uvm_fault.c revision 1.166.2.14 1 /* $NetBSD: uvm_fault.c,v 1.166.2.14 2010/07/09 12:58:00 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.166.2.14 2010/07/09 12:58:00 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45 #include "opt_xip.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/proc.h>
51 #include <sys/malloc.h>
52 #include <sys/mman.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 *
58 * a word on page faults:
59 *
60 * types of page faults we handle:
61 *
62 * CASE 1: upper layer faults CASE 2: lower layer faults
63 *
64 * CASE 1A CASE 1B CASE 2A CASE 2B
65 * read/write1 write>1 read/write +-cow_write/zero
66 * | | | |
67 * +--|--+ +--|--+ +-----+ + | + | +-----+
68 * amap | V | | ---------> new | | | | ^ |
69 * +-----+ +-----+ +-----+ + | + | +--|--+
70 * | | |
71 * +-----+ +-----+ +--|--+ | +--|--+
72 * uobj | d/c | | d/c | | V | +----+ |
73 * +-----+ +-----+ +-----+ +-----+
74 *
75 * d/c = don't care
76 *
77 * case [0]: layerless fault
78 * no amap or uobj is present. this is an error.
79 *
80 * case [1]: upper layer fault [anon active]
81 * 1A: [read] or [write with anon->an_ref == 1]
82 * I/O takes place in upper level anon and uobj is not touched.
83 * 1B: [write with anon->an_ref > 1]
84 * new anon is alloc'd and data is copied off ["COW"]
85 *
86 * case [2]: lower layer fault [uobj]
87 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
88 * I/O takes place directly in object.
89 * 2B: [write to copy_on_write] or [read on NULL uobj]
90 * data is "promoted" from uobj to a new anon.
91 * if uobj is null, then we zero fill.
92 *
93 * we follow the standard UVM locking protocol ordering:
94 *
95 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
96 * we hold a PG_BUSY page if we unlock for I/O
97 *
98 *
99 * the code is structured as follows:
100 *
101 * - init the "IN" params in the ufi structure
102 * ReFault:
103 * - do lookups [locks maps], check protection, handle needs_copy
104 * - check for case 0 fault (error)
105 * - establish "range" of fault
106 * - if we have an amap lock it and extract the anons
107 * - if sequential advice deactivate pages behind us
108 * - at the same time check pmap for unmapped areas and anon for pages
109 * that we could map in (and do map it if found)
110 * - check object for resident pages that we could map in
111 * - if (case 2) goto Case2
112 * - >>> handle case 1
113 * - ensure source anon is resident in RAM
114 * - if case 1B alloc new anon and copy from source
115 * - map the correct page in
116 * Case2:
117 * - >>> handle case 2
118 * - ensure source page is resident (if uobj)
119 * - if case 2B alloc new anon and copy from source (could be zero
120 * fill if uobj == NULL)
121 * - map the correct page in
122 * - done!
123 *
124 * note on paging:
125 * if we have to do I/O we place a PG_BUSY page in the correct object,
126 * unlock everything, and do the I/O. when I/O is done we must reverify
127 * the state of the world before assuming that our data structures are
128 * valid. [because mappings could change while the map is unlocked]
129 *
130 * alternative 1: unbusy the page in question and restart the page fault
131 * from the top (ReFault). this is easy but does not take advantage
132 * of the information that we already have from our previous lookup,
133 * although it is possible that the "hints" in the vm_map will help here.
134 *
135 * alternative 2: the system already keeps track of a "version" number of
136 * a map. [i.e. every time you write-lock a map (e.g. to change a
137 * mapping) you bump the version number up by one...] so, we can save
138 * the version number of the map before we release the lock and start I/O.
139 * then when I/O is done we can relock and check the version numbers
140 * to see if anything changed. this might save us some over 1 because
141 * we don't have to unbusy the page and may be less compares(?).
142 *
143 * alternative 3: put in backpointers or a way to "hold" part of a map
144 * in place while I/O is in progress. this could be complex to
145 * implement (especially with structures like amap that can be referenced
146 * by multiple map entries, and figuring out what should wait could be
147 * complex as well...).
148 *
149 * we use alternative 2. given that we are multi-threaded now we may want
150 * to reconsider the choice.
151 */
152
153 /*
154 * local data structures
155 */
156
157 struct uvm_advice {
158 int advice;
159 int nback;
160 int nforw;
161 };
162
163 /*
164 * page range array:
165 * note: index in array must match "advice" value
166 * XXX: borrowed numbers from freebsd. do they work well for us?
167 */
168
169 static const struct uvm_advice uvmadvice[] = {
170 { MADV_NORMAL, 3, 4 },
171 { MADV_RANDOM, 0, 0 },
172 { MADV_SEQUENTIAL, 8, 7},
173 };
174
175 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
176
177 /*
178 * private prototypes
179 */
180
181 /*
182 * inline functions
183 */
184
185 /*
186 * uvmfault_anonflush: try and deactivate pages in specified anons
187 *
188 * => does not have to deactivate page if it is busy
189 */
190
191 static inline void
192 uvmfault_anonflush(struct vm_anon **anons, int n)
193 {
194 int lcv;
195 struct vm_page *pg;
196
197 for (lcv = 0; lcv < n; lcv++) {
198 if (anons[lcv] == NULL)
199 continue;
200 mutex_enter(&anons[lcv]->an_lock);
201 pg = anons[lcv]->an_page;
202 if (pg && (pg->flags & PG_BUSY) == 0) {
203 mutex_enter(&uvm_pageqlock);
204 if (pg->wire_count == 0) {
205 uvm_pagedeactivate(pg);
206 }
207 mutex_exit(&uvm_pageqlock);
208 }
209 mutex_exit(&anons[lcv]->an_lock);
210 }
211 }
212
213 /*
214 * normal functions
215 */
216
217 /*
218 * uvmfault_amapcopy: clear "needs_copy" in a map.
219 *
220 * => called with VM data structures unlocked (usually, see below)
221 * => we get a write lock on the maps and clear needs_copy for a VA
222 * => if we are out of RAM we sleep (waiting for more)
223 */
224
225 static void
226 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
227 {
228 for (;;) {
229
230 /*
231 * no mapping? give up.
232 */
233
234 if (uvmfault_lookup(ufi, true) == false)
235 return;
236
237 /*
238 * copy if needed.
239 */
240
241 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
242 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
243 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
244
245 /*
246 * didn't work? must be out of RAM. unlock and sleep.
247 */
248
249 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
250 uvmfault_unlockmaps(ufi, true);
251 uvm_wait("fltamapcopy");
252 continue;
253 }
254
255 /*
256 * got it! unlock and return.
257 */
258
259 uvmfault_unlockmaps(ufi, true);
260 return;
261 }
262 /*NOTREACHED*/
263 }
264
265 /*
266 * uvmfault_anonget: get data in an anon into a non-busy, non-released
267 * page in that anon.
268 *
269 * => maps, amap, and anon locked by caller.
270 * => if we fail (result != 0) we unlock everything.
271 * => if we are successful, we return with everything still locked.
272 * => we don't move the page on the queues [gets moved later]
273 * => if we allocate a new page [we_own], it gets put on the queues.
274 * either way, the result is that the page is on the queues at return time
275 * => for pages which are on loan from a uvm_object (and thus are not
276 * owned by the anon): if successful, we return with the owning object
277 * locked. the caller must unlock this object when it unlocks everything
278 * else.
279 */
280
281 int
282 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
283 struct vm_anon *anon)
284 {
285 bool we_own; /* we own anon's page? */
286 bool locked; /* did we relock? */
287 struct vm_page *pg;
288 int error;
289 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
290
291 KASSERT(mutex_owned(&anon->an_lock));
292
293 error = 0;
294 uvmexp.fltanget++;
295 /* bump rusage counters */
296 if (anon->an_page)
297 curlwp->l_ru.ru_minflt++;
298 else
299 curlwp->l_ru.ru_majflt++;
300
301 /*
302 * loop until we get it, or fail.
303 */
304
305 for (;;) {
306 we_own = false; /* true if we set PG_BUSY on a page */
307 pg = anon->an_page;
308
309 /*
310 * if there is a resident page and it is loaned, then anon
311 * may not own it. call out to uvm_anon_lockpage() to ensure
312 * the real owner of the page has been identified and locked.
313 */
314
315 if (pg && pg->loan_count)
316 pg = uvm_anon_lockloanpg(anon);
317
318 /*
319 * page there? make sure it is not busy/released.
