Home | History | Annotate | Line # | Download | only in uvm
uvm_fault.c revision 1.166
      1 /*	$NetBSD: uvm_fault.c,v 1.166 2010/02/08 00:02:50 mlelstv Exp $	*/
      2 
      3 /*
      4  *
      5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
     35  */
     36 
     37 /*
     38  * uvm_fault.c: fault handler
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.166 2010/02/08 00:02:50 mlelstv Exp $");
     43 
     44 #include "opt_uvmhist.h"
     45 
     46 #include <sys/param.h>
     47 #include <sys/systm.h>
     48 #include <sys/kernel.h>
     49 #include <sys/proc.h>
     50 #include <sys/malloc.h>
     51 #include <sys/mman.h>
     52 
     53 #include <uvm/uvm.h>
     54 
     55 /*
     56  *
     57  * a word on page faults:
     58  *
     59  * types of page faults we handle:
     60  *
     61  * CASE 1: upper layer faults                   CASE 2: lower layer faults
     62  *
     63  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
     64  *    read/write1     write>1                  read/write   +-cow_write/zero
     65  *         |             |                         |        |
     66  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
     67  * amap |  V  |       |  ---------> new |          |        | |  ^  |
     68  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
     69  *                                                 |        |    |
     70  *      +-----+       +-----+                   +--|--+     | +--|--+
     71  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
     72  *      +-----+       +-----+                   +-----+       +-----+
     73  *
     74  * d/c = don't care
     75  *
     76  *   case [0]: layerless fault
     77  *	no amap or uobj is present.   this is an error.
     78  *
     79  *   case [1]: upper layer fault [anon active]
     80  *     1A: [read] or [write with anon->an_ref == 1]
     81  *		I/O takes place in upper level anon and uobj is not touched.
     82  *     1B: [write with anon->an_ref > 1]
     83  *		new anon is alloc'd and data is copied off ["COW"]
     84  *
     85  *   case [2]: lower layer fault [uobj]
     86  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
     87  *		I/O takes place directly in object.
     88  *     2B: [write to copy_on_write] or [read on NULL uobj]
     89  *		data is "promoted" from uobj to a new anon.
     90  *		if uobj is null, then we zero fill.
     91  *
     92  * we follow the standard UVM locking protocol ordering:
     93  *
     94  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
     95  * we hold a PG_BUSY page if we unlock for I/O
     96  *
     97  *
     98  * the code is structured as follows:
     99  *
    100  *     - init the "IN" params in the ufi structure
    101  *   ReFault:
    102  *     - do lookups [locks maps], check protection, handle needs_copy
    103  *     - check for case 0 fault (error)
    104  *     - establish "range" of fault
    105  *     - if we have an amap lock it and extract the anons
    106  *     - if sequential advice deactivate pages behind us
    107  *     - at the same time check pmap for unmapped areas and anon for pages
    108  *	 that we could map in (and do map it if found)
    109  *     - check object for resident pages that we could map in
    110  *     - if (case 2) goto Case2
    111  *     - >>> handle case 1
    112  *           - ensure source anon is resident in RAM
    113  *           - if case 1B alloc new anon and copy from source
    114  *           - map the correct page in
    115  *   Case2:
    116  *     - >>> handle case 2
    117  *           - ensure source page is resident (if uobj)
    118  *           - if case 2B alloc new anon and copy from source (could be zero
    119  *		fill if uobj == NULL)
    120  *           - map the correct page in
    121  *     - done!
    122  *
    123  * note on paging:
    124  *   if we have to do I/O we place a PG_BUSY page in the correct object,
    125  * unlock everything, and do the I/O.   when I/O is done we must reverify
    126  * the state of the world before assuming that our data structures are
    127  * valid.   [because mappings could change while the map is unlocked]
    128  *
    129  *  alternative 1: unbusy the page in question and restart the page fault
    130  *    from the top (ReFault).   this is easy but does not take advantage
    131  *    of the information that we already have from our previous lookup,
    132  *    although it is possible that the "hints" in the vm_map will help here.
    133  *
    134  * alternative 2: the system already keeps track of a "version" number of
    135  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
    136  *    mapping) you bump the version number up by one...]   so, we can save
    137  *    the version number of the map before we release the lock and start I/O.
    138  *    then when I/O is done we can relock and check the version numbers
    139  *    to see if anything changed.    this might save us some over 1 because
    140  *    we don't have to unbusy the page and may be less compares(?).
    141  *
    142  * alternative 3: put in backpointers or a way to "hold" part of a map
    143  *    in place while I/O is in progress.   this could be complex to
    144  *    implement (especially with structures like amap that can be referenced
    145  *    by multiple map entries, and figuring out what should wait could be
    146  *    complex as well...).
    147  *
    148  * we use alternative 2.  given that we are multi-threaded now we may want
    149  * to reconsider the choice.
    150  */
    151 
    152 /*
    153  * local data structures
    154  */
    155 
    156 struct uvm_advice {
    157 	int advice;
    158 	int nback;
    159 	int nforw;
    160 };
    161 
    162 /*
    163  * page range array:
    164  * note: index in array must match "advice" value
    165  * XXX: borrowed numbers from freebsd.   do they work well for us?
    166  */
    167 
    168 static const struct uvm_advice uvmadvice[] = {
    169 	{ MADV_NORMAL, 3, 4 },
    170 	{ MADV_RANDOM, 0, 0 },
    171 	{ MADV_SEQUENTIAL, 8, 7},
    172 };
    173 
    174 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
    175 
    176 /*
    177  * private prototypes
    178  */
    179 
    180 /*
    181  * inline functions
    182  */
    183 
    184 /*
    185  * uvmfault_anonflush: try and deactivate pages in specified anons
    186  *
    187  * => does not have to deactivate page if it is busy
    188  */
    189 
    190 static inline void
    191 uvmfault_anonflush(struct vm_anon **anons, int n)
    192 {
    193 	int lcv;
    194 	struct vm_page *pg;
    195 
    196 	for (lcv = 0; lcv < n; lcv++) {
    197 		if (anons[lcv] == NULL)
    198 			continue;
    199 		mutex_enter(&anons[lcv]->an_lock);
    200 		pg = anons[lcv]->an_page;
    201 		if (pg && (pg->flags & PG_BUSY) == 0) {
    202 			mutex_enter(&uvm_pageqlock);
    203 			if (pg->wire_count == 0) {
    204 				uvm_pagedeactivate(pg);
    205 			}
    206 			mutex_exit(&uvm_pageqlock);
    207 		}
    208 		mutex_exit(&anons[lcv]->an_lock);
    209 	}
    210 }
    211 
    212 /*
    213  * normal functions
    214  */
    215 
    216 /*
    217  * uvmfault_amapcopy: clear "needs_copy" in a map.
    218  *
    219  * => called with VM data structures unlocked (usually, see below)
    220  * => we get a write lock on the maps and clear needs_copy for a VA
    221  * => if we are out of RAM we sleep (waiting for more)
    222  */
    223 
    224 static void
    225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
    226 {
    227 	for (;;) {
    228 
    229 		/*
    230 		 * no mapping?  give up.
    231 		 */
    232 
    233 		if (uvmfault_lookup(ufi, true) == false)
    234 			return;
    235 
    236 		/*
    237 		 * copy if needed.
    238 		 */
    239 
    240 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
    241 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
    242 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
    243 
    244 		/*
    245 		 * didn't work?  must be out of RAM.   unlock and sleep.
    246 		 */
    247 
    248 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
    249 			uvmfault_unlockmaps(ufi, true);
    250 			uvm_wait("fltamapcopy");
    251 			continue;
    252 		}
    253 
    254 		/*
    255 		 * got it!   unlock and return.
    256 		 */
    257 
    258 		uvmfault_unlockmaps(ufi, true);
    259 		return;
    260 	}
    261 	/*NOTREACHED*/
    262 }
    263 
    264 /*
    265  * uvmfault_anonget: get data in an anon into a non-busy, non-released
    266  * page in that anon.
    267  *
    268  * => maps, amap, and anon locked by caller.
    269  * => if we fail (result != 0) we unlock everything.
    270  * => if we are successful, we return with everything still locked.
    271  * => we don't move the page on the queues [gets moved later]
    272  * => if we allocate a new page [we_own], it gets put on the queues.
    273  *    either way, the result is that the page is on the queues at return time
    274  * => for pages which are on loan from a uvm_object (and thus are not
    275  *    owned by the anon): if successful, we return with the owning object
    276  *    locked.   the caller must unlock this object when it unlocks everything
    277  *    else.
    278  */
    279 
    280 int
    281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
    282     struct vm_anon *anon)
    283 {
    284 	bool we_own;	/* we own anon's page? */
    285 	bool locked;	/* did we relock? */
    286 	struct vm_page *pg;
    287 	int error;
    288 	UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
    289 
    290 	KASSERT(mutex_owned(&anon->an_lock));
    291 
    292 	error = 0;
    293 	uvmexp.fltanget++;
    294         /* bump rusage counters */
    295 	if (anon->an_page)
    296 		curlwp->l_ru.ru_minflt++;
    297 	else
    298 		curlwp->l_ru.ru_majflt++;
    299 
    300 	/*
    301 	 * loop until we get it, or fail.
    302 	 */
    303 
    304 	for (;;) {
    305 		we_own = false;		/* true if we set PG_BUSY on a page */
    306 		pg = anon->an_page;
    307 
    308 		/*
    309 		 * if there is a resident page and it is loaned, then anon
    310 		 * may not own it.   call out to uvm_anon_lockpage() to ensure
    311 		 * the real owner of the page has been identified and locked.
