uvm_fault.c revision 1.166 1 /* $NetBSD: uvm_fault.c,v 1.166 2010/02/08 00:02:50 mlelstv Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.166 2010/02/08 00:02:50 mlelstv Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0; lcv < n; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 struct uvm_faultctx {
696 vm_prot_t access_type;
697 vm_prot_t enter_prot;
698 vaddr_t startva;
699 int npages;
700 int centeridx;
701 struct vm_anon *anon_spare;
702 bool wire_mapping;
703 bool narrow;
704 bool wire_paging;
705 bool maxprot;
706 bool cow_now;
707 };
708
709 static inline int uvm_fault_check(
710 struct uvm_faultinfo *, struct uvm_faultctx *,
711 struct vm_anon ***, struct vm_page ***);
712
713 static int uvm_fault_upper(
714 struct uvm_faultinfo *, struct uvm_faultctx *,
715 struct vm_anon **);
716 static inline int uvm_fault_upper_lookup(
717 struct uvm_faultinfo *, struct uvm_faultctx *,
718 struct vm_anon **, struct vm_page **);
719 static inline void uvm_fault_upper_neighbor(
720 struct uvm_faultinfo *, struct uvm_faultctx *,
721 vaddr_t, struct vm_page *, bool);
722 static inline int uvm_fault_upper_loan(
723 struct uvm_faultinfo *, struct uvm_faultctx *,
724 struct vm_anon *, struct uvm_object **);
725 static inline int uvm_fault_upper_promote(
726 struct uvm_faultinfo *, struct uvm_faultctx *,
727 struct uvm_object *, struct vm_anon *);
728 static inline int uvm_fault_upper_direct(
729 struct uvm_faultinfo *, struct uvm_faultctx *,
730 struct uvm_object *, struct vm_anon *);
731 static int uvm_fault_upper_enter(
732 struct uvm_faultinfo *, struct uvm_faultctx *,
733 struct uvm_object *, struct vm_anon *,
734 struct vm_page *, struct vm_anon *);
735 static inline int uvm_fault_upper_done(
736 struct uvm_faultinfo *, struct uvm_faultctx *,
737 struct uvm_object *, struct vm_anon *,
738 struct vm_page *, struct vm_anon *);
739
740 static int uvm_fault_lower(
741 struct uvm_faultinfo *, struct uvm_faultctx *,
742 struct vm_page **);
743 static inline int uvm_fault_lower_special(
744 struct uvm_faultinfo *, struct uvm_faultctx *,
745 struct vm_page **);
746 static inline int uvm_fault_lower_lookup(
747 struct uvm_faultinfo *, struct uvm_faultctx *,
748 struct vm_page **);
749 static inline void uvm_fault_lower_neighbor(
750 struct uvm_faultinfo *, struct uvm_faultctx *,
751 vaddr_t, struct vm_page *, bool);
752 static inline int uvm_fault_lower_generic(
753 struct uvm_faultinfo *, struct uvm_faultctx *,
754 struct vm_page **);
755 static inline int uvm_fault_lower1(
756 struct uvm_faultinfo *, struct uvm_faultctx *,
757 struct uvm_object *, struct vm_page *);
758 static inline int uvm_fault_lower_io(
759 struct uvm_faultinfo *, struct uvm_faultctx *,
760 struct uvm_object **, struct vm_page **);
761 static inline int uvm_fault_lower_direct(
762 struct uvm_faultinfo *, struct uvm_faultctx *,
763 struct uvm_object *, struct vm_page *);
764 static inline int uvm_fault_lower_direct_loan(
765 struct uvm_faultinfo *, struct uvm_faultctx *,
766 struct uvm_object *, struct vm_page **,
767 struct vm_page **);
768 static inline int uvm_fault_lower_promote(
769 struct uvm_faultinfo *, struct uvm_faultctx *,
770 struct uvm_object *, struct vm_page *);
771 static int uvm_fault_lower_enter(
772 struct uvm_faultinfo *, struct uvm_faultctx *,
773 struct uvm_object *,
774 struct vm_anon *, struct vm_page *,
775 struct vm_page *);
776 static inline int uvm_fault_lower_done(
777 struct uvm_faultinfo *, struct uvm_faultctx *,
778 struct uvm_object *,
779 struct vm_anon *, struct vm_page *);
780
781 int
782 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
783 vm_prot_t access_type, int fault_flag)
784 {
785 struct uvm_faultinfo ufi;
786 struct uvm_faultctx flt = {
787 .access_type = access_type,
788
789 /* don't look for neighborhood * pages on "wire" fault */
790 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
791
792 /* "wire" fault causes wiring of both mapping and paging */
793 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
794 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
795
796 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
797 };
798 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
799 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
800 int error;
801 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
802
803 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
804 orig_map, vaddr, access_type, fault_flag);
805
806 uvmexp.faults++; /* XXX: locking? */
807
808 /*
809 * init the IN parameters in the ufi
810 */
811
812 ufi.orig_map = orig_map;
813 ufi.orig_rvaddr = trunc_page(vaddr);
814 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
815
816 error = ERESTART;
817 while (error == ERESTART) {
818 anons = anons_store;
819 pages = pages_store;
820
821 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
822 if (error != 0)
823 continue;
824
825 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
826 if (error != 0)
827 continue;
828
829 if (pages[flt.centeridx] == PGO_DONTCARE)
830 error = uvm_fault_upper(&ufi, &flt, anons);
831 else
832 error = uvm_fault_lower(&ufi, &flt, pages);
833 }
834
835 if (flt.anon_spare != NULL) {
836 flt.anon_spare->an_ref--;
837 uvm_anfree(flt.anon_spare);
838 }
839 return error;
840 }
841
842 static int
843 uvm_fault_check(
844 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
845 struct vm_anon ***ranons, struct vm_page ***rpages)
846 {
847 struct vm_amap *amap;
848 struct uvm_object *uobj;
849 vm_prot_t check_prot;
850 int nback, nforw;
851 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
852
853 /*
854 * lookup and lock the maps
855 */
856
857 if (uvmfault_lookup(ufi, false) == false) {
858 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr, 0,0,0);
859 return EFAULT;
860 }
861 /* locked: maps(read) */
862
863 #ifdef DIAGNOSTIC
864 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
865 printf("Page fault on non-pageable map:\n");
866 printf("ufi->map = %p\n", ufi->map);
867 printf("ufi->orig_map = %p\n", ufi->orig_map);
868 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
869 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
870 }
871 #endif
872
873 /*
874 * check protection
875 */
876
877 check_prot = flt->maxprot ?
