uvm_fault.c revision 1.160 1 /* $NetBSD: uvm_fault.c,v 1.160 2010/02/04 03:32:21 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.160 2010/02/04 03:32:21 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0 ; lcv < n ; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 struct uvm_faultctx {
696 vm_prot_t access_type;
697 vm_prot_t enter_prot;
698 vaddr_t startva;
699 int npages;
700 int centeridx;
701 struct vm_anon *anon_spare;
702 bool wire_mapping;
703 bool narrow;
704 bool wire_paging;
705 bool maxprot;
706 bool cow_now;
707 };
708
709 static inline int uvm_fault_check(
710 struct uvm_faultinfo *, struct uvm_faultctx *,
711 struct vm_anon ***, struct vm_page ***);
712
713 static int uvm_fault_upper(
714 struct uvm_faultinfo *, struct uvm_faultctx *,
715 struct vm_anon **);
716 static inline int uvm_fault_upper_lookup(
717 struct uvm_faultinfo *, struct uvm_faultctx *,
718 struct vm_anon **, struct vm_page **);
719 static inline void uvm_fault_upper_lookup_neighbor(
720 struct uvm_faultinfo *, struct uvm_faultctx *,
721 vaddr_t, struct vm_anon *);
722 static inline int uvm_fault_upper_loan(
723 struct uvm_faultinfo *, struct uvm_faultctx *,
724 struct vm_anon *, struct uvm_object **);
725 static inline int uvm_fault_upper_promote(
726 struct uvm_faultinfo *, struct uvm_faultctx *,
727 struct uvm_object *, struct vm_anon *);
728 static inline int uvm_fault_upper_direct(
729 struct uvm_faultinfo *, struct uvm_faultctx *,
730 struct uvm_object *, struct vm_anon *);
731 static int uvm_fault_upper_enter(
732 struct uvm_faultinfo *, struct uvm_faultctx *,
733 struct uvm_object *, struct vm_anon *,
734 struct vm_page *, struct vm_anon *);
735 static inline int uvm_fault_upper_done(
736 struct uvm_faultinfo *, struct uvm_faultctx *,
737 struct uvm_object *, struct vm_anon *,
738 struct vm_page *, struct vm_anon *);
739
740 static int uvm_fault_lower(
741 struct uvm_faultinfo *, struct uvm_faultctx *,
742 struct vm_page **);
743 static inline int uvm_fault_lower_special(
744 struct uvm_faultinfo *, struct uvm_faultctx *,
745 struct vm_page **);
746 static inline int uvm_fault_lower_generic_lookup(
747 struct uvm_faultinfo *, struct uvm_faultctx *,
748 struct vm_page **);
749 static inline void uvm_fault_lower_generic_lookup_neighbor(
750 struct uvm_faultinfo *, struct uvm_faultctx *,
751 vaddr_t, struct vm_page *);
752 static inline int uvm_fault_lower_generic(
753 struct uvm_faultinfo *, struct uvm_faultctx *,
754 struct vm_page **);
755 static inline int uvm_fault_lower_generic1(
756 struct uvm_faultinfo *, struct uvm_faultctx *,
757 struct uvm_object *, struct vm_page *);
758 static inline int uvm_fault_lower_generic_io(
759 struct uvm_faultinfo *, struct uvm_faultctx *,
760 struct uvm_object **, struct vm_page **);
761 static inline int uvm_fault_lower_generic_direct(
762 struct uvm_faultinfo *, struct uvm_faultctx *,
763 struct uvm_object *, struct vm_page *);
764 static inline int uvm_fault_lower_generic_promote(
765 struct uvm_faultinfo *, struct uvm_faultctx *,
766 struct uvm_object *, struct vm_page *);
767 static int uvm_fault_lower_generic_enter(
768 struct uvm_faultinfo *, struct uvm_faultctx *,
769 struct uvm_object *,
770 struct vm_anon *, struct vm_page *, struct vm_page *);
771 static inline int uvm_fault_lower_generic_done(
772 struct uvm_faultinfo *, struct uvm_faultctx *,
773 struct uvm_object *,
774 struct vm_anon *, struct vm_page *);
775
776 int
777 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
778 vm_prot_t access_type, int fault_flag)
779 {
780 struct uvm_faultinfo ufi;
781 struct uvm_faultctx flt = {
782 .access_type = access_type,
783
784 /* don't look for neighborhood * pages on "wire" fault */
785 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
786
787 /* "wire" fault causes wiring of both mapping and paging */
788 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
789 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
790
791 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
792 };
793 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
794 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
795 int error;
796 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
797
798 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
799 orig_map, vaddr, access_type, fault_flag);
800
801 uvmexp.faults++; /* XXX: locking? */
802
803 /*
804 * init the IN parameters in the ufi
805 */
806
807 ufi.orig_map = orig_map;
808 ufi.orig_rvaddr = trunc_page(vaddr);
809 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
810
811 error = ERESTART;
812 while (error == ERESTART) {
813 anons = anons_store;
814 pages = pages_store;
815
816 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
817 if (error != 0)
818 continue;
819
820 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
821 if (error != 0)
822 continue;
823
824 if (pages[flt.centeridx] == PGO_DONTCARE)
825 error = uvm_fault_upper(&ufi, &flt, anons);
826 else
827 error = uvm_fault_lower(&ufi, &flt, pages);
828 }
829
830 if (flt.anon_spare != NULL) {
831 flt.anon_spare->an_ref--;
832 uvm_anfree(flt.anon_spare);
833 }
834 return error;
835 }
836
837 static int
838 uvm_fault_check(
839 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
840 struct vm_anon ***ranons, struct vm_page ***rpages)
841 {
842 struct vm_amap *amap;
843 struct uvm_object *uobj;
844 vm_prot_t check_prot;
845 int nback, nforw;
846
847 /*
848 * lookup and lock the maps
849 */
850
851 if (uvmfault_lookup(ufi, false) == false) {
852 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
853 return EFAULT;
854 }
855 /* locked: maps(read) */
856
857 #ifdef DIAGNOSTIC
858 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
859 printf("Page fault on non-pageable map:\n");
860 printf("ufi->map = %p\n", ufi->map);
861 printf("ufi->orig_map = %p\n", ufi->orig_map);
862 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
863 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
864 }
865 #endif
866
867 /*
868 * check protection
869 */
870
871 check_prot = flt->maxprot ?