    312 		 */
    313 
    314 		if (pg && pg->loan_count)
    315 			pg = uvm_anon_lockloanpg(anon);
    316 
    317 		/*
    318 		 * page there?   make sure it is not busy/released.
    319 		 */
    320 
    321 		if (pg) {
    322 
    323 			/*
    324 			 * at this point, if the page has a uobject [meaning
    325 			 * we have it on loan], then that uobject is locked
    326 			 * by us!   if the page is busy, we drop all the
    327 			 * locks (including uobject) and try again.
    328 			 */
    329 
    330 			if ((pg->flags & PG_BUSY) == 0) {
    331 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
    332 				return (0);
    333 			}
    334 			pg->flags |= PG_WANTED;
    335 			uvmexp.fltpgwait++;
    336 
    337 			/*
    338 			 * the last unlock must be an atomic unlock+wait on
    339 			 * the owner of page
    340 			 */
    341 
    342 			if (pg->uobject) {	/* owner is uobject ? */
    343 				uvmfault_unlockall(ufi, amap, NULL, anon);
    344 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
    345 				    0,0,0);
    346 				UVM_UNLOCK_AND_WAIT(pg,
    347 				    &pg->uobject->vmobjlock,
    348 				    false, "anonget1",0);
    349 			} else {
    350 				/* anon owns page */
    351 				uvmfault_unlockall(ufi, amap, NULL, NULL);
    352 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
    353 				    0,0,0);
    354 				UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
    355 				    "anonget2",0);
    356 			}
    357 		} else {
    358 #if defined(VMSWAP)
    359 
    360 			/*
    361 			 * no page, we must try and bring it in.
    362 			 */
    363 
    364 			pg = uvm_pagealloc(NULL, 0, anon, 0);
    365 			if (pg == NULL) {		/* out of RAM.  */
    366 				uvmfault_unlockall(ufi, amap, NULL, anon);
    367 				uvmexp.fltnoram++;
    368 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
    369 				    0,0,0);
    370 				if (!uvm_reclaimable()) {
    371 					return ENOMEM;
    372 				}
    373 				uvm_wait("flt_noram1");
    374 			} else {
    375 				/* we set the PG_BUSY bit */
    376 				we_own = true;
    377 				uvmfault_unlockall(ufi, amap, NULL, anon);
    378 
    379 				/*
    380 				 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
    381 				 * page into the uvm_swap_get function with
    382 				 * all data structures unlocked.  note that
    383 				 * it is ok to read an_swslot here because
    384 				 * we hold PG_BUSY on the page.
    385 				 */
    386 				uvmexp.pageins++;
    387 				error = uvm_swap_get(pg, anon->an_swslot,
    388 				    PGO_SYNCIO);
    389 
    390 				/*
    391 				 * we clean up after the i/o below in the
    392 				 * "we_own" case
    393 				 */
    394 			}
    395 #else /* defined(VMSWAP) */
    396 			panic("%s: no page", __func__);
    397 #endif /* defined(VMSWAP) */
    398 		}
    399 
    400 		/*
    401 		 * now relock and try again
    402 		 */
    403 
    404 		locked = uvmfault_relock(ufi);
    405 		if (locked && amap != NULL) {
    406 			amap_lock(amap);
    407 		}
    408 		if (locked || we_own)
    409 			mutex_enter(&anon->an_lock);
    410 
    411 		/*
    412 		 * if we own the page (i.e. we set PG_BUSY), then we need
    413 		 * to clean up after the I/O. there are three cases to
    414 		 * consider:
    415 		 *   [1] page released during I/O: free anon and ReFault.
    416 		 *   [2] I/O not OK.   free the page and cause the fault
    417 		 *       to fail.
    418 		 *   [3] I/O OK!   activate the page and sync with the
    419 		 *       non-we_own case (i.e. drop anon lock if not locked).
    420 		 */
    421 
    422 		if (we_own) {
    423 #if defined(VMSWAP)
    424 			if (pg->flags & PG_WANTED) {
    425 				wakeup(pg);
    426 			}
    427 			if (error) {
    428 
    429 				/*
    430 				 * remove the swap slot from the anon
    431 				 * and mark the anon as having no real slot.
    432 				 * don't free the swap slot, thus preventing
    433 				 * it from being used again.
    434 				 */
    435 
    436 				if (anon->an_swslot > 0)
    437 					uvm_swap_markbad(anon->an_swslot, 1);
    438 				anon->an_swslot = SWSLOT_BAD;
    439 
    440 				if ((pg->flags & PG_RELEASED) != 0)
    441 					goto released;
    442 
    443 				/*
    444 				 * note: page was never !PG_BUSY, so it
    445 				 * can't be mapped and thus no need to
    446 				 * pmap_page_protect it...
    447 				 */
    448 
    449 				mutex_enter(&uvm_pageqlock);
    450 				uvm_pagefree(pg);
    451 				mutex_exit(&uvm_pageqlock);
    452 
    453 				if (locked)
    454 					uvmfault_unlockall(ufi, amap, NULL,
    455 					    anon);
    456 				else
    457 					mutex_exit(&anon->an_lock);
    458 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
    459 				return error;
    460 			}
    461 
    462 			if ((pg->flags & PG_RELEASED) != 0) {
    463 released:
    464 				KASSERT(anon->an_ref == 0);
    465 
    466 				/*
    467 				 * released while we unlocked amap.
    468 				 */
    469 
    470 				if (locked)
    471 					uvmfault_unlockall(ufi, amap, NULL,
    472 					    NULL);
    473 
    474 				uvm_anon_release(anon);
    475 
    476 				if (error) {
    477 					UVMHIST_LOG(maphist,
    478 					    "<- ERROR/RELEASED", 0,0,0,0);
    479 					return error;
    480 				}
    481 
    482 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
    483 				return ERESTART;
    484 			}
    485 
    486 			/*
    487 			 * we've successfully read the page, activate it.
    488 			 */
    489 
    490 			mutex_enter(&uvm_pageqlock);
    491 			uvm_pageactivate(pg);
    492 			mutex_exit(&uvm_pageqlock);
    493 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    494 			UVM_PAGE_OWN(pg, NULL);
    495 			if (!locked)
    496 				mutex_exit(&anon->an_lock);
    497 #else /* defined(VMSWAP) */
    498 			panic("%s: we_own", __func__);
    499 #endif /* defined(VMSWAP) */
    500 		}
    501 
    502 		/*
    503 		 * we were not able to relock.   restart fault.
    504 		 */
    505 
    506 		if (!locked) {
    507 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    508 			return (ERESTART);
    509 		}
    510 
    511 		/*
    512 		 * verify no one has touched the amap and moved the anon on us.
    513 		 */
    514 
    515 		if (ufi != NULL &&
    516 		    amap_lookup(&ufi->entry->aref,
    517 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
    518 
    519 			uvmfault_unlockall(ufi, amap, NULL, anon);
    520 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    521 			return (ERESTART);
    522 		}
    523 
    524 		/*
    525 		 * try it again!
    526 		 */
    527 
    528 		uvmexp.fltanretry++;
    529 		continue;
    530 	}
    531 	/*NOTREACHED*/
    532 }
    533 
    534 /*
    535  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
    536  *
    537  *	1. allocate an anon and a page.
    538  *	2. fill its contents.
    539  *	3. put it into amap.
    540  *
    541  * => if we fail (result != 0) we unlock everything.
    542  * => on success, return a new locked anon via 'nanon'.
    543  *    (*nanon)->an_page will be a resident, locked, dirty page.
    544  */
    545 
    546 static int
    547 uvmfault_promote(struct uvm_faultinfo *ufi,
    548     struct vm_anon *oanon,
    549     struct vm_page *uobjpage,
    550     struct vm_anon **nanon, /* OUT: allocated anon */
    551     struct vm_anon **spare)
    552 {
    553 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
    554 	struct uvm_object *uobj;
    555 	struct vm_anon *anon;
    556 	struct vm_page *pg;
    557 	struct vm_page *opg;
    558 	int error;
    559 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    560 
    561 	if (oanon) {
    562 		/* anon COW */
    563 		opg = oanon->an_page;
    564 		KASSERT(opg != NULL);
    565 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
    566 	} else if (uobjpage != PGO_DONTCARE) {
    567 		/* object-backed COW */
    568 		opg = uobjpage;
    569 	} else {
    570 		/* ZFOD */
    571 		opg = NULL;
    572 	}
    573 	if (opg != NULL) {
    574 		uobj = opg->uobject;
    575 	} else {
    576 		uobj = NULL;
    577 	}
    578 
    579 	KASSERT(amap != NULL);
    580 	KASSERT(uobjpage != NULL);
    581 	KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
    582 	KASSERT(mutex_owned(&amap->am_l));
    583 	KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
    584 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
    585 #if 0
    586 	KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
    587 #endif
    588 
    589 	if (*spare != NULL) {
    590 		anon = *spare;
    591 		*spare = NULL;
    592 		mutex_enter(&anon->an_lock);
    593 	} else if (ufi->map != kernel_map) {
    594 		anon = uvm_analloc();
    595 	} else {
    596 		UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
    597 
    598 		/*
    599 		 * we can't allocate anons with kernel_map locked.
    600 		 */
    601 
    602 		uvm_page_unbusy(&uobjpage, 1);
    603 		uvmfault_unlockall(ufi, amap, uobj, oanon);
    604 
    605 		*spare = uvm_analloc();
    606 		if (*spare == NULL) {
    607 			goto nomem;
    608 		}
    609 		mutex_exit(&(*spare)->an_lock);
    610 		error = ERESTART;
    611 		goto done;
    612 	}
    613 	if (anon) {
    614 
    615 		/*
    616 		 * The new anon is locked.