320 */
321
322 if (pg) {
323
324 /*
325 * at this point, if the page has a uobject [meaning
326 * we have it on loan], then that uobject is locked
327 * by us! if the page is busy, we drop all the
328 * locks (including uobject) and try again.
329 */
330
331 if ((pg->flags & PG_BUSY) == 0) {
332 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
333 return (0);
334 }
335 pg->flags |= PG_WANTED;
336 uvmexp.fltpgwait++;
337
338 /*
339 * the last unlock must be an atomic unlock+wait on
340 * the owner of page
341 */
342
343 if (pg->uobject) { /* owner is uobject ? */
344 uvmfault_unlockall(ufi, amap, NULL, anon);
345 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
346 0,0,0);
347 UVM_UNLOCK_AND_WAIT(pg,
348 &pg->uobject->vmobjlock,
349 false, "anonget1",0);
350 } else {
351 /* anon owns page */
352 uvmfault_unlockall(ufi, amap, NULL, NULL);
353 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
354 0,0,0);
355 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
356 "anonget2",0);
357 }
358 } else {
359 #if defined(VMSWAP)
360
361 /*
362 * no page, we must try and bring it in.
363 */
364
365 pg = uvm_pagealloc(NULL, 0, anon, 0);
366 if (pg == NULL) { /* out of RAM. */
367 uvmfault_unlockall(ufi, amap, NULL, anon);
368 uvmexp.fltnoram++;
369 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
370 0,0,0);
371 if (!uvm_reclaimable()) {
372 return ENOMEM;
373 }
374 uvm_wait("flt_noram1");
375 } else {
376 /* we set the PG_BUSY bit */
377 we_own = true;
378 uvmfault_unlockall(ufi, amap, NULL, anon);
379
380 /*
381 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
382 * page into the uvm_swap_get function with
383 * all data structures unlocked. note that
384 * it is ok to read an_swslot here because
385 * we hold PG_BUSY on the page.
386 */
387 uvmexp.pageins++;
388 error = uvm_swap_get(pg, anon->an_swslot,
389 PGO_SYNCIO);
390
391 /*
392 * we clean up after the i/o below in the
393 * "we_own" case
394 */
395 }
396 #else /* defined(VMSWAP) */
397 panic("%s: no page", __func__);
398 #endif /* defined(VMSWAP) */
399 }
400
401 /*
402 * now relock and try again
403 */
404
405 locked = uvmfault_relock(ufi);
406 if (locked && amap != NULL) {
407 amap_lock(amap);
408 }
409 if (locked || we_own)
410 mutex_enter(&anon->an_lock);
411
412 /*
413 * if we own the page (i.e. we set PG_BUSY), then we need
414 * to clean up after the I/O. there are three cases to
415 * consider:
416 * [1] page released during I/O: free anon and ReFault.
417 * [2] I/O not OK. free the page and cause the fault
418 * to fail.
419 * [3] I/O OK! activate the page and sync with the
420 * non-we_own case (i.e. drop anon lock if not locked).
421 */
422
423 if (we_own) {
424 #if defined(VMSWAP)
425 if (pg->flags & PG_WANTED) {
426 wakeup(pg);
427 }
428 if (error) {
429
430 /*
431 * remove the swap slot from the anon
432 * and mark the anon as having no real slot.
433 * don't free the swap slot, thus preventing
434 * it from being used again.
435 */
436
437 if (anon->an_swslot > 0)
438 uvm_swap_markbad(anon->an_swslot, 1);
439 anon->an_swslot = SWSLOT_BAD;
440
441 if ((pg->flags & PG_RELEASED) != 0)
442 goto released;
443
444 /*
445 * note: page was never !PG_BUSY, so it
446 * can't be mapped and thus no need to
447 * pmap_page_protect it...
448 */
449
450 mutex_enter(&uvm_pageqlock);
451 uvm_pagefree(pg);
452 mutex_exit(&uvm_pageqlock);
453
454 if (locked)
455 uvmfault_unlockall(ufi, amap, NULL,
456 anon);
457 else
458 mutex_exit(&anon->an_lock);
459 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
460 return error;
461 }
462
463 if ((pg->flags & PG_RELEASED) != 0) {
464 released:
465 KASSERT(anon->an_ref == 0);
466
467 /*
468 * released while we unlocked amap.
469 */
470
471 if (locked)
472 uvmfault_unlockall(ufi, amap, NULL,
473 NULL);
474
475 uvm_anon_release(anon);
476
477 if (error) {
478 UVMHIST_LOG(maphist,
479 "<- ERROR/RELEASED", 0,0,0,0);
480 return error;
481 }
482
483 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
484 return ERESTART;
485 }
486
487 /*
488 * we've successfully read the page, activate it.
489 */
490
491 mutex_enter(&uvm_pageqlock);
492 uvm_pageactivate(pg);
493 mutex_exit(&uvm_pageqlock);
494 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
495 UVM_PAGE_OWN(pg, NULL);
496 if (!locked)
497 mutex_exit(&anon->an_lock);
498 #else /* defined(VMSWAP) */
499 panic("%s: we_own", __func__);
500 #endif /* defined(VMSWAP) */
501 }
502
503 /*
504 * we were not able to relock. restart fault.
505 */
506
507 if (!locked) {
508 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
509 return (ERESTART);
510 }
511
512 /*
513 * verify no one has touched the amap and moved the anon on us.
514 */
515
516 if (ufi != NULL &&
517 amap_lookup(&ufi->entry->aref,
518 ufi->orig_rvaddr - ufi->entry->start) != anon) {
519
520 uvmfault_unlockall(ufi, amap, NULL, anon);
521 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
522 return (ERESTART);
523 }
524
525 /*
526 * try it again!
527 */
528
529 uvmexp.fltanretry++;
530 continue;
531 }
532 /*NOTREACHED*/
533 }
534
535 /*
536 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
537 *
538 * 1. allocate an anon and a page.
539 * 2. fill its contents.
540 * 3. put it into amap.
541 *
542 * => if we fail (result != 0) we unlock everything.
543 * => on success, return a new locked anon via 'nanon'.
544 * (*nanon)->an_page will be a resident, locked, dirty page.
545 */
546
547 static int
548 uvmfault_promote(struct uvm_faultinfo *ufi,
549 struct vm_anon *oanon,
550 struct uvm_object *uobj,
551 struct vm_page *uobjpage,
552 struct vm_anon **nanon, /* OUT: allocated anon */
553 struct vm_anon **spare)
554 {
555 struct vm_amap *amap = ufi->entry->aref.ar_amap;
556 struct vm_anon *anon;
557 struct vm_page *pg;
558 struct vm_page *opg;
559 int error;
560 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
561
562 if (oanon) {
563 /* anon COW */
564 opg = oanon->an_page;
565 KASSERT(opg != NULL);
566 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
567 } else if (uobjpage != PGO_DONTCARE) {
568 /* object-backed COW */
569 opg = uobjpage;
570 } else {
571 /* ZFOD */
572 opg = NULL;
573 }
574
575 KASSERT(amap != NULL);
576 KASSERT(uobjpage != NULL);
577 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
578 KASSERT(mutex_owned(&amap->am_l));
579 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
580 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
581 #if 0
582 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
583 #endif
584
585 if (*spare != NULL) {
586 anon = *spare;
587 *spare = NULL;
588 mutex_enter(&anon->an_lock);
589 } else if (ufi->map != kernel_map) {
590 anon = uvm_analloc();
591 } else {
592 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
593
594 /*
595 * we can't allocate anons with kernel_map locked.
596 */
597
598 uvm_page_unbusy(&uobjpage, 1);
599 uvmfault_unlockall(ufi, amap, uobj, oanon);
600
601 *spare = uvm_analloc();
602 if (*spare == NULL) {
603 goto nomem;
604 }
605 mutex_exit(&(*spare)->an_lock);
606 error = ERESTART;
607 goto done;
608 }
609 if (anon) {
610
611 /*
612 * The new anon is locked.
613 *
614 * if opg == NULL, we want a zero'd, dirty page,
615 * so have uvm_pagealloc() do that for us.
616 */
617
618 pg = uvm_pagealloc(NULL, 0, anon,
619 (opg == NULL) ? UVM_PGA_ZERO : 0);
620 } else {
621 pg = NULL;
622 }
623
624 /*
625 * out of memory resources?