872 ufi->entry->max_protection : ufi->entry->protection;
873 if ((check_prot & flt->access_type) != flt->access_type) {
874 UVMHIST_LOG(maphist,
875 "<- protection failure (prot=0x%x, access=0x%x)",
876 ufi->entry->protection, flt->access_type, 0, 0);
877 uvmfault_unlockmaps(ufi, false);
878 return EACCES;
879 }
880
881 /*
882 * "enter_prot" is the protection we want to enter the page in at.
883 * for certain pages (e.g. copy-on-write pages) this protection can
884 * be more strict than ufi->entry->protection. "wired" means either
885 * the entry is wired or we are fault-wiring the pg.
886 */
887
888 flt->enter_prot = ufi->entry->protection;
889 if (VM_MAPENT_ISWIRED(ufi->entry))
890 flt->wire_mapping = true;
891
892 if (flt->wire_mapping) {
893 flt->access_type = flt->enter_prot; /* full access for wired */
894 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
895 } else {
896 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
897 }
898
899 /*
900 * handle "needs_copy" case. if we need to copy the amap we will
901 * have to drop our readlock and relock it with a write lock. (we
902 * need a write lock to change anything in a map entry [e.g.
903 * needs_copy]).
904 */
905
906 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
907 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
908 KASSERT(!flt->maxprot);
909 /* need to clear */
910 UVMHIST_LOG(maphist,
911 " need to clear needs_copy and refault",0,0,0,0);
912 uvmfault_unlockmaps(ufi, false);
913 uvmfault_amapcopy(ufi);
914 uvmexp.fltamcopy++;
915 return ERESTART;
916
917 } else {
918
919 /*
920 * ensure that we pmap_enter page R/O since
921 * needs_copy is still true
922 */
923
924 flt->enter_prot &= ~VM_PROT_WRITE;
925 }
926 }
927
928 /*
929 * identify the players
930 */
931
932 amap = ufi->entry->aref.ar_amap; /* upper layer */
933 uobj = ufi->entry->object.uvm_obj; /* lower layer */
934
935 /*
936 * check for a case 0 fault. if nothing backing the entry then
937 * error now.
938 */
939
940 if (amap == NULL && uobj == NULL) {
941 uvmfault_unlockmaps(ufi, false);
942 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
943 return EFAULT;
944 }
945
946 /*
947 * establish range of interest based on advice from mapper
948 * and then clip to fit map entry. note that we only want
949 * to do this the first time through the fault. if we
950 * ReFault we will disable this by setting "narrow" to true.
951 */
952
953 if (flt->narrow == false) {
954
955 /* wide fault (!narrow) */
956 KASSERT(uvmadvice[ufi->entry->advice].advice ==
957 ufi->entry->advice);
958 nback = MIN(uvmadvice[ufi->entry->advice].nback,
959 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
960 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
961 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
962 ((ufi->entry->end - ufi->orig_rvaddr) >>
963 PAGE_SHIFT) - 1);
964 /*
965 * note: "-1" because we don't want to count the
966 * faulting page as forw
967 */
968 flt->npages = nback + nforw + 1;
969 flt->centeridx = nback;
970
971 flt->narrow = true; /* ensure only once per-fault */
972
973 } else {
974
975 /* narrow fault! */
976 nback = nforw = 0;
977 flt->startva = ufi->orig_rvaddr;
978 flt->npages = 1;
979 flt->centeridx = 0;
980
981 }
982 /* offset from entry's start to pgs' start */
983 const voff_t eoff = flt->startva - ufi->entry->start;
984
985 /* locked: maps(read) */
986 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
987 flt->narrow, nback, nforw, flt->startva);
988 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
989 amap, uobj, 0);
990
991 /*
992 * if we've got an amap, lock it and extract current anons.
993 */
994
995 if (amap) {
996 amap_lock(amap);
997 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
998 } else {
999 *ranons = NULL; /* to be safe */
1000 }
1001
1002 /* locked: maps(read), amap(if there) */
1003 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1004
1005 /*
1006 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1007 * now and then forget about them (for the rest of the fault).
1008 */
1009
1010 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1011
1012 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1013 0,0,0,0);
1014 /* flush back-page anons? */
1015 if (amap)
1016 uvmfault_anonflush(*ranons, nback);
1017
1018 /* flush object? */
1019 if (uobj) {
1020 voff_t uoff;
1021
1022 uoff = ufi->entry->offset + eoff;
1023 mutex_enter(&uobj->vmobjlock);
1024 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1025 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1026 }
1027
1028 /* now forget about the backpages */
1029 if (amap)
1030 *ranons += nback;
1031 #if 0
1032 /* XXXUEBS */
1033 if (uobj)
1034 *rpages += nback;
1035 #endif
1036 flt->startva += (nback << PAGE_SHIFT);
1037 flt->npages -= nback;
1038 flt->centeridx = 0;
1039 }
1040 /*
1041 * => startva is fixed
1042 * => npages is fixed
1043 */
1044
1045 return 0;
1046 }
1047
1048 static int
1049 uvm_fault_upper_lookup(
1050 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1051 struct vm_anon **anons, struct vm_page **pages)
1052 {
1053 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1054 int lcv;
1055 vaddr_t currva;
1056 bool shadowed;
1057
1058 /* locked: maps(read), amap(if there) */
1059 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1060
1061 /*
1062 * map in the backpages and frontpages we found in the amap in hopes
1063 * of preventing future faults. we also init the pages[] array as
1064 * we go.