    617 		 *
    618 		 * if opg == NULL, we want a zero'd, dirty page,
    619 		 * so have uvm_pagealloc() do that for us.
    620 		 */
    621 
    622 		pg = uvm_pagealloc(NULL, 0, anon,
    623 		    (opg == NULL) ? UVM_PGA_ZERO : 0);
    624 	} else {
    625 		pg = NULL;
    626 	}
    627 
    628 	/*
    629 	 * out of memory resources?
    630 	 */
    631 
    632 	if (pg == NULL) {
    633 		/* save anon for the next try. */
    634 		if (anon != NULL) {
    635 			mutex_exit(&anon->an_lock);
    636 			*spare = anon;
    637 		}
    638 
    639 		/* unlock and fail ... */
    640 		uvm_page_unbusy(&uobjpage, 1);
    641 		uvmfault_unlockall(ufi, amap, uobj, oanon);
    642 nomem:
    643 		if (!uvm_reclaimable()) {
    644 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
    645 			uvmexp.fltnoanon++;
    646 			error = ENOMEM;
    647 			goto done;
    648 		}
    649 
    650 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
    651 		uvmexp.fltnoram++;
    652 		uvm_wait("flt_noram5");
    653 		error = ERESTART;
    654 		goto done;
    655 	}
    656 
    657 	/* copy page [pg now dirty] */
    658 	if (opg) {
    659 		uvm_pagecopy(opg, pg);
    660 	}
    661 
    662 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
    663 	    oanon != NULL);
    664 
    665 	*nanon = anon;
    666 	error = 0;
    667 done:
    668 	return error;
    669 }
    670 
    671 
    672 /*
    673  *   F A U L T   -   m a i n   e n t r y   p o i n t
    674  */
    675 
    676 /*
    677  * uvm_fault: page fault handler
    678  *
    679  * => called from MD code to resolve a page fault
    680  * => VM data structures usually should be unlocked.   however, it is
    681  *	possible to call here with the main map locked if the caller
    682  *	gets a write lock, sets it recusive, and then calls us (c.f.
    683  *	uvm_map_pageable).   this should be avoided because it keeps
    684  *	the map locked off during I/O.
    685  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
    686  */
    687 
    688 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
    689 			 ~VM_PROT_WRITE : VM_PROT_ALL)
    690 
    691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
    692 #define UVM_FAULT_WIRE		(1 << 0)
    693 #define UVM_FAULT_MAXPROT	(1 << 1)
    694 
    695 struct uvm_faultctx {
    696 	vm_prot_t access_type;
    697 	vm_prot_t enter_prot;
    698 	vaddr_t startva;
    699 	int npages;
    700 	int centeridx;
    701 	struct vm_anon *anon_spare;
    702 	bool wire_mapping;
    703 	bool narrow;
    704 	bool wire_paging;
    705 	bool maxprot;
    706 	bool cow_now;
    707 };
    708 
    709 static inline int	uvm_fault_check(
    710 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    711 			    struct vm_anon ***, struct vm_page ***);
    712 
    713 static int		uvm_fault_upper(
    714 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    715 			    struct vm_anon **);
    716 static inline int	uvm_fault_upper_lookup(
    717 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    718 			    struct vm_anon **, struct vm_page **);
    719 static inline void	uvm_fault_upper_neighbor(
    720 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    721 			    vaddr_t, struct vm_page *, bool);
    722 static inline int	uvm_fault_upper_loan(
    723 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    724 			    struct vm_anon *, struct uvm_object **);
    725 static inline int	uvm_fault_upper_promote(
    726 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    727 			    struct uvm_object *, struct vm_anon *);
    728 static inline int	uvm_fault_upper_direct(
    729 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    730 			    struct uvm_object *, struct vm_anon *);
    731 static int		uvm_fault_upper_enter(
    732 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    733 			    struct uvm_object *, struct vm_anon *,
    734 			    struct vm_page *, struct vm_anon *);
    735 static inline int	uvm_fault_upper_done(
    736 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    737 			    struct uvm_object *, struct vm_anon *,
    738 			    struct vm_page *, struct vm_anon *);
    739 
    740 static int		uvm_fault_lower(
    741 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    742 			    struct vm_page **);
    743 static inline int	uvm_fault_lower_special(
    744 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    745 			    struct vm_page **);
    746 static inline		int uvm_fault_lower_lookup(
    747 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    748 			    struct vm_page **);
    749 static inline void	uvm_fault_lower_neighbor(
    750 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    751 			    vaddr_t, struct vm_page *, bool);
    752 static inline int	uvm_fault_lower_generic(
    753 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    754 			    struct vm_page **);
    755 static inline int	uvm_fault_lower1(
    756 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    757 			    struct uvm_object *, struct vm_page *);
    758 static inline int	uvm_fault_lower_io(
    759 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    760 			    struct uvm_object **, struct vm_page **);
    761 static inline int	uvm_fault_lower_direct(
    762 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    763 			    struct uvm_object *, struct vm_page *);
    764 static inline int	uvm_fault_lower_direct_loan(
    765 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    766 			    struct uvm_object *, struct vm_page **,
    767 			    struct vm_page **);
    768 static inline int	uvm_fault_lower_promote(
    769 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    770 			    struct uvm_object *, struct vm_page *);
    771 static int		uvm_fault_lower_enter(
    772 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    773 			    struct uvm_object *,
    774 			    struct vm_anon *, struct vm_page *,
    775 			    struct vm_page *);
    776 static inline int	uvm_fault_lower_done(
    777 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    778 			    struct uvm_object *,
    779 			    struct vm_anon *, struct vm_page *);
    780 
    781 int
    782 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
    783     vm_prot_t access_type, int fault_flag)
    784 {
    785 	struct uvm_faultinfo ufi;
    786 	struct uvm_faultctx flt = {
    787 		.access_type = access_type,
    788 
    789 		/* don't look for neighborhood * pages on "wire" fault */
    790 		.narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
    791 
    792 		/* "wire" fault causes wiring of both mapping and paging */
    793 		.wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
    794 		.wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
    795 
    796 		.maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
    797 	};
    798 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
    799 	struct vm_page *pages_store[UVM_MAXRANGE], **pages;
    800 	int error;
    801 	UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
    802 
    803 	UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
    804 	      orig_map, vaddr, access_type, fault_flag);
    805 
    806 	uvmexp.faults++;	/* XXX: locking? */
    807 
    808 	/*
    809 	 * init the IN parameters in the ufi
    810 	 */
    811 
    812 	ufi.orig_map = orig_map;
    813 	ufi.orig_rvaddr = trunc_page(vaddr);
    814 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
    815 
    816 	error = ERESTART;
    817 	while (error == ERESTART) {
    818 		anons = anons_store;
    819 		pages = pages_store;
    820 
    821 		error = uvm_fault_check(&ufi, &flt, &anons, &pages);
    822 		if (error != 0)
    823 			continue;
    824 
    825 		error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
    826 		if (error != 0)
    827 			continue;
    828 
    829 		if (pages[flt.centeridx] == PGO_DONTCARE)
    830 			error = uvm_fault_upper(&ufi, &flt, anons);
    831 		else
    832 			error = uvm_fault_lower(&ufi, &flt, pages);
    833 	}
    834 
    835 	if (flt.anon_spare != NULL) {
    836 		flt.anon_spare->an_ref--;
    837 		uvm_anfree(flt.anon_spare);
    838 	}
    839 	return error;
    840 }
    841 
    842 static int
    843 uvm_fault_check(
    844 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
    845 	struct vm_anon ***ranons, struct vm_page ***rpages)
    846 {
    847 	struct vm_amap *amap;
    848 	struct uvm_object *uobj;
    849 	vm_prot_t check_prot;
    850 	int nback, nforw;
    851 	UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
    852 
    853 	/*
    854 	 * lookup and lock the maps
    855 	 */
    856 
    857 	if (uvmfault_lookup(ufi, false) == false) {
    858 		UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr, 0,0,0);
    859 		return EFAULT;
    860 	}
    861 	/* locked: maps(read) */
    862 
    863 #ifdef DIAGNOSTIC
    864 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
    865 		printf("Page fault on non-pageable map:\n");
    866 		printf("ufi->map = %p\n", ufi->map);
    867 		printf("ufi->orig_map = %p\n", ufi->orig_map);
    868 		printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
    869 		panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
    870 	}
    871 #endif
    872 
    873 	/*
    874 	 * check protection
    875 	 */
    876 
    877 	check_prot = flt->maxprot ?
    878 	    ufi->entry->max_protection : ufi->entry->protection;
    879 	if ((check_prot & flt->access_type) != flt->access_type) {
    880 		UVMHIST_LOG(maphist,
    881 		    "<- protection failure (prot=0x%x, access=0x%x)",
    882 		    ufi->entry->protection, flt->access_type, 0, 0);
    883 		uvmfault_unlockmaps(ufi, false);
    884 		return EACCES;
    885 	}
    886 
    887 	/*
    888 	 * "enter_prot" is the protection we want to enter the page in at.
    889 	 * for certain pages (e.g. copy-on-write pages) this protection can
    890 	 * be more strict than ufi->entry->protection.  "wired" means either
    891 	 * the entry is wired or we are fault-wiring the pg.
