uvm_fault.c revision 1.163 1 /* $NetBSD: uvm_fault.c,v 1.163 2010/02/05 02:27:15 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.163 2010/02/05 02:27:15 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0; lcv < n; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 struct uvm_faultctx {
696 vm_prot_t access_type;
697 vm_prot_t enter_prot;
698 vaddr_t startva;
699 int npages;
700 int centeridx;
701 struct vm_anon *anon_spare;
702 bool wire_mapping;
703 bool narrow;
704 bool wire_paging;
705 bool maxprot;
706 bool cow_now;
707 };
708
709 static inline int uvm_fault_check(
710 struct uvm_faultinfo *, struct uvm_faultctx *,
711 struct vm_anon ***, struct vm_page ***);
712
713 static int uvm_fault_upper(
714 struct uvm_faultinfo *, struct uvm_faultctx *,
715 struct vm_anon **);
716 static inline int uvm_fault_upper_lookup(
717 struct uvm_faultinfo *, struct uvm_faultctx *,
718 struct vm_anon **, struct vm_page **);
719 static inline void uvm_fault_upper_neighbor(
720 struct uvm_faultinfo *, struct uvm_faultctx *,
721 vaddr_t, struct vm_page *, bool);
722 static inline int uvm_fault_upper_loan(
723 struct uvm_faultinfo *, struct uvm_faultctx *,
724 struct vm_anon *, struct uvm_object **);
725 static inline int uvm_fault_upper_promote(
726 struct uvm_faultinfo *, struct uvm_faultctx *,
727 struct uvm_object *, struct vm_anon *);
728 static inline int uvm_fault_upper_direct(
729 struct uvm_faultinfo *, struct uvm_faultctx *,
730 struct uvm_object *, struct vm_anon *);
731 static int uvm_fault_upper_enter(
732 struct uvm_faultinfo *, struct uvm_faultctx *,
733 struct uvm_object *, struct vm_anon *,
734 struct vm_page *, struct vm_anon *);
735 static inline int uvm_fault_upper_done(
736 struct uvm_faultinfo *, struct uvm_faultctx *,
737 struct uvm_object *, struct vm_anon *,
738 struct vm_page *, struct vm_anon *);
739
740 static int uvm_fault_lower(
741 struct uvm_faultinfo *, struct uvm_faultctx *,
742 struct vm_page **);
743 static inline int uvm_fault_lower_special(
744 struct uvm_faultinfo *, struct uvm_faultctx *,
745 struct vm_page **);
746 static inline int uvm_fault_lower_lookup(
747 struct uvm_faultinfo *, struct uvm_faultctx *,
748 struct vm_page **);
749 static inline void uvm_fault_lower_neighbor(
750 struct uvm_faultinfo *, struct uvm_faultctx *,
751 vaddr_t, struct vm_page *, bool);
752 static inline int uvm_fault_lower_generic(
753 struct uvm_faultinfo *, struct uvm_faultctx *,
754 struct vm_page **);
755 static inline int uvm_fault_lower1(
756 struct uvm_faultinfo *, struct uvm_faultctx *,
757 struct uvm_object *, struct vm_page *);
758 static inline int uvm_fault_lower_io(
759 struct uvm_faultinfo *, struct uvm_faultctx *,
760 struct uvm_object **, struct vm_page **);
761 static inline int uvm_fault_lower_direct(
762 struct uvm_faultinfo *, struct uvm_faultctx *,
763 struct uvm_object *, struct vm_page *);
764 static inline int uvm_fault_lower_direct_loan(
765 struct uvm_faultinfo *, struct uvm_faultctx *,
766 struct uvm_object *, struct vm_page **,
767 struct vm_page **);
768 static inline int uvm_fault_lower_promote(
769 struct uvm_faultinfo *, struct uvm_faultctx *,
770 struct uvm_object *, struct vm_page *);
771 static int uvm_fault_lower_enter(
772 struct uvm_faultinfo *, struct uvm_faultctx *,
773 struct uvm_object *,
774 struct vm_anon *, struct vm_page *,
775 struct vm_page *);
776 static inline int uvm_fault_lower_done(
777 struct uvm_faultinfo *, struct uvm_faultctx *,
778 struct uvm_object *,
779 struct vm_anon *, struct vm_page *);
780
781 int
782 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
783 vm_prot_t access_type, int fault_flag)
784 {
785 struct uvm_faultinfo ufi;
786 struct uvm_faultctx flt = {
787 .access_type = access_type,
788
789 /* don't look for neighborhood * pages on "wire" fault */
790 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
791
792 /* "wire" fault causes wiring of both mapping and paging */
793 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
794 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
795
796 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
797 };
798 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
799 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
800 int error;
801 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
802
803 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
804 orig_map, vaddr, access_type, fault_flag);
805
806 uvmexp.faults++; /* XXX: locking? */
807
808 /*
809 * init the IN parameters in the ufi
810 */
811
812 ufi.orig_map = orig_map;
813 ufi.orig_rvaddr = trunc_page(vaddr);
814 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
815
816 error = ERESTART;
817 while (error == ERESTART) {
818 anons = anons_store;
819 pages = pages_store;
820
821 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
822 if (error != 0)
823 continue;
824
825 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
826 if (error != 0)
827 continue;
828
829 if (pages[flt.centeridx] == PGO_DONTCARE)
830 error = uvm_fault_upper(&ufi, &flt, anons);
831 else
832 error = uvm_fault_lower(&ufi, &flt, pages);
833 }
834
835 if (flt.anon_spare != NULL) {
836 flt.anon_spare->an_ref--;
837 uvm_anfree(flt.anon_spare);
838 }
839 return error;
840 }
841
842 static int
843 uvm_fault_check(
844 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
845 struct vm_anon ***ranons, struct vm_page ***rpages)
846 {
847 struct vm_amap *amap;
848 struct uvm_object *uobj;
849 vm_prot_t check_prot;
850 int nback, nforw;
851
852 /*
853 * lookup and lock the maps
854 */
855
856 if (uvmfault_lookup(ufi, false) == false) {
857 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
858 return EFAULT;
859 }
860 /* locked: maps(read) */
861
862 #ifdef DIAGNOSTIC
863 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
864 printf("Page fault on non-pageable map:\n");
865 printf("ufi->map = %p\n", ufi->map);
866 printf("ufi->orig_map = %p\n", ufi->orig_map);
867 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
868 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
869 }
870 #endif
871
872 /*
873 * check protection
874 */
875
876 check_prot = flt->maxprot ?