1065 */
1066
1067 currva = flt->startva;
1068 shadowed = false;
1069 for (lcv = 0 ; lcv < flt->npages ; lcv++, currva += PAGE_SIZE) {
1070 /*
1071 * dont play with VAs that are already mapped
1072 * except for center)
1073 */
1074 if (lcv != flt->centeridx &&
1075 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1076 pages[lcv] = PGO_DONTCARE;
1077 continue;
1078 }
1079
1080 /*
1081 * unmapped or center page. check if any anon at this level.
1082 */
1083 if (amap == NULL || anons[lcv] == NULL) {
1084 pages[lcv] = NULL;
1085 continue;
1086 }
1087
1088 /*
1089 * check for present page and map if possible. re-activate it.
1090 */
1091
1092 pages[lcv] = PGO_DONTCARE;
1093 if (lcv == flt->centeridx) { /* save center for later! */
1094 shadowed = true;
1095 } else {
1096 uvm_fault_upper_lookup_neighbor(ufi, flt, currva, anons[lcv]);
1097 }
1098 }
1099
1100 /* locked: maps(read), amap(if there) */
1101 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1102 /* (shadowed == true) if there is an anon at the faulting address */
1103 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1104 (uobj && shadowed != false),0,0);
1105
1106 /*
1107 * note that if we are really short of RAM we could sleep in the above
1108 * call to pmap_enter with everything locked. bad?
1109 *
1110 * XXX Actually, that is bad; pmap_enter() should just fail in that
1111 * XXX case. --thorpej
1112 */
1113
1114 return 0;
1115 }
1116
1117 static void
1118 uvm_fault_upper_lookup_neighbor(
1119 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1120 vaddr_t currva, struct vm_anon *anon)
1121 {
1122
1123 mutex_enter(&anon->an_lock);
1124
1125 /* ignore loaned and busy pages */
1126 if (anon->an_page == NULL || anon->an_page->loan_count != 0 ||
1127 (anon->an_page->flags & PG_BUSY) != 0)
1128 goto uvm_fault_upper_lookup_enter_done;
1129
1130 mutex_enter(&uvm_pageqlock);
1131 uvm_pageenqueue(anon->an_page);
1132 mutex_exit(&uvm_pageqlock);
1133 UVMHIST_LOG(maphist,
1134 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1135 ufi->orig_map->pmap, currva, anon->an_page, 0);
1136 uvmexp.fltnamap++;
1137
1138 /*
1139 * Since this isn't the page that's actually faulting,
1140 * ignore pmap_enter() failures; it's not critical
1141 * that we enter these right now.
1142 */
1143
1144 (void) pmap_enter(ufi->orig_map->pmap, currva,
1145 VM_PAGE_TO_PHYS(anon->an_page),
1146 (anon->an_ref > 1) ? (flt->enter_prot & ~VM_PROT_WRITE) :
1147 flt->enter_prot,
1148 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1149
1150 uvm_fault_upper_lookup_enter_done:
1151 pmap_update(ufi->orig_map->pmap);
1152 mutex_exit(&anon->an_lock);
1153 }
1154
1155 static int
1156 uvm_fault_lower(
1157 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1158 struct vm_page **pages)
1159 {
1160 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1161 int error;
1162
1163 /*
1164 * if the desired page is not shadowed by the amap and we have a
1165 * backing object, then we check to see if the backing object would
1166 * prefer to handle the fault itself (rather than letting us do it
1167 * with the usual pgo_get hook). the backing object signals this by
1168 * providing a pgo_fault routine.
1169 */
1170
1171 if (uobj && uobj->pgops->pgo_fault != NULL) {
1172 error = uvm_fault_lower_special(ufi, flt, pages);
1173 } else {
1174 error = uvm_fault_lower_generic(ufi, flt, pages);
1175 }
1176 return error;
1177 }
1178
1179 static int
1180 uvm_fault_lower_special(
1181 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1182 struct vm_page **pages)
1183 {
1184 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1185 int error;
1186
1187 mutex_enter(&uobj->vmobjlock);
1188 /* locked: maps(read), amap (if there), uobj */
1189 error = uobj->pgops->pgo_fault(ufi, flt->startva, pages, flt->npages,
1190 flt->centeridx, flt->access_type, PGO_LOCKED|PGO_SYNCIO);
1191
1192 /* locked: nothing, pgo_fault has unlocked everything */
1193
1194 if (error == ERESTART)
1195 error = ERESTART; /* try again! */
1196 /*
1197 * object fault routine responsible for pmap_update().
1198 */
1199
1200 return error;
1201 }
1202
1203 static int
1204 uvm_fault_lower_generic(
1205 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1206 struct vm_page **pages)
1207 {
1208 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1209 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1210 struct vm_page *uobjpage;
1211
1212 /*
1213 * now, if the desired page is not shadowed by the amap and we have
1214 * a backing object that does not have a special fault routine, then
1215 * we ask (with pgo_get) the object for resident pages that we care
1216 * about and attempt to map them in. we do not let pgo_get block
1217 * (PGO_LOCKED).
1218 */
1219
1220 if (uobj == NULL) {
1221 /* zero fill; don't care neighbor pages */
1222 uobjpage = NULL;
1223 } else {
1224 uvm_fault_lower_generic_lookup(ufi, flt, pages);
1225 uobjpage = pages[flt->centeridx];
1226 }
1227
1228 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1229 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1230 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1231 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1232
1233 /*
1234 * note that at this point we are done with any front or back pages.
1235 * we are now going to focus on the center page (i.e. the one we've
1236 * faulted on). if we have faulted on the upper (anon) layer
1237 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1238 * not touched it yet). if we have faulted on the bottom (uobj)
1239 * layer [i.e. case 2] and the page was both present and available,
1240 * then we've got a pointer to it as "uobjpage" and we've already
1241 * made it BUSY.
1242 */
1243
1244 /*
1245 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1246 */
1247
1248 /*
1249 * redirect case 2: if we are not shadowed, go to case 2.