    892 	 */
    893 
    894 	flt->enter_prot = ufi->entry->protection;
    895 	if (VM_MAPENT_ISWIRED(ufi->entry))
    896 		flt->wire_mapping = true;
    897 
    898 	if (flt->wire_mapping) {
    899 		flt->access_type = flt->enter_prot; /* full access for wired */
    900 		flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
    901 	} else {
    902 		flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
    903 	}
    904 
    905 	/*
    906 	 * handle "needs_copy" case.   if we need to copy the amap we will
    907 	 * have to drop our readlock and relock it with a write lock.  (we
    908 	 * need a write lock to change anything in a map entry [e.g.
    909 	 * needs_copy]).
    910 	 */
    911 
    912 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
    913 		if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
    914 			KASSERT(!flt->maxprot);
    915 			/* need to clear */
    916 			UVMHIST_LOG(maphist,
    917 			    "  need to clear needs_copy and refault",0,0,0,0);
    918 			uvmfault_unlockmaps(ufi, false);
    919 			uvmfault_amapcopy(ufi);
    920 			uvmexp.fltamcopy++;
    921 			return ERESTART;
    922 
    923 		} else {
    924 
    925 			/*
    926 			 * ensure that we pmap_enter page R/O since
    927 			 * needs_copy is still true
    928 			 */
    929 
    930 			flt->enter_prot &= ~VM_PROT_WRITE;
    931 		}
    932 	}
    933 
    934 	/*
    935 	 * identify the players
    936 	 */
    937 
    938 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
    939 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
    940 
    941 	/*
    942 	 * check for a case 0 fault.  if nothing backing the entry then
    943 	 * error now.
    944 	 */
    945 
    946 	if (amap == NULL && uobj == NULL) {
    947 		uvmfault_unlockmaps(ufi, false);
    948 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
    949 		return EFAULT;
    950 	}
    951 
    952 	/*
    953 	 * establish range of interest based on advice from mapper
    954 	 * and then clip to fit map entry.   note that we only want
    955 	 * to do this the first time through the fault.   if we
    956 	 * ReFault we will disable this by setting "narrow" to true.
    957 	 */
    958 
    959 	if (flt->narrow == false) {
    960 
    961 		/* wide fault (!narrow) */
    962 		KASSERT(uvmadvice[ufi->entry->advice].advice ==
    963 			 ufi->entry->advice);
    964 		nback = MIN(uvmadvice[ufi->entry->advice].nback,
    965 			    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
    966 		flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
    967 		nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
    968 			    ((ufi->entry->end - ufi->orig_rvaddr) >>
    969 			     PAGE_SHIFT) - 1);
    970 		/*
    971 		 * note: "-1" because we don't want to count the
    972 		 * faulting page as forw
    973 		 */
    974 		flt->npages = nback + nforw + 1;
    975 		flt->centeridx = nback;
    976 
    977 		flt->narrow = true;	/* ensure only once per-fault */
    978 
    979 	} else {
    980 
    981 		/* narrow fault! */
    982 		nback = nforw = 0;
    983 		flt->startva = ufi->orig_rvaddr;
    984 		flt->npages = 1;
    985 		flt->centeridx = 0;
    986 
    987 	}
    988 	/* offset from entry's start to pgs' start */
    989 	const voff_t eoff = flt->startva - ufi->entry->start;
    990 
    991 	/* locked: maps(read) */
    992 	UVMHIST_LOG(maphist, "  narrow=%d, back=%d, forw=%d, startva=0x%x",
    993 		    flt->narrow, nback, nforw, flt->startva);
    994 	UVMHIST_LOG(maphist, "  entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
    995 		    amap, uobj, 0);
    996 
    997 	/*
    998 	 * if we've got an amap, lock it and extract current anons.
    999 	 */
   1000 
   1001 	if (amap) {
   1002 		amap_lock(amap);
   1003 		amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
   1004 	} else {
   1005 		*ranons = NULL;	/* to be safe */
   1006 	}
   1007 
   1008 	/* locked: maps(read), amap(if there) */
   1009 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1010 
   1011 	/*
   1012 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
   1013 	 * now and then forget about them (for the rest of the fault).
   1014 	 */
   1015 
   1016 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
   1017 
   1018 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
   1019 		    0,0,0,0);
   1020 		/* flush back-page anons? */
   1021 		if (amap)
   1022 			uvmfault_anonflush(*ranons, nback);
   1023 
   1024 		/* flush object? */
   1025 		if (uobj) {
   1026 			voff_t uoff;
   1027 
   1028 			uoff = ufi->entry->offset + eoff;
   1029 			mutex_enter(&uobj->vmobjlock);
   1030 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
   1031 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
   1032 		}
   1033 
   1034 		/* now forget about the backpages */
   1035 		if (amap)
   1036 			*ranons += nback;
   1037 #if 0
   1038 		/* XXXUEBS */
   1039 		if (uobj)
   1040 			*rpages += nback;
   1041 #endif
   1042 		flt->startva += (nback << PAGE_SHIFT);
   1043 		flt->npages -= nback;
   1044 		flt->centeridx = 0;
   1045 	}
   1046 	/*
   1047 	 * => startva is fixed
   1048 	 * => npages is fixed
   1049 	 */
   1050 
   1051 	return 0;
   1052 }
   1053 
   1054 static int
   1055 uvm_fault_upper_lookup(
   1056 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1057 	struct vm_anon **anons, struct vm_page **pages)
   1058 {
   1059 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1060 	int lcv;
   1061 	vaddr_t currva;
   1062 	bool shadowed;
   1063 	UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
   1064 
   1065 	/* locked: maps(read), amap(if there) */
   1066 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1067 
   1068 	/*
   1069 	 * map in the backpages and frontpages we found in the amap in hopes
   1070 	 * of preventing future faults.    we also init the pages[] array as
   1071 	 * we go.
   1072 	 */
   1073 
   1074 	currva = flt->startva;
   1075 	shadowed = false;
   1076 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1077 		/*
   1078 		 * dont play with VAs that are already mapped
   1079 		 * except for center)
   1080 		 */
   1081 		if (lcv != flt->centeridx &&
   1082 		    pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
   1083 			pages[lcv] = PGO_DONTCARE;
   1084 			continue;
   1085 		}
   1086 
   1087 		/*
   1088 		 * unmapped or center page.   check if any anon at this level.
   1089 		 */
   1090 		if (amap == NULL || anons[lcv] == NULL) {
   1091 			pages[lcv] = NULL;
   1092 			continue;
   1093 		}
   1094 
   1095 		/*
   1096 		 * check for present page and map if possible.   re-activate it.
   1097 		 */
   1098 
   1099 		pages[lcv] = PGO_DONTCARE;
   1100 		if (lcv == flt->centeridx) {		/* save center for later! */
   1101 			shadowed = true;
   1102 		} else {
   1103 			struct vm_anon *anon = anons[lcv];
   1104 
   1105 			mutex_enter(&anon->an_lock);
   1106 			uvm_fault_upper_neighbor(ufi, flt, currva,
   1107 			    anon->an_page, anon->an_ref > 1);
   1108 			mutex_exit(&anon->an_lock);
   1109 		}
   1110 	}
   1111 
   1112 	/* locked: maps(read), amap(if there) */
   1113 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1114 	/* (shadowed == true) if there is an anon at the faulting address */
   1115 	UVMHIST_LOG(maphist, "  shadowed=%d, will_get=%d", shadowed,
   1116 	    (ufi->entry->object.uvm_obj && shadowed != false),0,0);
   1117 
   1118 	/*
   1119 	 * note that if we are really short of RAM we could sleep in the above
   1120 	 * call to pmap_enter with everything locked.   bad?
   1121 	 *
   1122 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
   1123 	 * XXX case.  --thorpej
   1124 	 */
   1125 
   1126 	return 0;
   1127 }
   1128 
   1129 static void
   1130 uvm_fault_upper_neighbor(
   1131 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1132 	vaddr_t currva, struct vm_page *pg, bool readonly)
   1133 {
   1134 	UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
   1135 
   1136 	/* ignore loaned and busy pages */
   1137 	if (pg == NULL || pg->loan_count != 0 ||
   1138 	    (pg->flags & PG_BUSY) != 0)
   1139 		goto uvm_fault_upper_lookup_enter_done;
   1140 
   1141 	mutex_enter(&uvm_pageqlock);
   1142 	uvm_pageenqueue(pg);
   1143 	mutex_exit(&uvm_pageqlock);
   1144 	UVMHIST_LOG(maphist,
   1145 	    "  MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
   1146 	    ufi->orig_map->pmap, currva, pg, 0);
   1147 	uvmexp.fltnamap++;
   1148 
   1149 	/*
   1150 	 * Since this page isn't the page that's actually faulting,
   1151 	 * ignore pmap_enter() failures; it's not critical that we
   1152 	 * enter these right now.
   1153 	 */
   1154 
   1155 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1156 	    VM_PAGE_TO_PHYS(pg),
   1157 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1158 	    flt->enter_prot,
   1159 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
   1160 
   1161 uvm_fault_upper_lookup_enter_done:
   1162 	pmap_update(ufi->orig_map->pmap);
   1163 }
   1164 
   1165 static int
   1166 uvm_fault_lower(
   1167 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1168 	struct vm_page **pages)
   1169 {
   1170 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1171 	int error;
   1172 
   1173 	/*
   1174 	 * if the desired page is not shadowed by the amap and we have a
   1175 	 * backing object, then we check to see if the backing object would
   1176 	 * prefer to handle the fault itself (rather than letting us do it
   1177 	 * with the usual pgo_get hook).  the backing object signals this by
   1178 	 * providing a pgo_fault routine.
