got an amap, lock it and extract current anons.
1004 */
1005
1006 if (amap) {
1007 amap_lock(amap);
1008 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1009 } else {
1010 *ranons = NULL; /* to be safe */
1011 }
1012
1013 /* locked: maps(read), amap(if there) */
1014 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1015
1016 /*
1017 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1018 * now and then forget about them (for the rest of the fault).
1019 */
1020
1021 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1022
1023 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1024 0,0,0,0);
1025 /* flush back-page anons? */
1026 if (amap)
1027 uvmfault_anonflush(*ranons, nback);
1028
1029 /* flush object? */
1030 if (uobj) {
1031 voff_t uoff;
1032
1033 uoff = ufi->entry->offset + eoff;
1034 mutex_enter(&uobj->vmobjlock);
1035 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1036 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1037 }
1038
1039 /* now forget about the backpages */
1040 if (amap)
1041 *ranons += nback;
1042 #if 0
1043 /* XXXUEBS */
1044 if (uobj)
1045 *rpages += nback;
1046 #endif
1047 flt->startva += (nback << PAGE_SHIFT);
1048 flt->npages -= nback;
1049 flt->centeridx = 0;
1050 }
1051 /*
1052 * => startva is fixed
1053 * => npages is fixed
1054 */
1055
1056 return 0;
1057 }
1058
1059 static int
1060 uvm_fault_upper_lookup(
1061 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1062 struct vm_anon **anons, struct vm_page **pages)
1063 {
1064 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1065 int lcv;
1066 vaddr_t currva;
1067 bool shadowed;
1068
1069 /* locked: maps(read), amap(if there) */
1070 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1071
1072 /*
1073 * map in the backpages and frontpages we found in the amap in hopes
1074 * of preventing future faults. we also init the pages[] array as
1075 * we go.
1076 */
1077
1078 currva = flt->startva;
1079 shadowed = false;
1080 for (lcv = 0 ; lcv < flt->npages ; lcv++, currva += PAGE_SIZE) {
1081 /*
1082 * dont play with VAs that are already mapped
1083 * except for center)
1084 */
1085 if (lcv != flt->centeridx &&
1086 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1087 pages[lcv] = PGO_DONTCARE;
1088 continue;
1089 }
1090
1091 /*
1092 * unmapped or center page. check if any anon at this level.
1093 */
1094 if (amap == NULL || anons[lcv] == NULL) {
1095 pages[lcv] = NULL;
1096 continue;
1097 }
1098
1099 /*
1100 * check for present page and map if possible. re-activate it.
1101 */
1102
1103 pages[lcv] = PGO_DONTCARE;
1104 if (lcv == flt->centeridx) { /* save center for later! */
1105 shadowed = true;
1106 } else {
1107 uvm_fault_upper_lookup_neighbor(ufi, flt, currva, anons[lcv]);
1108 }
1109 }
1110
1111 uvm_fault_upper_lookup1(ufi, flt, shadowed);
1112
1113 return 0;
1114 }
1115
1116 static void
1117 uvm_fault_upper_lookup_neighbor(
1118 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1119 vaddr_t currva, struct vm_anon *anon)
1120 {
1121
1122 mutex_enter(&anon->an_lock);
1123
1124 /* ignore loaned and busy pages */
1125 if (anon->an_page == NULL || anon->an_page->loan_count != 0 ||
1126 (anon->an_page->flags & PG_BUSY) != 0)
1127 goto uvm_fault_upper_lookup_enter_done;
1128
1129 mutex_enter(&uvm_pageqlock);
1130 uvm_pageenqueue(anon->an_page);
1131 mutex_exit(&uvm_pageqlock);
1132 UVMHIST_LOG(maphist,
1133 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1134 ufi->orig_map->pmap, currva, anon->an_page, 0);
1135 uvmexp.fltnamap++;
1136
1137 /*
1138 * Since this isn't the page that's actually faulting,
1139 * ignore pmap_enter() failures; it's not critical
1140 * that we enter these right now.
1141 */
1142
1143 (void) pmap_enter(ufi->orig_map->pmap, currva,
1144 VM_PAGE_TO_PHYS(anon->an_page),
1145 (anon->an_ref > 1) ? (flt->enter_prot & ~VM_PROT_WRITE) :
1146 flt->enter_prot,
1147 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1148
1149 uvm_fault_upper_lookup_enter_done:
1150 pmap_update(ufi->orig_map->pmap);
1151 mutex_exit(&anon->an_lock);
1152 }
1153
1154 static inline void
1155 uvm_fault_upper_lookup1(
1156 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1157 bool shadowed)
1158 {
1159 #ifdef DIAGNOSTIC
1160 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1161 #endif
1162 #ifdef UVMHIST
1163 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1164 #endif
1165
1166 /* locked: maps(read), amap(if there) */
1167 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1168 /* (shadowed == true) if there is an anon at the faulting address */
1169 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1170 (uobj && shadowed != false),0,0);
1171
1172 /*
1173 * note that if we are really short of RAM we could sleep in the above
1174 * call to pmap_enter with everything locked. bad?