1250 */
1251
1252 return uvm_fault_lower_generic1(ufi, flt, uobj, uobjpage);
1253 }
1254
1255 static int
1256 uvm_fault_lower_generic_lookup(
1257 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1258 struct vm_page **pages)
1259 {
1260 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1261 int lcv, gotpages;
1262 vaddr_t currva;
1263
1264 mutex_enter(&uobj->vmobjlock);
1265 /* locked (!shadowed): maps(read), amap (if there), uobj */
1266 /*
1267 * the following call to pgo_get does _not_ change locking state
1268 */
1269
1270 uvmexp.fltlget++;
1271 gotpages = flt->npages;
1272 (void) uobj->pgops->pgo_get(uobj,
1273 ufi->entry->offset + flt->startva - ufi->entry->start,
1274 pages, &gotpages, flt->centeridx,
1275 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1276
1277 /*
1278 * check for pages to map, if we got any
1279 */
1280
1281 if (gotpages == 0) {
1282 pages[flt->centeridx] = NULL;
1283 return 0;
1284 }
1285
1286 currva = flt->startva;
1287 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1288 struct vm_page *curpg;
1289
1290 curpg = pages[lcv];
1291 if (curpg == NULL || curpg == PGO_DONTCARE) {
1292 continue;
1293 }
1294 KASSERT(curpg->uobject == uobj);
1295
1296 /*
1297 * if center page is resident and not PG_BUSY|PG_RELEASED
1298 * then pgo_get made it PG_BUSY for us and gave us a handle
1299 * to it. remember this page as "uobjpage." (for later use).
1300 */
1301
1302 if (lcv == flt->centeridx) {
1303 UVMHIST_LOG(maphist, " got uobjpage "
1304 "(0x%x) with locked get",
1305 curpg, 0,0,0);
1306 } else
1307 uvm_fault_lower_generic_lookup_neighbor(ufi, flt,
1308 currva, curpg);
1309 }
1310 pmap_update(ufi->orig_map->pmap);
1311 return 0;
1312 }
1313
1314 static void
1315 uvm_fault_lower_generic_lookup_neighbor(
1316 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1317 vaddr_t currva, struct vm_page *curpg)
1318 {
1319 bool readonly;
1320
1321 /*
1322 * calling pgo_get with PGO_LOCKED returns us pages which
1323 * are neither busy nor released, so we don't need to check
1324 * for this. we can just directly enter the pages.
1325 */
1326
1327 mutex_enter(&uvm_pageqlock);
1328 uvm_pageenqueue(curpg);
1329 mutex_exit(&uvm_pageqlock);
1330 UVMHIST_LOG(maphist,
1331 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1332 ufi->orig_map->pmap, currva, curpg, 0);
1333 uvmexp.fltnomap++;
1334
1335 /*
1336 * Since this page isn't the page that's actually faulting,
1337 * ignore pmap_enter() failures; it's not critical that we
1338 * enter these right now.
1339 */
1340 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1341 KASSERT((curpg->flags & PG_RELEASED) == 0);
1342 KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1343 (curpg->flags & PG_CLEAN) != 0);
1344 readonly = (curpg->flags & PG_RDONLY)
1345 || (curpg->loan_count > 0)
1346 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1347
1348 (void) pmap_enter(ufi->orig_map->pmap, currva,
1349 VM_PAGE_TO_PHYS(curpg),
1350 readonly ? flt->enter_prot & ~VM_PROT_WRITE :
1351 flt->enter_prot & MASK(ufi->entry),
1352 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1353
1354 /*
1355 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1356 * held the lock the whole time we've had the handle.
1357 */
1358 KASSERT((curpg->flags & PG_WANTED) == 0);
1359 KASSERT((curpg->flags & PG_RELEASED) == 0);
1360
1361 curpg->flags &= ~(PG_BUSY);
1362 UVM_PAGE_OWN(curpg, NULL);
1363 }
1364
1365 static int
1366 uvm_fault_upper(
1367 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1368 struct vm_anon **anons)
1369 {
1370 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1371 struct vm_anon * const anon = anons[flt->centeridx];
1372 struct uvm_object *uobj;
1373 int error;
1374
1375 /* locked: maps(read), amap */
1376 KASSERT(mutex_owned(&amap->am_l));
1377
1378 /*
1379 * handle case 1: fault on an anon in our amap
1380 */
1381
1382 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1383 mutex_enter(&anon->an_lock);
1384
1385 /* locked: maps(read), amap, anon */
1386 KASSERT(mutex_owned(&amap->am_l));
1387 KASSERT(mutex_owned(&anon->an_lock));
1388
1389 /*
1390 * no matter if we have case 1A or case 1B we are going to need to
1391 * have the anon's memory resident. ensure that now.
1392 */
1393
1394 /*
1395 * let uvmfault_anonget do the dirty work.
1396 * if it fails (!OK) it will unlock everything for us.
1397 * if it succeeds, locks are still valid and locked.
1398 * also, if it is OK, then the anon's page is on the queues.
1399 * if the page is on loan from a uvm_object, then anonget will
1400 * lock that object for us if it does not fail.
1401 */
1402
1403 error = uvmfault_anonget(ufi, amap, anon);
1404 switch (error) {
1405 case 0:
1406 break;
1407
1408 case ERESTART:
1409 return ERESTART;
1410
1411 case EAGAIN:
1412 kpause("fltagain1", false, hz/2, NULL);
1413 return ERESTART;
1414
1415 default:
1416 return error;
1417 }
1418
1419 /*
1420 * uobj is non null if the page is on loan from an object (i.e. uobj)
1421 */
1422
1423 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1424
1425 /* locked: maps(read), amap, anon, uobj(if one) */
1426 KASSERT(mutex_owned(&amap->am_l));
1427 KASSERT(mutex_owned(&anon->an_lock));
1428 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1429
1430 /*
1431 * special handling for loaned pages
1432 */
1433
1434 if (anon->an_page->loan_count) {
1435 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1436 if (error != 0)
1437 return error;
1438 }
1439
1440 /*
1441 * if we are case 1B then we will need to allocate a new blank
1442 * anon to transfer the data into. note that we have a lock
1443 * on anon, so no one can busy or release the page until we are done.