877 ufi->entry->max_protection : ufi->entry->protection;
878 if ((check_prot & flt->access_type) != flt->access_type) {
879 UVMHIST_LOG(maphist,
880 "<- protection failure (prot=0x%x, access=0x%x)",
881 ufi->entry->protection, flt->access_type, 0, 0);
882 uvmfault_unlockmaps(ufi, false);
883 return EACCES;
884 }
885
886 /*
887 * "enter_prot" is the protection we want to enter the page in at.
888 * for certain pages (e.g. copy-on-write pages) this protection can
889 * be more strict than ufi->entry->protection. "wired" means either
890 * the entry is wired or we are fault-wiring the pg.
891 */
892
893 flt->enter_prot = ufi->entry->protection;
894 if (VM_MAPENT_ISWIRED(ufi->entry))
895 flt->wire_mapping = true;
896
897 if (flt->wire_mapping) {
898 flt->access_type = flt->enter_prot; /* full access for wired */
899 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
900 } else {
901 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
902 }
903
904 /*
905 * handle "needs_copy" case. if we need to copy the amap we will
906 * have to drop our readlock and relock it with a write lock. (we
907 * need a write lock to change anything in a map entry [e.g.
908 * needs_copy]).
909 */
910
911 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
912 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
913 KASSERT(!flt->maxprot);
914 /* need to clear */
915 UVMHIST_LOG(maphist,
916 " need to clear needs_copy and refault",0,0,0,0);
917 uvmfault_unlockmaps(ufi, false);
918 uvmfault_amapcopy(ufi);
919 uvmexp.fltamcopy++;
920 return ERESTART;
921
922 } else {
923
924 /*
925 * ensure that we pmap_enter page R/O since
926 * needs_copy is still true
927 */
928
929 flt->enter_prot &= ~VM_PROT_WRITE;
930 }
931 }
932
933 /*
934 * identify the players
935 */
936
937 amap = ufi->entry->aref.ar_amap; /* upper layer */
938 uobj = ufi->entry->object.uvm_obj; /* lower layer */
939
940 /*
941 * check for a case 0 fault. if nothing backing the entry then
942 * error now.
943 */
944
945 if (amap == NULL && uobj == NULL) {
946 uvmfault_unlockmaps(ufi, false);
947 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
948 return EFAULT;
949 }
950
951 /*
952 * establish range of interest based on advice from mapper
953 * and then clip to fit map entry. note that we only want
954 * to do this the first time through the fault. if we
955 * ReFault we will disable this by setting "narrow" to true.
956 */
957
958 if (flt->narrow == false) {
959
960 /* wide fault (!narrow) */
961 KASSERT(uvmadvice[ufi->entry->advice].advice ==
962 ufi->entry->advice);
963 nback = MIN(uvmadvice[ufi->entry->advice].nback,
964 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
965 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
966 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
967 ((ufi->entry->end - ufi->orig_rvaddr) >>
968 PAGE_SHIFT) - 1);
969 /*
970 * note: "-1" because we don't want to count the
971 * faulting page as forw
972 */
973 flt->npages = nback + nforw + 1;
974 flt->centeridx = nback;
975
976 flt->narrow = true; /* ensure only once per-fault */
977
978 } else {
979
980 /* narrow fault! */
981 nback = nforw = 0;
982 flt->startva = ufi->orig_rvaddr;
983 flt->npages = 1;
984 flt->centeridx = 0;
985
986 }
987 /* offset from entry's start to pgs' start */
988 const voff_t eoff = flt->startva - ufi->entry->start;
989
990 /* locked: maps(read) */
991 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
992 flt->narrow, nback, nforw, flt->startva);
993 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
994 amap, uobj, 0);
995
996 /*
997 * if we've got an amap, lock it and extract current anons.
998 */
999
1000 if (amap) {
1001 amap_lock(amap);
1002 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1003 } else {
1004 *ranons = NULL; /* to be safe */
1005 }
1006
1007 /* locked: maps(read), amap(if there) */
1008 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1009
1010 /*
1011 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1012 * now and then forget about them (for the rest of the fault).
1013 */
1014
1015 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1016
1017 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1018 0,0,0,0);
1019 /* flush back-page anons? */
1020 if (amap)
1021 uvmfault_anonflush(*ranons, nback);
1022
1023 /* flush object? */
1024 if (uobj) {
1025 voff_t uoff;
1026
1027 uoff = ufi->entry->offset + eoff;
1028 mutex_enter(&uobj->vmobjlock);
1029 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1030 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1031 }
1032
1033 /* now forget about the backpages */
1034 if (amap)
1035 *ranons += nback;
1036 #if 0
1037 /* XXXUEBS */
1038 if (uobj)
1039 *rpages += nback;
1040 #endif
1041 flt->startva += (nback << PAGE_SHIFT);
1042 flt->npages -= nback;
1043 flt->centeridx = 0;
1044 }
1045 /*
1046 * => startva is fixed
1047 * => npages is fixed
1048 */
1049
1050 return 0;
1051 }
1052
1053 static int
1054 uvm_fault_upper_lookup(
1055 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1056 struct vm_anon **anons, struct vm_page **pages)
1057 {
1058 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1059 int lcv;
1060 vaddr_t currva;
1061 bool shadowed;
1062
1063 /* locked: maps(read), amap(if there) */
1064 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1065
1066 /*
1067 * map in the backpages and frontpages we found in the amap in hopes
1068 * of preventing future faults. we also init the pages[] array as
1069 * we go.