1175 *
1176 * XXX Actually, that is bad; pmap_enter() should just fail in that
1177 * XXX case. --thorpej
1178 */
1179 }
1180
1181 static int
1182 uvm_fault_lower(
1183 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1184 struct vm_page **pages)
1185 {
1186 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1187 int error;
1188
1189 /*
1190 * if the desired page is not shadowed by the amap and we have a
1191 * backing object, then we check to see if the backing object would
1192 * prefer to handle the fault itself (rather than letting us do it
1193 * with the usual pgo_get hook). the backing object signals this by
1194 * providing a pgo_fault routine.
1195 */
1196
1197 if (uobj && uobj->pgops->pgo_fault != NULL) {
1198 error = uvm_fault_lower_special(ufi, flt, pages);
1199 } else {
1200 error = uvm_fault_lower_generic(ufi, flt, pages);
1201 }
1202 return error;
1203 }
1204
1205 static int
1206 uvm_fault_lower_special(
1207 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1208 struct vm_page **pages)
1209 {
1210 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1211 int error;
1212
1213 mutex_enter(&uobj->vmobjlock);
1214 /* locked: maps(read), amap (if there), uobj */
1215 error = uobj->pgops->pgo_fault(ufi, flt->startva, pages, flt->npages,
1216 flt->centeridx, flt->access_type, PGO_LOCKED|PGO_SYNCIO);
1217
1218 /* locked: nothing, pgo_fault has unlocked everything */
1219
1220 if (error == ERESTART)
1221 error = ERESTART; /* try again! */
1222 /*
1223 * object fault routine responsible for pmap_update().
1224 */
1225
1226 return error;
1227 }
1228
1229 static int
1230 uvm_fault_lower_generic(
1231 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1232 struct vm_page **pages)
1233 {
1234 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1235
1236 /*
1237 * now, if the desired page is not shadowed by the amap and we have
1238 * a backing object that does not have a special fault routine, then
1239 * we ask (with pgo_get) the object for resident pages that we care
1240 * about and attempt to map them in. we do not let pgo_get block
1241 * (PGO_LOCKED).
1242 */
1243
1244 if (uobj == NULL) {
1245 /* zero fill; don't care neighbor pages */
1246 pages[flt->centeridx] = NULL;
1247 } else {
1248 uvm_fault_lower_generic_lookup(ufi, flt, pages);
1249 }
1250 return uvm_fault_lower_generic1(ufi, flt, uobj, pages[flt->centeridx]);
1251 }
1252
1253 static int
1254 uvm_fault_lower_generic_lookup(
1255 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1256 struct vm_page **pages)
1257 {
1258 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1259 int lcv, gotpages;
1260 vaddr_t currva;
1261
1262 mutex_enter(&uobj->vmobjlock);
1263 /* locked (!shadowed): maps(read), amap (if there), uobj */
1264 /*
1265 * the following call to pgo_get does _not_ change locking state
1266 */
1267
1268 uvmexp.fltlget++;
1269 gotpages = flt->npages;
1270 (void) uobj->pgops->pgo_get(uobj,
1271 ufi->entry->offset + flt->startva - ufi->entry->start,
1272 pages, &gotpages, flt->centeridx,
1273 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1274
1275 /*
1276 * check for pages to map, if we got any
1277 */
1278
1279 if (gotpages == 0) {
1280 pages[flt->centeridx] = NULL;
1281 return 0;
1282 }
1283
1284 currva = flt->startva;
1285 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1286 struct vm_page *curpg;
1287
1288 curpg = pages[lcv];
1289 if (curpg == NULL || curpg == PGO_DONTCARE) {
1290 continue;
1291 }
1292 KASSERT(curpg->uobject == uobj);
1293
1294 /*
1295 * if center page is resident and not PG_BUSY|PG_RELEASED
1296 * then pgo_get made it PG_BUSY for us and gave us a handle
1297 * to it. remember this page as "uobjpage." (for later use).
1298 */
1299
1300 if (lcv == flt->centeridx) {
1301 UVMHIST_LOG(maphist, " got uobjpage "
1302 "(0x%x) with locked get",
1303 curpg, 0,0,0);
1304 } else
1305 uvm_fault_lower_generic_lookup_neighbor(ufi, flt,
1306 currva, curpg);
1307 }
1308 pmap_update(ufi->orig_map->pmap);
1309 return 0;
1310 }
1311
1312 static void
1313 uvm_fault_lower_generic_lookup_neighbor(
1314 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1315 vaddr_t currva, struct vm_page *curpg)
1316 {
1317 bool readonly;
1318
1319 /*
1320 * calling pgo_get with PGO_LOCKED returns us pages which
1321 * are neither busy nor released, so we don't need to check
1322 * for this. we can just directly enter the pages.