1444 * also note that the ref count can't drop to zero here because
1445 * it is > 1 and we are only dropping one ref.
1446 *
1447 * in the (hopefully very rare) case that we are out of RAM we
1448 * will unlock, wait for more RAM, and refault.
1449 *
1450 * if we are out of anon VM we kill the process (XXX: could wait?).
1451 */
1452
1453 if (flt->cow_now && anon->an_ref > 1) {
1454 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1455 } else {
1456 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1457 }
1458 return error;
1459 }
1460
1461 static int
1462 uvm_fault_upper_loan(
1463 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1464 struct vm_anon *anon, struct uvm_object **ruobj)
1465 {
1466 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1467 int error = 0;
1468
1469 if (!flt->cow_now) {
1470
1471 /*
1472 * for read faults on loaned pages we just cap the
1473 * protection at read-only.
1474 */
1475
1476 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1477
1478 } else {
1479 /*
1480 * note that we can't allow writes into a loaned page!
1481 *
1482 * if we have a write fault on a loaned page in an
1483 * anon then we need to look at the anon's ref count.
1484 * if it is greater than one then we are going to do
1485 * a normal copy-on-write fault into a new anon (this
1486 * is not a problem). however, if the reference count
1487 * is one (a case where we would normally allow a
1488 * write directly to the page) then we need to kill
1489 * the loan before we continue.
1490 */
1491
1492 /* >1 case is already ok */
1493 if (anon->an_ref == 1) {
1494 error = uvm_loanbreak_anon(anon, *ruobj);
1495 if (error != 0) {
1496 uvmfault_unlockall(ufi, amap, *ruobj, anon);
1497 uvm_wait("flt_noram2");
1498 return ERESTART;
1499 }
1500 /* if we were a loan reciever uobj is gone */
1501 if (*ruobj)
1502 *ruobj = NULL;
1503 }
1504 }
1505 return error;
1506 }
1507
1508 static int
1509 uvm_fault_upper_promote(
1510 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1511 struct uvm_object *uobj, struct vm_anon *anon)
1512 {
1513 struct vm_anon * const oanon = anon;
1514 struct vm_page *pg;
1515 int error;
1516
1517 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1518 uvmexp.flt_acow++;
1519
1520 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1521 &anon, &flt->anon_spare);
1522 switch (error) {
1523 case 0:
1524 break;
1525 case ERESTART:
1526 return ERESTART;
1527 default:
1528 return error;
1529 }
1530
1531 pg = anon->an_page;
1532 mutex_enter(&uvm_pageqlock);
1533 uvm_pageactivate(pg);
1534 mutex_exit(&uvm_pageqlock);
1535 pg->flags &= ~(PG_BUSY|PG_FAKE);
1536 UVM_PAGE_OWN(pg, NULL);
1537
1538 /* deref: can not drop to zero here by defn! */
1539 oanon->an_ref--;
1540
1541 /*
1542 * note: oanon is still locked, as is the new anon. we
1543 * need to check for this later when we unlock oanon; if
1544 * oanon != anon, we'll have to unlock anon, too.
1545 */
1546
1547 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1548 }
1549
1550 static int
1551 uvm_fault_upper_direct(
1552 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1553 struct uvm_object *uobj, struct vm_anon *anon)
1554 {
1555 struct vm_anon * const oanon = anon;
1556 struct vm_page *pg;
1557
1558 uvmexp.flt_anon++;
1559 pg = anon->an_page;
1560 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1561 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1562
1563 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1564 }
1565
1566 static int
1567 uvm_fault_upper_enter(
1568 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1569 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1570 struct vm_anon *oanon)
1571 {
1572 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1573
1574 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1575 KASSERT(mutex_owned(&amap->am_l));
1576 KASSERT(mutex_owned(&anon->an_lock));
1577 KASSERT(mutex_owned(&oanon->an_lock));
1578
1579 /*
1580 * now map the page in.
1581 */
1582
1583 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1584 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
1585 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1586 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1587 != 0) {
1588
1589 /*
1590 * No need to undo what we did; we can simply think of
1591 * this as the pmap throwing away the mapping information.
1592 *
1593 * We do, however, have to go through the ReFault path,
1594 * as the map may change while we're asleep.
1595 */
1596
1597 if (anon != oanon)
1598 mutex_exit(&anon->an_lock);
1599 uvmfault_unlockall(ufi, amap, uobj, oanon);
1600 if (!uvm_reclaimable()) {
1601 UVMHIST_LOG(maphist,
1602 "<- failed. out of VM",0,0,0,0);
1603 /* XXX instrumentation */
1604 return ENOMEM;
1605 }
1606 /* XXX instrumentation */
1607 uvm_wait("flt_pmfail1");
1608 return ERESTART;
1609 }
1610
1611 return uvm_fault_upper_done(ufi, flt, uobj, anon, pg, oanon);
1612 }
1613
1614 static int
1615 uvm_fault_upper_done(
1616 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1617 struct uvm_object *uobj, struct vm_anon *anon,
1618 struct vm_page *pg, struct vm_anon *oanon)
1619 {
1620 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1621
1622 /*
1623 * ... update the page queues.
1624 */
1625
1626 mutex_enter(&uvm_pageqlock);
1627 if (flt->wire_paging) {
1628 uvm_pagewire(pg);
1629
1630 /*
1631 * since the now-wired page cannot be paged out,
1632 * release its swap resources for others to use.
1633 * since an anon with no swap cannot be PG_CLEAN,
1634 * clear its clean flag now.
