uvm_fault.c revision 1.166.2.11 1 /* $NetBSD: uvm_fault.c,v 1.166.2.11 2010/07/08 02:23:28 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.166.2.11 2010/07/08 02:23:28 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45 #include "opt_xip.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/proc.h>
51 #include <sys/malloc.h>
52 #include <sys/mman.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 *
58 * a word on page faults:
59 *
60 * types of page faults we handle:
61 *
62 * CASE 1: upper layer faults CASE 2: lower layer faults
63 *
64 * CASE 1A CASE 1B CASE 2A CASE 2B
65 * read/write1 write>1 read/write +-cow_write/zero
66 * | | | |
67 * +--|--+ +--|--+ +-----+ + | + | +-----+
68 * amap | V | | ---------> new | | | | ^ |
69 * +-----+ +-----+ +-----+ + | + | +--|--+
70 * | | |
71 * +-----+ +-----+ +--|--+ | +--|--+
72 * uobj | d/c | | d/c | | V | +----+ |
73 * +-----+ +-----+ +-----+ +-----+
74 *
75 * d/c = don't care
76 *
77 * case [0]: layerless fault
78 * no amap or uobj is present. this is an error.
79 *
80 * case [1]: upper layer fault [anon active]
81 * 1A: [read] or [write with anon->an_ref == 1]
82 * I/O takes place in upper level anon and uobj is not touched.
83 * 1B: [write with anon->an_ref > 1]
84 * new anon is alloc'd and data is copied off ["COW"]
85 *
86 * case [2]: lower layer fault [uobj]
87 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
88 * I/O takes place directly in object.
89 * 2B: [write to copy_on_write] or [read on NULL uobj]
90 * data is "promoted" from uobj to a new anon.
91 * if uobj is null, then we zero fill.
92 *
93 * we follow the standard UVM locking protocol ordering:
94 *
95 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
96 * we hold a PG_BUSY page if we unlock for I/O
97 *
98 *
99 * the code is structured as follows:
100 *
101 * - init the "IN" params in the ufi structure
102 * ReFault:
103 * - do lookups [locks maps], check protection, handle needs_copy
104 * - check for case 0 fault (error)
105 * - establish "range" of fault
106 * - if we have an amap lock it and extract the anons
107 * - if sequential advice deactivate pages behind us
108 * - at the same time check pmap for unmapped areas and anon for pages
109 * that we could map in (and do map it if found)
110 * - check object for resident pages that we could map in
111 * - if (case 2) goto Case2
112 * - >>> handle case 1
113 * - ensure source anon is resident in RAM
114 * - if case 1B alloc new anon and copy from source
115 * - map the correct page in
116 * Case2:
117 * - >>> handle case 2
118 * - ensure source page is resident (if uobj)
119 * - if case 2B alloc new anon and copy from source (could be zero
120 * fill if uobj == NULL)
121 * - map the correct page in
122 * - done!
123 *
124 * note on paging:
125 * if we have to do I/O we place a PG_BUSY page in the correct object,
126 * unlock everything, and do the I/O. when I/O is done we must reverify
127 * the state of the world before assuming that our data structures are
128 * valid. [because mappings could change while the map is unlocked]
129 *
130 * alternative 1: unbusy the page in question and restart the page fault
131 * from the top (ReFault). this is easy but does not take advantage
132 * of the information that we already have from our previous lookup,
133 * although it is possible that the "hints" in the vm_map will help here.
134 *
135 * alternative 2: the system already keeps track of a "version" number of
136 * a map. [i.e. every time you write-lock a map (e.g. to change a
137 * mapping) you bump the version number up by one...] so, we can save
138 * the version number of the map before we release the lock and start I/O.
139 * then when I/O is done we can relock and check the version numbers
140 * to see if anything changed. this might save us some over 1 because
141 * we don't have to unbusy the page and may be less compares(?).
142 *
143 * alternative 3: put in backpointers or a way to "hold" part of a map
144 * in place while I/O is in progress. this could be complex to
145 * implement (especially with structures like amap that can be referenced
146 * by multiple map entries, and figuring out what should wait could be
147 * complex as well...).
148 *
149 * we use alternative 2. given that we are multi-threaded now we may want
150 * to reconsider the choice.
151 */
152
153 /*
154 * local data structures
155 */
156
157 struct uvm_advice {
158 int advice;
159 int nback;
160 int nforw;
161 };
162
163 /*
164 * page range array:
165 * note: index in array must match "advice" value
166 * XXX: borrowed numbers from freebsd. do they work well for us?
167 */
168
169 static const struct uvm_advice uvmadvice[] = {
170 { MADV_NORMAL, 3, 4 },
171 { MADV_RANDOM, 0, 0 },
172 { MADV_SEQUENTIAL, 8, 7},
173 };
174
175 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
176
177 /*
178 * private prototypes
179 */
180
181 /*
182 * inline functions
183 */
184
185 /*
186 * uvmfault_anonflush: try and deactivate pages in specified anons
187 *
188 * => does not have to deactivate page if it is busy
189 */
190
191 static inline void
192 uvmfault_anonflush(struct vm_anon **anons, int n)
193 {
194 int lcv;
195 struct vm_page *pg;
196
197 for (lcv = 0; lcv < n; lcv++) {
198 if (anons[lcv] == NULL)
199 continue;
200 mutex_enter(&anons[lcv]->an_lock);
201 pg = anons[lcv]->an_page;
202 if (pg && (pg->flags & PG_BUSY) == 0) {
203 mutex_enter(&uvm_pageqlock);
204 if (pg->wire_count == 0) {
205 uvm_pagedeactivate(pg);
206 }
207 mutex_exit(&uvm_pageqlock);
208 }
209 mutex_exit(&anons[lcv]->an_lock);
210 }
211 }
212
213 /*
214 * normal functions
215 */
216
217 /*
218 * uvmfault_amapcopy: clear "needs_copy" in a map.
219 *
220 * => called with VM data structures unlocked (usually, see below)
221 * => we get a write lock on the maps and clear needs_copy for a VA
222 * => if we are out of RAM we sleep (waiting for more)
223 */
224
225 static void
226 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
227 {
228 for (;;) {
229
230 /*
231 * no mapping? give up.
232 */
233
234 if (uvmfault_lookup(ufi, true) == false)
235 return;
236
237 /*
238 * copy if needed.
239 */
240
241 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
242 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
243 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
244
245 /*
246 * didn't work? must be out of RAM. unlock and sleep.
247 */
248
249 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
250 uvmfault_unlockmaps(ufi, true);
251 uvm_wait("fltamapcopy");
252 continue;
253 }
254
255 /*
256 * got it! unlock and return.
257 */
258
259 uvmfault_unlockmaps(ufi, true);
260 return;
261 }
262 /*NOTREACHED*/
263 }
264
265 /*
266 * uvmfault_anonget: get data in an anon into a non-busy, non-released
267 * page in that anon.
268 *
269 * => maps, amap, and anon locked by caller.
270 * => if we fail (result != 0) we unlock everything.
271 * => if we are successful, we return with everything still locked.
272 * => we don't move the page on the queues [gets moved later]
273 * => if we allocate a new page [we_own], it gets put on the queues.
274 * either way, the result is that the page is on the queues at return time
275 * => for pages which are on loan from a uvm_object (and thus are not
276 * owned by the anon): if successful, we return with the owning object
277 * locked. the caller must unlock this object when it unlocks everything
278 * else.
279 */
280
281 int
282 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
283 struct vm_anon *anon)
284 {
285 bool we_own; /* we own anon's page? */
286 bool locked; /* did we relock? */
287 struct vm_page *pg;
288 int error;
289 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
290
291 KASSERT(mutex_owned(&anon->an_lock));
292
293 error = 0;
294 uvmexp.fltanget++;
295 /* bump rusage counters */
296 if (anon->an_page)
297 curlwp->l_ru.ru_minflt++;
298 else
299 curlwp->l_ru.ru_majflt++;
300
301 /*
302 * loop until we get it, or fail.
303 */
304
305 for (;;) {
306 we_own = false; /* true if we set PG_BUSY on a page */
307 pg = anon->an_page;
308
309 /*
310 * if there is a resident page and it is loaned, then anon
311 * may not own it. call out to uvm_anon_lockpage() to ensure
312 * the real owner of the page has been identified and locked.
313 */
314
315 if (pg && pg->loan_count)
316 pg = uvm_anon_lockloanpg(anon);
317
318 /*
319 * page there? make sure it is not busy/released.
320 */
321
322 if (pg) {
323
324 /*
325 * at this point, if the page has a uobject [meaning
326 * we have it on loan], then that uobject is locked
327 * by us! if the page is busy, we drop all the
328 * locks (including uobject) and try again.