1323 */
1324
1325 mutex_enter(&uvm_pageqlock);
1326 uvm_pageenqueue(curpg);
1327 mutex_exit(&uvm_pageqlock);
1328 UVMHIST_LOG(maphist,
1329 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1330 ufi->orig_map->pmap, currva, curpg, 0);
1331 uvmexp.fltnomap++;
1332
1333 /*
1334 * Since this page isn't the page that's actually faulting,
1335 * ignore pmap_enter() failures; it's not critical that we
1336 * enter these right now.
1337 */
1338 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1339 KASSERT((curpg->flags & PG_RELEASED) == 0);
1340 KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1341 (curpg->flags & PG_CLEAN) != 0);
1342 readonly = (curpg->flags & PG_RDONLY)
1343 || (curpg->loan_count > 0)
1344 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1345
1346 (void) pmap_enter(ufi->orig_map->pmap, currva,
1347 VM_PAGE_TO_PHYS(curpg),
1348 readonly ? flt->enter_prot & ~VM_PROT_WRITE :
1349 flt->enter_prot & MASK(ufi->entry),
1350 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1351
1352 /*
1353 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1354 * held the lock the whole time we've had the handle.
1355 */
1356 KASSERT((curpg->flags & PG_WANTED) == 0);
1357 KASSERT((curpg->flags & PG_RELEASED) == 0);
1358
1359 curpg->flags &= ~(PG_BUSY);
1360 UVM_PAGE_OWN(curpg, NULL);
1361 }
1362
1363 static int
1364 uvm_fault_lower_generic1(
1365 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1366 struct uvm_object *uobj, struct vm_page *uobjpage)
1367 {
1368 #ifdef DIAGNOSTIC
1369 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1370 #endif
1371
1372 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1373 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1374 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1375 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1376
1377 /*
1378 * note that at this point we are done with any front or back pages.
1379 * we are now going to focus on the center page (i.e. the one we've
1380 * faulted on). if we have faulted on the upper (anon) layer
1381 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1382 * not touched it yet). if we have faulted on the bottom (uobj)
1383 * layer [i.e. case 2] and the page was both present and available,
1384 * then we've got a pointer to it as "uobjpage" and we've already
1385 * made it BUSY.
1386 */
1387
1388 /*
1389 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1390 */
1391
1392 /*
1393 * redirect case 2: if we are not shadowed, go to case 2.
1394 */
1395
1396 return uvm_fault_lower_generic2(ufi, flt, uobj, uobjpage);
1397 }
1398
1399 static int
1400 uvm_fault_upper(
1401 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1402 struct vm_anon **anons)
1403 {
1404 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1405 struct vm_anon * const anon = anons[flt->centeridx];
1406 struct uvm_object *uobj;
1407 int error;
1408
1409 /* locked: maps(read), amap */
1410 KASSERT(mutex_owned(&amap->am_l));
1411
1412 /*
1413 * handle case 1: fault on an anon in our amap
1414 */
1415
1416 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1417 mutex_enter(&anon->an_lock);
1418
1419 /* locked: maps(read), amap, anon */
1420 KASSERT(mutex_owned(&amap->am_l));
1421 KASSERT(mutex_owned(&anon->an_lock));
1422
1423 /*
1424 * no matter if we have case 1A or case 1B we are going to need to
1425 * have the anon's memory resident. ensure that now.
1426 */
1427
1428 /*
1429 * let uvmfault_anonget do the dirty work.
1430 * if it fails (!OK) it will unlock everything for us.
1431 * if it succeeds, locks are still valid and locked.
1432 * also, if it is OK, then the anon's page is on the queues.
1433 * if the page is on loan from a uvm_object, then anonget will
1434 * lock that object for us if it does not fail.
1435 */
1436
1437 error = uvmfault_anonget(ufi, amap, anon);
1438 switch (error) {
1439 case 0:
1440 break;
1441
1442 case ERESTART:
1443 return ERESTART;
1444
1445 case EAGAIN:
1446 kpause("fltagain1", false, hz/2, NULL);
1447 return ERESTART;
1448
1449 default:
1450 return error;
1451 }
1452
1453 /*
1454 * uobj is non null if the page is on loan from an object (i.e. uobj)
1455 */
1456
1457 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1458
1459 /* locked: maps(read), amap, anon, uobj(if one) */
1460 KASSERT(mutex_owned(&amap->am_l));
1461 KASSERT(mutex_owned(&anon->an_lock));
1462 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1463
1464 /*
1465 * special handling for loaned pages
1466 */
1467
1468 if (anon->an_page->loan_count) {
1469 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1470 if (error != 0)
1471 return error;
1472 }
1473 return uvm_fault_upper1(ufi, flt, uobj, anon);
1474 }
1475
1476 static int
1477 uvm_fault_upper_loan(
1478 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1479 struct vm_anon *anon, struct uvm_object **ruobj)
1480 {
1481 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1482 int error = 0;
1483
1484 if (!flt->cow_now) {
1485
1486 /*
1487 * for read faults on loaned pages we just cap the
1488 * protection at read-only.