1070 */
1071
1072 currva = flt->startva;
1073 shadowed = false;
1074 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1075 /*
1076 * dont play with VAs that are already mapped
1077 * except for center)
1078 */
1079 if (lcv != flt->centeridx &&
1080 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1081 pages[lcv] = PGO_DONTCARE;
1082 continue;
1083 }
1084
1085 /*
1086 * unmapped or center page. check if any anon at this level.
1087 */
1088 if (amap == NULL || anons[lcv] == NULL) {
1089 pages[lcv] = NULL;
1090 continue;
1091 }
1092
1093 /*
1094 * check for present page and map if possible. re-activate it.
1095 */
1096
1097 pages[lcv] = PGO_DONTCARE;
1098 if (lcv == flt->centeridx) { /* save center for later! */
1099 shadowed = true;
1100 } else {
1101 struct vm_anon *anon = anons[lcv];
1102
1103 mutex_enter(&anon->an_lock);
1104 uvm_fault_upper_neighbor(ufi, flt, currva,
1105 anon->an_page, anon->an_ref > 1);
1106 mutex_exit(&anon->an_lock);
1107 }
1108 }
1109
1110 /* locked: maps(read), amap(if there) */
1111 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1112 /* (shadowed == true) if there is an anon at the faulting address */
1113 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1114 (uobj && shadowed != false),0,0);
1115
1116 /*
1117 * note that if we are really short of RAM we could sleep in the above
1118 * call to pmap_enter with everything locked. bad?
1119 *
1120 * XXX Actually, that is bad; pmap_enter() should just fail in that
1121 * XXX case. --thorpej
1122 */
1123
1124 return 0;
1125 }
1126
1127 static void
1128 uvm_fault_upper_neighbor(
1129 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1130 vaddr_t currva, struct vm_page *pg, bool readonly)
1131 {
1132
1133 /* ignore loaned and busy pages */
1134 if (pg == NULL || pg->loan_count != 0 ||
1135 (pg->flags & PG_BUSY) != 0)
1136 goto uvm_fault_upper_lookup_enter_done;
1137
1138 mutex_enter(&uvm_pageqlock);
1139 uvm_pageenqueue(pg);
1140 mutex_exit(&uvm_pageqlock);
1141 UVMHIST_LOG(maphist,
1142 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1143 ufi->orig_map->pmap, currva, pg, 0);
1144 uvmexp.fltnamap++;
1145
1146 /*
1147 * Since this page isn't the page that's actually faulting,
1148 * ignore pmap_enter() failures; it's not critical that we
1149 * enter these right now.
1150 */
1151
1152 (void) pmap_enter(ufi->orig_map->pmap, currva,
1153 VM_PAGE_TO_PHYS(pg),
1154 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1155 flt->enter_prot,
1156 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1157
1158 uvm_fault_upper_lookup_enter_done:
1159 pmap_update(ufi->orig_map->pmap);
1160 }
1161
1162 static int
1163 uvm_fault_lower(
1164 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1165 struct vm_page **pages)
1166 {
1167 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1168 int error;
1169
1170 /*
1171 * if the desired page is not shadowed by the amap and we have a
1172 * backing object, then we check to see if the backing object would
1173 * prefer to handle the fault itself (rather than letting us do it
1174 * with the usual pgo_get hook). the backing object signals this by
1175 * providing a pgo_fault routine.
1176 */
1177
1178 if (uobj && uobj->pgops->pgo_fault != NULL) {
1179 error = uvm_fault_lower_special(ufi, flt, pages);
1180 } else {
1181 error = uvm_fault_lower_generic(ufi, flt, pages);
1182 }
1183 return error;
1184 }
1185
1186 static int
1187 uvm_fault_lower_special(
1188 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1189 struct vm_page **pages)
1190 {
1191 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1192 int error;
1193
1194 mutex_enter(&uobj->vmobjlock);
1195 /* locked: maps(read), amap (if there), uobj */
1196 error = uobj->pgops->pgo_fault(ufi, flt->startva, pages, flt->npages,
1197 flt->centeridx, flt->access_type, PGO_LOCKED|PGO_SYNCIO);
1198
1199 /* locked: nothing, pgo_fault has unlocked everything */
1200
1201 if (error == ERESTART)
1202 error = ERESTART; /* try again! */
1203 /*
1204 * object fault routine responsible for pmap_update().
1205 */
1206
1207 return error;
1208 }
1209
1210 static int
1211 uvm_fault_lower_generic(
1212 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1213 struct vm_page **pages)
1214 {
1215 #ifdef DIAGNOSTIC
1216 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1217 #endif
1218 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1219 struct vm_page *uobjpage;
1220
1221 /*
1222 * now, if the desired page is not shadowed by the amap and we have
1223 * a backing object that does not have a special fault routine, then
1224 * we ask (with pgo_get) the object for resident pages that we care
1225 * about and attempt to map them in. we do not let pgo_get block
1226 * (PGO_LOCKED).
1227 */
1228
1229 if (uobj == NULL) {
1230 /* zero fill; don't care neighbor pages */
1231 uobjpage = NULL;
1232 } else {
1233 uvm_fault_lower_lookup(ufi, flt, pages);
1234 uobjpage = pages[flt->centeridx];
1235 }
1236
1237 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1238 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1239 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1240 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1241
1242 /*
1243 * note that at this point we are done with any front or back pages.
1244 * we are now going to focus on the center page (i.e. the one we've
1245 * faulted on). if we have faulted on the upper (anon) layer
1246 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1247 * not touched it yet). if we have faulted on the bottom (uobj)
1248 * layer [i.e. case 2] and the page was both present and available,
1249 * then we've got a pointer to it as "uobjpage" and we've already
1250 * made it BUSY.