1635 */
1636
1637 pg->flags &= ~(PG_CLEAN);
1638 uvm_anon_dropswap(anon);
1639 } else {
1640 uvm_pageactivate(pg);
1641 }
1642 mutex_exit(&uvm_pageqlock);
1643
1644 /*
1645 * done case 1! finish up by unlocking everything and returning success
1646 */
1647
1648 if (anon != oanon)
1649 mutex_exit(&anon->an_lock);
1650 uvmfault_unlockall(ufi, amap, uobj, oanon);
1651 pmap_update(ufi->orig_map->pmap);
1652 return 0;
1653 }
1654
1655 static int
1656 uvm_fault_lower_generic1(
1657 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1658 struct uvm_object *uobj, struct vm_page *uobjpage)
1659 {
1660 #ifdef DIAGNOSTIC
1661 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1662 #endif
1663 bool promote;
1664 int error;
1665
1666 /*
1667 * handle case 2: faulting on backing object or zero fill
1668 */
1669
1670 /*
1671 * locked:
1672 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1673 */
1674 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1675 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1676 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1677
1678 /*
1679 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1680 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1681 * have a backing object, check and see if we are going to promote
1682 * the data up to an anon during the fault.
1683 */
1684
1685 if (uobj == NULL) {
1686 uobjpage = PGO_DONTCARE;
1687 promote = true; /* always need anon here */
1688 } else {
1689 KASSERT(uobjpage != PGO_DONTCARE);
1690 promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1691 }
1692 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1693 promote, (uobj == NULL), 0,0);
1694
1695 /*
1696 * if uobjpage is not null then we do not need to do I/O to get the
1697 * uobjpage.
1698 *
1699 * if uobjpage is null, then we need to unlock and ask the pager to
1700 * get the data for us. once we have the data, we need to reverify
1701 * the state the world. we are currently not holding any resources.
1702 */
1703
1704 if (uobjpage) {
1705 /* update rusage counters */
1706 curlwp->l_ru.ru_minflt++;
1707 } else {
1708 error = uvm_fault_lower_generic_io(ufi, flt, &uobj, &uobjpage);
1709 if (error != 0)
1710 return error;
1711 }
1712
1713 /*
1714 * locked:
1715 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1716 */
1717 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1718 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1719 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1720
1721 /*
1722 * notes:
1723 * - at this point uobjpage can not be NULL
1724 * - at this point uobjpage can not be PG_RELEASED (since we checked
1725 * for it above)
1726 * - at this point uobjpage could be PG_WANTED (handle later)
1727 */
1728
1729 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1730 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1731 (uobjpage->flags & PG_CLEAN) != 0);
1732
1733 if (promote == false) {
1734 error = uvm_fault_lower_generic_direct(ufi, flt, uobj, uobjpage);
1735 } else {
1736 error = uvm_fault_lower_generic_promote(ufi, flt, uobj, uobjpage);
1737 }
1738 return error;
1739 }
1740
1741 static int
1742 uvm_fault_lower_generic_io(
1743 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1744 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1745 {
1746 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1747 struct uvm_object *uobj = *ruobj;
1748 struct vm_page *pg;
1749 bool locked;
1750 int gotpages;
1751 int error;
1752 voff_t uoff;
1753
1754 /* update rusage counters */
1755 curlwp->l_ru.ru_majflt++;
1756
1757 /* locked: maps(read), amap(if there), uobj */
1758 uvmfault_unlockall(ufi, amap, NULL, NULL);
1759 /* locked: uobj */
1760
1761 uvmexp.fltget++;
1762 gotpages = 1;
1763 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1764 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1765 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1766 PGO_SYNCIO);
1767 /* locked: pg(if no error) */
1768 KASSERT(error != 0 || (pg->flags & PG_BUSY) != 0);
1769
1770 /*
1771 * recover from I/O
1772 */
1773
1774 if (error) {
1775 if (error == EAGAIN) {
1776 UVMHIST_LOG(maphist,
1777 " pgo_get says TRY AGAIN!",0,0,0,0);
1778 kpause("fltagain2", false, hz/2, NULL);
1779 return ERESTART;
1780 }
1781
1782 #if 0
1783 KASSERT(error != ERESTART);
1784 #else
1785 /* XXXUEBS don't re-fault? */
1786 if (error == ERESTART)
1787 error = EIO;
1788 #endif
1789
1790 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1791 error, 0,0,0);
1792 return error;
1793 }
1794
1795 /* locked: pg */
1796
1797 mutex_enter(&uvm_pageqlock);
1798 uvm_pageactivate(pg);
1799 mutex_exit(&uvm_pageqlock);
1800
1801 /*
1802 * re-verify the state of the world by first trying to relock
1803 * the maps. always relock the object.
1804 */
1805
1806 locked = uvmfault_relock(ufi);
1807 if (locked && amap)
1808 amap_lock(amap);
1809
1810 /* might be changed */
1811 uobj = pg->uobject;
1812
1813 mutex_enter(&uobj->vmobjlock);
1814
1815 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1816 /* locked(!locked): uobj, pg */
1817
1818 /*
1819 * verify that the page has not be released and re-verify
1820 * that amap slot is still free. if there is a problem,
1821 * we unlock and clean up.
1822 */
1823
1824 if ((pg->flags & PG_RELEASED) != 0 ||
1825 (locked && amap && amap_lookup(&ufi->entry->aref,
1826 ufi->orig_rvaddr - ufi->entry->start))) {
1827 if (locked)
1828 uvmfault_unlockall(ufi, amap, NULL, NULL);
1829 locked = false;
1830 }
1831
1832 /*
1833 * didn't get the lock? release the page and retry.
1834 */
1835
1836 if (locked == false) {
1837 UVMHIST_LOG(maphist,
1838 " wasn't able to relock after fault: retry",
1839 0,0,0,0);
1840 if (pg->flags & PG_WANTED) {
1841 wakeup(pg);
1842 }
1843 if (pg->flags & PG_RELEASED) {
1844 uvmexp.fltpgrele++;
1845 uvm_pagefree(pg);
1846 mutex_exit(&uobj->vmobjlock);
1847 return ERESTART;
1848 }
1849 pg->flags &= ~(PG_BUSY|PG_WANTED);
1850 UVM_PAGE_OWN(pg, NULL);
1851 mutex_exit(&uobj->vmobjlock);
1852 return ERESTART;
1853 }
1854
1855 /*
1856 * we have the data in pg which is busy and
1857 * not released. we are holding object lock (so the page
1858 * can't be released on us).