878 ufi->entry->max_protection : ufi->entry->protection;
879 if ((check_prot & flt->access_type) != flt->access_type) {
880 UVMHIST_LOG(maphist,
881 "<- protection failure (prot=0x%x, access=0x%x)",
882 ufi->entry->protection, flt->access_type, 0, 0);
883 uvmfault_unlockmaps(ufi, false);
884 return EACCES;
885 }
886
887 /*
888 * "enter_prot" is the protection we want to enter the page in at.
889 * for certain pages (e.g. copy-on-write pages) this protection can
890 * be more strict than ufi->entry->protection. "wired" means either
891 * the entry is wired or we are fault-wiring the pg.
892 */
893
894 flt->enter_prot = ufi->entry->protection;
895 if (VM_MAPENT_ISWIRED(ufi->entry))
896 flt->wire_mapping = true;
897
898 if (flt->wire_mapping) {
899 flt->access_type = flt->enter_prot; /* full access for wired */
900 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
901 } else {
902 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
903 }
904
905 /*
906 * handle "needs_copy" case. if we need to copy the amap we will
907 * have to drop our readlock and relock it with a write lock. (we
908 * need a write lock to change anything in a map entry [e.g.
909 * needs_copy]).
910 */
911
912 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
913 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
914 KASSERT(!flt->maxprot);
915 /* need to clear */
916 UVMHIST_LOG(maphist,
917 " need to clear needs_copy and refault",0,0,0,0);
918 uvmfault_unlockmaps(ufi, false);
919 uvmfault_amapcopy(ufi);
920 uvmexp.fltamcopy++;
921 return ERESTART;
922
923 } else {
924
925 /*
926 * ensure that we pmap_enter page R/O since
927 * needs_copy is still true
928 */
929
930 flt->enter_prot &= ~VM_PROT_WRITE;
931 }
932 }
933
934 /*
935 * identify the players
936 */
937
938 amap = ufi->entry->aref.ar_amap; /* upper layer */
939 uobj = ufi->entry->object.uvm_obj; /* lower layer */
940
941 /*
942 * check for a case 0 fault. if nothing backing the entry then
943 * error now.
944 */
945
946 if (amap == NULL && uobj == NULL) {
947 uvmfault_unlockmaps(ufi, false);
948 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
949 return EFAULT;
950 }
951
952 /*
953 * establish range of interest based on advice from mapper
954 * and then clip to fit map entry. note that we only want
955 * to do this the first time through the fault. if we
956 * ReFault we will disable this by setting "narrow" to true.
957 */
958
959 if (flt->narrow == false) {
960
961 /* wide fault (!narrow) */
962 KASSERT(uvmadvice[ufi->entry->advice].advice ==
963 ufi->entry->advice);
964 nback = MIN(uvmadvice[ufi->entry->advice].nback,
965 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
966 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
967 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
968 ((ufi->entry->end - ufi->orig_rvaddr) >>
969 PAGE_SHIFT) - 1);
970 /*
971 * note: "-1" because we don't want to count the
972 * faulting page as forw
973 */
974 flt->npages = nback + nforw + 1;
975 flt->centeridx = nback;
976
977 flt->narrow = true; /* ensure only once per-fault */
978
979 } else {
980
981 /* narrow fault! */
982 nback = nforw = 0;
983 flt->startva = ufi->orig_rvaddr;
984 flt->npages = 1;
985 flt->centeridx = 0;
986
987 }
988 /* offset from entry's start to pgs' start */
989 const voff_t eoff = flt->startva - ufi->entry->start;
990
991 /* locked: maps(read) */
992 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
993 flt->narrow, nback, nforw, flt->startva);
994 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
995 amap, uobj, 0);
996
997 /*
998 * if we've got an amap, lock it and extract current anons.
999 */
1000
1001 if (amap) {
1002 amap_lock(amap);
1003 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1004 } else {
1005 *ranons = NULL; /* to be safe */
1006 }
1007
1008 /* locked: maps(read), amap(if there) */
1009 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1010
1011 /*
1012 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1013 * now and then forget about them (for the rest of the fault).
1014 */
1015
1016 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1017
1018 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1019 0,0,0,0);
1020 /* flush back-page anons? */
1021 if (amap)
1022 uvmfault_anonflush(*ranons, nback);
1023
1024 /* flush object? */
1025 if (uobj) {
1026 voff_t uoff;
1027
1028 uoff = ufi->entry->offset + eoff;
1029 mutex_enter(&uobj->vmobjlock);
1030 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1031 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1032 }
1033
1034 /* now forget about the backpages */
1035 if (amap)
1036 *ranons += nback;
1037 #if 0
1038 /* XXXUEBS */
1039 if (uobj)
1040 *rpages += nback;
1041 #endif
1042 flt->startva += (nback << PAGE_SHIFT);
1043 flt->npages -= nback;
1044 flt->centeridx = 0;
1045 }
1046 /*
1047 * => startva is fixed
1048 * => npages is fixed
1049 */
1050
1051 return 0;
1052 }
1053
1054 static int
1055 uvm_fault_upper_lookup(
1056 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1057 struct vm_anon **anons, struct vm_page **pages)
1058 {
1059 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1060 int lcv;
1061 vaddr_t currva;
1062 bool shadowed;
1063 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1064
1065 /* locked: maps(read), amap(if there) */
1066 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1067
1068 /*
1069 * map in the backpages and frontpages we found in the amap in hopes
1070 * of preventing future faults. we also init the pages[] array as
1071 * we go.