329 */
330
331 if ((pg->flags & PG_BUSY) == 0) {
332 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
333 return (0);
334 }
335 pg->flags |= PG_WANTED;
336 uvmexp.fltpgwait++;
337
338 /*
339 * the last unlock must be an atomic unlock+wait on
340 * the owner of page
341 */
342
343 if (pg->uobject) { /* owner is uobject ? */
344 uvmfault_unlockall(ufi, amap, NULL, anon);
345 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
346 0,0,0);
347 UVM_UNLOCK_AND_WAIT(pg,
348 &pg->uobject->vmobjlock,
349 false, "anonget1",0);
350 } else {
351 /* anon owns page */
352 uvmfault_unlockall(ufi, amap, NULL, NULL);
353 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
354 0,0,0);
355 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
356 "anonget2",0);
357 }
358 } else {
359 #if defined(VMSWAP)
360
361 /*
362 * no page, we must try and bring it in.
363 */
364
365 pg = uvm_pagealloc(NULL, 0, anon, 0);
366 if (pg == NULL) { /* out of RAM. */
367 uvmfault_unlockall(ufi, amap, NULL, anon);
368 uvmexp.fltnoram++;
369 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
370 0,0,0);
371 if (!uvm_reclaimable()) {
372 return ENOMEM;
373 }
374 uvm_wait("flt_noram1");
375 } else {
376 /* we set the PG_BUSY bit */
377 we_own = true;
378 uvmfault_unlockall(ufi, amap, NULL, anon);
379
380 /*
381 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
382 * page into the uvm_swap_get function with
383 * all data structures unlocked. note that
384 * it is ok to read an_swslot here because
385 * we hold PG_BUSY on the page.
386 */
387 uvmexp.pageins++;
388 error = uvm_swap_get(pg, anon->an_swslot,
389 PGO_SYNCIO);
390
391 /*
392 * we clean up after the i/o below in the
393 * "we_own" case
394 */
395 }
396 #else /* defined(VMSWAP) */
397 panic("%s: no page", __func__);
398 #endif /* defined(VMSWAP) */
399 }
400
401 /*
402 * now relock and try again
403 */
404
405 locked = uvmfault_relock(ufi);
406 if (locked && amap != NULL) {
407 amap_lock(amap);
408 }
409 if (locked || we_own)
410 mutex_enter(&anon->an_lock);
411
412 /*
413 * if we own the page (i.e. we set PG_BUSY), then we need
414 * to clean up after the I/O. there are three cases to
415 * consider:
416 * [1] page released during I/O: free anon and ReFault.
417 * [2] I/O not OK. free the page and cause the fault
418 * to fail.
419 * [3] I/O OK! activate the page and sync with the
420 * non-we_own case (i.e. drop anon lock if not locked).
421 */
422
423 if (we_own) {
424 #if defined(VMSWAP)
425 if (pg->flags & PG_WANTED) {
426 wakeup(pg);
427 }
428 if (error) {
429
430 /*
431 * remove the swap slot from the anon
432 * and mark the anon as having no real slot.
433 * don't free the swap slot, thus preventing
434 * it from being used again.
435 */
436
437 if (anon->an_swslot > 0)
438 uvm_swap_markbad(anon->an_swslot, 1);
439 anon->an_swslot = SWSLOT_BAD;
440
441 if ((pg->flags & PG_RELEASED) != 0)
442 goto released;
443
444 /*
445 * note: page was never !PG_BUSY, so it
446 * can't be mapped and thus no need to
447 * pmap_page_protect it...
448 */
449
450 mutex_enter(&uvm_pageqlock);
451 uvm_pagefree(pg);
452 mutex_exit(&uvm_pageqlock);
453
454 if (locked)
455 uvmfault_unlockall(ufi, amap, NULL,
456 anon);
457 else
458 mutex_exit(&anon->an_lock);
459 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
460 return error;
461 }
462
463 if ((pg->flags & PG_RELEASED) != 0) {
464 released:
465 KASSERT(anon->an_ref == 0);
466
467 /*
468 * released while we unlocked amap.
469 */
470
471 if (locked)
472 uvmfault_unlockall(ufi, amap, NULL,
473 NULL);
474
475 uvm_anon_release(anon);
476
477 if (error) {
478 UVMHIST_LOG(maphist,
479 "<- ERROR/RELEASED", 0,0,0,0);
480 return error;
481 }
482
483 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
484 return ERESTART;
485 }
486
487 /*
488 * we've successfully read the page, activate it.
489 */
490
491 mutex_enter(&uvm_pageqlock);
492 uvm_pageactivate(pg);
493 mutex_exit(&uvm_pageqlock);
494 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
495 UVM_PAGE_OWN(pg, NULL);
496 if (!locked)
497 mutex_exit(&anon->an_lock);
498 #else /* defined(VMSWAP) */
499 panic("%s: we_own", __func__);
500 #endif /* defined(VMSWAP) */
501 }
502
503 /*
504 * we were not able to relock. restart fault.
505 */
506
507 if (!locked) {
508 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
509 return (ERESTART);
510 }
511
512 /*
513 * verify no one has touched the amap and moved the anon on us.
514 */
515
516 if (ufi != NULL &&
517 amap_lookup(&ufi->entry->aref,
518 ufi->orig_rvaddr - ufi->entry->start) != anon) {
519
520 uvmfault_unlockall(ufi, amap, NULL, anon);
521 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
522 return (ERESTART);
523 }
524
525 /*
526 * try it again!
527 */
528
529 uvmexp.fltanretry++;
530 continue;
531 }
532 /*NOTREACHED*/
533 }
534
535 /*
536 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
537 *
538 * 1. allocate an anon and a page.
539 * 2. fill its contents.
540 * 3. put it into amap.
541 *
542 * => if we fail (result != 0) we unlock everything.
543 * => on success, return a new locked anon via 'nanon'.
544 * (*nanon)->an_page will be a resident, locked, dirty page.
545 */
546
547 static int
548 uvmfault_promote(struct uvm_faultinfo *ufi,
549 struct vm_anon *oanon,
550 struct uvm_object *uobj,
551 struct vm_page *uobjpage,
552 struct vm_anon **nanon, /* OUT: allocated anon */
553 struct vm_anon **spare)
554 {
555 struct vm_amap *amap = ufi->entry->aref.ar_amap;
556 struct vm_anon *anon;
557 struct vm_page *pg;
558 struct vm_page *opg;
559 int error;
560 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
561
562 if (oanon) {
563 /* anon COW */
564 opg = oanon->an_page;
565 KASSERT(opg != NULL);
566 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
567 } else if (uobjpage != PGO_DONTCARE) {
568 /* object-backed COW */
569 opg = uobjpage;
570 } else {
571 /* ZFOD */
572 opg = NULL;
573 }
574
575 KASSERT(amap != NULL);
576 KASSERT(uobjpage != NULL);
577 KASSERT(uobjpage == PGO_DONTCARE || uvm_pageisdirect_p(uobjpage) ||
578 (uobjpage->flags & PG_BUSY) != 0);
579 KASSERT(mutex_owned(&amap->am_l));
580 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
581 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
582 #if 0
583 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
584 #endif
585
586 if (*spare != NULL) {
587 anon = *spare;
588 *spare = NULL;
589 mutex_enter(&anon->an_lock);
590 } else if (ufi->map != kernel_map) {
591 anon = uvm_analloc();
592 } else {
593 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
594
595 /*
596 * we can't allocate anons with kernel_map locked.
597 */
598
599 uvm_page_unbusy(&uobjpage, 1);
600 uvmfault_unlockall(ufi, amap, uobj, oanon);
601
602 *spare = uvm_analloc();
603 if (*spare == NULL) {
604 goto nomem;
605 }
606 mutex_exit(&(*spare)->an_lock);
607 error = ERESTART;
608 goto done;
609 }
610 if (anon) {
611
612 /*
613 * The new anon is locked.
614 *
615 * if opg == NULL, we want a zero'd, dirty page,
616 * so have uvm_pagealloc() do that for us.
617 */
618
619 pg = uvm_pagealloc(NULL, 0, anon,
620 (opg == NULL) ? UVM_PGA_ZERO : 0);
621 } else {
622 pg = NULL;
623 }
624
625 /*
626 * out of memory resources?