1489 */
1490
1491 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1492
1493 } else {
1494 /*
1495 * note that we can't allow writes into a loaned page!
1496 *
1497 * if we have a write fault on a loaned page in an
1498 * anon then we need to look at the anon's ref count.
1499 * if it is greater than one then we are going to do
1500 * a normal copy-on-write fault into a new anon (this
1501 * is not a problem). however, if the reference count
1502 * is one (a case where we would normally allow a
1503 * write directly to the page) then we need to kill
1504 * the loan before we continue.
1505 */
1506
1507 /* >1 case is already ok */
1508 if (anon->an_ref == 1) {
1509 error = uvm_loanbreak_anon(anon, *ruobj);
1510 if (error != 0) {
1511 uvmfault_unlockall(ufi, amap, *ruobj, anon);
1512 uvm_wait("flt_noram2");
1513 return ERESTART;
1514 }
1515 /* if we were a loan reciever uobj is gone */
1516 if (*ruobj)
1517 *ruobj = NULL;
1518 }
1519 }
1520 return error;
1521 }
1522
1523 static int
1524 uvm_fault_upper1(
1525 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1526 struct uvm_object *uobj, struct vm_anon *anon)
1527 {
1528 int error;
1529
1530 /*
1531 * if we are case 1B then we will need to allocate a new blank
1532 * anon to transfer the data into. note that we have a lock
1533 * on anon, so no one can busy or release the page until we are done.
1534 * also note that the ref count can't drop to zero here because
1535 * it is > 1 and we are only dropping one ref.
1536 *
1537 * in the (hopefully very rare) case that we are out of RAM we
1538 * will unlock, wait for more RAM, and refault.
1539 *
1540 * if we are out of anon VM we kill the process (XXX: could wait?).
1541 */
1542
1543 if (flt->cow_now && anon->an_ref > 1) {
1544 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1545 } else {
1546 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1547 }
1548 return error;
1549 }
1550
1551 static int
1552 uvm_fault_upper_promote(
1553 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1554 struct uvm_object *uobj, struct vm_anon *anon)
1555 {
1556 struct vm_anon * const oanon = anon;
1557 struct vm_page *pg;
1558 int error;
1559
1560 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1561 uvmexp.flt_acow++;
1562
1563 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1564 &anon, &flt->anon_spare);
1565 switch (error) {
1566 case 0:
1567 break;
1568 case ERESTART:
1569 return ERESTART;
1570 default:
1571 return error;
1572 }
1573
1574 pg = anon->an_page;
1575 mutex_enter(&uvm_pageqlock);
1576 uvm_pageactivate(pg);
1577 mutex_exit(&uvm_pageqlock);
1578 pg->flags &= ~(PG_BUSY|PG_FAKE);
1579 UVM_PAGE_OWN(pg, NULL);
1580
1581 /* deref: can not drop to zero here by defn! */
1582 oanon->an_ref--;
1583
1584 /*
1585 * note: oanon is still locked, as is the new anon. we
1586 * need to check for this later when we unlock oanon; if
1587 * oanon != anon, we'll have to unlock anon, too.
1588 */
1589
1590 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1591 }
1592
1593 static int
1594 uvm_fault_upper_direct(
1595 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1596 struct uvm_object *uobj, struct vm_anon *anon)
1597 {
1598 struct vm_anon * const oanon = anon;
1599 struct vm_page *pg;
1600
1601 uvmexp.flt_anon++;
1602 pg = anon->an_page;
1603 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1604 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1605
1606 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1607 }
1608
1609 static int
1610 uvm_fault_upper_enter(
1611 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1612 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1613 struct vm_anon *oanon)
1614 {
1615 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1616
1617 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1618 KASSERT(mutex_owned(&amap->am_l));
1619 KASSERT(mutex_owned(&anon->an_lock));
1620 KASSERT(mutex_owned(&oanon->an_lock));
1621
1622 /*
1623 * now map the page in.
1624 */
1625
1626 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1627 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
1628 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1629 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1630 != 0) {
1631
1632 /*
1633 * No need to undo what we did; we can simply think of
1634 * this as the pmap throwing away the mapping information.
1635 *
1636 * We do, however, have to go through the ReFault path,
1637 * as the map may change while we're asleep.