   1179 	 */
   1180 
   1181 	if (uobj && uobj->pgops->pgo_fault != NULL) {
   1182 		error = uvm_fault_lower_special(ufi, flt, pages);
   1183 	} else {
   1184 		error = uvm_fault_lower_generic(ufi, flt, pages);
   1185 	}
   1186 	return error;
   1187 }
   1188 
   1189 static int
   1190 uvm_fault_lower_special(
   1191 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1192 	struct vm_page **pages)
   1193 {
   1194 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1195 	int error;
   1196 
   1197 	mutex_enter(&uobj->vmobjlock);
   1198 	/* locked: maps(read), amap (if there), uobj */
   1199 	error = uobj->pgops->pgo_fault(ufi, flt->startva, pages, flt->npages,
   1200 	    flt->centeridx, flt->access_type, PGO_LOCKED|PGO_SYNCIO);
   1201 
   1202 	/* locked: nothing, pgo_fault has unlocked everything */
   1203 
   1204 	if (error == ERESTART)
   1205 		error = ERESTART;		/* try again! */
   1206 	/*
   1207 	 * object fault routine responsible for pmap_update().
   1208 	 */
   1209 
   1210 	return error;
   1211 }
   1212 
   1213 static int
   1214 uvm_fault_lower_generic(
   1215 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1216 	struct vm_page **pages)
   1217 {
   1218 #ifdef DIAGNOSTIC
   1219 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1220 #endif
   1221 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1222 	struct vm_page *uobjpage;
   1223 
   1224 	/*
   1225 	 * now, if the desired page is not shadowed by the amap and we have
   1226 	 * a backing object that does not have a special fault routine, then
   1227 	 * we ask (with pgo_get) the object for resident pages that we care
   1228 	 * about and attempt to map them in.  we do not let pgo_get block
   1229 	 * (PGO_LOCKED).
   1230 	 */
   1231 
   1232 	if (uobj == NULL) {
   1233 		/* zero fill; don't care neighbor pages */
   1234 		uobjpage = NULL;
   1235 	} else {
   1236 		uvm_fault_lower_lookup(ufi, flt, pages);
   1237 		uobjpage = pages[flt->centeridx];
   1238 	}
   1239 
   1240 	/* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
   1241 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1242 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   1243 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1244 
   1245 	/*
   1246 	 * note that at this point we are done with any front or back pages.
   1247 	 * we are now going to focus on the center page (i.e. the one we've
   1248 	 * faulted on).  if we have faulted on the upper (anon) layer
   1249 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
   1250 	 * not touched it yet).  if we have faulted on the bottom (uobj)
   1251 	 * layer [i.e. case 2] and the page was both present and available,
   1252 	 * then we've got a pointer to it as "uobjpage" and we've already
   1253 	 * made it BUSY.
   1254 	 */
   1255 
   1256 	/*
   1257 	 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
   1258 	 */
   1259 
   1260 	/*
   1261 	 * redirect case 2: if we are not shadowed, go to case 2.
   1262 	 */
   1263 
   1264 	return uvm_fault_lower1(ufi, flt, uobj, uobjpage);
   1265 }
   1266 
   1267 static int
   1268 uvm_fault_lower_lookup(
   1269 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1270 	struct vm_page **pages)
   1271 {
   1272 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1273 	int lcv, gotpages;
   1274 	vaddr_t currva;
   1275 	UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
   1276 
   1277 	mutex_enter(&uobj->vmobjlock);
   1278 	/* locked (!shadowed): maps(read), amap (if there), uobj */
   1279 	/*
   1280 	 * the following call to pgo_get does _not_ change locking state
   1281 	 */
   1282 
   1283 	uvmexp.fltlget++;
   1284 	gotpages = flt->npages;
   1285 	(void) uobj->pgops->pgo_get(uobj,
   1286 	    ufi->entry->offset + flt->startva - ufi->entry->start,
   1287 	    pages, &gotpages, flt->centeridx,
   1288 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
   1289 
   1290 	/*
   1291 	 * check for pages to map, if we got any
   1292 	 */
   1293 
   1294 	if (gotpages == 0) {
   1295 		pages[flt->centeridx] = NULL;
   1296 		return 0;
   1297 	}
   1298 
   1299 	currva = flt->startva;
   1300 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1301 		struct vm_page *curpg;
   1302 
   1303 		curpg = pages[lcv];
   1304 		if (curpg == NULL || curpg == PGO_DONTCARE) {
   1305 			continue;
   1306 		}
   1307 		KASSERT(curpg->uobject == uobj);
   1308 
   1309 		/*
   1310 		 * if center page is resident and not PG_BUSY|PG_RELEASED
   1311 		 * then pgo_get made it PG_BUSY for us and gave us a handle
   1312 		 * to it.  remember this page as "uobjpage." (for later use).
   1313 		 */
   1314 
   1315 		if (lcv == flt->centeridx) {
   1316 			UVMHIST_LOG(maphist, "  got uobjpage "
   1317 			    "(0x%x) with locked get",
   1318 			    curpg, 0,0,0);
   1319 		} else {
   1320 			bool readonly = (curpg->flags & PG_RDONLY)
   1321 			    || (curpg->loan_count > 0)
   1322 			    || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
   1323 
   1324 			uvm_fault_lower_neighbor(ufi, flt,
   1325 			    currva, curpg, readonly);
   1326 		}
   1327 	}
   1328 	pmap_update(ufi->orig_map->pmap);
   1329 	return 0;
   1330 }
   1331 
   1332 static void
   1333 uvm_fault_lower_neighbor(
   1334 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1335 	vaddr_t currva, struct vm_page *pg, bool readonly)
   1336 {
   1337 	UVMHIST_FUNC("uvm_fault_lower_neighor"); UVMHIST_CALLED(maphist);
   1338 
   1339 	/*
   1340 	 * calling pgo_get with PGO_LOCKED returns us pages which
   1341 	 * are neither busy nor released, so we don't need to check
   1342 	 * for this.  we can just directly enter the pages.
   1343 	 */
   1344 
   1345 	mutex_enter(&uvm_pageqlock);
   1346 	uvm_pageenqueue(pg);
   1347 	mutex_exit(&uvm_pageqlock);
   1348 	UVMHIST_LOG(maphist,
   1349 	    "  MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
   1350 	    ufi->orig_map->pmap, currva, pg, 0);
   1351 	uvmexp.fltnomap++;
   1352 
   1353 	/*
   1354 	 * Since this page isn't the page that's actually faulting,
   1355 	 * ignore pmap_enter() failures; it's not critical that we
   1356 	 * enter these right now.
   1357 	 */
   1358 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1359 	KASSERT((pg->flags & PG_RELEASED) == 0);
   1360 	KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
   1361 	    (pg->flags & PG_CLEAN) != 0);
   1362 
   1363 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1364 	    VM_PAGE_TO_PHYS(pg),
   1365 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1366 	    flt->enter_prot & MASK(ufi->entry),
   1367 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
   1368 
   1369 	/*
   1370 	 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
   1371 	 * held the lock the whole time we've had the handle.
   1372 	 */
   1373 	KASSERT((pg->flags & PG_WANTED) == 0);
   1374 	KASSERT((pg->flags & PG_RELEASED) == 0);
   1375 
   1376 	pg->flags &= ~(PG_BUSY);
   1377 	UVM_PAGE_OWN(pg, NULL);
   1378 }
   1379 
   1380 static int
   1381 uvm_fault_upper(
   1382 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1383 	struct vm_anon **anons)
   1384 {
   1385 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1386 	struct vm_anon * const anon = anons[flt->centeridx];
   1387 	struct uvm_object *uobj;
   1388 	int error;
   1389 	UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
   1390 
   1391 	/* locked: maps(read), amap */
   1392 	KASSERT(mutex_owned(&amap->am_l));
   1393 
   1394 	/*
   1395 	 * handle case 1: fault on an anon in our amap
   1396 	 */
   1397 
   1398 	UVMHIST_LOG(maphist, "  case 1 fault: anon=0x%x", anon, 0,0,0);
   1399 	mutex_enter(&anon->an_lock);
   1400 
   1401 	/* locked: maps(read), amap, anon */
   1402 	KASSERT(mutex_owned(&amap->am_l));
   1403 	KASSERT(mutex_owned(&anon->an_lock));
   1404 
   1405 	/*
   1406 	 * no matter if we have case 1A or case 1B we are going to need to
   1407 	 * have the anon's memory resident.   ensure that now.
   1408 	 */
   1409 
   1410 	/*
   1411 	 * let uvmfault_anonget do the dirty work.
   1412 	 * if it fails (!OK) it will unlock everything for us.
   1413 	 * if it succeeds, locks are still valid and locked.
   1414 	 * also, if it is OK, then the anon's page is on the queues.
   1415 	 * if the page is on loan from a uvm_object, then anonget will
   1416 	 * lock that object for us if it does not fail.