627 */
628
629 if (pg == NULL) {
630 /* save anon for the next try. */
631 if (anon != NULL) {
632 mutex_exit(&anon->an_lock);
633 *spare = anon;
634 }
635
636 /* unlock and fail ... */
637 uvm_page_unbusy(&uobjpage, 1);
638 uvmfault_unlockall(ufi, amap, uobj, oanon);
639 nomem:
640 if (!uvm_reclaimable()) {
641 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
642 uvmexp.fltnoanon++;
643 error = ENOMEM;
644 goto done;
645 }
646
647 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
648 uvmexp.fltnoram++;
649 uvm_wait("flt_noram5");
650 error = ERESTART;
651 goto done;
652 }
653
654 /* copy page [pg now dirty] */
655 if (opg) {
656 uvm_pagecopy(opg, pg);
657 }
658
659 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
660 oanon != NULL);
661
662 *nanon = anon;
663 error = 0;
664 done:
665 return error;
666 }
667
668
669 /*
670 * F A U L T - m a i n e n t r y p o i n t
671 */
672
673 /*
674 * uvm_fault: page fault handler
675 *
676 * => called from MD code to resolve a page fault
677 * => VM data structures usually should be unlocked. however, it is
678 * possible to call here with the main map locked if the caller
679 * gets a write lock, sets it recusive, and then calls us (c.f.
680 * uvm_map_pageable). this should be avoided because it keeps
681 * the map locked off during I/O.
682 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
683 */
684
685 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
686 ~VM_PROT_WRITE : VM_PROT_ALL)
687
688 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
689 #define UVM_FAULT_WIRE (1 << 0)
690 #define UVM_FAULT_MAXPROT (1 << 1)
691
692 struct uvm_faultctx {
693 vm_prot_t access_type;
694 vm_prot_t enter_prot;
695 vaddr_t startva;
696 int npages;
697 int centeridx;
698 struct vm_anon *anon_spare;
699 bool wire_mapping;
700 bool narrow;
701 bool wire_paging;
702 bool maxprot;
703 bool cow_now;
704 bool promote;
705 };
706
707 static inline int uvm_fault_check(
708 struct uvm_faultinfo *, struct uvm_faultctx *,
709 struct vm_anon ***, struct vm_page ***);
710
711 static int uvm_fault_upper(
712 struct uvm_faultinfo *, struct uvm_faultctx *,
713 struct vm_anon **);
714 static inline int uvm_fault_upper_lookup(
715 struct uvm_faultinfo *, struct uvm_faultctx *,
716 struct vm_anon **, struct vm_page **);
717 static inline void uvm_fault_upper_neighbor(
718 struct uvm_faultinfo *, struct uvm_faultctx *,
719 vaddr_t, struct vm_page *, bool);
720 static inline int uvm_fault_upper_loan(
721 struct uvm_faultinfo *, struct uvm_faultctx *,
722 struct vm_anon *, struct uvm_object **);
723 static inline int uvm_fault_upper_promote(
724 struct uvm_faultinfo *, struct uvm_faultctx *,
725 struct uvm_object *, struct vm_anon *);
726 static inline int uvm_fault_upper_direct(
727 struct uvm_faultinfo *, struct uvm_faultctx *,
728 struct uvm_object *, struct vm_anon *);
729 static int uvm_fault_upper_enter(
730 struct uvm_faultinfo *, struct uvm_faultctx *,
731 struct uvm_object *, struct vm_anon *,
732 struct vm_page *, struct vm_anon *);
733 static inline void uvm_fault_upper_done(
734 struct uvm_faultinfo *, struct uvm_faultctx *,
735 struct uvm_object *, struct vm_anon *,
736 struct vm_page *);
737
738 static int uvm_fault_lower(
739 struct uvm_faultinfo *, struct uvm_faultctx *,
740 struct vm_page **);
741 static inline void uvm_fault_lower_lookup(
742 struct uvm_faultinfo *, struct uvm_faultctx *,
743 struct vm_page **);
744 static inline void uvm_fault_lower_neighbor(
745 struct uvm_faultinfo *, struct uvm_faultctx *,
746 vaddr_t, struct vm_page *, bool);
747 static inline int uvm_fault_lower_io(
748 struct uvm_faultinfo *, struct uvm_faultctx *,
749 struct uvm_object **, struct vm_page **);
750 static inline int uvm_fault_lower_direct(
751 struct uvm_faultinfo *, struct uvm_faultctx *,
752 struct uvm_object *, struct vm_page *);
753 static inline int uvm_fault_lower_direct_loan(
754 struct uvm_faultinfo *, struct uvm_faultctx *,
755 struct uvm_object *, struct vm_page **,
756 struct vm_page **);
757 static inline int uvm_fault_lower_promote(
758 struct uvm_faultinfo *, struct uvm_faultctx *,
759 struct uvm_object *, struct vm_page *);
760 static int uvm_fault_lower_enter(
761 struct uvm_faultinfo *, struct uvm_faultctx *,
762 struct uvm_object *,
763 struct vm_anon *, struct vm_page *,
764 struct vm_page *);
765 static inline void uvm_fault_lower_done(
766 struct uvm_faultinfo *, struct uvm_faultctx *,
767 struct uvm_object *, struct vm_anon *,
768 struct vm_page *);
769
770 int
771 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
772 vm_prot_t access_type, int fault_flag)
773 {
774 struct uvm_faultinfo ufi;
775 struct uvm_faultctx flt = {
776 .access_type = access_type,
777
778 /* don't look for neighborhood * pages on "wire" fault */
779 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
780
781 /* "wire" fault causes wiring of both mapping and paging */
782 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
783 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
784
785 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
786 };
787 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
788 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
789 int error;
790 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
791
792 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
793 orig_map, vaddr, access_type, fault_flag);
794
795 uvmexp.faults++; /* XXX: locking? */
796
797 /*
798 * init the IN parameters in the ufi
799 */
800
801 ufi.orig_map = orig_map;
802 ufi.orig_rvaddr = trunc_page(vaddr);
803 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
804
805 error = ERESTART;
806 while (error == ERESTART) {
807 anons = anons_store;
808 pages = pages_store;
809
810 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
811 if (error != 0)
812 continue;
813
814 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
815 if (error != 0)
816 continue;
817
818 if (pages[flt.centeridx] == PGO_DONTCARE)
819 error = uvm_fault_upper(&ufi, &flt, anons);
820 else {
821 struct uvm_object * const uobj = ufi.entry->object.uvm_obj;
822
823 if (uobj && uobj->pgops->pgo_fault != NULL) {
824 /*
825 * invoke "special" fault routine.
826 */
827 mutex_enter(&uobj->vmobjlock);
828 /* locked: maps(read), amap(if there), uobj */
829 error = uobj->pgops->pgo_fault(&ufi,
830 flt.startva, pages, flt.npages,
831 flt.centeridx, flt.access_type,
832 PGO_LOCKED|PGO_SYNCIO);
833
834 /* locked: nothing, pgo_fault has unlocked everything */
835
836 /*
837 * object fault routine responsible for pmap_update().
838 */
839 } else {
840 error = uvm_fault_lower(&ufi, &flt, pages);
841 }
842 }
843 }
844
845 if (flt.anon_spare != NULL) {
846 flt.anon_spare->an_ref--;
847 uvm_anfree(flt.anon_spare);
848 }
849 return error;
850 }
851
852 /*
853 * uvm_fault_check: check prot, handle needs-copy, etc.
854 *
855 * 1. lookup entry.
856 * 2. check protection.
857 * 3. adjust fault condition (mainly for simulated fault).
858 * 4. handle needs-copy (lazy amap copy).
859 * 5. establish range of interest for neighbor fault (aka pre-fault).
860 * 6. look up anons (if amap exists).
861 * 7. flush pages (if MADV_SEQUENTIAL)
862 *
863 * => called with nothing locked.
864 * => if we fail (result != 0) we unlock everything.
865 */
866
867 static int
868 uvm_fault_check(
869 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
870 struct vm_anon ***ranons, struct vm_page ***rpages)
871 {
872 struct vm_amap *amap;
873 struct uvm_object *uobj;
874 vm_prot_t check_prot;
875 int nback, nforw;
876 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
877
878 /*
879 * lookup and lock the maps
880 */
881
882 if (uvmfault_lookup(ufi, false) == false) {
883 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr, 0,0,0);
884 return EFAULT;
885 }
886 /* locked: maps(read) */
887
888 #ifdef DIAGNOSTIC
889 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
890 printf("Page fault on non-pageable map:\n");
891 printf("ufi->map = %p\n", ufi->map);
892 printf("ufi->orig_map = %p\n", ufi->orig_map);
893 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
894 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
895 }
896 #endif
897
898 /*
899 * check protection
900 */
901
902 check_prot = flt->maxprot ?
903 ufi->entry->max_protection : ufi->entry->protection;
904 if ((check_prot & flt->access_type) != flt->access_type) {
905 UVMHIST_LOG(maphist,
906 "<- protection failure (prot=0x%x, access=0x%x)",
907 ufi->entry->protection, flt->access_type, 0, 0);
908 uvmfault_unlockmaps(ufi, false);
909 return EACCES;
910 }
911
912 /*
913 * "enter_prot" is the protection we want to enter the page in at.