1638 */
1639
1640 if (anon != oanon)
1641 mutex_exit(&anon->an_lock);
1642 uvmfault_unlockall(ufi, amap, uobj, oanon);
1643 if (!uvm_reclaimable()) {
1644 UVMHIST_LOG(maphist,
1645 "<- failed. out of VM",0,0,0,0);
1646 /* XXX instrumentation */
1647 return ENOMEM;
1648 }
1649 /* XXX instrumentation */
1650 uvm_wait("flt_pmfail1");
1651 return ERESTART;
1652 }
1653
1654 return uvm_fault_upper_done(ufi, flt, uobj, anon, pg, oanon);
1655 }
1656
1657 static int
1658 uvm_fault_upper_done(
1659 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1660 struct uvm_object *uobj, struct vm_anon *anon,
1661 struct vm_page *pg, struct vm_anon *oanon)
1662 {
1663 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1664
1665 /*
1666 * ... update the page queues.
1667 */
1668
1669 mutex_enter(&uvm_pageqlock);
1670 if (flt->wire_paging) {
1671 uvm_pagewire(pg);
1672
1673 /*
1674 * since the now-wired page cannot be paged out,
1675 * release its swap resources for others to use.
1676 * since an anon with no swap cannot be PG_CLEAN,
1677 * clear its clean flag now.
1678 */
1679
1680 pg->flags &= ~(PG_CLEAN);
1681 uvm_anon_dropswap(anon);
1682 } else {
1683 uvm_pageactivate(pg);
1684 }
1685 mutex_exit(&uvm_pageqlock);
1686
1687 /*
1688 * done case 1! finish up by unlocking everything and returning success
1689 */
1690
1691 if (anon != oanon)
1692 mutex_exit(&anon->an_lock);
1693 uvmfault_unlockall(ufi, amap, uobj, oanon);
1694 pmap_update(ufi->orig_map->pmap);
1695 return 0;
1696 }
1697
1698 static int
1699 uvm_fault_lower_generic2(
1700 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1701 struct uvm_object *uobj, struct vm_page *uobjpage)
1702 {
1703 #ifdef DIAGNOSTIC
1704 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1705 #endif
1706 bool promote;
1707 int error;
1708
1709 /*
1710 * handle case 2: faulting on backing object or zero fill
1711 */
1712
1713 /*
1714 * locked:
1715 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1716 */
1717 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1718 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1719 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1720
1721 /*
1722 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1723 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1724 * have a backing object, check and see if we are going to promote
1725 * the data up to an anon during the fault.
1726 */
1727
1728 if (uobj == NULL) {
1729 uobjpage = PGO_DONTCARE;
1730 promote = true; /* always need anon here */
1731 } else {
1732 KASSERT(uobjpage != PGO_DONTCARE);
1733 promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1734 }
1735 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1736 promote, (uobj == NULL), 0,0);
1737
1738 /*
1739 * if uobjpage is not null then we do not need to do I/O to get the
1740 * uobjpage.
1741 *
1742 * if uobjpage is null, then we need to unlock and ask the pager to
1743 * get the data for us. once we have the data, we need to reverify
1744 * the state the world. we are currently not holding any resources.
1745 */
1746
1747 if (uobjpage) {
1748 /* update rusage counters */
1749 curlwp->l_ru.ru_minflt++;
1750 } else {
1751 error = uvm_fault_lower_generic_io(ufi, flt, &uobj, &uobjpage);
1752 if (error != 0)
1753 return error;
1754 }
1755 return uvm_fault_lower_generic3(ufi, flt, uobj, uobjpage, promote);
1756 }
1757
1758 static int
1759 uvm_fault_lower_generic_io(
1760 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1761 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1762 {
1763 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1764 struct uvm_object *uobj = *ruobj;
1765 struct vm_page *pg;
1766 bool locked;
1767 int gotpages;
1768 int error;
1769 voff_t uoff;
1770
1771 /* update rusage counters */
1772 curlwp->l_ru.ru_majflt++;
1773
1774 /* locked: maps(read), amap(if there), uobj */
1775 uvmfault_unlockall(ufi, amap, NULL, NULL);
1776 /* locked: uobj */
1777
1778 uvmexp.fltget++;
1779 gotpages = 1;
1780 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1781 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1782 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1783 PGO_SYNCIO);
1784 /* locked: pg(if no error) */
1785 KASSERT(error != 0 || (pg->flags & PG_BUSY) != 0);
1786
1787 /*
1788 * recover from I/O
1789 */
1790
1791 if (error) {
1792 if (error == EAGAIN) {
1793 UVMHIST_LOG(maphist,
1794 " pgo_get says TRY AGAIN!",0,0,0,0);
1795 kpause("fltagain2", false, hz/2, NULL);
1796 return ERESTART;
1797 }
1798
1799 #if 0
1800 KASSERT(error != ERESTART);
1801 #else
1802 /* XXXUEBS don't re-fault? */
1803 if (error == ERESTART)
1804 error = EIO;
1805 #endif
1806
1807 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1808 error, 0,0,0);
1809 return error;
1810 }
1811
1812 /* locked: pg */
1813
1814 mutex_enter(&uvm_pageqlock);
1815 uvm_pageactivate(pg);
1816 mutex_exit(&uvm_pageqlock);
1817
1818 /*
1819 * re-verify the state of the world by first trying to relock
1820 * the maps. always relock the object.