1072 */
1073
1074 currva = flt->startva;
1075 shadowed = false;
1076 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1077 /*
1078 * dont play with VAs that are already mapped
1079 * except for center)
1080 */
1081 if (lcv != flt->centeridx &&
1082 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1083 pages[lcv] = PGO_DONTCARE;
1084 continue;
1085 }
1086
1087 /*
1088 * unmapped or center page. check if any anon at this level.
1089 */
1090 if (amap == NULL || anons[lcv] == NULL) {
1091 pages[lcv] = NULL;
1092 continue;
1093 }
1094
1095 /*
1096 * check for present page and map if possible. re-activate it.
1097 */
1098
1099 pages[lcv] = PGO_DONTCARE;
1100 if (lcv == flt->centeridx) { /* save center for later! */
1101 shadowed = true;
1102 } else {
1103 struct vm_anon *anon = anons[lcv];
1104
1105 mutex_enter(&anon->an_lock);
1106 uvm_fault_upper_neighbor(ufi, flt, currva,
1107 anon->an_page, anon->an_ref > 1);
1108 mutex_exit(&anon->an_lock);
1109 }
1110 }
1111
1112 /* locked: maps(read), amap(if there) */
1113 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1114 /* (shadowed == true) if there is an anon at the faulting address */
1115 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1116 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1117
1118 /*
1119 * note that if we are really short of RAM we could sleep in the above
1120 * call to pmap_enter with everything locked. bad?
1121 *
1122 * XXX Actually, that is bad; pmap_enter() should just fail in that
1123 * XXX case. --thorpej
1124 */
1125
1126 return 0;
1127 }
1128
1129 static void
1130 uvm_fault_upper_neighbor(
1131 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1132 vaddr_t currva, struct vm_page *pg, bool readonly)
1133 {
1134 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1135
1136 /* ignore loaned and busy pages */
1137 if (pg == NULL || pg->loan_count != 0 ||
1138 (pg->flags & PG_BUSY) != 0)
1139 goto uvm_fault_upper_lookup_enter_done;
1140
1141 mutex_enter(&uvm_pageqlock);
1142 uvm_pageenqueue(pg);
1143 mutex_exit(&uvm_pageqlock);
1144 UVMHIST_LOG(maphist,
1145 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1146 ufi->orig_map->pmap, currva, pg, 0);
1147 uvmexp.fltnamap++;
1148
1149 /*
1150 * Since this page isn't the page that's actually faulting,
1151 * ignore pmap_enter() failures; it's not critical that we
1152 * enter these right now.
1153 */
1154
1155 (void) pmap_enter(ufi->orig_map->pmap, currva,
1156 VM_PAGE_TO_PHYS(pg),
1157 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1158 flt->enter_prot,
1159 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1160
1161 uvm_fault_upper_lookup_enter_done:
1162 pmap_update(ufi->orig_map->pmap);
1163 }
1164
1165 static int
1166 uvm_fault_lower(
1167 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1168 struct vm_page **pages)
1169 {
1170 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1171 int error;
1172
1173 /*
1174 * if the desired page is not shadowed by the amap and we have a
1175 * backing object, then we check to see if the backing object would
1176 * prefer to handle the fault itself (rather than letting us do it
1177 * with the usual pgo_get hook). the backing object signals this by
1178 * providing a pgo_fault routine.
1179 */
1180
1181 if (uobj && uobj->pgops->pgo_fault != NULL) {
1182 error = uvm_fault_lower_special(ufi, flt, pages);
1183 } else {
1184 error = uvm_fault_lower_generic(ufi, flt, pages);
1185 }
1186 return error;
1187 }
1188
1189 static int
1190 uvm_fault_lower_special(
1191 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1192 struct vm_page **pages)
1193 {
1194 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1195 int error;
1196
1197 mutex_enter(&uobj->vmobjlock);
1198 /* locked: maps(read), amap (if there), uobj */
1199 error = uobj->pgops->pgo_fault(ufi, flt->startva, pages, flt->npages,
1200 flt->centeridx, flt->access_type, PGO_LOCKED|PGO_SYNCIO);
1201
1202 /* locked: nothing, pgo_fault has unlocked everything */
1203
1204 if (error == ERESTART)
1205 error = ERESTART; /* try again! */
1206 /*
1207 * object fault routine responsible for pmap_update().
1208 */
1209
1210 return error;
1211 }
1212
1213 static int
1214 uvm_fault_lower_generic(
1215 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1216 struct vm_page **pages)
1217 {
1218 #ifdef DIAGNOSTIC
1219 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1220 #endif
1221 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1222 struct vm_page *uobjpage;
1223
1224 /*
1225 * now, if the desired page is not shadowed by the amap and we have
1226 * a backing object that does not have a special fault routine, then
1227 * we ask (with pgo_get) the object for resident pages that we care
1228 * about and attempt to map them in. we do not let pgo_get block
1229 * (PGO_LOCKED).
1230 */
1231
1232 if (uobj == NULL) {
1233 /* zero fill; don't care neighbor pages */
1234 uobjpage = NULL;
1235 } else {
1236 uvm_fault_lower_lookup(ufi, flt, pages);
1237 uobjpage = pages[flt->centeridx];
1238 }
1239
1240 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1241 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1242 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1243 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1244
1245 /*
1246 * note that at this point we are done with any front or back pages.
1247 * we are now going to focus on the center page (i.e. the one we've
1248 * faulted on). if we have faulted on the upper (anon) layer
1249 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1250 * not touched it yet). if we have faulted on the bottom (uobj)
1251 * layer [i.e. case 2] and the page was both present and available,
1252 * then we've got a pointer to it as "uobjpage" and we've already
1253 * made it BUSY.