1251 */
1252
1253 /*
1254 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1255 */
1256
1257 /*
1258 * redirect case 2: if we are not shadowed, go to case 2.
1259 */
1260
1261 return uvm_fault_lower1(ufi, flt, uobj, uobjpage);
1262 }
1263
1264 static int
1265 uvm_fault_lower_lookup(
1266 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1267 struct vm_page **pages)
1268 {
1269 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1270 int lcv, gotpages;
1271 vaddr_t currva;
1272
1273 mutex_enter(&uobj->vmobjlock);
1274 /* locked (!shadowed): maps(read), amap (if there), uobj */
1275 /*
1276 * the following call to pgo_get does _not_ change locking state
1277 */
1278
1279 uvmexp.fltlget++;
1280 gotpages = flt->npages;
1281 (void) uobj->pgops->pgo_get(uobj,
1282 ufi->entry->offset + flt->startva - ufi->entry->start,
1283 pages, &gotpages, flt->centeridx,
1284 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1285
1286 /*
1287 * check for pages to map, if we got any
1288 */
1289
1290 if (gotpages == 0) {
1291 pages[flt->centeridx] = NULL;
1292 return 0;
1293 }
1294
1295 currva = flt->startva;
1296 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1297 struct vm_page *curpg;
1298
1299 curpg = pages[lcv];
1300 if (curpg == NULL || curpg == PGO_DONTCARE) {
1301 continue;
1302 }
1303 KASSERT(curpg->uobject == uobj);
1304
1305 /*
1306 * if center page is resident and not PG_BUSY|PG_RELEASED
1307 * then pgo_get made it PG_BUSY for us and gave us a handle
1308 * to it. remember this page as "uobjpage." (for later use).
1309 */
1310
1311 if (lcv == flt->centeridx) {
1312 UVMHIST_LOG(maphist, " got uobjpage "
1313 "(0x%x) with locked get",
1314 curpg, 0,0,0);
1315 } else {
1316 bool readonly = (curpg->flags & PG_RDONLY)
1317 || (curpg->loan_count > 0)
1318 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1319
1320 uvm_fault_lower_neighbor(ufi, flt,
1321 currva, curpg, readonly);
1322 }
1323 }
1324 pmap_update(ufi->orig_map->pmap);
1325 return 0;
1326 }
1327
1328 static void
1329 uvm_fault_lower_neighbor(
1330 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1331 vaddr_t currva, struct vm_page *pg, bool readonly)
1332 {
1333
1334 /*
1335 * calling pgo_get with PGO_LOCKED returns us pages which
1336 * are neither busy nor released, so we don't need to check
1337 * for this. we can just directly enter the pages.
1338 */
1339
1340 mutex_enter(&uvm_pageqlock);
1341 uvm_pageenqueue(pg);
1342 mutex_exit(&uvm_pageqlock);
1343 UVMHIST_LOG(maphist,
1344 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1345 ufi->orig_map->pmap, currva, pg, 0);
1346 uvmexp.fltnomap++;
1347
1348 /*
1349 * Since this page isn't the page that's actually faulting,
1350 * ignore pmap_enter() failures; it's not critical that we
1351 * enter these right now.
1352 */
1353 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1354 KASSERT((pg->flags & PG_RELEASED) == 0);
1355 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
1356 (pg->flags & PG_CLEAN) != 0);
1357
1358 (void) pmap_enter(ufi->orig_map->pmap, currva,
1359 VM_PAGE_TO_PHYS(pg),
1360 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1361 flt->enter_prot & MASK(ufi->entry),
1362 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1363
1364 /*
1365 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1366 * held the lock the whole time we've had the handle.
1367 */
1368 KASSERT((pg->flags & PG_WANTED) == 0);
1369 KASSERT((pg->flags & PG_RELEASED) == 0);
1370
1371 pg->flags &= ~(PG_BUSY);
1372 UVM_PAGE_OWN(pg, NULL);
1373 }
1374
1375 static int
1376 uvm_fault_upper(
1377 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1378 struct vm_anon **anons)
1379 {
1380 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1381 struct vm_anon * const anon = anons[flt->centeridx];
1382 struct uvm_object *uobj;
1383 int error;
1384
1385 /* locked: maps(read), amap */
1386 KASSERT(mutex_owned(&amap->am_l));
1387
1388 /*
1389 * handle case 1: fault on an anon in our amap
1390 */
1391
1392 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1393 mutex_enter(&anon->an_lock);
1394
1395 /* locked: maps(read), amap, anon */
1396 KASSERT(mutex_owned(&amap->am_l));
1397 KASSERT(mutex_owned(&anon->an_lock));
1398
1399 /*
1400 * no matter if we have case 1A or case 1B we are going to need to
1401 * have the anon's memory resident. ensure that now.
1402 */
1403
1404 /*
1405 * let uvmfault_anonget do the dirty work.
1406 * if it fails (!OK) it will unlock everything for us.
1407 * if it succeeds, locks are still valid and locked.
1408 * also, if it is OK, then the anon's page is on the queues.
1409 * if the page is on loan from a uvm_object, then anonget will
1410 * lock that object for us if it does not fail.
1411 */
1412
1413 error = uvmfault_anonget(ufi, amap, anon);
1414 switch (error) {
1415 case 0:
1416 break;
1417
1418 case ERESTART:
1419 return ERESTART;
1420
1421 case EAGAIN:
1422 kpause("fltagain1", false, hz/2, NULL);
1423 return ERESTART;
1424
1425 default:
1426 return error;
1427 }
1428
1429 /*
1430 * uobj is non null if the page is on loan from an object (i.e. uobj)
1431 */
1432
1433 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1434
1435 /* locked: maps(read), amap, anon, uobj(if one) */
1436 KASSERT(mutex_owned(&amap->am_l));
1437 KASSERT(mutex_owned(&anon->an_lock));
1438 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1439
1440 /*
1441 * special handling for loaned pages
1442 */
1443
1444 if (anon->an_page->loan_count) {
1445 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1446 if (error != 0)
1447 return error;
1448 }
1449
1450 /*
1451 * if we are case 1B then we will need to allocate a new blank
1452 * anon to transfer the data into. note that we have a lock
1453 * on anon, so no one can busy or release the page until we are done.