1821 */
1822
1823 locked = uvmfault_relock(ufi);
1824 if (locked && amap)
1825 amap_lock(amap);
1826
1827 /* might be changed */
1828 uobj = pg->uobject;
1829
1830 mutex_enter(&uobj->vmobjlock);
1831
1832 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1833 /* locked(!locked): uobj, pg */
1834
1835 /*
1836 * verify that the page has not be released and re-verify
1837 * that amap slot is still free. if there is a problem,
1838 * we unlock and clean up.
1839 */
1840
1841 if ((pg->flags & PG_RELEASED) != 0 ||
1842 (locked && amap && amap_lookup(&ufi->entry->aref,
1843 ufi->orig_rvaddr - ufi->entry->start))) {
1844 if (locked)
1845 uvmfault_unlockall(ufi, amap, NULL, NULL);
1846 locked = false;
1847 }
1848
1849 /*
1850 * didn't get the lock? release the page and retry.
1851 */
1852
1853 if (locked == false) {
1854 UVMHIST_LOG(maphist,
1855 " wasn't able to relock after fault: retry",
1856 0,0,0,0);
1857 if (pg->flags & PG_WANTED) {
1858 wakeup(pg);
1859 }
1860 if (pg->flags & PG_RELEASED) {
1861 uvmexp.fltpgrele++;
1862 uvm_pagefree(pg);
1863 mutex_exit(&uobj->vmobjlock);
1864 return ERESTART;
1865 }
1866 pg->flags &= ~(PG_BUSY|PG_WANTED);
1867 UVM_PAGE_OWN(pg, NULL);
1868 mutex_exit(&uobj->vmobjlock);
1869 return ERESTART;
1870 }
1871
1872 /*
1873 * we have the data in pg which is busy and
1874 * not released. we are holding object lock (so the page
1875 * can't be released on us).
1876 */
1877
1878 /* locked: maps(read), amap(if !null), uobj, pg */
1879
1880 *ruobj = uobj;
1881 *ruobjpage = pg;
1882 return 0;
1883 }
1884
1885 int
1886 uvm_fault_lower_generic3(
1887 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1888 struct uvm_object *uobj, struct vm_page *uobjpage, bool promote)
1889 {
1890 #ifdef DIAGNOSTIC
1891 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1892 #endif
1893 int error;
1894
1895 /*
1896 * locked:
1897 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1898 */
1899 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1900 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1901 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1902
1903 /*
1904 * notes:
1905 * - at this point uobjpage can not be NULL
1906 * - at this point uobjpage can not be PG_RELEASED (since we checked
1907 * for it above)
1908 * - at this point uobjpage could be PG_WANTED (handle later)
1909 */
1910
1911 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1912 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1913 (uobjpage->flags & PG_CLEAN) != 0);
1914
1915 if (promote == false) {
1916 error = uvm_fault_lower_generic_direct(ufi, flt, uobj, uobjpage);
1917 } else {
1918 error = uvm_fault_lower_generic_promote(ufi, flt, uobj, uobjpage);
1919 }
1920 return error;
1921 }
1922
1923 static int
1924 uvm_fault_lower_generic_direct_loan(
1925 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1926 struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage);
1927
1928 int
1929 uvm_fault_lower_generic_direct(
1930 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1931 struct uvm_object *uobj, struct vm_page *uobjpage)
1932 {
1933 struct vm_page *pg;
1934
1935 /*
1936 * we are not promoting. if the mapping is COW ensure that we
1937 * don't give more access than we should (e.g. when doing a read
1938 * fault on a COPYONWRITE mapping we want to map the COW page in
1939 * R/O even though the entry protection could be R/W).
1940 *
1941 * set "pg" to the page we want to map in (uobjpage, usually)
1942 */
1943
1944 uvmexp.flt_obj++;
1945 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1946 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1947 flt->enter_prot &= ~VM_PROT_WRITE;
1948 pg = uobjpage; /* map in the actual object */
1949
1950 KASSERT(uobjpage != PGO_DONTCARE);
1951
1952 /*
1953 * we are faulting directly on the page. be careful
1954 * about writing to loaned pages...