914 * for certain pages (e.g. copy-on-write pages) this protection can
915 * be more strict than ufi->entry->protection. "wired" means either
916 * the entry is wired or we are fault-wiring the pg.
917 */
918
919 flt->enter_prot = ufi->entry->protection;
920 if (VM_MAPENT_ISWIRED(ufi->entry))
921 flt->wire_mapping = true;
922
923 if (flt->wire_mapping) {
924 flt->access_type = flt->enter_prot; /* full access for wired */
925 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
926 } else {
927 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
928 }
929
930 flt->promote = false;
931
932 /*
933 * handle "needs_copy" case. if we need to copy the amap we will
934 * have to drop our readlock and relock it with a write lock. (we
935 * need a write lock to change anything in a map entry [e.g.
936 * needs_copy]).
937 */
938
939 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
940 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
941 KASSERT(!flt->maxprot);
942 /* need to clear */
943 UVMHIST_LOG(maphist,
944 " need to clear needs_copy and refault",0,0,0,0);
945 uvmfault_unlockmaps(ufi, false);
946 uvmfault_amapcopy(ufi);
947 uvmexp.fltamcopy++;
948 return ERESTART;
949
950 } else {
951
952 /*
953 * ensure that we pmap_enter page R/O since
954 * needs_copy is still true
955 */
956
957 flt->enter_prot &= ~VM_PROT_WRITE;
958 }
959 }
960
961 /*
962 * identify the players
963 */
964
965 amap = ufi->entry->aref.ar_amap; /* upper layer */
966 uobj = ufi->entry->object.uvm_obj; /* lower layer */
967
968 /*
969 * check for a case 0 fault. if nothing backing the entry then
970 * error now.
971 */
972
973 if (amap == NULL && uobj == NULL) {
974 uvmfault_unlockmaps(ufi, false);
975 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
976 return EFAULT;
977 }
978
979 /*
980 * establish range of interest based on advice from mapper
981 * and then clip to fit map entry. note that we only want
982 * to do this the first time through the fault. if we
983 * ReFault we will disable this by setting "narrow" to true.
984 */
985
986 if (flt->narrow == false) {
987
988 /* wide fault (!narrow) */
989 KASSERT(uvmadvice[ufi->entry->advice].advice ==
990 ufi->entry->advice);
991 nback = MIN(uvmadvice[ufi->entry->advice].nback,
992 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
993 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
994 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
995 ((ufi->entry->end - ufi->orig_rvaddr) >>
996 PAGE_SHIFT) - 1);
997 /*
998 * note: "-1" because we don't want to count the
999 * faulting page as forw
1000 */
1001 flt->npages = nback + nforw + 1;
1002 flt->centeridx = nback;
1003
1004 flt->narrow = true; /* ensure only once per-fault */
1005
1006 } else {
1007
1008 /* narrow fault! */
1009 nback = nforw = 0;
1010 flt->startva = ufi->orig_rvaddr;
1011 flt->npages = 1;
1012 flt->centeridx = 0;
1013
1014 }
1015 /* offset from entry's start to pgs' start */
1016 const voff_t eoff = flt->startva - ufi->entry->start;
1017
1018 /* locked: maps(read) */
1019 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
1020 flt->narrow, nback, nforw, flt->startva);
1021 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1022 amap, uobj, 0);
1023
1024 /*
1025 * if we've got an amap, lock it and extract current anons.
1026 */
1027
1028 if (amap) {
1029 amap_lock(amap);
1030 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1031 } else {
1032 *ranons = NULL; /* to be safe */
1033 }
1034
1035 /* locked: maps(read), amap(if there) */
1036 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1037
1038 /*
1039 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1040 * now and then forget about them (for the rest of the fault).
1041 */
1042
1043 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1044
1045 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1046 0,0,0,0);
1047 /* flush back-page anons? */
1048 if (amap)
1049 uvmfault_anonflush(*ranons, nback);
1050
1051 /* flush object? */
1052 if (uobj) {
1053 voff_t uoff;
1054
1055 uoff = ufi->entry->offset + eoff;
1056 mutex_enter(&uobj->vmobjlock);
1057 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1058 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1059 }
1060
1061 /* now forget about the backpages */
1062 if (amap)
1063 *ranons += nback;
1064 flt->startva += (nback << PAGE_SHIFT);
1065 flt->npages -= nback;
1066 flt->centeridx = 0;
1067 }
1068 /*
1069 * => startva is fixed
1070 * => npages is fixed
1071 */
1072
1073 return 0;
1074 }
1075
1076 /*
1077 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1078 *
1079 * iterate range of interest:
1080 * 1. check if h/w mapping exists. if yes, we don't care
1081 * 2. check if anon exists. if not, page is lower.
1082 * 3. if anon exists, enter h/w mapping for neighbors.
1083 *
1084 * => called with amap locked (if exists).
1085 */
1086
1087 static int
1088 uvm_fault_upper_lookup(
1089 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1090 struct vm_anon **anons, struct vm_page **pages)
1091 {
1092 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1093 int lcv;
1094 vaddr_t currva;
1095 bool shadowed;
1096 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1097
1098 /* locked: maps(read), amap(if there) */
1099 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1100
1101 /*
1102 * map in the backpages and frontpages we found in the amap in hopes
1103 * of preventing future faults. we also init the pages[] array as
1104 * we go.
1105 */
1106
1107 currva = flt->startva;
1108 shadowed = false;
1109 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1110 /*
1111 * dont play with VAs that are already mapped
1112 * except for center)
1113 */
1114 if (lcv != flt->centeridx &&
1115 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1116 pages[lcv] = PGO_DONTCARE;
1117 continue;
1118 }
1119
1120 /*
1121 * unmapped or center page. check if any anon at this level.
1122 */
1123 if (amap == NULL || anons[lcv] == NULL) {
1124 pages[lcv] = NULL;
1125 continue;
1126 }
1127
1128 /*
1129 * check for present page and map if possible. re-activate it.
1130 */
1131
1132 pages[lcv] = PGO_DONTCARE;
1133 if (lcv == flt->centeridx) { /* save center for later! */
1134 shadowed = true;
1135 } else {
1136 struct vm_anon *anon = anons[lcv];
1137
1138 mutex_enter(&anon->an_lock);
1139 struct vm_page *pg = anon->an_page;
1140
1141 /* ignore loaned and busy pages */
1142 if (pg != NULL && pg->loan_count == 0 &&
1143 (pg->flags & PG_BUSY) == 0)
1144 uvm_fault_upper_neighbor(ufi, flt, currva,
1145 pg, anon->an_ref > 1);
1146 mutex_exit(&anon->an_lock);
1147 }
1148 }
1149
1150 /* locked: maps(read), amap(if there) */
1151 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1152 /* (shadowed == true) if there is an anon at the faulting address */
1153 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1154 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1155
1156 /*
1157 * note that if we are really short of RAM we could sleep in the above
1158 * call to pmap_enter with everything locked. bad?
1159 *
1160 * XXX Actually, that is bad; pmap_enter() should just fail in that
1161 * XXX case. --thorpej
1162 */
1163
1164 return 0;
1165 }
1166
1167 /*
1168 * uvm_fault_upper_neighbor: enter single lower neighbor page.
1169 *
1170 * => called with amap and anon locked.
1171 */
1172
1173 static void
1174 uvm_fault_upper_neighbor(
1175 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1176 vaddr_t currva, struct vm_page *pg, bool readonly)
1177 {
1178 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1179
1180 /* locked: amap, anon */
1181
1182 mutex_enter(&uvm_pageqlock);
1183 uvm_pageenqueue(pg);
1184 mutex_exit(&uvm_pageqlock);
1185 UVMHIST_LOG(maphist,
1186 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1187 ufi->orig_map->pmap, currva, pg, 0);
1188 uvmexp.fltnamap++;
1189
1190 /*
1191 * Since this page isn't the page that's actually faulting,
1192 * ignore pmap_enter() failures; it's not critical that we
1193 * enter these right now.
1194 */
1195
1196 (void) pmap_enter(ufi->orig_map->pmap, currva,
1197 VM_PAGE_TO_PHYS(pg),
1198 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1199 flt->enter_prot,
1200 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1201
1202 pmap_update(ufi->orig_map->pmap);
1203 }
1204
1205 /*
1206 * uvm_fault_upper: handle upper fault.
1207 *
1208 * 1. acquire anon lock.
1209 * 2. get anon. let uvmfault_anonget do the dirty work.
1210 * 3. handle loan.
1211 * 4. dispatch direct or promote handlers.