626 */
627
628 if (pg == NULL) {
629 /* save anon for the next try. */
630 if (anon != NULL) {
631 mutex_exit(&anon->an_lock);
632 *spare = anon;
633 }
634
635 /* unlock and fail ... */
636 uvm_page_unbusy(&uobjpage, 1);
637 uvmfault_unlockall(ufi, amap, uobj, oanon);
638 nomem:
639 if (!uvm_reclaimable()) {
640 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
641 uvmexp.fltnoanon++;
642 error = ENOMEM;
643 goto done;
644 }
645
646 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
647 uvmexp.fltnoram++;
648 uvm_wait("flt_noram5");
649 error = ERESTART;
650 goto done;
651 }
652
653 /* copy page [pg now dirty] */
654 if (opg) {
655 uvm_pagecopy(opg, pg);
656 }
657
658 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
659 oanon != NULL);
660
661 *nanon = anon;
662 error = 0;
663 done:
664 return error;
665 }
666
667
668 /*
669 * F A U L T - m a i n e n t r y p o i n t
670 */
671
672 /*
673 * uvm_fault: page fault handler
674 *
675 * => called from MD code to resolve a page fault
676 * => VM data structures usually should be unlocked. however, it is
677 * possible to call here with the main map locked if the caller
678 * gets a write lock, sets it recusive, and then calls us (c.f.
679 * uvm_map_pageable). this should be avoided because it keeps
680 * the map locked off during I/O.
681 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
682 */
683
684 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
685 ~VM_PROT_WRITE : VM_PROT_ALL)
686
687 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
688 #define UVM_FAULT_WIRE (1 << 0)
689 #define UVM_FAULT_MAXPROT (1 << 1)
690
691 struct uvm_faultctx {
692 vm_prot_t access_type;
693 vm_prot_t enter_prot;
694 vaddr_t startva;
695 int npages;
696 int centeridx;
697 struct vm_anon *anon_spare;
698 bool wire_mapping;
699 bool narrow;
700 bool wire_paging;
701 bool maxprot;
702 bool cow_now;
703 bool promote;
704 };
705
706 static inline int uvm_fault_check(
707 struct uvm_faultinfo *, struct uvm_faultctx *,
708 struct vm_anon ***, struct vm_page ***);
709
710 static int uvm_fault_upper(
711 struct uvm_faultinfo *, struct uvm_faultctx *,
712 struct vm_anon **);
713 static inline int uvm_fault_upper_lookup(
714 struct uvm_faultinfo *, struct uvm_faultctx *,
715 struct vm_anon **, struct vm_page **);
716 static inline void uvm_fault_upper_neighbor(
717 struct uvm_faultinfo *, struct uvm_faultctx *,
718 vaddr_t, struct vm_page *, bool);
719 static inline int uvm_fault_upper_loan(
720 struct uvm_faultinfo *, struct uvm_faultctx *,
721 struct vm_anon *, struct uvm_object **);
722 static inline int uvm_fault_upper_promote(
723 struct uvm_faultinfo *, struct uvm_faultctx *,
724 struct uvm_object *, struct vm_anon *);
725 static inline int uvm_fault_upper_direct(
726 struct uvm_faultinfo *, struct uvm_faultctx *,
727 struct uvm_object *, struct vm_anon *);
728 static int uvm_fault_upper_enter(
729 struct uvm_faultinfo *, struct uvm_faultctx *,
730 struct uvm_object *, struct vm_anon *,
731 struct vm_page *, struct vm_anon *);
732 static inline void uvm_fault_upper_done(
733 struct uvm_faultinfo *, struct uvm_faultctx *,
734 struct uvm_object *, struct vm_anon *,
735 struct vm_page *);
736
737 static int uvm_fault_lower(
738 struct uvm_faultinfo *, struct uvm_faultctx *,
739 struct vm_page **);
740 static inline void uvm_fault_lower_lookup(
741 struct uvm_faultinfo *, struct uvm_faultctx *,
742 struct vm_page **);
743 static inline void uvm_fault_lower_neighbor(
744 struct uvm_faultinfo *, struct uvm_faultctx *,
745 vaddr_t, struct vm_page *, bool);
746 static inline int uvm_fault_lower_io(
747 struct uvm_faultinfo *, struct uvm_faultctx *,
748 struct uvm_object **, struct vm_page **);
749 static inline int uvm_fault_lower_direct(
750 struct uvm_faultinfo *, struct uvm_faultctx *,
751 struct uvm_object *, struct vm_page *);
752 static inline int uvm_fault_lower_direct_loan(
753 struct uvm_faultinfo *, struct uvm_faultctx *,
754 struct uvm_object *, struct vm_page **,
755 struct vm_page **);
756 static inline int uvm_fault_lower_promote(
757 struct uvm_faultinfo *, struct uvm_faultctx *,
758 struct uvm_object *, struct vm_page *);
759 static int uvm_fault_lower_enter(
760 struct uvm_faultinfo *, struct uvm_faultctx *,
761 struct uvm_object *,
762 struct vm_anon *, struct vm_page *,
763 struct vm_page *);
764 static inline void uvm_fault_lower_done(
765 struct uvm_faultinfo *, struct uvm_faultctx *,
766 struct uvm_object *, struct vm_anon *,
767 struct vm_page *);
768
769 int
770 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
771 vm_prot_t access_type, int fault_flag)
772 {
773 struct uvm_faultinfo ufi;
774 struct uvm_faultctx flt = {
775 .access_type = access_type,
776
777 /* don't look for neighborhood * pages on "wire" fault */
778 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
779
780 /* "wire" fault causes wiring of both mapping and paging */
781 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
782 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
783
784 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
785 };
786 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
787 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
788 int error;
789 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
790
791 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
792 orig_map, vaddr, access_type, fault_flag);
793
794 uvmexp.faults++; /* XXX: locking? */
795
796 /*
797 * init the IN parameters in the ufi
798 */
799
800 ufi.orig_map = orig_map;
801 ufi.orig_rvaddr = trunc_page(vaddr);
802 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
803
804 error = ERESTART;
805 while (error == ERESTART) {
806 anons = anons_store;
807 pages = pages_store;
808
809 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
810 if (error != 0)
811 continue;
812
813 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
814 if (error != 0)
815 continue;
816
817 if (pages[flt.centeridx] == PGO_DONTCARE)
818 error = uvm_fault_upper(&ufi, &flt, anons);
819 else {
820 struct uvm_object * const uobj = ufi.entry->object.uvm_obj;
821
822 if (uobj && uobj->pgops->pgo_fault != NULL) {
823 /*
824 * invoke "special" fault routine.
825 */
826 mutex_enter(&uobj->vmobjlock);
827 /* locked: maps(read), amap(if there), uobj */
828 error = uobj->pgops->pgo_fault(&ufi,
829 flt.startva, pages, flt.npages,
830 flt.centeridx, flt.access_type,
831 PGO_LOCKED|PGO_SYNCIO);
832
833 /* locked: nothing, pgo_fault has unlocked everything */
834
835 /*
836 * object fault routine responsible for pmap_update().
837 */
838 } else {
839 error = uvm_fault_lower(&ufi, &flt, pages);
840 }
841 }
842 }
843
844 if (flt.anon_spare != NULL) {
845 flt.anon_spare->an_ref--;
846 uvm_anfree(flt.anon_spare);
847 }
848 return error;
849 }
850
851 /*
852 * uvm_fault_check: check prot, handle needs-copy, etc.
853 *
854 * 1. lookup entry.
855 * 2. check protection.
856 * 3. adjust fault condition (mainly for simulated fault).
857 * 4. handle needs-copy (lazy amap copy).
858 * 5. establish range of interest for neighbor fault (aka pre-fault).
859 * 6. look up anons (if amap exists).
860 * 7. flush pages (if MADV_SEQUENTIAL)
861 *
862 * => called with nothing locked.
863 * => if we fail (result != 0) we unlock everything.
864 */
865
866 static int
867 uvm_fault_check(
868 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
869 struct vm_anon ***ranons, struct vm_page ***rpages)
870 {
871 struct vm_amap *amap;
872 struct uvm_object *uobj;
873 vm_prot_t check_prot;
874 int nback, nforw;
875 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
876
877 /*
878 * lookup and lock the maps
879 */
880
881 if (uvmfault_lookup(ufi, false) == false) {
882 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr, 0,0,0);
883 return EFAULT;
884 }
885 /* locked: maps(read) */
886
887 #ifdef DIAGNOSTIC
888 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
889 printf("Page fault on non-pageable map:\n");
890 printf("ufi->map = %p\n", ufi->map);
891 printf("ufi->orig_map = %p\n", ufi->orig_map);
892 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
893 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
894 }
895 #endif
896
897 /*
898 * check protection
899 */
900
901 check_prot = flt->maxprot ?