1454 * also note that the ref count can't drop to zero here because
1455 * it is > 1 and we are only dropping one ref.
1456 *
1457 * in the (hopefully very rare) case that we are out of RAM we
1458 * will unlock, wait for more RAM, and refault.
1459 *
1460 * if we are out of anon VM we kill the process (XXX: could wait?).
1461 */
1462
1463 if (flt->cow_now && anon->an_ref > 1) {
1464 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1465 } else {
1466 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1467 }
1468 return error;
1469 }
1470
1471 static int
1472 uvm_fault_upper_loan(
1473 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1474 struct vm_anon *anon, struct uvm_object **ruobj)
1475 {
1476 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1477 int error = 0;
1478
1479 if (!flt->cow_now) {
1480
1481 /*
1482 * for read faults on loaned pages we just cap the
1483 * protection at read-only.
1484 */
1485
1486 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1487
1488 } else {
1489 /*
1490 * note that we can't allow writes into a loaned page!
1491 *
1492 * if we have a write fault on a loaned page in an
1493 * anon then we need to look at the anon's ref count.
1494 * if it is greater than one then we are going to do
1495 * a normal copy-on-write fault into a new anon (this
1496 * is not a problem). however, if the reference count
1497 * is one (a case where we would normally allow a
1498 * write directly to the page) then we need to kill
1499 * the loan before we continue.
1500 */
1501
1502 /* >1 case is already ok */
1503 if (anon->an_ref == 1) {
1504 error = uvm_loanbreak_anon(anon, *ruobj);
1505 if (error != 0) {
1506 uvmfault_unlockall(ufi, amap, *ruobj, anon);
1507 uvm_wait("flt_noram2");
1508 return ERESTART;
1509 }
1510 /* if we were a loan reciever uobj is gone */
1511 if (*ruobj)
1512 *ruobj = NULL;
1513 }
1514 }
1515 return error;
1516 }
1517
1518 static int
1519 uvm_fault_upper_promote(
1520 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1521 struct uvm_object *uobj, struct vm_anon *anon)
1522 {
1523 struct vm_anon * const oanon = anon;
1524 struct vm_page *pg;
1525 int error;
1526
1527 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1528 uvmexp.flt_acow++;
1529
1530 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1531 &anon, &flt->anon_spare);
1532 switch (error) {
1533 case 0:
1534 break;
1535 case ERESTART:
1536 return ERESTART;
1537 default:
1538 return error;
1539 }
1540
1541 pg = anon->an_page;
1542 mutex_enter(&uvm_pageqlock);
1543 uvm_pageactivate(pg);
1544 mutex_exit(&uvm_pageqlock);
1545 pg->flags &= ~(PG_BUSY|PG_FAKE);
1546 UVM_PAGE_OWN(pg, NULL);
1547
1548 /* deref: can not drop to zero here by defn! */
1549 oanon->an_ref--;
1550
1551 /*
1552 * note: oanon is still locked, as is the new anon. we
1553 * need to check for this later when we unlock oanon; if
1554 * oanon != anon, we'll have to unlock anon, too.
1555 */
1556
1557 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1558 }
1559
1560 static int
1561 uvm_fault_upper_direct(
1562 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1563 struct uvm_object *uobj, struct vm_anon *anon)
1564 {
1565 struct vm_anon * const oanon = anon;
1566 struct vm_page *pg;
1567
1568 uvmexp.flt_anon++;
1569 pg = anon->an_page;
1570 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1571 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1572
1573 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1574 }
1575
1576 static int
1577 uvm_fault_upper_enter(
1578 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1579 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1580 struct vm_anon *oanon)
1581 {
1582 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1583
1584 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1585 KASSERT(mutex_owned(&amap->am_l));
1586 KASSERT(mutex_owned(&anon->an_lock));
1587 KASSERT(mutex_owned(&oanon->an_lock));
1588
1589 /*
1590 * now map the page in.
1591 */
1592
1593 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1594 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
1595 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1596 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1597 != 0) {
1598
1599 /*
1600 * No need to undo what we did; we can simply think of
1601 * this as the pmap throwing away the mapping information.
1602 *
1603 * We do, however, have to go through the ReFault path,
1604 * as the map may change while we're asleep.
1605 */
1606
1607 if (anon != oanon)
1608 mutex_exit(&anon->an_lock);
1609 uvmfault_unlockall(ufi, amap, uobj, oanon);
1610 if (!uvm_reclaimable()) {
1611 UVMHIST_LOG(maphist,
1612 "<- failed. out of VM",0,0,0,0);
1613 /* XXX instrumentation */
1614 return ENOMEM;
1615 }
1616 /* XXX instrumentation */
1617 uvm_wait("flt_pmfail1");
1618 return ERESTART;
1619 }
1620
1621 return uvm_fault_upper_done(ufi, flt, uobj, anon, pg, oanon);
1622 }
1623
1624 static int
1625 uvm_fault_upper_done(
1626 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1627 struct uvm_object *uobj, struct vm_anon *anon,
1628 struct vm_page *pg, struct vm_anon *oanon)
1629 {
1630 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1631
1632 /*
1633 * ... update the page queues.
1634 */
1635
1636 mutex_enter(&uvm_pageqlock);
1637 if (flt->wire_paging) {
1638 uvm_pagewire(pg);
1639
1640 /*
1641 * since the now-wired page cannot be paged out,
1642 * release its swap resources for others to use.