1859 */
1860
1861 /* locked: maps(read), amap(if !null), uobj, pg */
1862
1863 *ruobj = uobj;
1864 *ruobjpage = pg;
1865 return 0;
1866 }
1867
1868 static int
1869 uvm_fault_lower_generic_direct_loan(
1870 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1871 struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage);
1872
1873 int
1874 uvm_fault_lower_generic_direct(
1875 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1876 struct uvm_object *uobj, struct vm_page *uobjpage)
1877 {
1878 struct vm_page *pg;
1879
1880 /*
1881 * we are not promoting. if the mapping is COW ensure that we
1882 * don't give more access than we should (e.g. when doing a read
1883 * fault on a COPYONWRITE mapping we want to map the COW page in
1884 * R/O even though the entry protection could be R/W).
1885 *
1886 * set "pg" to the page we want to map in (uobjpage, usually)
1887 */
1888
1889 uvmexp.flt_obj++;
1890 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1891 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1892 flt->enter_prot &= ~VM_PROT_WRITE;
1893 pg = uobjpage; /* map in the actual object */
1894
1895 KASSERT(uobjpage != PGO_DONTCARE);
1896
1897 /*
1898 * we are faulting directly on the page. be careful
1899 * about writing to loaned pages...
1900 */
1901
1902 if (uobjpage->loan_count) {
1903 uvm_fault_lower_generic_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1904 }
1905 KASSERT(pg == uobjpage);
1906
1907 return uvm_fault_lower_generic_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1908 }
1909
1910 static int
1911 uvm_fault_lower_generic_direct_loan(
1912 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1913 struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage)
1914 {
1915 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1916 struct vm_page *pg;
1917 struct vm_page *uobjpage = *ruobjpage;
1918
1919 if (!flt->cow_now) {
1920 /* read fault: cap the protection at readonly */
1921 /* cap! */
1922 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1923 } else {
1924 /* write fault: must break the loan here */
1925
1926 pg = uvm_loanbreak(uobjpage);
1927 if (pg == NULL) {
1928
1929 /*
1930 * drop ownership of page, it can't be released
1931 */
1932
1933 if (uobjpage->flags & PG_WANTED)
1934 wakeup(uobjpage);
1935 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1936 UVM_PAGE_OWN(uobjpage, NULL);
1937
1938 uvmfault_unlockall(ufi, amap, uobj, NULL);
1939 UVMHIST_LOG(maphist,
1940 " out of RAM breaking loan, waiting",
1941 0,0,0,0);
1942 uvmexp.fltnoram++;
1943 uvm_wait("flt_noram4");
1944 return ERESTART;
1945 }
1946 *rpg = pg;
1947 *ruobjpage = pg;
1948 }
1949 return 0;
1950 }
1951
1952 int
1953 uvm_fault_lower_generic_promote(
1954 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1955 struct uvm_object *uobj, struct vm_page *uobjpage)
1956 {
1957 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1958 struct vm_anon *anon;
1959 struct vm_page *pg;
1960 int error;
1961
1962 /*
1963 * if we are going to promote the data to an anon we
1964 * allocate a blank anon here and plug it into our amap.
1965 */
1966 #if DIAGNOSTIC
1967 if (amap == NULL)
1968 panic("uvm_fault: want to promote data, but no anon");
1969 #endif
1970 error = uvmfault_promote(ufi, NULL, uobjpage,
1971 &anon, &flt->anon_spare);
1972 switch (error) {
1973 case 0:
1974 break;
1975 case ERESTART:
1976 return ERESTART;
1977 default:
1978 return error;
1979 }
1980
1981 pg = anon->an_page;
1982
1983 /*
1984 * fill in the data
1985 */
1986
1987 if (uobjpage != PGO_DONTCARE) {
1988 uvmexp.flt_prcopy++;
1989
1990 /*
1991 * promote to shared amap? make sure all sharing
1992 * procs see it
1993 */
1994
1995 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1996 pmap_page_protect(uobjpage, VM_PROT_NONE);
1997 /*
1998 * XXX: PAGE MIGHT BE WIRED!
1999 */
2000 }
2001
2002 /*
2003 * dispose of uobjpage. it can't be PG_RELEASED
2004 * since we still hold the object lock.
2005 * drop handle to uobj as well.
2006 */
2007
2008 if (uobjpage->flags & PG_WANTED)
2009 /* still have the obj lock */
2010 wakeup(uobjpage);
2011 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2012 UVM_PAGE_OWN(uobjpage, NULL);
2013 mutex_exit(&uobj->vmobjlock);
2014 uobj = NULL;
2015
2016 UVMHIST_LOG(maphist,
2017 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2018 uobjpage, anon, pg, 0);
2019
2020 } else {
2021 uvmexp.flt_przero++;
2022
2023 /*
2024 * Page is zero'd and marked dirty by
2025 * uvmfault_promote().
2026 */
2027
2028 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2029 anon, pg, 0, 0);
2030 }
2031
2032 return uvm_fault_lower_generic_enter(ufi, flt, uobj, anon, pg, uobjpage);
2033 }
2034
2035 int
2036 uvm_fault_lower_generic_enter(
2037 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2038 struct uvm_object *uobj,
2039 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2040 {
2041 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2042 int error;
2043
2044 /*
2045 * locked:
2046 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2047 * anon(if !null), pg(if anon)
2048 *
2049 * note: pg is either the uobjpage or the new page in the new anon
2050 */
2051 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2052 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2053 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2054 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2055 KASSERT((pg->flags & PG_BUSY) != 0);
2056
2057 /*
2058 * all resources are present. we can now map it in and free our
2059 * resources.