902 ufi->entry->max_protection : ufi->entry->protection;
903 if ((check_prot & flt->access_type) != flt->access_type) {
904 UVMHIST_LOG(maphist,
905 "<- protection failure (prot=0x%x, access=0x%x)",
906 ufi->entry->protection, flt->access_type, 0, 0);
907 uvmfault_unlockmaps(ufi, false);
908 return EACCES;
909 }
910
911 /*
912 * "enter_prot" is the protection we want to enter the page in at.
913 * for certain pages (e.g. copy-on-write pages) this protection can
914 * be more strict than ufi->entry->protection. "wired" means either
915 * the entry is wired or we are fault-wiring the pg.
916 */
917
918 flt->enter_prot = ufi->entry->protection;
919 if (VM_MAPENT_ISWIRED(ufi->entry))
920 flt->wire_mapping = true;
921
922 if (flt->wire_mapping) {
923 flt->access_type = flt->enter_prot; /* full access for wired */
924 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
925 } else {
926 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
927 }
928
929 flt->promote = false;
930
931 /*
932 * handle "needs_copy" case. if we need to copy the amap we will
933 * have to drop our readlock and relock it with a write lock. (we
934 * need a write lock to change anything in a map entry [e.g.
935 * needs_copy]).
936 */
937
938 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
939 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
940 KASSERT(!flt->maxprot);
941 /* need to clear */
942 UVMHIST_LOG(maphist,
943 " need to clear needs_copy and refault",0,0,0,0);
944 uvmfault_unlockmaps(ufi, false);
945 uvmfault_amapcopy(ufi);
946 uvmexp.fltamcopy++;
947 return ERESTART;
948
949 } else {
950
951 /*
952 * ensure that we pmap_enter page R/O since
953 * needs_copy is still true
954 */
955
956 flt->enter_prot &= ~VM_PROT_WRITE;
957 }
958 }
959
960 /*
961 * identify the players
962 */
963
964 amap = ufi->entry->aref.ar_amap; /* upper layer */
965 uobj = ufi->entry->object.uvm_obj; /* lower layer */
966
967 /*
968 * check for a case 0 fault. if nothing backing the entry then
969 * error now.
970 */
971
972 if (amap == NULL && uobj == NULL) {
973 uvmfault_unlockmaps(ufi, false);
974 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
975 return EFAULT;
976 }
977
978 /*
979 * establish range of interest based on advice from mapper
980 * and then clip to fit map entry. note that we only want
981 * to do this the first time through the fault. if we
982 * ReFault we will disable this by setting "narrow" to true.
983 */
984
985 if (flt->narrow == false) {
986
987 /* wide fault (!narrow) */
988 KASSERT(uvmadvice[ufi->entry->advice].advice ==
989 ufi->entry->advice);
990 nback = MIN(uvmadvice[ufi->entry->advice].nback,
991 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
992 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
993 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
994 ((ufi->entry->end - ufi->orig_rvaddr) >>
995 PAGE_SHIFT) - 1);
996 /*
997 * note: "-1" because we don't want to count the
998 * faulting page as forw
999 */
1000 flt->npages = nback + nforw + 1;
1001 flt->centeridx = nback;
1002
1003 flt->narrow = true; /* ensure only once per-fault */
1004
1005 } else {
1006
1007 /* narrow fault! */
1008 nback = nforw = 0;
1009 flt->startva = ufi->orig_rvaddr;
1010 flt->npages = 1;
1011 flt->centeridx = 0;
1012
1013 }
1014 /* offset from entry's start to pgs' start */
1015 const voff_t eoff = flt->startva - ufi->entry->start;
1016
1017 /* locked: maps(read) */
1018 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
1019 flt->narrow, nback, nforw, flt->startva);
1020 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1021 amap, uobj, 0);
1022
1023 /*
1024 * if we've got an amap, lock it and extract current anons.
1025 */
1026
1027 if (amap) {
1028 amap_lock(amap);
1029 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1030 } else {
1031 *ranons = NULL; /* to be safe */
1032 }
1033
1034 /* locked: maps(read), amap(if there) */
1035 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1036
1037 /*
1038 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1039 * now and then forget about them (for the rest of the fault).
1040 */
1041
1042 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1043
1044 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1045 0,0,0,0);
1046 /* flush back-page anons? */
1047 if (amap)
1048 uvmfault_anonflush(*ranons, nback);
1049
1050 /* flush object? */
1051 if (uobj) {
1052 voff_t uoff;
1053
1054 uoff = ufi->entry->offset + eoff;
1055 mutex_enter(&uobj->vmobjlock);
1056 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1057 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1058 }
1059
1060 /* now forget about the backpages */
1061 if (amap)
1062 *ranons += nback;
1063 flt->startva += (nback << PAGE_SHIFT);
1064 flt->npages -= nback;
1065 flt->centeridx = 0;
1066 }
1067 /*
1068 * => startva is fixed
1069 * => npages is fixed
1070 */
1071
1072 return 0;
1073 }
1074
1075 /*
1076 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1077 *
1078 * iterate range of interest:
1079 * 1. check if h/w mapping exists. if yes, we don't care
1080 * 2. check if anon exists. if not, page is lower.
1081 * 3. if anon exists, enter h/w mapping for neighbors.
1082 *
1083 * => called with amap locked (if exists).
1084 */
1085
1086 static int
1087 uvm_fault_upper_lookup(
1088 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1089 struct vm_anon **anons, struct vm_page **pages)
1090 {
1091 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1092 int lcv;
1093 vaddr_t currva;
1094 bool shadowed;
1095 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1096
1097 /* locked: maps(read), amap(if there) */
1098 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1099
1100 /*
1101 * map in the backpages and frontpages we found in the amap in hopes
1102 * of preventing future faults. we also init the pages[] array as
1103 * we go.
1104 */
1105
1106 currva = flt->startva;
1107 shadowed = false;
1108 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1109 /*
1110 * dont play with VAs that are already mapped
1111 * except for center)
1112 */
1113 if (lcv != flt->centeridx &&
1114 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1115 pages[lcv] = PGO_DONTCARE;
1116 continue;
1117 }
1118
1119 /*
1120 * unmapped or center page. check if any anon at this level.
1121 */
1122 if (amap == NULL || anons[lcv] == NULL) {
1123 pages[lcv] = NULL;
1124 continue;
1125 }
1126
1127 /*
1128 * check for present page and map if possible. re-activate it.
1129 */
1130
1131 pages[lcv] = PGO_DONTCARE;
1132 if (lcv == flt->centeridx) { /* save center for later! */
1133 shadowed = true;
1134 } else {
1135 struct vm_anon *anon = anons[lcv];
1136
1137 mutex_enter(&anon->an_lock);
1138 struct vm_page *pg = anon->an_page;
1139
1140 /* ignore loaned and busy pages */
1141 if (pg != NULL && pg->loan_count == 0 &&
1142 (pg->flags & PG_BUSY) == 0)
1143 uvm_fault_upper_neighbor(ufi, flt, currva,
1144 pg, anon->an_ref > 1);
1145 mutex_exit(&anon->an_lock);
1146 }
1147 }
1148
1149 /* locked: maps(read), amap(if there) */
1150 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1151 /* (shadowed == true) if there is an anon at the faulting address */
1152 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1153 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1154
1155 /*
1156 * note that if we are really short of RAM we could sleep in the above
1157 * call to pmap_enter with everything locked. bad?
1158 *
1159 * XXX Actually, that is bad; pmap_enter() should just fail in that
1160 * XXX case. --thorpej
1161 */
1162
1163 return 0;
1164 }
1165
1166 /*
1167 * uvm_fault_upper_neighbor: enter single lower neighbor page.
1168 *
1169 * => called with amap and anon locked.
1170 */
1171
1172 static void
1173 uvm_fault_upper_neighbor(
1174 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1175 vaddr_t currva, struct vm_page *pg, bool readonly)
1176 {
1177 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1178
1179 /* locked: amap, anon */
1180
1181 mutex_enter(&uvm_pageqlock);
1182 uvm_pageenqueue(pg);
1183 mutex_exit(&uvm_pageqlock);
1184 UVMHIST_LOG(maphist,
1185 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1186 ufi->orig_map->pmap, currva, pg, 0);
1187 uvmexp.fltnamap++;
1188
1189 /*
1190 * Since this page isn't the page that's actually faulting,
1191 * ignore pmap_enter() failures; it's not critical that we
1192 * enter these right now.