1643 * since an anon with no swap cannot be PG_CLEAN,
1644 * clear its clean flag now.
1645 */
1646
1647 pg->flags &= ~(PG_CLEAN);
1648 uvm_anon_dropswap(anon);
1649 } else {
1650 uvm_pageactivate(pg);
1651 }
1652 mutex_exit(&uvm_pageqlock);
1653
1654 /*
1655 * done case 1! finish up by unlocking everything and returning success
1656 */
1657
1658 if (anon != oanon)
1659 mutex_exit(&anon->an_lock);
1660 uvmfault_unlockall(ufi, amap, uobj, oanon);
1661 pmap_update(ufi->orig_map->pmap);
1662 return 0;
1663 }
1664
1665 static int
1666 uvm_fault_lower1(
1667 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1668 struct uvm_object *uobj, struct vm_page *uobjpage)
1669 {
1670 #ifdef DIAGNOSTIC
1671 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1672 #endif
1673 bool promote;
1674 int error;
1675
1676 /*
1677 * handle case 2: faulting on backing object or zero fill
1678 */
1679
1680 /*
1681 * locked:
1682 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1683 */
1684 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1685 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1686 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1687
1688 /*
1689 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1690 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1691 * have a backing object, check and see if we are going to promote
1692 * the data up to an anon during the fault.
1693 */
1694
1695 if (uobj == NULL) {
1696 uobjpage = PGO_DONTCARE;
1697 promote = true; /* always need anon here */
1698 } else {
1699 KASSERT(uobjpage != PGO_DONTCARE);
1700 promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1701 }
1702 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1703 promote, (uobj == NULL), 0,0);
1704
1705 /*
1706 * if uobjpage is not null then we do not need to do I/O to get the
1707 * uobjpage.
1708 *
1709 * if uobjpage is null, then we need to unlock and ask the pager to
1710 * get the data for us. once we have the data, we need to reverify
1711 * the state the world. we are currently not holding any resources.
1712 */
1713
1714 if (uobjpage) {
1715 /* update rusage counters */
1716 curlwp->l_ru.ru_minflt++;
1717 } else {
1718 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1719 if (error != 0)
1720 return error;
1721 }
1722
1723 /*
1724 * locked:
1725 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1726 */
1727 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1728 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1729 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1730
1731 /*
1732 * notes:
1733 * - at this point uobjpage can not be NULL
1734 * - at this point uobjpage can not be PG_RELEASED (since we checked
1735 * for it above)
1736 * - at this point uobjpage could be PG_WANTED (handle later)
1737 */
1738
1739 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1740 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1741 (uobjpage->flags & PG_CLEAN) != 0);
1742
1743 if (promote == false) {
1744 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1745 } else {
1746 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1747 }
1748 return error;
1749 }
1750
1751 static int
1752 uvm_fault_lower_io(
1753 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1754 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1755 {
1756 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1757 struct uvm_object *uobj = *ruobj;
1758 struct vm_page *pg;
1759 bool locked;
1760 int gotpages;
1761 int error;
1762 voff_t uoff;
1763
1764 /* update rusage counters */
1765 curlwp->l_ru.ru_majflt++;
1766
1767 /* locked: maps(read), amap(if there), uobj */
1768 uvmfault_unlockall(ufi, amap, NULL, NULL);
1769 /* locked: uobj */
1770
1771 uvmexp.fltget++;
1772 gotpages = 1;
1773 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1774 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1775 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1776 PGO_SYNCIO);
1777 /* locked: pg(if no error) */
1778 KASSERT(error != 0 || (pg->flags & PG_BUSY) != 0);
1779
1780 /*
1781 * recover from I/O
1782 */
1783
1784 if (error) {
1785 if (error == EAGAIN) {
1786 UVMHIST_LOG(maphist,
1787 " pgo_get says TRY AGAIN!",0,0,0,0);
1788 kpause("fltagain2", false, hz/2, NULL);
1789 return ERESTART;
1790 }
1791
1792 #if 0
1793 KASSERT(error != ERESTART);
1794 #else
1795 /* XXXUEBS don't re-fault? */
1796 if (error == ERESTART)
1797 error = EIO;
1798 #endif
1799
1800 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1801 error, 0,0,0);
1802 return error;
1803 }
1804
1805 /* locked: pg */
1806
1807 mutex_enter(&uvm_pageqlock);
1808 uvm_pageactivate(pg);
1809 mutex_exit(&uvm_pageqlock);
1810
1811 /*
1812 * re-verify the state of the world by first trying to relock
1813 * the maps. always relock the object.
1814 */
1815
1816 locked = uvmfault_relock(ufi);
1817 if (locked && amap)
1818 amap_lock(amap);
1819
1820 /* might be changed */
1821 uobj = pg->uobject;
1822
1823 mutex_enter(&uobj->vmobjlock);
1824
1825 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1826 /* locked(!locked): uobj, pg */
1827
1828 /*
1829 * verify that the page has not be released and re-verify
1830 * that amap slot is still free. if there is a problem,
1831 * we unlock and clean up.
1832 */
1833
1834 if ((pg->flags & PG_RELEASED) != 0 ||
1835 (locked && amap && amap_lookup(&ufi->entry->aref,
1836 ufi->orig_rvaddr - ufi->entry->start))) {
1837 if (locked)
1838 uvmfault_unlockall(ufi, amap, NULL, NULL);
1839 locked = false;
1840 }
1841
1842 /*
1843 * didn't get the lock? release the page and retry.