1212 */
1213
1214 static int
1215 uvm_fault_upper(
1216 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1217 struct vm_anon **anons)
1218 {
1219 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1220 struct vm_anon * const anon = anons[flt->centeridx];
1221 struct uvm_object *uobj;
1222 int error;
1223 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1224
1225 /* locked: maps(read), amap */
1226 KASSERT(mutex_owned(&amap->am_l));
1227
1228 /*
1229 * handle case 1: fault on an anon in our amap
1230 */
1231
1232 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1233 mutex_enter(&anon->an_lock);
1234
1235 /* locked: maps(read), amap, anon */
1236 KASSERT(mutex_owned(&amap->am_l));
1237 KASSERT(mutex_owned(&anon->an_lock));
1238
1239 /*
1240 * no matter if we have case 1A or case 1B we are going to need to
1241 * have the anon's memory resident. ensure that now.
1242 */
1243
1244 /*
1245 * let uvmfault_anonget do the dirty work.
1246 * if it fails (!OK) it will unlock everything for us.
1247 * if it succeeds, locks are still valid and locked.
1248 * also, if it is OK, then the anon's page is on the queues.
1249 * if the page is on loan from a uvm_object, then anonget will
1250 * lock that object for us if it does not fail.
1251 */
1252
1253 error = uvmfault_anonget(ufi, amap, anon);
1254 switch (error) {
1255 case 0:
1256 break;
1257
1258 case ERESTART:
1259 return ERESTART;
1260
1261 case EAGAIN:
1262 kpause("fltagain1", false, hz/2, NULL);
1263 return ERESTART;
1264
1265 default:
1266 return error;
1267 }
1268
1269 /*
1270 * uobj is non null if the page is on loan from an object (i.e. uobj)
1271 */
1272
1273 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1274
1275 /* locked: maps(read), amap, anon, uobj(if one) */
1276 KASSERT(mutex_owned(&amap->am_l));
1277 KASSERT(mutex_owned(&anon->an_lock));
1278 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1279
1280 /*
1281 * special handling for loaned pages
1282 */
1283
1284 if (anon->an_page->loan_count) {
1285 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1286 if (error != 0)
1287 return error;
1288 }
1289
1290 /*
1291 * if we are case 1B then we will need to allocate a new blank
1292 * anon to transfer the data into. note that we have a lock
1293 * on anon, so no one can busy or release the page until we are done.
1294 * also note that the ref count can't drop to zero here because
1295 * it is > 1 and we are only dropping one ref.
1296 *
1297 * in the (hopefully very rare) case that we are out of RAM we
1298 * will unlock, wait for more RAM, and refault.
1299 *
1300 * if we are out of anon VM we kill the process (XXX: could wait?).
1301 */
1302
1303 if (flt->cow_now && anon->an_ref > 1) {
1304 flt->promote = true;
1305 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1306 } else {
1307 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1308 }
1309 return error;
1310 }
1311
1312 /*
1313 * uvm_fault_upper_loan: handle loaned upper page.
1314 *
1315 * 1. if not cow'ing now, just mark enter_prot as read-only.
1316 * 2. if cow'ing now, and if ref count is 1, break loan.
1317 */
1318
1319 static int
1320 uvm_fault_upper_loan(
1321 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1322 struct vm_anon *anon, struct uvm_object **ruobj)
1323 {
1324 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1325 int error = 0;
1326 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1327
1328 if (!flt->cow_now) {
1329
1330 /*
1331 * for read faults on loaned pages we just cap the
1332 * protection at read-only.
1333 */
1334
1335 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1336
1337 } else {
1338 /*
1339 * note that we can't allow writes into a loaned page!
1340 *
1341 * if we have a write fault on a loaned page in an
1342 * anon then we need to look at the anon's ref count.
1343 * if it is greater than one then we are going to do
1344 * a normal copy-on-write fault into a new anon (this
1345 * is not a problem). however, if the reference count
1346 * is one (a case where we would normally allow a
1347 * write directly to the page) then we need to kill
1348 * the loan before we continue.
1349 */
1350
1351 /* >1 case is already ok */
1352 if (anon->an_ref == 1) {
1353 error = uvm_loanbreak_anon(anon, *ruobj);
1354 if (error != 0) {
1355 uvmfault_unlockall(ufi, amap, *ruobj, anon);
1356 uvm_wait("flt_noram2");
1357 return ERESTART;
1358 }
1359 /* if we were a loan reciever uobj is gone */
1360 if (*ruobj)
1361 *ruobj = NULL;
1362 }
1363 }
1364 return error;
1365 }
1366
1367 /*
1368 * uvm_fault_upper_promote: promote upper page.
1369 *
1370 * 1. call uvmfault_promote.
1371 * 2. enqueue page.
1372 * 3. deref.
1373 * 4. pass page to uvm_fault_upper_enter.
1374 */
1375
1376 static int
1377 uvm_fault_upper_promote(
1378 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1379 struct uvm_object *uobj, struct vm_anon *anon)
1380 {
1381 struct vm_anon * const oanon = anon;
1382 struct vm_page *pg;
1383 int error;
1384 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1385
1386 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1387 uvmexp.flt_acow++;
1388
1389 error = uvmfault_promote(ufi, oanon, NULL, PGO_DONTCARE,
1390 &anon, &flt->anon_spare);
1391 switch (error) {
1392 case 0:
1393 break;
1394 case ERESTART:
1395 return ERESTART;
1396 default:
1397 return error;
1398 }
1399
1400 pg = anon->an_page;
1401 mutex_enter(&uvm_pageqlock);
1402 uvm_pageactivate(pg);
1403 mutex_exit(&uvm_pageqlock);
1404 pg->flags &= ~(PG_BUSY|PG_FAKE);
1405 UVM_PAGE_OWN(pg, NULL);
1406
1407 /* deref: can not drop to zero here by defn! */
1408 oanon->an_ref--;
1409
1410 /*
1411 * note: oanon is still locked, as is the new anon. we
1412 * need to check for this later when we unlock oanon; if
1413 * oanon != anon, we'll have to unlock anon, too.
1414 */
1415
1416 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1417 }
1418
1419 /*
1420 * uvm_fault_upper_direct: handle direct fault.
1421 */
1422
1423 static int
1424 uvm_fault_upper_direct(
1425 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1426 struct uvm_object *uobj, struct vm_anon *anon)
1427 {
1428 struct vm_anon * const oanon = anon;
1429 struct vm_page *pg;
1430 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1431
1432 uvmexp.flt_anon++;
1433 pg = anon->an_page;
1434 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1435 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1436
1437 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1438 }
1439
1440 /*
1441 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1442 */
1443
1444 static int
1445 uvm_fault_upper_enter(
1446 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1447 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1448 struct vm_anon *oanon)
1449 {
1450 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1451 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1452
1453 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1454 KASSERT(mutex_owned(&amap->am_l));
1455 KASSERT(mutex_owned(&anon->an_lock));
1456 KASSERT(mutex_owned(&oanon->an_lock));
1457
1458 /*
1459 * now map the page in.
1460 */
1461
1462 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1463 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1464 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1465 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1466 != 0) {
1467
1468 /*
1469 * No need to undo what we did; we can simply think of
1470 * this as the pmap throwing away the mapping information.
1471 *
1472 * We do, however, have to go through the ReFault path,
1473 * as the map may change while we're asleep.
1474 */
1475
1476 if (anon != oanon)
1477 mutex_exit(&anon->an_lock);
1478 uvmfault_unlockall(ufi, amap, uobj, oanon);
1479 if (!uvm_reclaimable()) {
1480 UVMHIST_LOG(maphist,
1481 "<- failed. out of VM",0,0,0,0);
1482 /* XXX instrumentation */
1483 return ENOMEM;
1484 }
1485 /* XXX instrumentation */
1486 uvm_wait("flt_pmfail1");
1487 return ERESTART;
1488 }
1489
1490 uvm_fault_upper_done(ufi, flt, uobj, anon, pg);
1491
1492 /*
1493 * done case 1! finish up by unlocking everything and returning success
1494 */
1495
1496 if (anon != oanon)
1497 mutex_exit(&anon->an_lock);
1498 uvmfault_unlockall(ufi, amap, uobj, oanon);
1499 pmap_update(ufi->orig_map->pmap);
1500 return 0;
1501 }
1502
1503 /*
1504 * uvm_fault_upper_done: queue upper center page.
1505 */
1506
1507 static void
1508 uvm_fault_upper_done(
1509 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1510 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
1511 {
1512 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1513
1514 /*
1515 * ... update the page queues.
1516 */
1517
1518 mutex_enter(&uvm_pageqlock);
1519 if (flt->wire_paging) {
1520 uvm_pagewire(pg);
1521
1522 /*
1523 * since the now-wired page cannot be paged out,
1524 * release its swap resources for others to use.