1193 */
1194
1195 (void) pmap_enter(ufi->orig_map->pmap, currva,
1196 VM_PAGE_TO_PHYS(pg),
1197 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1198 flt->enter_prot,
1199 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1200
1201 pmap_update(ufi->orig_map->pmap);
1202 }
1203
1204 /*
1205 * uvm_fault_upper: handle upper fault.
1206 *
1207 * 1. acquire anon lock.
1208 * 2. get anon. let uvmfault_anonget do the dirty work.
1209 * 3. handle loan.
1210 * 4. dispatch direct or promote handlers.
1211 */
1212
1213 static int
1214 uvm_fault_upper(
1215 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1216 struct vm_anon **anons)
1217 {
1218 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1219 struct vm_anon * const anon = anons[flt->centeridx];
1220 struct uvm_object *uobj;
1221 int error;
1222 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1223
1224 /* locked: maps(read), amap */
1225 KASSERT(mutex_owned(&amap->am_l));
1226
1227 /*
1228 * handle case 1: fault on an anon in our amap
1229 */
1230
1231 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1232 mutex_enter(&anon->an_lock);
1233
1234 /* locked: maps(read), amap, anon */
1235 KASSERT(mutex_owned(&amap->am_l));
1236 KASSERT(mutex_owned(&anon->an_lock));
1237
1238 /*
1239 * no matter if we have case 1A or case 1B we are going to need to
1240 * have the anon's memory resident. ensure that now.
1241 */
1242
1243 /*
1244 * let uvmfault_anonget do the dirty work.
1245 * if it fails (!OK) it will unlock everything for us.
1246 * if it succeeds, locks are still valid and locked.
1247 * also, if it is OK, then the anon's page is on the queues.
1248 * if the page is on loan from a uvm_object, then anonget will
1249 * lock that object for us if it does not fail.
1250 */
1251
1252 error = uvmfault_anonget(ufi, amap, anon);
1253 switch (error) {
1254 case 0:
1255 break;
1256
1257 case ERESTART:
1258 return ERESTART;
1259
1260 case EAGAIN:
1261 kpause("fltagain1", false, hz/2, NULL);
1262 return ERESTART;
1263
1264 default:
1265 return error;
1266 }
1267
1268 /*
1269 * uobj is non null if the page is on loan from an object (i.e. uobj)
1270 */
1271
1272 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1273
1274 /* locked: maps(read), amap, anon, uobj(if one) */
1275 KASSERT(mutex_owned(&amap->am_l));
1276 KASSERT(mutex_owned(&anon->an_lock));
1277 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1278
1279 /*
1280 * special handling for loaned pages
1281 */
1282
1283 if (anon->an_page->loan_count) {
1284 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1285 if (error != 0)
1286 return error;
1287 }
1288
1289 /*
1290 * if we are case 1B then we will need to allocate a new blank
1291 * anon to transfer the data into. note that we have a lock
1292 * on anon, so no one can busy or release the page until we are done.
1293 * also note that the ref count can't drop to zero here because
1294 * it is > 1 and we are only dropping one ref.
1295 *
1296 * in the (hopefully very rare) case that we are out of RAM we
1297 * will unlock, wait for more RAM, and refault.
1298 *
1299 * if we are out of anon VM we kill the process (XXX: could wait?).
1300 */
1301
1302 if (flt->cow_now && anon->an_ref > 1) {
1303 flt->promote = true;
1304 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1305 } else {
1306 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1307 }
1308 return error;
1309 }
1310
1311 /*
1312 * uvm_fault_upper_loan: handle loaned upper page.
1313 *
1314 * 1. if not cow'ing now, just mark enter_prot as read-only.
1315 * 2. if cow'ing now, and if ref count is 1, break loan.
1316 */
1317
1318 static int
1319 uvm_fault_upper_loan(
1320 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1321 struct vm_anon *anon, struct uvm_object **ruobj)
1322 {
1323 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1324 int error = 0;
1325 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1326
1327 if (!flt->cow_now) {
1328
1329 /*
1330 * for read faults on loaned pages we just cap the
1331 * protection at read-only.
1332 */
1333
1334 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1335
1336 } else {
1337 /*
1338 * note that we can't allow writes into a loaned page!
1339 *
1340 * if we have a write fault on a loaned page in an
1341 * anon then we need to look at the anon's ref count.
1342 * if it is greater than one then we are going to do
1343 * a normal copy-on-write fault into a new anon (this
1344 * is not a problem). however, if the reference count
1345 * is one (a case where we would normally allow a
1346 * write directly to the page) then we need to kill
1347 * the loan before we continue.
1348 */
1349
1350 /* >1 case is already ok */
1351 if (anon->an_ref == 1) {
1352 error = uvm_loanbreak_anon(anon, *ruobj);
1353 if (error != 0) {
1354 uvmfault_unlockall(ufi, amap, *ruobj, anon);
1355 uvm_wait("flt_noram2");
1356 return ERESTART;
1357 }
1358 /* if we were a loan reciever uobj is gone */
1359 if (*ruobj)
1360 *ruobj = NULL;
1361 }
1362 }
1363 return error;
1364 }
1365
1366 /*
1367 * uvm_fault_upper_promote: promote upper page.
1368 *
1369 * 1. call uvmfault_promote.
1370 * 2. enqueue page.
1371 * 3. deref.
1372 * 4. pass page to uvm_fault_upper_enter.
1373 */
1374
1375 static int
1376 uvm_fault_upper_promote(
1377 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1378 struct uvm_object *uobj, struct vm_anon *anon)
1379 {
1380 struct vm_anon * const oanon = anon;
1381 struct vm_page *pg;
1382 int error;
1383 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1384
1385 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1386 uvmexp.flt_acow++;
1387
1388 error = uvmfault_promote(ufi, oanon, NULL, PGO_DONTCARE,
1389 &anon, &flt->anon_spare);
1390 switch (error) {
1391 case 0:
1392 break;
1393 case ERESTART:
1394 return ERESTART;
1395 default:
1396 return error;
1397 }
1398
1399 pg = anon->an_page;
1400 mutex_enter(&uvm_pageqlock);
1401 uvm_pageactivate(pg);
1402 mutex_exit(&uvm_pageqlock);
1403 pg->flags &= ~(PG_BUSY|PG_FAKE);
1404 UVM_PAGE_OWN(pg, NULL);
1405
1406 /* deref: can not drop to zero here by defn! */
1407 oanon->an_ref--;
1408
1409 /*
1410 * note: oanon is still locked, as is the new anon. we
1411 * need to check for this later when we unlock oanon; if
1412 * oanon != anon, we'll have to unlock anon, too.
1413 */
1414
1415 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1416 }
1417
1418 /*
1419 * uvm_fault_upper_direct: handle direct fault.
1420 */
1421
1422 static int
1423 uvm_fault_upper_direct(
1424 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1425 struct uvm_object *uobj, struct vm_anon *anon)
1426 {
1427 struct vm_anon * const oanon = anon;
1428 struct vm_page *pg;
1429 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1430
1431 uvmexp.flt_anon++;
1432 pg = anon->an_page;
1433 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1434 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1435
1436 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1437 }
1438
1439 /*
1440 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1441 */
1442
1443 static int
1444 uvm_fault_upper_enter(
1445 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1446 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1447 struct vm_anon *oanon)
1448 {
1449 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1450 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1451
1452 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1453 KASSERT(mutex_owned(&amap->am_l));
1454 KASSERT(mutex_owned(&anon->an_lock));
1455 KASSERT(mutex_owned(&oanon->an_lock));
1456
1457 /*
1458 * now map the page in.
1459 */
1460
1461 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1462 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1463 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1464 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1465 != 0) {
1466
1467 /*
1468 * No need to undo what we did; we can simply think of
1469 * this as the pmap throwing away the mapping information.
1470 *
1471 * We do, however, have to go through the ReFault path,
1472 * as the map may change while we're asleep.
1473 */
1474
1475 if (anon != oanon)
1476 mutex_exit(&anon->an_lock);
1477 uvmfault_unlockall(ufi, amap, uobj, oanon);
1478 if (!uvm_reclaimable()) {
1479 UVMHIST_LOG(maphist,
1480 "<- failed. out of VM",0,0,0,0);
1481 /* XXX instrumentation */
1482 return ENOMEM;
1483 }
1484 /* XXX instrumentation */
1485 uvm_wait("flt_pmfail1");
1486 return ERESTART;
1487 }
1488
1489 uvm_fault_upper_done(ufi, flt, uobj, anon, pg);
1490
1491 /*
1492 * done case 1! finish up by unlocking everything and returning success
1493 */
1494
1495 if (anon != oanon)
1496 mutex_exit(&anon->an_lock);
1497 uvmfault_unlockall(ufi, amap, uobj, oanon);
1498 pmap_update(ufi->orig_map->pmap);
1499 return 0;
1500 }
1501
1502 /*
1503 * uvm_fault_upper_done: queue upper center page.