   1417 	 */
   1418 
   1419 	error = uvmfault_anonget(ufi, amap, anon);
   1420 	switch (error) {
   1421 	case 0:
   1422 		break;
   1423 
   1424 	case ERESTART:
   1425 		return ERESTART;
   1426 
   1427 	case EAGAIN:
   1428 		kpause("fltagain1", false, hz/2, NULL);
   1429 		return ERESTART;
   1430 
   1431 	default:
   1432 		return error;
   1433 	}
   1434 
   1435 	/*
   1436 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
   1437 	 */
   1438 
   1439 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
   1440 
   1441 	/* locked: maps(read), amap, anon, uobj(if one) */
   1442 	KASSERT(mutex_owned(&amap->am_l));
   1443 	KASSERT(mutex_owned(&anon->an_lock));
   1444 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   1445 
   1446 	/*
   1447 	 * special handling for loaned pages
   1448 	 */
   1449 
   1450 	if (anon->an_page->loan_count) {
   1451 		error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
   1452 		if (error != 0)
   1453 			return error;
   1454 	}
   1455 
   1456 	/*
   1457 	 * if we are case 1B then we will need to allocate a new blank
   1458 	 * anon to transfer the data into.   note that we have a lock
   1459 	 * on anon, so no one can busy or release the page until we are done.
   1460 	 * also note that the ref count can't drop to zero here because
   1461 	 * it is > 1 and we are only dropping one ref.
   1462 	 *
   1463 	 * in the (hopefully very rare) case that we are out of RAM we
   1464 	 * will unlock, wait for more RAM, and refault.
   1465 	 *
   1466 	 * if we are out of anon VM we kill the process (XXX: could wait?).
   1467 	 */
   1468 
   1469 	if (flt->cow_now && anon->an_ref > 1) {
   1470 		error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
   1471 	} else {
   1472 		error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
   1473 	}
   1474 	return error;
   1475 }
   1476 
   1477 static int
   1478 uvm_fault_upper_loan(
   1479 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1480 	struct vm_anon *anon, struct uvm_object **ruobj)
   1481 {
   1482 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1483 	int error = 0;
   1484 
   1485 	if (!flt->cow_now) {
   1486 
   1487 		/*
   1488 		 * for read faults on loaned pages we just cap the
   1489 		 * protection at read-only.
   1490 		 */
   1491 
   1492 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1493 
   1494 	} else {
   1495 		/*
   1496 		 * note that we can't allow writes into a loaned page!
   1497 		 *
   1498 		 * if we have a write fault on a loaned page in an
   1499 		 * anon then we need to look at the anon's ref count.
   1500 		 * if it is greater than one then we are going to do
   1501 		 * a normal copy-on-write fault into a new anon (this
   1502 		 * is not a problem).  however, if the reference count
   1503 		 * is one (a case where we would normally allow a
   1504 		 * write directly to the page) then we need to kill
   1505 		 * the loan before we continue.
   1506 		 */
   1507 
   1508 		/* >1 case is already ok */
   1509 		if (anon->an_ref == 1) {
   1510 			error = uvm_loanbreak_anon(anon, *ruobj);
   1511 			if (error != 0) {
   1512 				uvmfault_unlockall(ufi, amap, *ruobj, anon);
   1513 				uvm_wait("flt_noram2");
   1514 				return ERESTART;
   1515 			}
   1516 			/* if we were a loan reciever uobj is gone */
   1517 			if (*ruobj)
   1518 				*ruobj = NULL;
   1519 		}
   1520 	}
   1521 	return error;
   1522 }
   1523 
   1524 static int
   1525 uvm_fault_upper_promote(
   1526 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1527 	struct uvm_object *uobj, struct vm_anon *anon)
   1528 {
   1529 	struct vm_anon * const oanon = anon;
   1530 	struct vm_page *pg;
   1531 	int error;
   1532 	UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
   1533 
   1534 	UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
   1535 	uvmexp.flt_acow++;
   1536 
   1537 	error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
   1538 	    &anon, &flt->anon_spare);
   1539 	switch (error) {
   1540 	case 0:
   1541 		break;
   1542 	case ERESTART:
   1543 		return ERESTART;
   1544 	default:
   1545 		return error;
   1546 	}
   1547 
   1548 	pg = anon->an_page;
   1549 	mutex_enter(&uvm_pageqlock);
   1550 	uvm_pageactivate(pg);
   1551 	mutex_exit(&uvm_pageqlock);
   1552 	pg->flags &= ~(PG_BUSY|PG_FAKE);
   1553 	UVM_PAGE_OWN(pg, NULL);
   1554 
   1555 	/* deref: can not drop to zero here by defn! */
   1556 	oanon->an_ref--;
   1557 
   1558 	/*
   1559 	 * note: oanon is still locked, as is the new anon.  we
   1560 	 * need to check for this later when we unlock oanon; if
   1561 	 * oanon != anon, we'll have to unlock anon, too.
   1562 	 */
   1563 
   1564 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1565 }
   1566 
   1567 static int
   1568 uvm_fault_upper_direct(
   1569 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1570 	struct uvm_object *uobj, struct vm_anon *anon)
   1571 {
   1572 	struct vm_anon * const oanon = anon;
   1573 	struct vm_page *pg;
   1574 
   1575 	uvmexp.flt_anon++;
   1576 	pg = anon->an_page;
   1577 	if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
   1578 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1579 
   1580 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1581 }
   1582 
   1583 static int
   1584 uvm_fault_upper_enter(
   1585 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1586 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
   1587 	struct vm_anon *oanon)
   1588 {
   1589 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1590 	UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
   1591 
   1592 	/* locked: maps(read), amap, oanon, anon (if different from oanon) */
   1593 	KASSERT(mutex_owned(&amap->am_l));
   1594 	KASSERT(mutex_owned(&anon->an_lock));
   1595 	KASSERT(mutex_owned(&oanon->an_lock));
   1596 
   1597 	/*
   1598 	 * now map the page in.
   1599 	 */
   1600 
   1601 	UVMHIST_LOG(maphist, "  MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
   1602 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
   1603 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
   1604 	    flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
   1605 	    != 0) {
   1606 
   1607 		/*
   1608 		 * No need to undo what we did; we can simply think of
   1609 		 * this as the pmap throwing away the mapping information.
   1610 		 *
   1611 		 * We do, however, have to go through the ReFault path,
   1612 		 * as the map may change while we're asleep.
   1613 		 */
   1614 
   1615 		if (anon != oanon)
   1616 			mutex_exit(&anon->an_lock);
   1617 		uvmfault_unlockall(ufi, amap, uobj, oanon);
   1618 		if (!uvm_reclaimable()) {
   1619 			UVMHIST_LOG(maphist,
   1620 			    "<- failed.  out of VM",0,0,0,0);
   1621 			/* XXX instrumentation */
   1622 			return ENOMEM;
   1623 		}
   1624 		/* XXX instrumentation */
   1625 		uvm_wait("flt_pmfail1");
   1626 		return ERESTART;
   1627 	}
   1628 
   1629 	return uvm_fault_upper_done(ufi, flt, uobj, anon, pg, oanon);
   1630 }
   1631 
   1632 static int
   1633 uvm_fault_upper_done(
   1634 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1635 	struct uvm_object *uobj, struct vm_anon *anon,
   1636 	struct vm_page *pg, struct vm_anon *oanon)
   1637 {
   1638 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1639 
   1640 	/*
   1641 	 * ... update the page queues.
   1642 	 */
   1643 
   1644 	mutex_enter(&uvm_pageqlock);
   1645 	if (flt->wire_paging) {
   1646 		uvm_pagewire(pg);
   1647 
   1648 		/*
   1649 		 * since the now-wired page cannot be paged out,
   1650 		 * release its swap resources for others to use.
   1651 		 * since an anon with no swap cannot be PG_CLEAN,
   1652 		 * clear its clean flag now.
   1653 		 */
   1654 
   1655 		pg->flags &= ~(PG_CLEAN);
   1656 		uvm_anon_dropswap(anon);
   1657 	} else {
   1658 		uvm_pageactivate(pg);
   1659 	}
   1660 	mutex_exit(&uvm_pageqlock);
   1661 
   1662 	/*
   1663 	 * done case 1!  finish up by unlocking everything and returning success
   1664 	 */
   1665 
   1666 	if (anon != oanon)
   1667 		mutex_exit(&anon->an_lock);
   1668 	uvmfault_unlockall(ufi, amap, uobj, oanon);
   1669 	pmap_update(ufi->orig_map->pmap);
   1670 	return 0;
   1671 }
   1672 
   1673 static int
   1674 uvm_fault_lower1(
   1675 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1676 	struct uvm_object *uobj, struct vm_page *uobjpage)
   1677 {
   1678 #ifdef DIAGNOSTIC
   1679 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1680 #endif
   1681 	bool promote;
   1682 	int error;
   1683 	UVMHIST_FUNC("uvm_fault_lower1"); UVMHIST_CALLED(maphist);
   1684 
   1685 	/*
   1686 	 * handle case 2: faulting on backing object or zero fill
   1687 	 */
   1688 
   1689 	/*
   1690 	 * locked:
   1691 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
   1692 	 */
   1693 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1694 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   1695 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1696 
   1697 	/*
   1698 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
   1699 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
   1700 	 * have a backing object, check and see if we are going to promote
   1701 	 * the data up to an anon during the fault.
   1702 	 */
   1703 
   1704 	if (uobj == NULL) {
   1705 		uobjpage = PGO_DONTCARE;
   1706 		promote = true;		/* always need anon here */
   1707 	} else {
   1708 		KASSERT(uobjpage != PGO_DONTCARE);
   1709 		promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
   1710 	}
   1711 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%d, zfill=%d",
   1712 	    promote, (uobj == NULL), 0,0);
   1713 
   1714 	/*
   1715 	 * if uobjpage is not null then we do not need to do I/O to get the
   1716 	 * uobjpage.
   1717 	 *
   1718 	 * if uobjpage is null, then we need to unlock and ask the pager to
   1719 	 * get the data for us.   once we have the data, we need to reverify
   1720 	 * the state the world.   we are currently not holding any resources.