1955 */
1956
1957 if (uobjpage->loan_count) {
1958 uvm_fault_lower_generic_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1959 }
1960 KASSERT(pg == uobjpage);
1961
1962 return uvm_fault_lower_generic_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1963 }
1964
1965 static int
1966 uvm_fault_lower_generic_direct_loan(
1967 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1968 struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage)
1969 {
1970 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1971 struct vm_page *pg;
1972 struct vm_page *uobjpage = *ruobjpage;
1973
1974 if (!flt->cow_now) {
1975 /* read fault: cap the protection at readonly */
1976 /* cap! */
1977 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1978 } else {
1979 /* write fault: must break the loan here */
1980
1981 pg = uvm_loanbreak(uobjpage);
1982 if (pg == NULL) {
1983
1984 /*
1985 * drop ownership of page, it can't be released
1986 */
1987
1988 if (uobjpage->flags & PG_WANTED)
1989 wakeup(uobjpage);
1990 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1991 UVM_PAGE_OWN(uobjpage, NULL);
1992
1993 uvmfault_unlockall(ufi, amap, uobj, NULL);
1994 UVMHIST_LOG(maphist,
1995 " out of RAM breaking loan, waiting",
1996 0,0,0,0);
1997 uvmexp.fltnoram++;
1998 uvm_wait("flt_noram4");
1999 return ERESTART;
2000 }
2001 *rpg = pg;
2002 *ruobjpage = pg;
2003 }
2004 return 0;
2005 }
2006
2007 int
2008 uvm_fault_lower_generic_promote(
2009 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2010 struct uvm_object *uobj, struct vm_page *uobjpage)
2011 {
2012 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2013 struct vm_anon *anon;
2014 struct vm_page *pg;
2015 int error;
2016
2017 /*
2018 * if we are going to promote the data to an anon we
2019 * allocate a blank anon here and plug it into our amap.
2020 */
2021 #if DIAGNOSTIC
2022 if (amap == NULL)
2023 panic("uvm_fault: want to promote data, but no anon");
2024 #endif
2025 error = uvmfault_promote(ufi, NULL, uobjpage,
2026 &anon, &flt->anon_spare);
2027 switch (error) {
2028 case 0:
2029 break;
2030 case ERESTART:
2031 return ERESTART;
2032 default:
2033 return error;
2034 }
2035
2036 pg = anon->an_page;
2037
2038 /*
2039 * fill in the data
2040 */
2041
2042 if (uobjpage != PGO_DONTCARE) {
2043 uvmexp.flt_prcopy++;
2044
2045 /*
2046 * promote to shared amap? make sure all sharing
2047 * procs see it
2048 */
2049
2050 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2051 pmap_page_protect(uobjpage, VM_PROT_NONE);
2052 /*
2053 * XXX: PAGE MIGHT BE WIRED!
2054 */
2055 }
2056
2057 /*
2058 * dispose of uobjpage. it can't be PG_RELEASED
2059 * since we still hold the object lock.
2060 * drop handle to uobj as well.
2061 */
2062
2063 if (uobjpage->flags & PG_WANTED)
2064 /* still have the obj lock */
2065 wakeup(uobjpage);
2066 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2067 UVM_PAGE_OWN(uobjpage, NULL);
2068 mutex_exit(&uobj->vmobjlock);
2069 uobj = NULL;
2070
2071 UVMHIST_LOG(maphist,
2072 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2073 uobjpage, anon, pg, 0);
2074
2075 } else {
2076 uvmexp.flt_przero++;
2077
2078 /*
2079 * Page is zero'd and marked dirty by
2080 * uvmfault_promote().
2081 */
2082
2083 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2084 anon, pg, 0, 0);
2085 }
2086
2087 return uvm_fault_lower_generic_enter(ufi, flt, uobj, anon, pg, uobjpage);
2088 }
2089
2090 int
2091 uvm_fault_lower_generic_enter(
2092 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2093 struct uvm_object *uobj,
2094 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2095 {
2096 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2097 int error;
2098
2099 /*
2100 * locked:
2101 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2102 * anon(if !null), pg(if anon)
2103 *
2104 * note: pg is either the uobjpage or the new page in the new anon
2105 */
2106 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2107 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2108 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2109 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2110 KASSERT((pg->flags & PG_BUSY) != 0);
2111
2112 /*
2113 * all resources are present. we can now map it in and free our
2114 * resources.
2115 */
2116
2117 UVMHIST_LOG(maphist,
2118 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2119 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, promote);
2120 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2121 (pg->flags & PG_RDONLY) == 0);
2122 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
2123 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2124 flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2125
2126 /*
2127 * No need to undo what we did; we can simply think of
2128 * this as the pmap throwing away the mapping information.
2129 *
2130 * We do, however, have to go through the ReFault path,
2131 * as the map may change while we're asleep.
2132 */
2133
2134 if (pg->flags & PG_WANTED)
2135 wakeup(pg);
2136
2137 /*
2138 * note that pg can't be PG_RELEASED since we did not drop
2139 * the object lock since the last time we checked.