1504 */
1505
1506 static void
1507 uvm_fault_upper_done(
1508 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1509 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
1510 {
1511 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1512
1513 /*
1514 * ... update the page queues.
1515 */
1516
1517 mutex_enter(&uvm_pageqlock);
1518 if (flt->wire_paging) {
1519 uvm_pagewire(pg);
1520
1521 /*
1522 * since the now-wired page cannot be paged out,
1523 * release its swap resources for others to use.
1524 * since an anon with no swap cannot be PG_CLEAN,
1525 * clear its clean flag now.
1526 */
1527
1528 pg->flags &= ~(PG_CLEAN);
1529 uvm_anon_dropswap(anon);
1530 } else {
1531 uvm_pageactivate(pg);
1532 }
1533 mutex_exit(&uvm_pageqlock);
1534 }
1535
1536 /*
1537 * uvm_fault_lower: handle lower fault.
1538 *
1539 * 1. check uobj
1540 * 1.1. if null, ZFOD.
1541 * 1.2. if not null, look up unnmapped neighbor pages.
1542 * 2. for center page, check if promote.
1543 * 2.1. ZFOD always needs promotion.
1544 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1545 * 3. if uobj is not ZFOD and page is not found, do i/o.
1546 * 4. dispatch either direct / promote fault.
1547 */
1548
1549 static int
1550 uvm_fault_lower(
1551 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1552 struct vm_page **pages)
1553 {
1554 #ifdef DIAGNOSTIC
1555 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1556 #endif
1557 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1558 struct vm_page *uobjpage;
1559 int error;
1560 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1561
1562 /* locked: maps(read), amap(if there), uobj(if !null) */
1563
1564 /*
1565 * now, if the desired page is not shadowed by the amap and we have
1566 * a backing object that does not have a special fault routine, then
1567 * we ask (with pgo_get) the object for resident pages that we care
1568 * about and attempt to map them in. we do not let pgo_get block
1569 * (PGO_LOCKED).
1570 */
1571
1572 if (uobj == NULL) {
1573 /* zero fill; don't care neighbor pages */
1574 uobjpage = NULL;
1575 } else {
1576 uvm_fault_lower_lookup(ufi, flt, pages);
1577 uobjpage = pages[flt->centeridx];
1578 }
1579
1580 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1581 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1582 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1583 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1584
1585 /*
1586 * note that at this point we are done with any front or back pages.
1587 * we are now going to focus on the center page (i.e. the one we've
1588 * faulted on). if we have faulted on the upper (anon) layer
1589 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1590 * not touched it yet). if we have faulted on the bottom (uobj)
1591 * layer [i.e. case 2] and the page was both present and available,
1592 * then we've got a pointer to it as "uobjpage" and we've already
1593 * made it BUSY.
1594 */
1595
1596 /*
1597 * locked:
1598 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1599 */
1600 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1601 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1602 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1603
1604 /*
1605 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1606 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1607 * have a backing object, check and see if we are going to promote
1608 * the data up to an anon during the fault.
1609 */
1610
1611 if (uobj == NULL) {
1612 uobjpage = PGO_DONTCARE;
1613 flt->promote = true; /* always need anon here */
1614 } else {
1615 KASSERT(uobjpage != PGO_DONTCARE);
1616 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1617 }
1618 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1619 flt->promote, (uobj == NULL), 0,0);
1620
1621 /*
1622 * if uobjpage is not null then we do not need to do I/O to get the
1623 * uobjpage.
1624 *
1625 * if uobjpage is null, then we need to unlock and ask the pager to
1626 * get the data for us. once we have the data, we need to reverify
1627 * the state the world. we are currently not holding any resources.
1628 */
1629
1630 if (uobjpage) {
1631 /* update rusage counters */
1632 curlwp->l_ru.ru_minflt++;
1633 } else {
1634 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1635 if (error != 0)
1636 return error;
1637 }
1638
1639 /*
1640 * locked:
1641 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1642 */
1643 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1644 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1645 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1646
1647 /*
1648 * notes:
1649 * - at this point uobjpage can not be NULL
1650 * - at this point uobjpage can not be PG_RELEASED (since we checked
1651 * for it above)
1652 * - at this point uobjpage could be PG_WANTED (handle later)
1653 */
1654
1655 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1656 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1657 (uobjpage->flags & PG_CLEAN) != 0);
1658
1659 if (flt->promote == false) {
1660 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1661 } else {
1662 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1663 }
1664 return error;
1665 }
1666
1667 /*
1668 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1669 *
1670 * 1. get on-memory pages.
1671 * 2. if failed, give up (get only center page later).
1672 * 3. if succeeded, enter h/w mapping of neighbor pages.
1673 */
1674
1675 static void
1676 uvm_fault_lower_lookup(
1677 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1678 struct vm_page **pages)
1679 {
1680 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1681 int lcv, gotpages;
1682 vaddr_t currva;
1683 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1684
1685 mutex_enter(&uobj->vmobjlock);
1686 /* locked: maps(read), amap(if there), uobj */
1687 /*
1688 * the following call to pgo_get does _not_ change locking state
1689 */
1690
1691 uvmexp.fltlget++;
1692 gotpages = flt->npages;
1693 (void) uobj->pgops->pgo_get(uobj,
1694 ufi->entry->offset + flt->startva - ufi->entry->start,
1695 pages, &gotpages, flt->centeridx,
1696 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1697
1698 /*
1699 * check for pages to map, if we got any
1700 */
1701
1702 if (gotpages == 0) {
1703 pages[flt->centeridx] = NULL;
1704 return;
1705 }
1706
1707 currva = flt->startva;
1708 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1709 struct vm_page *curpg;
1710
1711 curpg = pages[lcv];
1712 if (curpg == NULL || curpg == PGO_DONTCARE) {
1713 continue;
1714 }
1715 KASSERT(curpg->uobject == uobj);
1716
1717 /*
1718 * if center page is resident and not PG_BUSY|PG_RELEASED
1719 * then pgo_get made it PG_BUSY for us and gave us a handle
1720 * to it.
1721 */
1722
1723 if (lcv == flt->centeridx) {
1724 UVMHIST_LOG(maphist, " got uobjpage "
1725 "(0x%x) with locked get",
1726 curpg, 0,0,0);
1727 } else {
1728 bool readonly = (curpg->flags & PG_RDONLY)
1729 || (curpg->loan_count > 0)
1730 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1731
1732 uvm_fault_lower_neighbor(ufi, flt,
1733 currva, curpg, readonly);
1734 }
1735 }
1736 pmap_update(ufi->orig_map->pmap);
1737 }
1738
1739 /*
1740 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1741 */
1742
1743 static void
1744 uvm_fault_lower_neighbor(
1745 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1746 vaddr_t currva, struct vm_page *pg, bool readonly)
1747 {
1748 UVMHIST_FUNC("uvm_fault_lower_neighor"); UVMHIST_CALLED(maphist);
1749
1750 /* locked: maps(read), amap(if there), uobj */
1751
1752 if (uvm_pageisdirect_p(pg))
1753 goto uvm_fault_lower_neighbor_enter;
1754
1755 /*
1756 * calling pgo_get with PGO_LOCKED returns us pages which
1757 * are neither busy nor released, so we don't need to check
1758 * for this. we can just directly enter the pages.
1759 */
1760
1761 mutex_enter(&uvm_pageqlock);
1762 uvm_pageenqueue(pg);
1763 mutex_exit(&uvm_pageqlock);
1764
1765 /*
1766 * Since this page isn't the page that's actually faulting,
1767 * ignore pmap_enter() failures; it's not critical that we
1768 * enter these right now.
1769 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1770 * held the lock the whole time we've had the handle.
1771 */
1772 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1773 KASSERT((pg->flags & PG_RELEASED) == 0);
1774 KASSERT((pg->flags & PG_WANTED) == 0);
1775 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
1776 (pg->flags & PG_CLEAN) != 0);
1777
1778 uvm_fault_lower_neighbor_enter:
1779 pg->flags &= ~(PG_BUSY);
1780 UVM_PAGE_OWN(pg, NULL);
1781
1782 UVMHIST_LOG(maphist,
1783 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1784 ufi->orig_map->pmap, currva, pg, 0);
1785 uvmexp.fltnomap++;
1786
1787 (void) pmap_enter(ufi->orig_map->pmap, currva,
1788 VM_PAGE_TO_PHYS(pg),
1789 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1790 flt->enter_prot & MASK(ufi->entry),
1791 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1792 }
1793
1794 /*
1795 * uvm_fault_lower_io: get lower page from backing store.