   1721 	 */
   1722 
   1723 	if (uobjpage) {
   1724 		/* update rusage counters */
   1725 		curlwp->l_ru.ru_minflt++;
   1726 	} else {
   1727 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
   1728 		if (error != 0)
   1729 			return error;
   1730 	}
   1731 
   1732 	/*
   1733 	 * locked:
   1734 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
   1735 	 */
   1736 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1737 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   1738 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1739 
   1740 	/*
   1741 	 * notes:
   1742 	 *  - at this point uobjpage can not be NULL
   1743 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
   1744 	 *  for it above)
   1745 	 *  - at this point uobjpage could be PG_WANTED (handle later)
   1746 	 */
   1747 
   1748 	KASSERT(uobj == NULL || uobj == uobjpage->uobject);
   1749 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
   1750 	    (uobjpage->flags & PG_CLEAN) != 0);
   1751 
   1752 	if (promote == false) {
   1753 		error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
   1754 	} else {
   1755 		error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
   1756 	}
   1757 	return error;
   1758 }
   1759 
   1760 static int
   1761 uvm_fault_lower_io(
   1762 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1763 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
   1764 {
   1765 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1766 	struct uvm_object *uobj = *ruobj;
   1767 	struct vm_page *pg;
   1768 	bool locked;
   1769 	int gotpages;
   1770 	int error;
   1771 	voff_t uoff;
   1772 	UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
   1773 
   1774 	/* update rusage counters */
   1775 	curlwp->l_ru.ru_majflt++;
   1776 
   1777 	/* locked: maps(read), amap(if there), uobj */
   1778 	uvmfault_unlockall(ufi, amap, NULL, NULL);
   1779 	/* locked: uobj */
   1780 
   1781 	uvmexp.fltget++;
   1782 	gotpages = 1;
   1783 	pg = NULL;
   1784 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
   1785 	error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
   1786 	    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
   1787 	    PGO_SYNCIO);
   1788 	/* locked: pg(if no error) */
   1789 
   1790 	/*
   1791 	 * recover from I/O
   1792 	 */
   1793 
   1794 	if (error) {
   1795 		if (error == EAGAIN) {
   1796 			UVMHIST_LOG(maphist,
   1797 			    "  pgo_get says TRY AGAIN!",0,0,0,0);
   1798 			kpause("fltagain2", false, hz/2, NULL);
   1799 			return ERESTART;
   1800 		}
   1801 
   1802 #if 0
   1803 		KASSERT(error != ERESTART);
   1804 #else
   1805 		/* XXXUEBS don't re-fault? */
   1806 		if (error == ERESTART)
   1807 			error = EIO;
   1808 #endif
   1809 
   1810 		UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
   1811 		    error, 0,0,0);
   1812 		return error;
   1813 	}
   1814 
   1815 	/* locked: pg */
   1816 
   1817 	KASSERT((pg->flags & PG_BUSY) != 0);
   1818 
   1819 	mutex_enter(&uvm_pageqlock);
   1820 	uvm_pageactivate(pg);
   1821 	mutex_exit(&uvm_pageqlock);
   1822 
   1823 	/*
   1824 	 * re-verify the state of the world by first trying to relock
   1825 	 * the maps.  always relock the object.
   1826 	 */
   1827 
   1828 	locked = uvmfault_relock(ufi);
   1829 	if (locked && amap)
   1830 		amap_lock(amap);
   1831 
   1832 	/* might be changed */
   1833 	uobj = pg->uobject;
   1834 
   1835 	mutex_enter(&uobj->vmobjlock);
   1836 
   1837 	/* locked(locked): maps(read), amap(if !null), uobj, pg */
   1838 	/* locked(!locked): uobj, pg */
   1839 
   1840 	/*
   1841 	 * verify that the page has not be released and re-verify
   1842 	 * that amap slot is still free.   if there is a problem,
   1843 	 * we unlock and clean up.
   1844 	 */
   1845 
   1846 	if ((pg->flags & PG_RELEASED) != 0 ||
   1847 	    (locked && amap && amap_lookup(&ufi->entry->aref,
   1848 	      ufi->orig_rvaddr - ufi->entry->start))) {
   1849 		if (locked)
   1850 			uvmfault_unlockall(ufi, amap, NULL, NULL);
   1851 		locked = false;
   1852 	}
   1853 
   1854 	/*
   1855 	 * didn't get the lock?   release the page and retry.
   1856 	 */
   1857 
   1858 	if (locked == false) {
   1859 		UVMHIST_LOG(maphist,
   1860 		    "  wasn't able to relock after fault: retry",
   1861 		    0,0,0,0);
   1862 		if (pg->flags & PG_WANTED) {
   1863 			wakeup(pg);
   1864 		}
   1865 		if (pg->flags & PG_RELEASED) {
   1866 			uvmexp.fltpgrele++;
   1867 			uvm_pagefree(pg);
   1868 			mutex_exit(&uobj->vmobjlock);
   1869 			return ERESTART;
   1870 		}
   1871 		pg->flags &= ~(PG_BUSY|PG_WANTED);
   1872 		UVM_PAGE_OWN(pg, NULL);
   1873 		mutex_exit(&uobj->vmobjlock);
   1874 		return ERESTART;
   1875 	}
   1876 
   1877 	/*
   1878 	 * we have the data in pg which is busy and
   1879 	 * not released.  we are holding object lock (so the page
   1880 	 * can't be released on us).
   1881 	 */
   1882 
   1883 	/* locked: maps(read), amap(if !null), uobj, pg */
   1884 
   1885 	*ruobj = uobj;
   1886 	*ruobjpage = pg;
   1887 	return 0;
   1888 }
   1889 
   1890 int
   1891 uvm_fault_lower_direct(
   1892 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1893 	struct uvm_object *uobj, struct vm_page *uobjpage)
   1894 {
   1895 	struct vm_page *pg;
   1896 
   1897 	/*
   1898 	 * we are not promoting.   if the mapping is COW ensure that we
   1899 	 * don't give more access than we should (e.g. when doing a read
   1900 	 * fault on a COPYONWRITE mapping we want to map the COW page in
   1901 	 * R/O even though the entry protection could be R/W).
   1902 	 *
   1903 	 * set "pg" to the page we want to map in (uobjpage, usually)
   1904 	 */
   1905 
   1906 	uvmexp.flt_obj++;
   1907 	if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
   1908 	    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
   1909 		flt->enter_prot &= ~VM_PROT_WRITE;
   1910 	pg = uobjpage;		/* map in the actual object */
   1911 
   1912 	KASSERT(uobjpage != PGO_DONTCARE);
   1913 
   1914 	/*
   1915 	 * we are faulting directly on the page.   be careful
   1916 	 * about writing to loaned pages...
   1917 	 */
   1918 
   1919 	if (uobjpage->loan_count) {
   1920 		uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
   1921 	}
   1922 	KASSERT(pg == uobjpage);
   1923 
   1924 	return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage);
   1925 }
   1926 
   1927 static int
   1928 uvm_fault_lower_direct_loan(
   1929 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1930 	struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage)
   1931 {
   1932 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1933 	struct vm_page *pg;
   1934 	struct vm_page *uobjpage = *ruobjpage;
   1935 	UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
   1936 
   1937 	if (!flt->cow_now) {
   1938 		/* read fault: cap the protection at readonly */
   1939 		/* cap! */
   1940 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1941 	} else {
   1942 		/* write fault: must break the loan here */
   1943 
   1944 		pg = uvm_loanbreak(uobjpage);
   1945 		if (pg == NULL) {
   1946 
   1947 			/*
   1948 			 * drop ownership of page, it can't be released
   1949 			 */
   1950 
   1951 			if (uobjpage->flags & PG_WANTED)
   1952 				wakeup(uobjpage);
   1953 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   1954 			UVM_PAGE_OWN(uobjpage, NULL);
   1955 
   1956 			uvmfault_unlockall(ufi, amap, uobj, NULL);
   1957 			UVMHIST_LOG(maphist,
   1958 			  "  out of RAM breaking loan, waiting",
   1959 			  0,0,0,0);
   1960 			uvmexp.fltnoram++;
   1961 			uvm_wait("flt_noram4");
   1962 			return ERESTART;
   1963 		}
   1964 		*rpg = pg;
   1965 		*ruobjpage = pg;
   1966 	}
   1967 	return 0;
   1968 }
   1969 
   1970 int
   1971 uvm_fault_lower_promote(
   1972 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1973 	struct uvm_object *uobj, struct vm_page *uobjpage)
   1974 {
   1975 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1976 	struct vm_anon *anon;
   1977 	struct vm_page *pg;
   1978 	int error;
   1979 	UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
   1980 
   1981 	/*
   1982 	 * if we are going to promote the data to an anon we
   1983 	 * allocate a blank anon here and plug it into our amap.
   1984 	 */
   1985 #if DIAGNOSTIC
   1986 	if (amap == NULL)
   1987 		panic("uvm_fault: want to promote data, but no anon");
   1988 #endif
   1989 	error = uvmfault_promote(ufi, NULL, uobjpage,
   1990 	    &anon, &flt->anon_spare);
   1991 	switch (error) {
   1992 	case 0:
   1993 		break;
   1994 	case ERESTART:
   1995 		return ERESTART;
   1996 	default:
   1997 		return error;
   1998 	}
   1999 
   2000 	pg = anon->an_page;
   2001 
   2002 	/*
   2003 	 * fill in the data
   2004 	 */
   2005 
   2006 	if (uobjpage != PGO_DONTCARE) {
   2007 		uvmexp.flt_prcopy++;
   2008 
   2009 		/*
   2010 		 * promote to shared amap?  make sure all sharing
   2011 		 * procs see it
   2012 		 */
   2013 
   2014 		if ((amap_flags(amap) & AMAP_SHARED) != 0) {
   2015 			pmap_page_protect(uobjpage, VM_PROT_NONE);
   2016 			/*
   2017 			 * XXX: PAGE MIGHT BE WIRED!