1254 */
1255
1256 /*
1257 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1258 */
1259
1260 /*
1261 * redirect case 2: if we are not shadowed, go to case 2.
1262 */
1263
1264 return uvm_fault_lower1(ufi, flt, uobj, uobjpage);
1265 }
1266
1267 static int
1268 uvm_fault_lower_lookup(
1269 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1270 struct vm_page **pages)
1271 {
1272 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1273 int lcv, gotpages;
1274 vaddr_t currva;
1275 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1276
1277 mutex_enter(&uobj->vmobjlock);
1278 /* locked (!shadowed): maps(read), amap (if there), uobj */
1279 /*
1280 * the following call to pgo_get does _not_ change locking state
1281 */
1282
1283 uvmexp.fltlget++;
1284 gotpages = flt->npages;
1285 (void) uobj->pgops->pgo_get(uobj,
1286 ufi->entry->offset + flt->startva - ufi->entry->start,
1287 pages, &gotpages, flt->centeridx,
1288 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1289
1290 /*
1291 * check for pages to map, if we got any
1292 */
1293
1294 if (gotpages == 0) {
1295 pages[flt->centeridx] = NULL;
1296 return 0;
1297 }
1298
1299 currva = flt->startva;
1300 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1301 struct vm_page *curpg;
1302
1303 curpg = pages[lcv];
1304 if (curpg == NULL || curpg == PGO_DONTCARE) {
1305 continue;
1306 }
1307 KASSERT(curpg->uobject == uobj);
1308
1309 /*
1310 * if center page is resident and not PG_BUSY|PG_RELEASED
1311 * then pgo_get made it PG_BUSY for us and gave us a handle
1312 * to it. remember this page as "uobjpage." (for later use).
1313 */
1314
1315 if (lcv == flt->centeridx) {
1316 UVMHIST_LOG(maphist, " got uobjpage "
1317 "(0x%x) with locked get",
1318 curpg, 0,0,0);
1319 } else {
1320 bool readonly = (curpg->flags & PG_RDONLY)
1321 || (curpg->loan_count > 0)
1322 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1323
1324 uvm_fault_lower_neighbor(ufi, flt,
1325 currva, curpg, readonly);
1326 }
1327 }
1328 pmap_update(ufi->orig_map->pmap);
1329 return 0;
1330 }
1331
1332 static void
1333 uvm_fault_lower_neighbor(
1334 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1335 vaddr_t currva, struct vm_page *pg, bool readonly)
1336 {
1337 UVMHIST_FUNC("uvm_fault_lower_neighor"); UVMHIST_CALLED(maphist);
1338
1339 /*
1340 * calling pgo_get with PGO_LOCKED returns us pages which
1341 * are neither busy nor released, so we don't need to check
1342 * for this. we can just directly enter the pages.
1343 */
1344
1345 mutex_enter(&uvm_pageqlock);
1346 uvm_pageenqueue(pg);
1347 mutex_exit(&uvm_pageqlock);
1348 UVMHIST_LOG(maphist,
1349 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1350 ufi->orig_map->pmap, currva, pg, 0);
1351 uvmexp.fltnomap++;
1352
1353 /*
1354 * Since this page isn't the page that's actually faulting,
1355 * ignore pmap_enter() failures; it's not critical that we
1356 * enter these right now.
1357 */
1358 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1359 KASSERT((pg->flags & PG_RELEASED) == 0);
1360 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
1361 (pg->flags & PG_CLEAN) != 0);
1362
1363 (void) pmap_enter(ufi->orig_map->pmap, currva,
1364 VM_PAGE_TO_PHYS(pg),
1365 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1366 flt->enter_prot & MASK(ufi->entry),
1367 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1368
1369 /*
1370 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1371 * held the lock the whole time we've had the handle.
1372 */
1373 KASSERT((pg->flags & PG_WANTED) == 0);
1374 KASSERT((pg->flags & PG_RELEASED) == 0);
1375
1376 pg->flags &= ~(PG_BUSY);
1377 UVM_PAGE_OWN(pg, NULL);
1378 }
1379
1380 static int
1381 uvm_fault_upper(
1382 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1383 struct vm_anon **anons)
1384 {
1385 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1386 struct vm_anon * const anon = anons[flt->centeridx];
1387 struct uvm_object *uobj;
1388 int error;
1389 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1390
1391 /* locked: maps(read), amap */
1392 KASSERT(mutex_owned(&amap->am_l));
1393
1394 /*
1395 * handle case 1: fault on an anon in our amap
1396 */
1397
1398 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1399 mutex_enter(&anon->an_lock);
1400
1401 /* locked: maps(read), amap, anon */
1402 KASSERT(mutex_owned(&amap->am_l));
1403 KASSERT(mutex_owned(&anon->an_lock));
1404
1405 /*
1406 * no matter if we have case 1A or case 1B we are going to need to
1407 * have the anon's memory resident. ensure that now.
1408 */
1409
1410 /*
1411 * let uvmfault_anonget do the dirty work.
1412 * if it fails (!OK) it will unlock everything for us.
1413 * if it succeeds, locks are still valid and locked.
1414 * also, if it is OK, then the anon's page is on the queues.
1415 * if the page is on loan from a uvm_object, then anonget will
1416 * lock that object for us if it does not fail.
1417 */
1418
1419 error = uvmfault_anonget(ufi, amap, anon);
1420 switch (error) {
1421 case 0:
1422 break;
1423
1424 case ERESTART:
1425 return ERESTART;
1426
1427 case EAGAIN:
1428 kpause("fltagain1", false, hz/2, NULL);
1429 return ERESTART;
1430
1431 default:
1432 return error;
1433 }
1434
1435 /*
1436 * uobj is non null if the page is on loan from an object (i.e. uobj)
1437 */
1438
1439 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1440
1441 /* locked: maps(read), amap, anon, uobj(if one) */
1442 KASSERT(mutex_owned(&amap->am_l));
1443 KASSERT(mutex_owned(&anon->an_lock));
1444 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1445
1446 /*
1447 * special handling for loaned pages
1448 */
1449
1450 if (anon->an_page->loan_count) {
1451 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1452 if (error != 0)
1453 return error;
1454 }
1455
1456 /*
1457 * if we are case 1B then we will need to allocate a new blank
1458 * anon to transfer the data into. note that we have a lock
1459 * on anon, so no one can busy or release the page until we are done.