1796 *
1797 * 1. unlock everything, because i/o will block.
1798 * 2. call pgo_get.
1799 * 3. if failed, recover.
1800 * 4. if succeeded, relock everything and verify things.
1801 */
1802
1803 static int
1804 uvm_fault_lower_io(
1805 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1806 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1807 {
1808 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1809 struct uvm_object *uobj = *ruobj;
1810 struct vm_page *pg;
1811 bool locked;
1812 int gotpages;
1813 int error;
1814 voff_t uoff;
1815 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1816
1817 /* update rusage counters */
1818 curlwp->l_ru.ru_majflt++;
1819
1820 /* locked: maps(read), amap(if there), uobj */
1821 uvmfault_unlockall(ufi, amap, NULL, NULL);
1822 /* locked: uobj */
1823
1824 uvmexp.fltget++;
1825 gotpages = 1;
1826 pg = NULL;
1827 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1828 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1829 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1830 PGO_SYNCIO);
1831 /* locked: pg(if no error) */
1832
1833 /*
1834 * recover from I/O
1835 */
1836
1837 if (error) {
1838 if (error == EAGAIN) {
1839 UVMHIST_LOG(maphist,
1840 " pgo_get says TRY AGAIN!",0,0,0,0);
1841 kpause("fltagain2", false, hz/2, NULL);
1842 return ERESTART;
1843 }
1844
1845 #if 0
1846 KASSERT(error != ERESTART);
1847 #else
1848 /* XXXUEBS don't re-fault? */
1849 if (error == ERESTART)
1850 error = EIO;
1851 #endif
1852
1853 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1854 error, 0,0,0);
1855 return error;
1856 }
1857
1858 /* locked: pg */
1859
1860 KASSERT((pg->flags & PG_BUSY) != 0);
1861
1862 mutex_enter(&uvm_pageqlock);
1863 uvm_pageactivate(pg);
1864 mutex_exit(&uvm_pageqlock);
1865
1866 /*
1867 * re-verify the state of the world by first trying to relock
1868 * the maps. always relock the object.
1869 */
1870
1871 locked = uvmfault_relock(ufi);
1872 if (locked && amap)
1873 amap_lock(amap);
1874
1875 /* might be changed */
1876 uobj = pg->uobject;
1877
1878 mutex_enter(&uobj->vmobjlock);
1879
1880 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1881 /* locked(!locked): uobj, pg */
1882
1883 /*
1884 * verify that the page has not be released and re-verify
1885 * that amap slot is still free. if there is a problem,
1886 * we unlock and clean up.
1887 */
1888
1889 if ((pg->flags & PG_RELEASED) != 0 ||
1890 (locked && amap && amap_lookup(&ufi->entry->aref,
1891 ufi->orig_rvaddr - ufi->entry->start))) {
1892 if (locked)
1893 uvmfault_unlockall(ufi, amap, NULL, NULL);
1894 locked = false;
1895 }
1896
1897 /*
1898 * didn't get the lock? release the page and retry.
1899 */
1900
1901 if (locked == false) {
1902 UVMHIST_LOG(maphist,
1903 " wasn't able to relock after fault: retry",
1904 0,0,0,0);
1905 if (pg->flags & PG_WANTED) {
1906 wakeup(pg);
1907 }
1908 if (pg->flags & PG_RELEASED) {
1909 uvmexp.fltpgrele++;
1910 uvm_pagefree(pg);
1911 mutex_exit(&uobj->vmobjlock);
1912 return ERESTART;
1913 }
1914 pg->flags &= ~(PG_BUSY|PG_WANTED);
1915 UVM_PAGE_OWN(pg, NULL);
1916 mutex_exit(&uobj->vmobjlock);
1917 return ERESTART;
1918 }
1919
1920 /*
1921 * we have the data in pg which is busy and
1922 * not released. we are holding object lock (so the page
1923 * can't be released on us).
1924 */
1925
1926 /* locked: maps(read), amap(if !null), uobj, pg */
1927
1928 *ruobj = uobj;
1929 *ruobjpage = pg;
1930 return 0;
1931 }
1932
1933 /*
1934 * uvm_fault_lower_direct: fault lower center page
1935 *
1936 * 1. adjust h/w mapping protection.
1937 * 2. if page is loaned, resolve.
1938 */
1939
1940 int
1941 uvm_fault_lower_direct(
1942 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1943 struct uvm_object *uobj, struct vm_page *uobjpage)
1944 {
1945 struct vm_page *pg;
1946 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1947
1948 /*
1949 * we are not promoting. if the mapping is COW ensure that we
1950 * don't give more access than we should (e.g. when doing a read
1951 * fault on a COPYONWRITE mapping we want to map the COW page in
1952 * R/O even though the entry protection could be R/W).
1953 *
1954 * set "pg" to the page we want to map in (uobjpage, usually)
1955 */
1956
1957 pg = uobjpage; /* map in the actual object */
1958 uvmexp.flt_obj++;
1959
1960 if (uvm_pageisdirect_p(uobjpage)) {
1961 /* XIP'ed device pages are always read-only */
1962 goto uvm_fault_lower_direct_done;
1963 }
1964
1965 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1966 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1967 flt->enter_prot &= ~VM_PROT_WRITE;
1968
1969 KASSERT(uobjpage != PGO_DONTCARE);
1970
1971 /*
1972 * we are faulting directly on the page. be careful
1973 * about writing to loaned pages...
1974 */
1975
1976 if (uobjpage->loan_count) {
1977 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1978 }
1979 KASSERT(pg == uobjpage);
1980
1981 uvm_fault_lower_direct_done:
1982 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1983 }
1984
1985 /*
1986 * uvm_fault_lower_direct_loan: resolve loaned page.
1987 *
1988 * 1. if not cow'ing, adjust h/w mapping protection.
1989 * 2. if cow'ing, break loan.
1990 */
1991
1992 static int
1993 uvm_fault_lower_direct_loan(
1994 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1995 struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage)
1996 {
1997 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1998 struct vm_page *pg;
1999 struct vm_page *uobjpage = *ruobjpage;
2000 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
2001
2002 if (!flt->cow_now) {
2003 /* read fault: cap the protection at readonly */
2004 /* cap! */
2005 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2006 } else {
2007 /* write fault: must break the loan here */
2008
2009 pg = uvm_loanbreak(uobjpage);
2010 if (pg == NULL) {
2011
2012 /*
2013 * drop ownership of page, it can't be released
2014 */
2015
2016 if (uobjpage->flags & PG_WANTED)
2017 wakeup(uobjpage);
2018 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2019 UVM_PAGE_OWN(uobjpage, NULL);
2020
2021 uvmfault_unlockall(ufi, amap, uobj, NULL);
2022 UVMHIST_LOG(maphist,
2023 " out of RAM breaking loan, waiting",
2024 0,0,0,0);
2025 uvmexp.fltnoram++;
2026 uvm_wait("flt_noram4");
2027 return ERESTART;
2028 }
2029 *rpg = pg;
2030 *ruobjpage = pg;
2031 }
2032 return 0;
2033 }
2034
2035 /*
2036 * uvm_fault_lower_promote: promote lower page.
2037 *
2038 * 1. call uvmfault_promote.
2039 * 2. fill in data.
2040 * 3. if not ZFOD, dispose old page.
2041 */
2042
2043 int
2044 uvm_fault_lower_promote(
2045 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2046 struct uvm_object *uobj, struct vm_page *uobjpage)
2047 {
2048 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2049 struct vm_anon *anon;
2050 struct vm_page *pg;
2051 int error;
2052 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2053
2054 /*
2055 * if we are going to promote the data to an anon we
2056 * allocate a blank anon here and plug it into our amap.
2057 */
2058 #if DIAGNOSTIC
2059 if (amap == NULL)
2060 panic("uvm_fault: want to promote data, but no anon");
2061 #endif
2062 error = uvmfault_promote(ufi, NULL, uobj, uobjpage,
2063 &anon, &flt->anon_spare);
2064 switch (error) {
2065 case 0:
2066 break;
2067 case ERESTART:
2068 return ERESTART;
2069 default:
2070 return error;
2071 }
2072
2073 pg = anon->an_page;
2074
2075 /*
2076 * fill in the data
2077 */
2078
2079 if (uobjpage != PGO_DONTCARE) {
2080 uvmexp.flt_prcopy++;
2081
2082 /*
2083 * promote to shared amap? make sure all sharing
2084 * procs see it
2085 */
2086
2087 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2088 pmap_page_protect(uobjpage, VM_PROT_NONE);
2089 /*
2090 * XXX: PAGE MIGHT BE WIRED!