   2018 			 */
   2019 		}
   2020 
   2021 		/*
   2022 		 * dispose of uobjpage.  it can't be PG_RELEASED
   2023 		 * since we still hold the object lock.
   2024 		 * drop handle to uobj as well.
   2025 		 */
   2026 
   2027 		if (uobjpage->flags & PG_WANTED)
   2028 			/* still have the obj lock */
   2029 			wakeup(uobjpage);
   2030 		uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   2031 		UVM_PAGE_OWN(uobjpage, NULL);
   2032 		mutex_exit(&uobj->vmobjlock);
   2033 		uobj = NULL;
   2034 
   2035 		UVMHIST_LOG(maphist,
   2036 		    "  promote uobjpage 0x%x to anon/page 0x%x/0x%x",
   2037 		    uobjpage, anon, pg, 0);
   2038 
   2039 	} else {
   2040 		uvmexp.flt_przero++;
   2041 
   2042 		/*
   2043 		 * Page is zero'd and marked dirty by
   2044 		 * uvmfault_promote().
   2045 		 */
   2046 
   2047 		UVMHIST_LOG(maphist,"  zero fill anon/page 0x%x/0%x",
   2048 		    anon, pg, 0, 0);
   2049 	}
   2050 
   2051 	return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage);
   2052 }
   2053 
   2054 int
   2055 uvm_fault_lower_enter(
   2056 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2057 	struct uvm_object *uobj,
   2058 	struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
   2059 {
   2060 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2061 	int error;
   2062 	UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
   2063 
   2064 	/*
   2065 	 * locked:
   2066 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
   2067 	 *   anon(if !null), pg(if anon)
   2068 	 *
   2069 	 * note: pg is either the uobjpage or the new page in the new anon
   2070 	 */
   2071 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   2072 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   2073 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   2074 	KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
   2075 	KASSERT((pg->flags & PG_BUSY) != 0);
   2076 
   2077 	/*
   2078 	 * all resources are present.   we can now map it in and free our
   2079 	 * resources.
   2080 	 */
   2081 
   2082 	UVMHIST_LOG(maphist,
   2083 	    "  MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=XXX",
   2084 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
   2085 	KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
   2086 		(pg->flags & PG_RDONLY) == 0);
   2087 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
   2088 	    pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
   2089 	    flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   2090 
   2091 		/*
   2092 		 * No need to undo what we did; we can simply think of
   2093 		 * this as the pmap throwing away the mapping information.
   2094 		 *
   2095 		 * We do, however, have to go through the ReFault path,
   2096 		 * as the map may change while we're asleep.
   2097 		 */
   2098 
   2099 		if (pg->flags & PG_WANTED)
   2100 			wakeup(pg);
   2101 
   2102 		/*
   2103 		 * note that pg can't be PG_RELEASED since we did not drop
   2104 		 * the object lock since the last time we checked.
   2105 		 */
   2106 		KASSERT((pg->flags & PG_RELEASED) == 0);
   2107 
   2108 		pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2109 		UVM_PAGE_OWN(pg, NULL);
   2110 		uvmfault_unlockall(ufi, amap, uobj, anon);
   2111 		if (!uvm_reclaimable()) {
   2112 			UVMHIST_LOG(maphist,
   2113 			    "<- failed.  out of VM",0,0,0,0);
   2114 			/* XXX instrumentation */
   2115 			error = ENOMEM;
   2116 			return error;
   2117 		}
   2118 		/* XXX instrumentation */
   2119 		uvm_wait("flt_pmfail2");
   2120 		return ERESTART;
   2121 	}
   2122 
   2123 	return uvm_fault_lower_done(ufi, flt, uobj, anon, pg);
   2124 }
   2125 
   2126 int
   2127 uvm_fault_lower_done(
   2128 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2129 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
   2130 {
   2131 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2132 	UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
   2133 
   2134 	mutex_enter(&uvm_pageqlock);
   2135 	if (flt->wire_paging) {
   2136 		uvm_pagewire(pg);
   2137 		if (pg->pqflags & PQ_AOBJ) {
   2138 
   2139 			/*
   2140 			 * since the now-wired page cannot be paged out,
   2141 			 * release its swap resources for others to use.
   2142 			 * since an aobj page with no swap cannot be PG_CLEAN,
   2143 			 * clear its clean flag now.
   2144 			 */
   2145 
   2146 			KASSERT(uobj != NULL);
   2147 			pg->flags &= ~(PG_CLEAN);
   2148 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
   2149 		}
   2150 	} else {
   2151 		uvm_pageactivate(pg);
   2152 	}
   2153 	mutex_exit(&uvm_pageqlock);
   2154 	if (pg->flags & PG_WANTED)
   2155 		wakeup(pg);
   2156 
   2157 	/*
   2158 	 * note that pg can't be PG_RELEASED since we did not drop the object
   2159 	 * lock since the last time we checked.
   2160 	 */
   2161 	KASSERT((pg->flags & PG_RELEASED) == 0);
   2162 
   2163 	pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2164 	UVM_PAGE_OWN(pg, NULL);
   2165 	uvmfault_unlockall(ufi, amap, uobj, anon);
   2166 	pmap_update(ufi->orig_map->pmap);
   2167 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
   2168 	return 0;
   2169 }
   2170 
   2171 
   2172 /*
   2173  * uvm_fault_wire: wire down a range of virtual addresses in a map.
   2174  *
   2175  * => map may be read-locked by caller, but MUST NOT be write-locked.
   2176  * => if map is read-locked, any operations which may cause map to
   2177  *	be write-locked in uvm_fault() must be taken care of by
   2178  *	the caller.  See uvm_map_pageable().
   2179  */
   2180 
   2181 int
   2182 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
   2183     vm_prot_t access_type, int maxprot)
   2184 {
   2185 	vaddr_t va;
   2186 	int error;
   2187 
   2188 	/*
   2189 	 * now fault it in a page at a time.   if the fault fails then we have
   2190 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
   2191 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
   2192 	 */
   2193 
   2194 	/*
   2195 	 * XXX work around overflowing a vaddr_t.  this prevents us from
   2196 	 * wiring the last page in the address space, though.
   2197 	 */
   2198 	if (start > end) {
   2199 		return EFAULT;
   2200 	}
   2201 
   2202 	for (va = start; va < end; va += PAGE_SIZE) {
   2203 		error = uvm_fault_internal(map, va, access_type,
   2204 				(maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
   2205 		if (error) {
   2206 			if (va != start) {
   2207 				uvm_fault_unwire(map, start, va);
   2208 			}
   2209 			return error;
   2210 		}
   2211 	}
   2212 	return 0;
   2213 }
   2214 
   2215 /*
   2216  * uvm_fault_unwire(): unwire range of virtual space.
   2217  */
   2218 
   2219 void
   2220 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
   2221 {
   2222 	vm_map_lock_read(map);
   2223 	uvm_fault_unwire_locked(map, start, end);
   2224 	vm_map_unlock_read(map);
   2225 }
   2226 
   2227 /*
   2228  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
   2229  *
   2230  * => map must be at least read-locked.
   2231  */
   2232 
   2233 void
   2234 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
   2235 {
   2236 	struct vm_map_entry *entry;
   2237 	pmap_t pmap = vm_map_pmap(map);
   2238 	vaddr_t va;
   2239 	paddr_t pa;
   2240 	struct vm_page *pg;
   2241 
   2242 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
   2243 
   2244 	/*
   2245 	 * we assume that the area we are unwiring has actually been wired
   2246 	 * in the first place.   this means that we should be able to extract
   2247 	 * the PAs from the pmap.   we also lock out the page daemon so that
   2248 	 * we can call uvm_pageunwire.
   2249 	 */
   2250 
   2251 	mutex_enter(&uvm_pageqlock);
   2252 
   2253 	/*
   2254 	 * find the beginning map entry for the region.
   2255 	 */
   2256 
   2257 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
   2258 	if (uvm_map_lookup_entry(map, start, &entry) == false)
   2259 		panic("uvm_fault_unwire_locked: address not in map");
   2260 
   2261 	for (va = start; va < end; va += PAGE_SIZE) {
   2262 		if (pmap_extract(pmap, va, &pa) == false)
   2263 			continue;
   2264 
   2265 		/*
   2266 		 * find the map entry for the current address.
   2267 		 */
   2268 
   2269 		KASSERT(va >= entry->start);
   2270 		while (va >= entry->end) {
   2271 			KASSERT(entry->next != &map->header &&
   2272 				entry->next->start <= entry->end);
   2273 			entry = entry->next;
   2274 		}
   2275 
   2276 		/*
   2277 		 * if the entry is no longer wired, tell the pmap.
   2278 		 */
   2279 
   2280 		if (VM_MAPENT_ISWIRED(entry) == 0)
   2281 			pmap_unwire(pmap, va);
   2282 
   2283 		pg = PHYS_TO_VM_PAGE(pa);
   2284 		if (pg)
   2285 			uvm_pageunwire(pg);
   2286 	}
   2287 
   2288 	mutex_exit(&uvm_pageqlock);
   2289 }
   2290