1460 * also note that the ref count can't drop to zero here because
1461 * it is > 1 and we are only dropping one ref.
1462 *
1463 * in the (hopefully very rare) case that we are out of RAM we
1464 * will unlock, wait for more RAM, and refault.
1465 *
1466 * if we are out of anon VM we kill the process (XXX: could wait?).
1467 */
1468
1469 if (flt->cow_now && anon->an_ref > 1) {
1470 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1471 } else {
1472 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1473 }
1474 return error;
1475 }
1476
1477 static int
1478 uvm_fault_upper_loan(
1479 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1480 struct vm_anon *anon, struct uvm_object **ruobj)
1481 {
1482 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1483 int error = 0;
1484
1485 if (!flt->cow_now) {
1486
1487 /*
1488 * for read faults on loaned pages we just cap the
1489 * protection at read-only.
1490 */
1491
1492 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1493
1494 } else {
1495 /*
1496 * note that we can't allow writes into a loaned page!
1497 *
1498 * if we have a write fault on a loaned page in an
1499 * anon then we need to look at the anon's ref count.
1500 * if it is greater than one then we are going to do
1501 * a normal copy-on-write fault into a new anon (this
1502 * is not a problem). however, if the reference count
1503 * is one (a case where we would normally allow a
1504 * write directly to the page) then we need to kill
1505 * the loan before we continue.
1506 */
1507
1508 /* >1 case is already ok */
1509 if (anon->an_ref == 1) {
1510 error = uvm_loanbreak_anon(anon, *ruobj);
1511 if (error != 0) {
1512 uvmfault_unlockall(ufi, amap, *ruobj, anon);
1513 uvm_wait("flt_noram2");
1514 return ERESTART;
1515 }
1516 /* if we were a loan reciever uobj is gone */
1517 if (*ruobj)
1518 *ruobj = NULL;
1519 }
1520 }
1521 return error;
1522 }
1523
1524 static int
1525 uvm_fault_upper_promote(
1526 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1527 struct uvm_object *uobj, struct vm_anon *anon)
1528 {
1529 struct vm_anon * const oanon = anon;
1530 struct vm_page *pg;
1531 int error;
1532 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1533
1534 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1535 uvmexp.flt_acow++;
1536
1537 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1538 &anon, &flt->anon_spare);
1539 switch (error) {
1540 case 0:
1541 break;
1542 case ERESTART:
1543 return ERESTART;
1544 default:
1545 return error;
1546 }
1547
1548 pg = anon->an_page;
1549 mutex_enter(&uvm_pageqlock);
1550 uvm_pageactivate(pg);
1551 mutex_exit(&uvm_pageqlock);
1552 pg->flags &= ~(PG_BUSY|PG_FAKE);
1553 UVM_PAGE_OWN(pg, NULL);
1554
1555 /* deref: can not drop to zero here by defn! */
1556 oanon->an_ref--;
1557
1558 /*
1559 * note: oanon is still locked, as is the new anon. we
1560 * need to check for this later when we unlock oanon; if
1561 * oanon != anon, we'll have to unlock anon, too.
1562 */
1563
1564 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1565 }
1566
1567 static int
1568 uvm_fault_upper_direct(
1569 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1570 struct uvm_object *uobj, struct vm_anon *anon)
1571 {
1572 struct vm_anon * const oanon = anon;
1573 struct vm_page *pg;
1574
1575 uvmexp.flt_anon++;
1576 pg = anon->an_page;
1577 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1578 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1579
1580 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1581 }
1582
1583 static int
1584 uvm_fault_upper_enter(
1585 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1586 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1587 struct vm_anon *oanon)
1588 {
1589 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1590 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1591
1592 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1593 KASSERT(mutex_owned(&amap->am_l));
1594 KASSERT(mutex_owned(&anon->an_lock));
1595 KASSERT(mutex_owned(&oanon->an_lock));
1596
1597 /*
1598 * now map the page in.
1599 */
1600
1601 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1602 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
1603 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1604 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1605 != 0) {
1606
1607 /*
1608 * No need to undo what we did; we can simply think of
1609 * this as the pmap throwing away the mapping information.
1610 *
1611 * We do, however, have to go through the ReFault path,
1612 * as the map may change while we're asleep.
1613 */
1614
1615 if (anon != oanon)
1616 mutex_exit(&anon->an_lock);
1617 uvmfault_unlockall(ufi, amap, uobj, oanon);
1618 if (!uvm_reclaimable()) {
1619 UVMHIST_LOG(maphist,
1620 "<- failed. out of VM",0,0,0,0);
1621 /* XXX instrumentation */
1622 return ENOMEM;
1623 }
1624 /* XXX instrumentation */
1625 uvm_wait("flt_pmfail1");
1626 return ERESTART;
1627 }
1628
1629 return uvm_fault_upper_done(ufi, flt, uobj, anon, pg, oanon);
1630 }
1631
1632 static int
1633 uvm_fault_upper_done(
1634 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1635 struct uvm_object *uobj, struct vm_anon *anon,
1636 struct vm_page *pg, struct vm_anon *oanon)
1637 {
1638 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1639
1640 /*
1641 * ... update the page queues.
1642 */
1643
1644 mutex_enter(&uvm_pageqlock);
1645 if (flt->wire_paging) {
1646 uvm_pagewire(pg);
1647
1648 /*
1649 * since the now-wired page cannot be paged out,
1650 * release its swap resources for others to use.
1651 * since an anon with no swap cannot be PG_CLEAN,
1652 * clear its clean flag now.