2091 */
2092 }
2093
2094 if (uvm_pageisdirect_p(uobjpage)) {
2095 /*
2096 * XIP devices pages are never paged out, no need to
2097 * dispose.
2098 */
2099 goto uvm_fault_lower_promote_done;
2100 }
2101
2102 /*
2103 * dispose of uobjpage. it can't be PG_RELEASED
2104 * since we still hold the object lock.
2105 * drop handle to uobj as well.
2106 */
2107
2108 if (uobjpage->flags & PG_WANTED)
2109 /* still have the obj lock */
2110 wakeup(uobjpage);
2111
2112 uvm_fault_lower_promote_done:
2113 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2114 UVM_PAGE_OWN(uobjpage, NULL);
2115
2116 mutex_exit(&uobj->vmobjlock);
2117 uobj = NULL;
2118
2119 UVMHIST_LOG(maphist,
2120 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2121 uobjpage, anon, pg, 0);
2122
2123 } else {
2124 uvmexp.flt_przero++;
2125
2126 /*
2127 * Page is zero'd and marked dirty by
2128 * uvmfault_promote().
2129 */
2130
2131 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2132 anon, pg, 0, 0);
2133 }
2134
2135 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage);
2136 }
2137
2138 /*
2139 * uvm_fault_lower_enter: enter h/w mapping of lower page.
2140 */
2141
2142 int
2143 uvm_fault_lower_enter(
2144 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2145 struct uvm_object *uobj,
2146 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2147 {
2148 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2149 int error;
2150 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2151
2152 /*
2153 * locked:
2154 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2155 * anon(if !null), pg(if anon)
2156 *
2157 * note: pg is either the uobjpage or the new page in the new anon
2158 */
2159 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2160 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2161 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2162 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2163 KASSERT((pg->flags & PG_BUSY) != 0);
2164
2165 /*
2166 * all resources are present. we can now map it in and free our
2167 * resources.
2168 */
2169
2170 UVMHIST_LOG(maphist,
2171 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2172 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2173 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2174 (pg->flags & PG_RDONLY) == 0);
2175 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
2176 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2177 flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2178
2179 if (uvm_pageisdirect_p(pg)) {
2180 /* Device pages never involve paging activity. */
2181 goto uvm_fault_lower_enter_error_done;
2182 }
2183
2184 /*
2185 * No need to undo what we did; we can simply think of
2186 * this as the pmap throwing away the mapping information.
2187 *
2188 * We do, however, have to go through the ReFault path,
2189 * as the map may change while we're asleep.
2190 */
2191
2192 if (pg->flags & PG_WANTED)
2193 wakeup(pg);
2194
2195 /*
2196 * note that pg can't be PG_RELEASED since we did not drop
2197 * the object lock since the last time we checked.
2198 */
2199 KASSERT((pg->flags & PG_RELEASED) == 0);
2200
2201 uvm_fault_lower_enter_error_done:
2202 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2203 UVM_PAGE_OWN(pg, NULL);
2204
2205 uvmfault_unlockall(ufi, amap, uobj, anon);
2206 if (!uvm_reclaimable()) {
2207 UVMHIST_LOG(maphist,
2208 "<- failed. out of VM",0,0,0,0);
2209 /* XXX instrumentation */
2210 error = ENOMEM;
2211 return error;
2212 }
2213 /* XXX instrumentation */
2214 uvm_wait("flt_pmfail2");
2215 return ERESTART;
2216 }
2217
2218 if (!uvm_pageisdirect_p(pg))
2219 uvm_fault_lower_done(ufi, flt, uobj, anon, pg);
2220
2221 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2222 UVM_PAGE_OWN(pg, NULL);
2223
2224 uvmfault_unlockall(ufi, amap, uobj, anon);
2225 pmap_update(ufi->orig_map->pmap);
2226 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2227 return 0;
2228 }
2229
2230 /*
2231 * uvm_fault_lower_done: queue lower center page.
2232 */
2233
2234 void
2235 uvm_fault_lower_done(
2236 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2237 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2238 {
2239 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2240
2241 mutex_enter(&uvm_pageqlock);
2242 if (flt->wire_paging) {
2243 uvm_pagewire(pg);
2244 if (pg->pqflags & PQ_AOBJ) {
2245
2246 /*
2247 * since the now-wired page cannot be paged out,
2248 * release its swap resources for others to use.
2249 * since an aobj page with no swap cannot be PG_CLEAN,
2250 * clear its clean flag now.
2251 */
2252
2253 KASSERT(uobj != NULL);
2254 pg->flags &= ~(PG_CLEAN);
2255 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2256 }
2257 } else {
2258 uvm_pageactivate(pg);
2259 }
2260 mutex_exit(&uvm_pageqlock);
2261
2262 if (pg->flags & PG_WANTED)
2263 wakeup(pg);
2264
2265 /*
2266 * note that pg can't be PG_RELEASED since we did not drop the object
2267 * lock since the last time we checked.
2268 */
2269 KASSERT((pg->flags & PG_RELEASED) == 0);
2270 }
2271
2272
2273 /*
2274 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2275 *
2276 * => map may be read-locked by caller, but MUST NOT be write-locked.
2277 * => if map is read-locked, any operations which may cause map to
2278 * be write-locked in uvm_fault() must be taken care of by
2279 * the caller. See uvm_map_pageable().
2280 */
2281
2282 int
2283 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2284 vm_prot_t access_type, int maxprot)
2285 {
2286 vaddr_t va;
2287 int error;
2288
2289 /*
2290 * now fault it in a page at a time. if the fault fails then we have
2291 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2292 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2293 */
2294
2295 /*
2296 * XXX work around overflowing a vaddr_t. this prevents us from
2297 * wiring the last page in the address space, though.
2298 */
2299 if (start > end) {
2300 return EFAULT;
2301 }
2302
2303 for (va = start; va < end; va += PAGE_SIZE) {
2304 error = uvm_fault_internal(map, va, access_type,
2305 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2306 if (error) {
2307 if (va != start) {
2308 uvm_fault_unwire(map, start, va);
2309 }
2310 return error;
2311 }
2312 }
2313 return 0;
2314 }
2315
2316 /*
2317 * uvm_fault_unwire(): unwire range of virtual space.
2318 */
2319
2320 void
2321 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2322 {
2323 vm_map_lock_read(map);
2324 uvm_fault_unwire_locked(map, start, end);
2325 vm_map_unlock_read(map);
2326 }
2327
2328 /*
2329 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2330 *
2331 * => map must be at least read-locked.
2332 */
2333
2334 void
2335 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2336 {
2337 struct vm_map_entry *entry;
2338 pmap_t pmap = vm_map_pmap(map);
2339 vaddr_t va;
2340 paddr_t pa;
2341 struct vm_page *pg;
2342
2343 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2344
2345 /*
2346 * we assume that the area we are unwiring has actually been wired
2347 * in the first place. this means that we should be able to extract
2348 * the PAs from the pmap. we also lock out the page daemon so that
2349 * we can call uvm_pageunwire.
2350 */
2351
2352 mutex_enter(&uvm_pageqlock);
2353
2354 /*
2355 * find the beginning map entry for the region.
2356 */
2357
2358 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2359 if (uvm_map_lookup_entry(map, start, &entry) == false)
2360 panic("uvm_fault_unwire_locked: address not in map");
2361
2362 for (va = start; va < end; va += PAGE_SIZE) {
2363 if (pmap_extract(pmap, va, &pa) == false)
2364 continue;
2365
2366 /*
2367 * find the map entry for the current address.
2368 */
2369
2370 KASSERT(va >= entry->start);
2371 while (va >= entry->end) {
2372 KASSERT(entry->next != &map->header &&
2373 entry->next->start <= entry->end);
2374 entry = entry->next;
2375 }
2376
2377 /*
2378 * if the entry is no longer wired, tell the pmap.
2379 */
2380
2381 if (VM_MAPENT_ISWIRED(entry) == 0)
2382 pmap_unwire(pmap, va);
2383
2384 pg = PHYS_TO_VM_PAGE(pa);
2385 if (pg)
2386 uvm_pageunwire(pg);
2387 }
2388
2389 mutex_exit(&uvm_pageqlock);
2390 }
2391