1844 */
1845
1846 if (locked == false) {
1847 UVMHIST_LOG(maphist,
1848 " wasn't able to relock after fault: retry",
1849 0,0,0,0);
1850 if (pg->flags & PG_WANTED) {
1851 wakeup(pg);
1852 }
1853 if (pg->flags & PG_RELEASED) {
1854 uvmexp.fltpgrele++;
1855 uvm_pagefree(pg);
1856 mutex_exit(&uobj->vmobjlock);
1857 return ERESTART;
1858 }
1859 pg->flags &= ~(PG_BUSY|PG_WANTED);
1860 UVM_PAGE_OWN(pg, NULL);
1861 mutex_exit(&uobj->vmobjlock);
1862 return ERESTART;
1863 }
1864
1865 /*
1866 * we have the data in pg which is busy and
1867 * not released. we are holding object lock (so the page
1868 * can't be released on us).
1869 */
1870
1871 /* locked: maps(read), amap(if !null), uobj, pg */
1872
1873 *ruobj = uobj;
1874 *ruobjpage = pg;
1875 return 0;
1876 }
1877
1878 int
1879 uvm_fault_lower_direct(
1880 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1881 struct uvm_object *uobj, struct vm_page *uobjpage)
1882 {
1883 struct vm_page *pg;
1884
1885 /*
1886 * we are not promoting. if the mapping is COW ensure that we
1887 * don't give more access than we should (e.g. when doing a read
1888 * fault on a COPYONWRITE mapping we want to map the COW page in
1889 * R/O even though the entry protection could be R/W).
1890 *
1891 * set "pg" to the page we want to map in (uobjpage, usually)
1892 */
1893
1894 uvmexp.flt_obj++;
1895 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1896 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1897 flt->enter_prot &= ~VM_PROT_WRITE;
1898 pg = uobjpage; /* map in the actual object */
1899
1900 KASSERT(uobjpage != PGO_DONTCARE);
1901
1902 /*
1903 * we are faulting directly on the page. be careful
1904 * about writing to loaned pages...
1905 */
1906
1907 if (uobjpage->loan_count) {
1908 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1909 }
1910 KASSERT(pg == uobjpage);
1911
1912 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1913 }
1914
1915 static int
1916 uvm_fault_lower_direct_loan(
1917 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1918 struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage)
1919 {
1920 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1921 struct vm_page *pg;
1922 struct vm_page *uobjpage = *ruobjpage;
1923
1924 if (!flt->cow_now) {
1925 /* read fault: cap the protection at readonly */
1926 /* cap! */
1927 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1928 } else {
1929 /* write fault: must break the loan here */
1930
1931 pg = uvm_loanbreak(uobjpage);
1932 if (pg == NULL) {
1933
1934 /*
1935 * drop ownership of page, it can't be released
1936 */
1937
1938 if (uobjpage->flags & PG_WANTED)
1939 wakeup(uobjpage);
1940 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1941 UVM_PAGE_OWN(uobjpage, NULL);
1942
1943 uvmfault_unlockall(ufi, amap, uobj, NULL);
1944 UVMHIST_LOG(maphist,
1945 " out of RAM breaking loan, waiting",
1946 0,0,0,0);
1947 uvmexp.fltnoram++;
1948 uvm_wait("flt_noram4");
1949 return ERESTART;
1950 }
1951 *rpg = pg;
1952 *ruobjpage = pg;
1953 }
1954 return 0;
1955 }
1956
1957 int
1958 uvm_fault_lower_promote(
1959 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1960 struct uvm_object *uobj, struct vm_page *uobjpage)
1961 {
1962 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1963 struct vm_anon *anon;
1964 struct vm_page *pg;
1965 int error;
1966
1967 /*
1968 * if we are going to promote the data to an anon we
1969 * allocate a blank anon here and plug it into our amap.
1970 */
1971 #if DIAGNOSTIC
1972 if (amap == NULL)
1973 panic("uvm_fault: want to promote data, but no anon");
1974 #endif
1975 error = uvmfault_promote(ufi, NULL, uobjpage,
1976 &anon, &flt->anon_spare);
1977 switch (error) {
1978 case 0:
1979 break;
1980 case ERESTART:
1981 return ERESTART;
1982 default:
1983 return error;
1984 }
1985
1986 pg = anon->an_page;
1987
1988 /*
1989 * fill in the data
1990 */
1991
1992 if (uobjpage != PGO_DONTCARE) {
1993 uvmexp.flt_prcopy++;
1994
1995 /*
1996 * promote to shared amap? make sure all sharing
1997 * procs see it
1998 */
1999
2000 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2001 pmap_page_protect(uobjpage, VM_PROT_NONE);
2002 /*
2003 * XXX: PAGE MIGHT BE WIRED!
2004 */
2005 }
2006
2007 /*
2008 * dispose of uobjpage. it can't be PG_RELEASED
2009 * since we still hold the object lock.
2010 * drop handle to uobj as well.
2011 */
2012
2013 if (uobjpage->flags & PG_WANTED)
2014 /* still have the obj lock */
2015 wakeup(uobjpage);
2016 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2017 UVM_PAGE_OWN(uobjpage, NULL);
2018 mutex_exit(&uobj->vmobjlock);
2019 uobj = NULL;
2020
2021 UVMHIST_LOG(maphist,
2022 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2023 uobjpage, anon, pg, 0);
2024
2025 } else {
2026 uvmexp.flt_przero++;
2027
2028 /*
2029 * Page is zero'd and marked dirty by
2030 * uvmfault_promote().
2031 */
2032
2033 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2034 anon, pg, 0, 0);
2035 }
2036
2037 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage);
2038 }
2039
2040 int
2041 uvm_fault_lower_enter(
2042 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2043 struct uvm_object *uobj,
2044 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2045 {
2046 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2047 int error;
2048
2049 /*
2050 * locked:
2051 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2052 * anon(if !null), pg(if anon)
2053 *
2054 * note: pg is either the uobjpage or the new page in the new anon
2055 */
2056 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2057 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2058 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2059 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2060 KASSERT((pg->flags & PG_BUSY) != 0);
2061
2062 /*
2063 * all resources are present. we can now map it in and free our
2064 * resources.