1653 */
1654
1655 pg->flags &= ~(PG_CLEAN);
1656 uvm_anon_dropswap(anon);
1657 } else {
1658 uvm_pageactivate(pg);
1659 }
1660 mutex_exit(&uvm_pageqlock);
1661
1662 /*
1663 * done case 1! finish up by unlocking everything and returning success
1664 */
1665
1666 if (anon != oanon)
1667 mutex_exit(&anon->an_lock);
1668 uvmfault_unlockall(ufi, amap, uobj, oanon);
1669 pmap_update(ufi->orig_map->pmap);
1670 return 0;
1671 }
1672
1673 static int
1674 uvm_fault_lower1(
1675 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1676 struct uvm_object *uobj, struct vm_page *uobjpage)
1677 {
1678 #ifdef DIAGNOSTIC
1679 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1680 #endif
1681 bool promote;
1682 int error;
1683 UVMHIST_FUNC("uvm_fault_lower1"); UVMHIST_CALLED(maphist);
1684
1685 /*
1686 * handle case 2: faulting on backing object or zero fill
1687 */
1688
1689 /*
1690 * locked:
1691 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1692 */
1693 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1694 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1695 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1696
1697 /*
1698 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1699 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1700 * have a backing object, check and see if we are going to promote
1701 * the data up to an anon during the fault.
1702 */
1703
1704 if (uobj == NULL) {
1705 uobjpage = PGO_DONTCARE;
1706 promote = true; /* always need anon here */
1707 } else {
1708 KASSERT(uobjpage != PGO_DONTCARE);
1709 promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1710 }
1711 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1712 promote, (uobj == NULL), 0,0);
1713
1714 /*
1715 * if uobjpage is not null then we do not need to do I/O to get the
1716 * uobjpage.
1717 *
1718 * if uobjpage is null, then we need to unlock and ask the pager to
1719 * get the data for us. once we have the data, we need to reverify
1720 * the state the world. we are currently not holding any resources.
1721 */
1722
1723 if (uobjpage) {
1724 /* update rusage counters */
1725 curlwp->l_ru.ru_minflt++;
1726 } else {
1727 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1728 if (error != 0)
1729 return error;
1730 }
1731
1732 /*
1733 * locked:
1734 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1735 */
1736 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1737 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1738 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1739
1740 /*
1741 * notes:
1742 * - at this point uobjpage can not be NULL
1743 * - at this point uobjpage can not be PG_RELEASED (since we checked
1744 * for it above)
1745 * - at this point uobjpage could be PG_WANTED (handle later)
1746 */
1747
1748 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1749 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1750 (uobjpage->flags & PG_CLEAN) != 0);
1751
1752 if (promote == false) {
1753 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1754 } else {
1755 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1756 }
1757 return error;
1758 }
1759
1760 static int
1761 uvm_fault_lower_io(
1762 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1763 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1764 {
1765 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1766 struct uvm_object *uobj = *ruobj;
1767 struct vm_page *pg;
1768 bool locked;
1769 int gotpages;
1770 int error;
1771 voff_t uoff;
1772 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1773
1774 /* update rusage counters */
1775 curlwp->l_ru.ru_majflt++;
1776
1777 /* locked: maps(read), amap(if there), uobj */
1778 uvmfault_unlockall(ufi, amap, NULL, NULL);
1779 /* locked: uobj */
1780
1781 uvmexp.fltget++;
1782 gotpages = 1;
1783 pg = NULL;
1784 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1785 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1786 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1787 PGO_SYNCIO);
1788 /* locked: pg(if no error) */
1789
1790 /*
1791 * recover from I/O
1792 */
1793
1794 if (error) {
1795 if (error == EAGAIN) {
1796 UVMHIST_LOG(maphist,
1797 " pgo_get says TRY AGAIN!",0,0,0,0);
1798 kpause("fltagain2", false, hz/2, NULL);
1799 return ERESTART;
1800 }
1801
1802 #if 0
1803 KASSERT(error != ERESTART);
1804 #else
1805 /* XXXUEBS don't re-fault? */
1806 if (error == ERESTART)
1807 error = EIO;
1808 #endif
1809
1810 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1811 error, 0,0,0);
1812 return error;
1813 }
1814
1815 /* locked: pg */
1816
1817 KASSERT((pg->flags & PG_BUSY) != 0);
1818
1819 mutex_enter(&uvm_pageqlock);
1820 uvm_pageactivate(pg);
1821 mutex_exit(&uvm_pageqlock);
1822
1823 /*
1824 * re-verify the state of the world by first trying to relock
1825 * the maps. always relock the object.
1826 */
1827
1828 locked = uvmfault_relock(ufi);
1829 if (locked && amap)
1830 amap_lock(amap);
1831
1832 /* might be changed */
1833 uobj = pg->uobject;
1834
1835 mutex_enter(&uobj->vmobjlock);
1836
1837 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1838 /* locked(!locked): uobj, pg */
1839
1840 /*
1841 * verify that the page has not be released and re-verify
1842 * that amap slot is still free. if there is a problem,
1843 * we unlock and clean up.
1844 */
1845
1846 if ((pg->flags & PG_RELEASED) != 0 ||
1847 (locked && amap && amap_lookup(&ufi->entry->aref,
1848 ufi->orig_rvaddr - ufi->entry->start))) {
1849 if (locked)
1850 uvmfault_unlockall(ufi, amap, NULL, NULL);
1851 locked = false;
1852 }
1853
1854 /*
1855 * didn't get the lock? release the page and retry.