1525 * since an anon with no swap cannot be PG_CLEAN,
1526 * clear its clean flag now.
1527 */
1528
1529 pg->flags &= ~(PG_CLEAN);
1530 uvm_anon_dropswap(anon);
1531 } else {
1532 uvm_pageactivate(pg);
1533 }
1534 mutex_exit(&uvm_pageqlock);
1535 }
1536
1537 /*
1538 * uvm_fault_lower: handle lower fault.
1539 *
1540 * 1. check uobj
1541 * 1.1. if null, ZFOD.
1542 * 1.2. if not null, look up unnmapped neighbor pages.
1543 * 2. for center page, check if promote.
1544 * 2.1. ZFOD always needs promotion.
1545 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1546 * 3. if uobj is not ZFOD and page is not found, do i/o.
1547 * 4. dispatch either direct / promote fault.
1548 */
1549
1550 static int
1551 uvm_fault_lower(
1552 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1553 struct vm_page **pages)
1554 {
1555 #ifdef DIAGNOSTIC
1556 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1557 #endif
1558 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1559 struct vm_page *uobjpage;
1560 int error;
1561 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1562
1563 /* locked: maps(read), amap(if there), uobj(if !null) */
1564
1565 /*
1566 * now, if the desired page is not shadowed by the amap and we have
1567 * a backing object that does not have a special fault routine, then
1568 * we ask (with pgo_get) the object for resident pages that we care
1569 * about and attempt to map them in. we do not let pgo_get block
1570 * (PGO_LOCKED).
1571 */
1572
1573 if (uobj == NULL) {
1574 /* zero fill; don't care neighbor pages */
1575 uobjpage = NULL;
1576 } else {
1577 uvm_fault_lower_lookup(ufi, flt, pages);
1578 uobjpage = pages[flt->centeridx];
1579 }
1580
1581 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1582 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1583 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1584 KASSERT(uobjpage == NULL || uvm_pageisdirect_p(uobjpage) ||
1585 (uobjpage->flags & PG_BUSY) != 0);
1586
1587 /*
1588 * note that at this point we are done with any front or back pages.
1589 * we are now going to focus on the center page (i.e. the one we've
1590 * faulted on). if we have faulted on the upper (anon) layer
1591 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1592 * not touched it yet). if we have faulted on the bottom (uobj)
1593 * layer [i.e. case 2] and the page was both present and available,
1594 * then we've got a pointer to it as "uobjpage" and we've already
1595 * made it BUSY.
1596 */
1597
1598 /*
1599 * locked:
1600 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1601 */
1602 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1603 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1604 KASSERT(uobjpage == NULL || uvm_pageisdirect_p(uobjpage) ||
1605 (uobjpage->flags & PG_BUSY) != 0);
1606
1607 /*
1608 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1609 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1610 * have a backing object, check and see if we are going to promote
1611 * the data up to an anon during the fault.
1612 */
1613
1614 if (uobj == NULL) {
1615 uobjpage = PGO_DONTCARE;
1616 flt->promote = true; /* always need anon here */
1617 } else {
1618 KASSERT(uobjpage != PGO_DONTCARE);
1619 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1620 }
1621 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1622 flt->promote, (uobj == NULL), 0,0);
1623
1624 /*
1625 * if uobjpage is not null then we do not need to do I/O to get the
1626 * uobjpage.
1627 *
1628 * if uobjpage is null, then we need to unlock and ask the pager to
1629 * get the data for us. once we have the data, we need to reverify
1630 * the state the world. we are currently not holding any resources.
1631 */
1632
1633 if (uobjpage) {
1634 /* update rusage counters */
1635 curlwp->l_ru.ru_minflt++;
1636 } else {
1637 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1638 if (error != 0)
1639 return error;
1640 }
1641
1642 /*
1643 * locked:
1644 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1645 */
1646 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1647 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1648 KASSERT(uobj == NULL || uvm_pageisdirect_p(uobjpage) ||
1649 (uobjpage->flags & PG_BUSY) != 0);
1650
1651 /*
1652 * notes:
1653 * - at this point uobjpage can not be NULL
1654 * - at this point uobjpage can not be PG_RELEASED (since we checked
1655 * for it above)
1656 * - at this point uobjpage could be PG_WANTED (handle later)
1657 */
1658
1659 KASSERT(uobj == NULL || uvm_pageisdirect_p(uobjpage) ||
1660 uobj == uobjpage->uobject);
1661 KASSERT(uobj == NULL || uvm_pageisdirect_p(uobjpage) ||
1662 !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1663 (uobjpage->flags & PG_CLEAN) != 0);
1664
1665 if (flt->promote == false) {
1666 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1667 } else {
1668 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1669 }
1670 return error;
1671 }
1672
1673 /*
1674 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1675 *
1676 * 1. get on-memory pages.
1677 * 2. if failed, give up (get only center page later).
1678 * 3. if succeeded, enter h/w mapping of neighbor pages.
1679 */
1680
1681 static void
1682 uvm_fault_lower_lookup(
1683 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1684 struct vm_page **pages)
1685 {
1686 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1687 int lcv, gotpages;
1688 vaddr_t currva;
1689 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1690
1691 mutex_enter(&uobj->vmobjlock);
1692 /* locked: maps(read), amap(if there), uobj */
1693 /*
1694 * the following call to pgo_get does _not_ change locking state
1695 */
1696
1697 uvmexp.fltlget++;
1698 gotpages = flt->npages;
1699 (void) uobj->pgops->pgo_get(uobj,
1700 ufi->entry->offset + flt->startva - ufi->entry->start,
1701 pages, &gotpages, flt->centeridx,
1702 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1703
1704 /*
1705 * check for pages to map, if we got any
1706 */
1707
1708 if (gotpages == 0) {
1709 pages[flt->centeridx] = NULL;
1710 return;
1711 }
1712
1713 currva = flt->startva;
1714 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1715 struct vm_page *curpg;
1716
1717 curpg = pages[lcv];
1718 if (curpg == NULL || curpg == PGO_DONTCARE) {
1719 continue;
1720 }
1721 KASSERT(uvm_pageisdirect_p(curpg) || curpg->uobject == uobj);
1722
1723 /*
1724 * if center page is resident and not PG_BUSY|PG_RELEASED
1725 * then pgo_get made it PG_BUSY for us and gave us a handle
1726 * to it.
1727 */
1728
1729 if (lcv == flt->centeridx) {
1730 UVMHIST_LOG(maphist, " got uobjpage "
1731 "(0x%x) with locked get",
1732 curpg, 0,0,0);
1733 } else {
1734 bool readonly = uvm_pageisdirect_p(curpg)
1735 || (curpg->flags & PG_RDONLY)
1736 || (curpg->loan_count > 0)
1737 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1738
1739 uvm_fault_lower_neighbor(ufi, flt,
1740 currva, curpg, readonly);
1741 }
1742 }
1743 pmap_update(ufi->orig_map->pmap);
1744 }
1745
1746 /*
1747 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1748 */
1749
1750 static void
1751 uvm_fault_lower_neighbor(
1752 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1753 vaddr_t currva, struct vm_page *pg, bool readonly)
1754 {
1755 UVMHIST_FUNC("uvm_fault_lower_neighor"); UVMHIST_CALLED(maphist);
1756
1757 /* locked: maps(read), amap(if there), uobj */
1758
1759 if (uvm_pageisdirect_p(pg))
1760 goto uvm_fault_lower_neighbor_enter;
1761
1762 /*
1763 * calling pgo_get with PGO_LOCKED returns us pages which
1764 * are neither busy nor released, so we don't need to check
1765 * for this. we can just directly enter the pages.
1766 */
1767
1768 mutex_enter(&uvm_pageqlock);
1769 uvm_pageenqueue(pg);
1770 mutex_exit(&uvm_pageqlock);
1771
1772 /*
1773 * Since this page isn't the page that's actually faulting,
1774 * ignore pmap_enter() failures; it's not critical that we
1775 * enter these right now.
1776 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1777 * held the lock the whole time we've had the handle.
1778 */
1779 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1780 KASSERT((pg->flags & PG_RELEASED) == 0);
1781 KASSERT((pg->flags & PG_WANTED) == 0);
1782 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
1783 (pg->flags & PG_CLEAN) != 0);
1784 pg->flags &= ~(PG_BUSY);
1785 UVM_PAGE_OWN(pg, NULL);
1786
1787 uvm_fault_lower_neighbor_enter:
1788 UVMHIST_LOG(maphist,
1789 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1790 ufi->orig_map->pmap, currva, pg, 0);
1791 uvmexp.fltnomap++;
1792
1793 (void) pmap_enter(ufi->orig_map->pmap, currva,
1794 VM_PAGE_TO_PHYS(pg),
1795 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1796 flt->enter_prot & MASK(ufi->entry),
1797 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1798 }
1799
1800 /*
1801 * uvm_fault_lower_io: get lower page from backing store.