2140 */
2141 KASSERT((pg->flags & PG_RELEASED) == 0);
2142
2143 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2144 UVM_PAGE_OWN(pg, NULL);
2145 uvmfault_unlockall(ufi, amap, uobj, anon);
2146 if (!uvm_reclaimable()) {
2147 UVMHIST_LOG(maphist,
2148 "<- failed. out of VM",0,0,0,0);
2149 /* XXX instrumentation */
2150 error = ENOMEM;
2151 return error;
2152 }
2153 /* XXX instrumentation */
2154 uvm_wait("flt_pmfail2");
2155 return ERESTART;
2156 }
2157
2158 return uvm_fault_lower_generic_done(ufi, flt, uobj, anon, pg);
2159 }
2160
2161 int
2162 uvm_fault_lower_generic_done(
2163 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2164 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2165 {
2166 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2167
2168 mutex_enter(&uvm_pageqlock);
2169 if (flt->wire_paging) {
2170 uvm_pagewire(pg);
2171 if (pg->pqflags & PQ_AOBJ) {
2172
2173 /*
2174 * since the now-wired page cannot be paged out,
2175 * release its swap resources for others to use.
2176 * since an aobj page with no swap cannot be PG_CLEAN,
2177 * clear its clean flag now.
2178 */
2179
2180 KASSERT(uobj != NULL);
2181 pg->flags &= ~(PG_CLEAN);
2182 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2183 }
2184 } else {
2185 uvm_pageactivate(pg);
2186 }
2187 mutex_exit(&uvm_pageqlock);
2188 if (pg->flags & PG_WANTED)
2189 wakeup(pg);
2190
2191 /*
2192 * note that pg can't be PG_RELEASED since we did not drop the object
2193 * lock since the last time we checked.
2194 */
2195 KASSERT((pg->flags & PG_RELEASED) == 0);
2196
2197 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2198 UVM_PAGE_OWN(pg, NULL);
2199 uvmfault_unlockall(ufi, amap, uobj, anon);
2200 pmap_update(ufi->orig_map->pmap);
2201 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2202 return 0;
2203 }
2204
2205
2206 /*
2207 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2208 *
2209 * => map may be read-locked by caller, but MUST NOT be write-locked.
2210 * => if map is read-locked, any operations which may cause map to
2211 * be write-locked in uvm_fault() must be taken care of by
2212 * the caller. See uvm_map_pageable().
2213 */
2214
2215 int
2216 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2217 vm_prot_t access_type, int maxprot)
2218 {
2219 vaddr_t va;
2220 int error;
2221
2222 /*
2223 * now fault it in a page at a time. if the fault fails then we have
2224 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2225 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2226 */
2227
2228 /*
2229 * XXX work around overflowing a vaddr_t. this prevents us from
2230 * wiring the last page in the address space, though.
2231 */
2232 if (start > end) {
2233 return EFAULT;
2234 }
2235
2236 for (va = start ; va < end ; va += PAGE_SIZE) {
2237 error = uvm_fault_internal(map, va, access_type,
2238 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2239 if (error) {
2240 if (va != start) {
2241 uvm_fault_unwire(map, start, va);
2242 }
2243 return error;
2244 }
2245 }
2246 return 0;
2247 }
2248
2249 /*
2250 * uvm_fault_unwire(): unwire range of virtual space.
2251 */
2252
2253 void
2254 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2255 {
2256 vm_map_lock_read(map);
2257 uvm_fault_unwire_locked(map, start, end);
2258 vm_map_unlock_read(map);
2259 }
2260
2261 /*
2262 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2263 *
2264 * => map must be at least read-locked.
2265 */
2266
2267 void
2268 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2269 {
2270 struct vm_map_entry *entry;
2271 pmap_t pmap = vm_map_pmap(map);
2272 vaddr_t va;
2273 paddr_t pa;
2274 struct vm_page *pg;
2275
2276 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2277
2278 /*
2279 * we assume that the area we are unwiring has actually been wired
2280 * in the first place. this means that we should be able to extract
2281 * the PAs from the pmap. we also lock out the page daemon so that
2282 * we can call uvm_pageunwire.
2283 */
2284
2285 mutex_enter(&uvm_pageqlock);
2286
2287 /*
2288 * find the beginning map entry for the region.
2289 */
2290
2291 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2292 if (uvm_map_lookup_entry(map, start, &entry) == false)
2293 panic("uvm_fault_unwire_locked: address not in map");
2294
2295 for (va = start; va < end; va += PAGE_SIZE) {
2296 if (pmap_extract(pmap, va, &pa) == false)
2297 continue;
2298
2299 /*
2300 * find the map entry for the current address.
2301 */
2302
2303 KASSERT(va >= entry->start);
2304 while (va >= entry->end) {
2305 KASSERT(entry->next != &map->header &&
2306 entry->next->start <= entry->end);
2307 entry = entry->next;
2308 }
2309
2310 /*
2311 * if the entry is no longer wired, tell the pmap.
2312 */
2313
2314 if (VM_MAPENT_ISWIRED(entry) == 0)
2315 pmap_unwire(pmap, va);
2316
2317 pg = PHYS_TO_VM_PAGE(pa);
2318 if (pg)
2319 uvm_pageunwire(pg);
2320 }
2321
2322 mutex_exit(&uvm_pageqlock);
2323 }
2324