1856 */
1857
1858 if (locked == false) {
1859 UVMHIST_LOG(maphist,
1860 " wasn't able to relock after fault: retry",
1861 0,0,0,0);
1862 if (pg->flags & PG_WANTED) {
1863 wakeup(pg);
1864 }
1865 if (pg->flags & PG_RELEASED) {
1866 uvmexp.fltpgrele++;
1867 uvm_pagefree(pg);
1868 mutex_exit(&uobj->vmobjlock);
1869 return ERESTART;
1870 }
1871 pg->flags &= ~(PG_BUSY|PG_WANTED);
1872 UVM_PAGE_OWN(pg, NULL);
1873 mutex_exit(&uobj->vmobjlock);
1874 return ERESTART;
1875 }
1876
1877 /*
1878 * we have the data in pg which is busy and
1879 * not released. we are holding object lock (so the page
1880 * can't be released on us).
1881 */
1882
1883 /* locked: maps(read), amap(if !null), uobj, pg */
1884
1885 *ruobj = uobj;
1886 *ruobjpage = pg;
1887 return 0;
1888 }
1889
1890 int
1891 uvm_fault_lower_direct(
1892 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1893 struct uvm_object *uobj, struct vm_page *uobjpage)
1894 {
1895 struct vm_page *pg;
1896
1897 /*
1898 * we are not promoting. if the mapping is COW ensure that we
1899 * don't give more access than we should (e.g. when doing a read
1900 * fault on a COPYONWRITE mapping we want to map the COW page in
1901 * R/O even though the entry protection could be R/W).
1902 *
1903 * set "pg" to the page we want to map in (uobjpage, usually)
1904 */
1905
1906 uvmexp.flt_obj++;
1907 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1908 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1909 flt->enter_prot &= ~VM_PROT_WRITE;
1910 pg = uobjpage; /* map in the actual object */
1911
1912 KASSERT(uobjpage != PGO_DONTCARE);
1913
1914 /*
1915 * we are faulting directly on the page. be careful
1916 * about writing to loaned pages...
1917 */
1918
1919 if (uobjpage->loan_count) {
1920 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1921 }
1922 KASSERT(pg == uobjpage);
1923
1924 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1925 }
1926
1927 static int
1928 uvm_fault_lower_direct_loan(
1929 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1930 struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage)
1931 {
1932 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1933 struct vm_page *pg;
1934 struct vm_page *uobjpage = *ruobjpage;
1935 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
1936
1937 if (!flt->cow_now) {
1938 /* read fault: cap the protection at readonly */
1939 /* cap! */
1940 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1941 } else {
1942 /* write fault: must break the loan here */
1943
1944 pg = uvm_loanbreak(uobjpage);
1945 if (pg == NULL) {
1946
1947 /*
1948 * drop ownership of page, it can't be released
1949 */
1950
1951 if (uobjpage->flags & PG_WANTED)
1952 wakeup(uobjpage);
1953 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1954 UVM_PAGE_OWN(uobjpage, NULL);
1955
1956 uvmfault_unlockall(ufi, amap, uobj, NULL);
1957 UVMHIST_LOG(maphist,
1958 " out of RAM breaking loan, waiting",
1959 0,0,0,0);
1960 uvmexp.fltnoram++;
1961 uvm_wait("flt_noram4");
1962 return ERESTART;
1963 }
1964 *rpg = pg;
1965 *ruobjpage = pg;
1966 }
1967 return 0;
1968 }
1969
1970 int
1971 uvm_fault_lower_promote(
1972 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1973 struct uvm_object *uobj, struct vm_page *uobjpage)
1974 {
1975 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1976 struct vm_anon *anon;
1977 struct vm_page *pg;
1978 int error;
1979 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
1980
1981 /*
1982 * if we are going to promote the data to an anon we
1983 * allocate a blank anon here and plug it into our amap.
1984 */
1985 #if DIAGNOSTIC
1986 if (amap == NULL)
1987 panic("uvm_fault: want to promote data, but no anon");
1988 #endif
1989 error = uvmfault_promote(ufi, NULL, uobjpage,
1990 &anon, &flt->anon_spare);
1991 switch (error) {
1992 case 0:
1993 break;
1994 case ERESTART:
1995 return ERESTART;
1996 default:
1997 return error;
1998 }
1999
2000 pg = anon->an_page;
2001
2002 /*
2003 * fill in the data
2004 */
2005
2006 if (uobjpage != PGO_DONTCARE) {
2007 uvmexp.flt_prcopy++;
2008
2009 /*
2010 * promote to shared amap? make sure all sharing
2011 * procs see it
2012 */
2013
2014 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2015 pmap_page_protect(uobjpage, VM_PROT_NONE);
2016 /*
2017 * XXX: PAGE MIGHT BE WIRED!
2018 */
2019 }
2020
2021 /*
2022 * dispose of uobjpage. it can't be PG_RELEASED
2023 * since we still hold the object lock.
2024 * drop handle to uobj as well.
2025 */
2026
2027 if (uobjpage->flags & PG_WANTED)
2028 /* still have the obj lock */
2029 wakeup(uobjpage);
2030 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2031 UVM_PAGE_OWN(uobjpage, NULL);
2032 mutex_exit(&uobj->vmobjlock);
2033 uobj = NULL;
2034
2035 UVMHIST_LOG(maphist,
2036 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2037 uobjpage, anon, pg, 0);
2038
2039 } else {
2040 uvmexp.flt_przero++;
2041
2042 /*
2043 * Page is zero'd and marked dirty by
2044 * uvmfault_promote().
2045 */
2046
2047 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2048 anon, pg, 0, 0);
2049 }
2050
2051 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage);
2052 }
2053
2054 int
2055 uvm_fault_lower_enter(
2056 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2057 struct uvm_object *uobj,
2058 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2059 {
2060 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2061 int error;
2062 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2063
2064 /*
2065 * locked:
2066 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2067 * anon(if !null), pg(if anon)
2068 *
2069 * note: pg is either the uobjpage or the new page in the new anon
2070 */
2071 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2072 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2073 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2074 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2075 KASSERT((pg->flags & PG_BUSY) != 0);
2076
2077 /*
2078 * all resources are present. we can now map it in and free our
2079 * resources.