1802 *
1803 * 1. unlock everything, because i/o will block.
1804 * 2. call pgo_get.
1805 * 3. if failed, recover.
1806 * 4. if succeeded, relock everything and verify things.
1807 */
1808
1809 static int
1810 uvm_fault_lower_io(
1811 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1812 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1813 {
1814 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1815 struct uvm_object *uobj = *ruobj;
1816 struct vm_page *pg;
1817 bool locked;
1818 int gotpages;
1819 int error;
1820 voff_t uoff;
1821 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1822
1823 /* update rusage counters */
1824 curlwp->l_ru.ru_majflt++;
1825
1826 /* locked: maps(read), amap(if there), uobj */
1827 uvmfault_unlockall(ufi, amap, NULL, NULL);
1828 /* locked: uobj */
1829
1830 uvmexp.fltget++;
1831 gotpages = 1;
1832 pg = NULL;
1833 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1834 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1835 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1836 PGO_SYNCIO);
1837 /* locked: pg(if no error) */
1838
1839 /*
1840 * recover from I/O
1841 */
1842
1843 if (error) {
1844 if (error == EAGAIN) {
1845 UVMHIST_LOG(maphist,
1846 " pgo_get says TRY AGAIN!",0,0,0,0);
1847 kpause("fltagain2", false, hz/2, NULL);
1848 return ERESTART;
1849 }
1850
1851 #if 0
1852 KASSERT(error != ERESTART);
1853 #else
1854 /* XXXUEBS don't re-fault? */
1855 if (error == ERESTART)
1856 error = EIO;
1857 #endif
1858
1859 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1860 error, 0,0,0);
1861 return error;
1862 }
1863
1864 /* locked: pg */
1865
1866 KASSERT((pg->flags & PG_BUSY) != 0);
1867
1868 mutex_enter(&uvm_pageqlock);
1869 uvm_pageactivate(pg);
1870 mutex_exit(&uvm_pageqlock);
1871
1872 /*
1873 * re-verify the state of the world by first trying to relock
1874 * the maps. always relock the object.
1875 */
1876
1877 locked = uvmfault_relock(ufi);
1878 if (locked && amap)
1879 amap_lock(amap);
1880
1881 /* might be changed */
1882 uobj = pg->uobject;
1883
1884 mutex_enter(&uobj->vmobjlock);
1885
1886 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1887 /* locked(!locked): uobj, pg */
1888
1889 /*
1890 * verify that the page has not be released and re-verify
1891 * that amap slot is still free. if there is a problem,
1892 * we unlock and clean up.
1893 */
1894
1895 if ((pg->flags & PG_RELEASED) != 0 ||
1896 (locked && amap && amap_lookup(&ufi->entry->aref,
1897 ufi->orig_rvaddr - ufi->entry->start))) {
1898 if (locked)
1899 uvmfault_unlockall(ufi, amap, NULL, NULL);
1900 locked = false;
1901 }
1902
1903 /*
1904 * didn't get the lock? release the page and retry.
1905 */
1906
1907 if (locked == false) {
1908 UVMHIST_LOG(maphist,
1909 " wasn't able to relock after fault: retry",
1910 0,0,0,0);
1911 if (pg->flags & PG_WANTED) {
1912 wakeup(pg);
1913 }
1914 if (pg->flags & PG_RELEASED) {
1915 uvmexp.fltpgrele++;
1916 uvm_pagefree(pg);
1917 mutex_exit(&uobj->vmobjlock);
1918 return ERESTART;
1919 }
1920 pg->flags &= ~(PG_BUSY|PG_WANTED);
1921 UVM_PAGE_OWN(pg, NULL);
1922 mutex_exit(&uobj->vmobjlock);
1923 return ERESTART;
1924 }
1925
1926 /*
1927 * we have the data in pg which is busy and
1928 * not released. we are holding object lock (so the page
1929 * can't be released on us).
1930 */
1931
1932 /* locked: maps(read), amap(if !null), uobj, pg */
1933
1934 *ruobj = uobj;
1935 *ruobjpage = pg;
1936 return 0;
1937 }
1938
1939 /*
1940 * uvm_fault_lower_direct: fault lower center page
1941 *
1942 * 1. adjust h/w mapping protection.
1943 * 2. if page is loaned, resolve.
1944 */
1945
1946 int
1947 uvm_fault_lower_direct(
1948 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1949 struct uvm_object *uobj, struct vm_page *uobjpage)
1950 {
1951 struct vm_page *pg;
1952 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1953
1954 /*
1955 * we are not promoting. if the mapping is COW ensure that we
1956 * don't give more access than we should (e.g. when doing a read
1957 * fault on a COPYONWRITE mapping we want to map the COW page in
1958 * R/O even though the entry protection could be R/W).
1959 *
1960 * set "pg" to the page we want to map in (uobjpage, usually)
1961 */
1962
1963 pg = uobjpage; /* map in the actual object */
1964 uvmexp.flt_obj++;
1965
1966 if (uvm_pageisdirect_p(uobjpage)) {
1967 /* XIP'ed device pages are always read-only */
1968 goto uvm_fault_lower_direct_done;
1969 }
1970
1971 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1972 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1973 flt->enter_prot &= ~VM_PROT_WRITE;
1974
1975 KASSERT(uobjpage != PGO_DONTCARE);
1976
1977 /*
1978 * we are faulting directly on the page. be careful
1979 * about writing to loaned pages...
1980 */
1981
1982 if (uobjpage->loan_count) {
1983 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1984 }
1985 KASSERT(pg == uobjpage);
1986
1987 uvm_fault_lower_direct_done:
1988 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1989 }
1990
1991 /*
1992 * uvm_fault_lower_direct_loan: resolve loaned page.
1993 *
1994 * 1. if not cow'ing, adjust h/w mapping protection.
1995 * 2. if cow'ing, break loan.
1996 */
1997
1998 static int
1999 uvm_fault_lower_direct_loan(
2000 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2001 struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage)
2002 {
2003 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2004 struct vm_page *pg;
2005 struct vm_page *uobjpage = *ruobjpage;
2006 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
2007
2008 if (!flt->cow_now) {
2009 /* read fault: cap the protection at readonly */
2010 /* cap! */
2011 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2012 } else {
2013 /* write fault: must break the loan here */
2014
2015 pg = uvm_loanbreak(uobjpage);
2016 if (pg == NULL) {
2017
2018 /*
2019 * drop ownership of page, it can't be released
2020 */
2021
2022 if (uobjpage->flags & PG_WANTED)
2023 wakeup(uobjpage);
2024 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2025 UVM_PAGE_OWN(uobjpage, NULL);
2026
2027 uvmfault_unlockall(ufi, amap, uobj, NULL);
2028 UVMHIST_LOG(maphist,
2029 " out of RAM breaking loan, waiting",
2030 0,0,0,0);
2031 uvmexp.fltnoram++;
2032 uvm_wait("flt_noram4");
2033 return ERESTART;
2034 }
2035 *rpg = pg;
2036 *ruobjpage = pg;
2037 }
2038 return 0;
2039 }
2040
2041 /*
2042 * uvm_fault_lower_promote: promote lower page.
2043 *
2044 * 1. call uvmfault_promote.
2045 * 2. fill in data.
2046 * 3. if not ZFOD, dispose old page.
2047 */
2048
2049 int
2050 uvm_fault_lower_promote(
2051 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2052 struct uvm_object *uobj, struct vm_page *uobjpage)
2053 {
2054 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2055 struct vm_anon *anon;
2056 struct vm_page *pg;
2057 int error;
2058 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2059
2060 /*
2061 * if we are going to promote the data to an anon we
2062 * allocate a blank anon here and plug it into our amap.
2063 */
2064 #if DIAGNOSTIC
2065 if (amap == NULL)
2066 panic("uvm_fault: want to promote data, but no anon");
2067 #endif
2068 error = uvmfault_promote(ufi, NULL, uobj, uobjpage,
2069 &anon, &flt->anon_spare);
2070 switch (error) {
2071 case 0:
2072 break;
2073 case ERESTART:
2074 return ERESTART;
2075 default:
2076 return error;
2077 }
2078
2079 pg = anon->an_page;
2080
2081 /*
2082 * fill in the data
2083 */
2084
2085 if (uobjpage != PGO_DONTCARE) {
2086 uvmexp.flt_prcopy++;
2087
2088 /*
2089 * promote to shared amap? make sure all sharing
2090 * procs see it
2091 */
2092
2093 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2094 pmap_page_protect(uobjpage, VM_PROT_NONE);
2095 /*
2096 * XXX: PAGE MIGHT BE WIRED!