2065 */
2066
2067 UVMHIST_LOG(maphist,
2068 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2069 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, promote);
2070 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2071 (pg->flags & PG_RDONLY) == 0);
2072 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
2073 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2074 flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2075
2076 /*
2077 * No need to undo what we did; we can simply think of
2078 * this as the pmap throwing away the mapping information.
2079 *
2080 * We do, however, have to go through the ReFault path,
2081 * as the map may change while we're asleep.
2082 */
2083
2084 if (pg->flags & PG_WANTED)
2085 wakeup(pg);
2086
2087 /*
2088 * note that pg can't be PG_RELEASED since we did not drop
2089 * the object lock since the last time we checked.
2090 */
2091 KASSERT((pg->flags & PG_RELEASED) == 0);
2092
2093 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2094 UVM_PAGE_OWN(pg, NULL);
2095 uvmfault_unlockall(ufi, amap, uobj, anon);
2096 if (!uvm_reclaimable()) {
2097 UVMHIST_LOG(maphist,
2098 "<- failed. out of VM",0,0,0,0);
2099 /* XXX instrumentation */
2100 error = ENOMEM;
2101 return error;
2102 }
2103 /* XXX instrumentation */
2104 uvm_wait("flt_pmfail2");
2105 return ERESTART;
2106 }
2107
2108 return uvm_fault_lower_done(ufi, flt, uobj, anon, pg);
2109 }
2110
2111 int
2112 uvm_fault_lower_done(
2113 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2114 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2115 {
2116 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2117
2118 mutex_enter(&uvm_pageqlock);
2119 if (flt->wire_paging) {
2120 uvm_pagewire(pg);
2121 if (pg->pqflags & PQ_AOBJ) {
2122
2123 /*
2124 * since the now-wired page cannot be paged out,
2125 * release its swap resources for others to use.
2126 * since an aobj page with no swap cannot be PG_CLEAN,
2127 * clear its clean flag now.
2128 */
2129
2130 KASSERT(uobj != NULL);
2131 pg->flags &= ~(PG_CLEAN);
2132 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2133 }
2134 } else {
2135 uvm_pageactivate(pg);
2136 }
2137 mutex_exit(&uvm_pageqlock);
2138 if (pg->flags & PG_WANTED)
2139 wakeup(pg);
2140
2141 /*
2142 * note that pg can't be PG_RELEASED since we did not drop the object
2143 * lock since the last time we checked.
2144 */
2145 KASSERT((pg->flags & PG_RELEASED) == 0);
2146
2147 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2148 UVM_PAGE_OWN(pg, NULL);
2149 uvmfault_unlockall(ufi, amap, uobj, anon);
2150 pmap_update(ufi->orig_map->pmap);
2151 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2152 return 0;
2153 }
2154
2155
2156 /*
2157 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2158 *
2159 * => map may be read-locked by caller, but MUST NOT be write-locked.
2160 * => if map is read-locked, any operations which may cause map to
2161 * be write-locked in uvm_fault() must be taken care of by
2162 * the caller. See uvm_map_pageable().
2163 */
2164
2165 int
2166 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2167 vm_prot_t access_type, int maxprot)
2168 {
2169 vaddr_t va;
2170 int error;
2171
2172 /*
2173 * now fault it in a page at a time. if the fault fails then we have
2174 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2175 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2176 */
2177
2178 /*
2179 * XXX work around overflowing a vaddr_t. this prevents us from
2180 * wiring the last page in the address space, though.
2181 */
2182 if (start > end) {
2183 return EFAULT;
2184 }
2185
2186 for (va = start; va < end; va += PAGE_SIZE) {
2187 error = uvm_fault_internal(map, va, access_type,
2188 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2189 if (error) {
2190 if (va != start) {
2191 uvm_fault_unwire(map, start, va);
2192 }
2193 return error;
2194 }
2195 }
2196 return 0;
2197 }
2198
2199 /*
2200 * uvm_fault_unwire(): unwire range of virtual space.
2201 */
2202
2203 void
2204 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2205 {
2206 vm_map_lock_read(map);
2207 uvm_fault_unwire_locked(map, start, end);
2208 vm_map_unlock_read(map);
2209 }
2210
2211 /*
2212 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2213 *
2214 * => map must be at least read-locked.
2215 */
2216
2217 void
2218 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2219 {
2220 struct vm_map_entry *entry;
2221 pmap_t pmap = vm_map_pmap(map);
2222 vaddr_t va;
2223 paddr_t pa;
2224 struct vm_page *pg;
2225
2226 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2227
2228 /*
2229 * we assume that the area we are unwiring has actually been wired
2230 * in the first place. this means that we should be able to extract
2231 * the PAs from the pmap. we also lock out the page daemon so that
2232 * we can call uvm_pageunwire.
2233 */
2234
2235 mutex_enter(&uvm_pageqlock);
2236
2237 /*
2238 * find the beginning map entry for the region.
2239 */
2240
2241 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2242 if (uvm_map_lookup_entry(map, start, &entry) == false)
2243 panic("uvm_fault_unwire_locked: address not in map");
2244
2245 for (va = start; va < end; va += PAGE_SIZE) {
2246 if (pmap_extract(pmap, va, &pa) == false)
2247 continue;
2248
2249 /*
2250 * find the map entry for the current address.
2251 */
2252
2253 KASSERT(va >= entry->start);
2254 while (va >= entry->end) {
2255 KASSERT(entry->next != &map->header &&
2256 entry->next->start <= entry->end);
2257 entry = entry->next;
2258 }
2259
2260 /*
2261 * if the entry is no longer wired, tell the pmap.
2262 */
2263
2264 if (VM_MAPENT_ISWIRED(entry) == 0)
2265 pmap_unwire(pmap, va);
2266
2267 pg = PHYS_TO_VM_PAGE(pa);
2268 if (pg)
2269 uvm_pageunwire(pg);
2270 }
2271
2272 mutex_exit(&uvm_pageqlock);
2273 }
2274