2080 */
2081
2082 UVMHIST_LOG(maphist,
2083 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=XXX",
2084 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
2085 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2086 (pg->flags & PG_RDONLY) == 0);
2087 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
2088 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2089 flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2090
2091 /*
2092 * No need to undo what we did; we can simply think of
2093 * this as the pmap throwing away the mapping information.
2094 *
2095 * We do, however, have to go through the ReFault path,
2096 * as the map may change while we're asleep.
2097 */
2098
2099 if (pg->flags & PG_WANTED)
2100 wakeup(pg);
2101
2102 /*
2103 * note that pg can't be PG_RELEASED since we did not drop
2104 * the object lock since the last time we checked.
2105 */
2106 KASSERT((pg->flags & PG_RELEASED) == 0);
2107
2108 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2109 UVM_PAGE_OWN(pg, NULL);
2110 uvmfault_unlockall(ufi, amap, uobj, anon);
2111 if (!uvm_reclaimable()) {
2112 UVMHIST_LOG(maphist,
2113 "<- failed. out of VM",0,0,0,0);
2114 /* XXX instrumentation */
2115 error = ENOMEM;
2116 return error;
2117 }
2118 /* XXX instrumentation */
2119 uvm_wait("flt_pmfail2");
2120 return ERESTART;
2121 }
2122
2123 return uvm_fault_lower_done(ufi, flt, uobj, anon, pg);
2124 }
2125
2126 int
2127 uvm_fault_lower_done(
2128 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2129 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2130 {
2131 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2132 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2133
2134 mutex_enter(&uvm_pageqlock);
2135 if (flt->wire_paging) {
2136 uvm_pagewire(pg);
2137 if (pg->pqflags & PQ_AOBJ) {
2138
2139 /*
2140 * since the now-wired page cannot be paged out,
2141 * release its swap resources for others to use.
2142 * since an aobj page with no swap cannot be PG_CLEAN,
2143 * clear its clean flag now.
2144 */
2145
2146 KASSERT(uobj != NULL);
2147 pg->flags &= ~(PG_CLEAN);
2148 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2149 }
2150 } else {
2151 uvm_pageactivate(pg);
2152 }
2153 mutex_exit(&uvm_pageqlock);
2154 if (pg->flags & PG_WANTED)
2155 wakeup(pg);
2156
2157 /*
2158 * note that pg can't be PG_RELEASED since we did not drop the object
2159 * lock since the last time we checked.
2160 */
2161 KASSERT((pg->flags & PG_RELEASED) == 0);
2162
2163 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2164 UVM_PAGE_OWN(pg, NULL);
2165 uvmfault_unlockall(ufi, amap, uobj, anon);
2166 pmap_update(ufi->orig_map->pmap);
2167 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2168 return 0;
2169 }
2170
2171
2172 /*
2173 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2174 *
2175 * => map may be read-locked by caller, but MUST NOT be write-locked.
2176 * => if map is read-locked, any operations which may cause map to
2177 * be write-locked in uvm_fault() must be taken care of by
2178 * the caller. See uvm_map_pageable().
2179 */
2180
2181 int
2182 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2183 vm_prot_t access_type, int maxprot)
2184 {
2185 vaddr_t va;
2186 int error;
2187
2188 /*
2189 * now fault it in a page at a time. if the fault fails then we have
2190 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2191 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2192 */
2193
2194 /*
2195 * XXX work around overflowing a vaddr_t. this prevents us from
2196 * wiring the last page in the address space, though.
2197 */
2198 if (start > end) {
2199 return EFAULT;
2200 }
2201
2202 for (va = start; va < end; va += PAGE_SIZE) {
2203 error = uvm_fault_internal(map, va, access_type,
2204 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2205 if (error) {
2206 if (va != start) {
2207 uvm_fault_unwire(map, start, va);
2208 }
2209 return error;
2210 }
2211 }
2212 return 0;
2213 }
2214
2215 /*
2216 * uvm_fault_unwire(): unwire range of virtual space.
2217 */
2218
2219 void
2220 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2221 {
2222 vm_map_lock_read(map);
2223 uvm_fault_unwire_locked(map, start, end);
2224 vm_map_unlock_read(map);
2225 }
2226
2227 /*
2228 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2229 *
2230 * => map must be at least read-locked.
2231 */
2232
2233 void
2234 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2235 {
2236 struct vm_map_entry *entry;
2237 pmap_t pmap = vm_map_pmap(map);
2238 vaddr_t va;
2239 paddr_t pa;
2240 struct vm_page *pg;
2241
2242 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2243
2244 /*
2245 * we assume that the area we are unwiring has actually been wired
2246 * in the first place. this means that we should be able to extract
2247 * the PAs from the pmap. we also lock out the page daemon so that
2248 * we can call uvm_pageunwire.
2249 */
2250
2251 mutex_enter(&uvm_pageqlock);
2252
2253 /*
2254 * find the beginning map entry for the region.
2255 */
2256
2257 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2258 if (uvm_map_lookup_entry(map, start, &entry) == false)
2259 panic("uvm_fault_unwire_locked: address not in map");
2260
2261 for (va = start; va < end; va += PAGE_SIZE) {
2262 if (pmap_extract(pmap, va, &pa) == false)
2263 continue;
2264
2265 /*
2266 * find the map entry for the current address.
2267 */
2268
2269 KASSERT(va >= entry->start);
2270 while (va >= entry->end) {
2271 KASSERT(entry->next != &map->header &&
2272 entry->next->start <= entry->end);
2273 entry = entry->next;
2274 }
2275
2276 /*
2277 * if the entry is no longer wired, tell the pmap.
2278 */
2279
2280 if (VM_MAPENT_ISWIRED(entry) == 0)
2281 pmap_unwire(pmap, va);
2282
2283 pg = PHYS_TO_VM_PAGE(pa);
2284 if (pg)
2285 uvm_pageunwire(pg);
2286 }
2287
2288 mutex_exit(&uvm_pageqlock);
2289 }
2290