2097 */
2098 }
2099
2100 if (uvm_pageisdirect_p(uobjpage)) {
2101 /*
2102 * XIP devices pages are never paged out, no need to
2103 * dispose.
2104 */
2105 goto uvm_fault_lower_promote_done;
2106 }
2107
2108 /*
2109 * dispose of uobjpage. it can't be PG_RELEASED
2110 * since we still hold the object lock.
2111 * drop handle to uobj as well.
2112 */
2113
2114 if (uobjpage->flags & PG_WANTED)
2115 /* still have the obj lock */
2116 wakeup(uobjpage);
2117 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2118 UVM_PAGE_OWN(uobjpage, NULL);
2119
2120 uvm_fault_lower_promote_done:
2121 mutex_exit(&uobj->vmobjlock);
2122 uobj = NULL;
2123
2124 UVMHIST_LOG(maphist,
2125 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2126 uobjpage, anon, pg, 0);
2127
2128 } else {
2129 uvmexp.flt_przero++;
2130
2131 /*
2132 * Page is zero'd and marked dirty by
2133 * uvmfault_promote().
2134 */
2135
2136 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2137 anon, pg, 0, 0);
2138 }
2139
2140 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage);
2141 }
2142
2143 /*
2144 * uvm_fault_lower_enter: enter h/w mapping of lower page.
2145 */
2146
2147 int
2148 uvm_fault_lower_enter(
2149 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2150 struct uvm_object *uobj,
2151 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2152 {
2153 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2154 int error;
2155 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2156
2157 /*
2158 * locked:
2159 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2160 * anon(if !null), pg(if anon)
2161 *
2162 * note: pg is either the uobjpage or the new page in the new anon
2163 */
2164 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2165 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2166 KASSERT(uobj == NULL || uvm_pageisdirect_p(uobjpage) ||
2167 (uobjpage->flags & PG_BUSY) != 0);
2168 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2169 KASSERT(uvm_pageisdirect_p(pg) || (pg->flags & PG_BUSY) != 0);
2170
2171 /*
2172 * all resources are present. we can now map it in and free our
2173 * resources.
2174 */
2175
2176 UVMHIST_LOG(maphist,
2177 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2178 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2179 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2180 uvm_pageisdirect_p(pg) || (pg->flags & PG_RDONLY) == 0);
2181 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2182 VM_PAGE_TO_PHYS(pg),
2183 (uvm_pageisdirect_p(pg) || pg->flags & PG_RDONLY) ?
2184 (flt->enter_prot & ~VM_PROT_WRITE) : flt->enter_prot,
2185 flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2186
2187 if (uvm_pageisdirect_p(pg)) {
2188 /* Device pages never involve paging activity. */
2189 goto uvm_fault_lower_enter_error_done;
2190 }
2191
2192 /*
2193 * No need to undo what we did; we can simply think of
2194 * this as the pmap throwing away the mapping information.
2195 *
2196 * We do, however, have to go through the ReFault path,
2197 * as the map may change while we're asleep.
2198 */
2199
2200 if (pg->flags & PG_WANTED)
2201 wakeup(pg);
2202
2203 /*
2204 * note that pg can't be PG_RELEASED since we did not drop
2205 * the object lock since the last time we checked.
2206 */
2207 KASSERT((pg->flags & PG_RELEASED) == 0);
2208
2209 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2210 UVM_PAGE_OWN(pg, NULL);
2211
2212 uvm_fault_lower_enter_error_done:
2213 uvmfault_unlockall(ufi, amap, uobj, anon);
2214 if (!uvm_reclaimable()) {
2215 UVMHIST_LOG(maphist,
2216 "<- failed. out of VM",0,0,0,0);
2217 /* XXX instrumentation */
2218 error = ENOMEM;
2219 return error;
2220 }
2221 /* XXX instrumentation */
2222 uvm_wait("flt_pmfail2");
2223 return ERESTART;
2224 }
2225
2226 if (!uvm_pageisdirect_p(pg))
2227 uvm_fault_lower_done(ufi, flt, uobj, anon, pg);
2228
2229 uvmfault_unlockall(ufi, amap, uobj, anon);
2230 pmap_update(ufi->orig_map->pmap);
2231 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2232 return 0;
2233 }
2234
2235 /*
2236 * uvm_fault_lower_done: queue lower center page.
2237 */
2238
2239 void
2240 uvm_fault_lower_done(
2241 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2242 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2243 {
2244 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2245
2246 mutex_enter(&uvm_pageqlock);
2247 if (flt->wire_paging) {
2248 uvm_pagewire(pg);
2249 if (pg->pqflags & PQ_AOBJ) {
2250
2251 /*
2252 * since the now-wired page cannot be paged out,
2253 * release its swap resources for others to use.
2254 * since an aobj page with no swap cannot be PG_CLEAN,
2255 * clear its clean flag now.
2256 */
2257
2258 KASSERT(uobj != NULL);
2259 pg->flags &= ~(PG_CLEAN);
2260 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2261 }
2262 } else {
2263 uvm_pageactivate(pg);
2264 }
2265 mutex_exit(&uvm_pageqlock);
2266
2267 if (pg->flags & PG_WANTED)
2268 wakeup(pg);
2269
2270 /*
2271 * note that pg can't be PG_RELEASED since we did not drop the object
2272 * lock since the last time we checked.
2273 */
2274 KASSERT((pg->flags & PG_RELEASED) == 0);
2275
2276 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2277 UVM_PAGE_OWN(pg, NULL);
2278 }
2279
2280
2281 /*
2282 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2283 *
2284 * => map may be read-locked by caller, but MUST NOT be write-locked.
2285 * => if map is read-locked, any operations which may cause map to
2286 * be write-locked in uvm_fault() must be taken care of by
2287 * the caller. See uvm_map_pageable().
2288 */
2289
2290 int
2291 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2292 vm_prot_t access_type, int maxprot)
2293 {
2294 vaddr_t va;
2295 int error;
2296
2297 /*
2298 * now fault it in a page at a time. if the fault fails then we have
2299 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2300 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2301 */
2302
2303 /*
2304 * XXX work around overflowing a vaddr_t. this prevents us from
2305 * wiring the last page in the address space, though.
2306 */
2307 if (start > end) {
2308 return EFAULT;
2309 }
2310
2311 for (va = start; va < end; va += PAGE_SIZE) {
2312 error = uvm_fault_internal(map, va, access_type,
2313 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2314 if (error) {
2315 if (va != start) {
2316 uvm_fault_unwire(map, start, va);
2317 }
2318 return error;
2319 }
2320 }
2321 return 0;
2322 }
2323
2324 /*
2325 * uvm_fault_unwire(): unwire range of virtual space.
2326 */
2327
2328 void
2329 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2330 {
2331 vm_map_lock_read(map);
2332 uvm_fault_unwire_locked(map, start, end);
2333 vm_map_unlock_read(map);
2334 }
2335
2336 /*
2337 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2338 *
2339 * => map must be at least read-locked.
2340 */
2341
2342 void
2343 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2344 {
2345 struct vm_map_entry *entry;
2346 pmap_t pmap = vm_map_pmap(map);
2347 vaddr_t va;
2348 paddr_t pa;
2349 struct vm_page *pg;
2350
2351 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2352
2353 /*
2354 * we assume that the area we are unwiring has actually been wired
2355 * in the first place. this means that we should be able to extract
2356 * the PAs from the pmap. we also lock out the page daemon so that
2357 * we can call uvm_pageunwire.
2358 */
2359
2360 mutex_enter(&uvm_pageqlock);
2361
2362 /*
2363 * find the beginning map entry for the region.
2364 */
2365
2366 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2367 if (uvm_map_lookup_entry(map, start, &entry) == false)
2368 panic("uvm_fault_unwire_locked: address not in map");
2369
2370 for (va = start; va < end; va += PAGE_SIZE) {
2371 if (pmap_extract(pmap, va, &pa) == false)
2372 continue;
2373
2374 /*
2375 * find the map entry for the current address.
2376 */
2377
2378 KASSERT(va >= entry->start);
2379 while (va >= entry->end) {
2380 KASSERT(entry->next != &map->header &&
2381 entry->next->start <= entry->end);
2382 entry = entry->next;
2383 }
2384
2385 /*
2386 * if the entry is no longer wired, tell the pmap.
2387 */
2388
2389 if (VM_MAPENT_ISWIRED(entry) == 0)
2390 pmap_unwire(pmap, va);
2391
2392 pg = PHYS_TO_VM_PAGE(pa);
2393 if (pg)
2394 uvm_pageunwire(pg);
2395 }
2396
2397 mutex_exit(&uvm_pageqlock);
2398 }
2399