2060 */
2061
2062 UVMHIST_LOG(maphist,
2063 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2064 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, promote);
2065 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2066 (pg->flags & PG_RDONLY) == 0);
2067 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
2068 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2069 flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2070
2071 /*
2072 * No need to undo what we did; we can simply think of
2073 * this as the pmap throwing away the mapping information.
2074 *
2075 * We do, however, have to go through the ReFault path,
2076 * as the map may change while we're asleep.
2077 */
2078
2079 if (pg->flags & PG_WANTED)
2080 wakeup(pg);
2081
2082 /*
2083 * note that pg can't be PG_RELEASED since we did not drop
2084 * the object lock since the last time we checked.
2085 */
2086 KASSERT((pg->flags & PG_RELEASED) == 0);
2087
2088 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2089 UVM_PAGE_OWN(pg, NULL);
2090 uvmfault_unlockall(ufi, amap, uobj, anon);
2091 if (!uvm_reclaimable()) {
2092 UVMHIST_LOG(maphist,
2093 "<- failed. out of VM",0,0,0,0);
2094 /* XXX instrumentation */
2095 error = ENOMEM;
2096 return error;
2097 }
2098 /* XXX instrumentation */
2099 uvm_wait("flt_pmfail2");
2100 return ERESTART;
2101 }
2102
2103 return uvm_fault_lower_generic_done(ufi, flt, uobj, anon, pg);
2104 }
2105
2106 int
2107 uvm_fault_lower_generic_done(
2108 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2109 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2110 {
2111 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2112
2113 mutex_enter(&uvm_pageqlock);
2114 if (flt->wire_paging) {
2115 uvm_pagewire(pg);
2116 if (pg->pqflags & PQ_AOBJ) {
2117
2118 /*
2119 * since the now-wired page cannot be paged out,
2120 * release its swap resources for others to use.
2121 * since an aobj page with no swap cannot be PG_CLEAN,
2122 * clear its clean flag now.
2123 */
2124
2125 KASSERT(uobj != NULL);
2126 pg->flags &= ~(PG_CLEAN);
2127 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2128 }
2129 } else {
2130 uvm_pageactivate(pg);
2131 }
2132 mutex_exit(&uvm_pageqlock);
2133 if (pg->flags & PG_WANTED)
2134 wakeup(pg);
2135
2136 /*
2137 * note that pg can't be PG_RELEASED since we did not drop the object
2138 * lock since the last time we checked.
2139 */
2140 KASSERT((pg->flags & PG_RELEASED) == 0);
2141
2142 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2143 UVM_PAGE_OWN(pg, NULL);
2144 uvmfault_unlockall(ufi, amap, uobj, anon);
2145 pmap_update(ufi->orig_map->pmap);
2146 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2147 return 0;
2148 }
2149
2150
2151 /*
2152 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2153 *
2154 * => map may be read-locked by caller, but MUST NOT be write-locked.
2155 * => if map is read-locked, any operations which may cause map to
2156 * be write-locked in uvm_fault() must be taken care of by
2157 * the caller. See uvm_map_pageable().
2158 */
2159
2160 int
2161 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2162 vm_prot_t access_type, int maxprot)
2163 {
2164 vaddr_t va;
2165 int error;
2166
2167 /*
2168 * now fault it in a page at a time. if the fault fails then we have
2169 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2170 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2171 */
2172
2173 /*
2174 * XXX work around overflowing a vaddr_t. this prevents us from
2175 * wiring the last page in the address space, though.
2176 */
2177 if (start > end) {
2178 return EFAULT;
2179 }
2180
2181 for (va = start ; va < end ; va += PAGE_SIZE) {
2182 error = uvm_fault_internal(map, va, access_type,
2183 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2184 if (error) {
2185 if (va != start) {
2186 uvm_fault_unwire(map, start, va);
2187 }
2188 return error;
2189 }
2190 }
2191 return 0;
2192 }
2193
2194 /*
2195 * uvm_fault_unwire(): unwire range of virtual space.
2196 */
2197
2198 void
2199 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2200 {
2201 vm_map_lock_read(map);
2202 uvm_fault_unwire_locked(map, start, end);
2203 vm_map_unlock_read(map);
2204 }
2205
2206 /*
2207 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2208 *
2209 * => map must be at least read-locked.
2210 */
2211
2212 void
2213 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2214 {
2215 struct vm_map_entry *entry;
2216 pmap_t pmap = vm_map_pmap(map);
2217 vaddr_t va;
2218 paddr_t pa;
2219 struct vm_page *pg;
2220
2221 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2222
2223 /*
2224 * we assume that the area we are unwiring has actually been wired
2225 * in the first place. this means that we should be able to extract
2226 * the PAs from the pmap. we also lock out the page daemon so that
2227 * we can call uvm_pageunwire.
2228 */
2229
2230 mutex_enter(&uvm_pageqlock);
2231
2232 /*
2233 * find the beginning map entry for the region.
2234 */
2235
2236 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2237 if (uvm_map_lookup_entry(map, start, &entry) == false)
2238 panic("uvm_fault_unwire_locked: address not in map");
2239
2240 for (va = start; va < end; va += PAGE_SIZE) {
2241 if (pmap_extract(pmap, va, &pa) == false)
2242 continue;
2243
2244 /*
2245 * find the map entry for the current address.
2246 */
2247
2248 KASSERT(va >= entry->start);
2249 while (va >= entry->end) {
2250 KASSERT(entry->next != &map->header &&
2251 entry->next->start <= entry->end);
2252 entry = entry->next;
2253 }
2254
2255 /*
2256 * if the entry is no longer wired, tell the pmap.
2257 */
2258
2259 if (VM_MAPENT_ISWIRED(entry) == 0)
2260 pmap_unwire(pmap, va);
2261
2262 pg = PHYS_TO_VM_PAGE(pa);
2263 if (pg)
2264 uvm_pageunwire(pg);
2265 }
2266
2267 mutex_exit(&uvm_pageqlock);
2268 }
2269