uvm_fault.c revision 1.166.2.4 1 /* $NetBSD: uvm_fault.c,v 1.166.2.4 2010/02/23 07:11:46 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.166.2.4 2010/02/23 07:11:46 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45 #include "opt_device_page.h"
46 #include "opt_xip.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/proc.h>
52 #include <sys/malloc.h>
53 #include <sys/mman.h>
54
55 #include <uvm/uvm.h>
56
57 /*
58 *
59 * a word on page faults:
60 *
61 * types of page faults we handle:
62 *
63 * CASE 1: upper layer faults CASE 2: lower layer faults
64 *
65 * CASE 1A CASE 1B CASE 2A CASE 2B
66 * read/write1 write>1 read/write +-cow_write/zero
67 * | | | |
68 * +--|--+ +--|--+ +-----+ + | + | +-----+
69 * amap | V | | ---------> new | | | | ^ |
70 * +-----+ +-----+ +-----+ + | + | +--|--+
71 * | | |
72 * +-----+ +-----+ +--|--+ | +--|--+
73 * uobj | d/c | | d/c | | V | +----+ |
74 * +-----+ +-----+ +-----+ +-----+
75 *
76 * d/c = don't care
77 *
78 * case [0]: layerless fault
79 * no amap or uobj is present. this is an error.
80 *
81 * case [1]: upper layer fault [anon active]
82 * 1A: [read] or [write with anon->an_ref == 1]
83 * I/O takes place in upper level anon and uobj is not touched.
84 * 1B: [write with anon->an_ref > 1]
85 * new anon is alloc'd and data is copied off ["COW"]
86 *
87 * case [2]: lower layer fault [uobj]
88 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
89 * I/O takes place directly in object.
90 * 2B: [write to copy_on_write] or [read on NULL uobj]
91 * data is "promoted" from uobj to a new anon.
92 * if uobj is null, then we zero fill.
93 *
94 * we follow the standard UVM locking protocol ordering:
95 *
96 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
97 * we hold a PG_BUSY page if we unlock for I/O
98 *
99 *
100 * the code is structured as follows:
101 *
102 * - init the "IN" params in the ufi structure
103 * ReFault:
104 * - do lookups [locks maps], check protection, handle needs_copy
105 * - check for case 0 fault (error)
106 * - establish "range" of fault
107 * - if we have an amap lock it and extract the anons
108 * - if sequential advice deactivate pages behind us
109 * - at the same time check pmap for unmapped areas and anon for pages
110 * that we could map in (and do map it if found)
111 * - check object for resident pages that we could map in
112 * - if (case 2) goto Case2
113 * - >>> handle case 1
114 * - ensure source anon is resident in RAM
115 * - if case 1B alloc new anon and copy from source
116 * - map the correct page in
117 * Case2:
118 * - >>> handle case 2
119 * - ensure source page is resident (if uobj)
120 * - if case 2B alloc new anon and copy from source (could be zero
121 * fill if uobj == NULL)
122 * - map the correct page in
123 * - done!
124 *
125 * note on paging:
126 * if we have to do I/O we place a PG_BUSY page in the correct object,
127 * unlock everything, and do the I/O. when I/O is done we must reverify
128 * the state of the world before assuming that our data structures are
129 * valid. [because mappings could change while the map is unlocked]
130 *
131 * alternative 1: unbusy the page in question and restart the page fault
132 * from the top (ReFault). this is easy but does not take advantage
133 * of the information that we already have from our previous lookup,
134 * although it is possible that the "hints" in the vm_map will help here.
135 *
136 * alternative 2: the system already keeps track of a "version" number of
137 * a map. [i.e. every time you write-lock a map (e.g. to change a
138 * mapping) you bump the version number up by one...] so, we can save
139 * the version number of the map before we release the lock and start I/O.
140 * then when I/O is done we can relock and check the version numbers
141 * to see if anything changed. this might save us some over 1 because
142 * we don't have to unbusy the page and may be less compares(?).
143 *
144 * alternative 3: put in backpointers or a way to "hold" part of a map
145 * in place while I/O is in progress. this could be complex to
146 * implement (especially with structures like amap that can be referenced
147 * by multiple map entries, and figuring out what should wait could be
148 * complex as well...).
149 *
150 * we use alternative 2. given that we are multi-threaded now we may want
151 * to reconsider the choice.
152 */
153
154 /*
155 * local data structures
156 */
157
158 struct uvm_advice {
159 int advice;
160 int nback;
161 int nforw;
162 };
163
164 /*
165 * page range array:
166 * note: index in array must match "advice" value
167 * XXX: borrowed numbers from freebsd. do they work well for us?
168 */
169
170 static const struct uvm_advice uvmadvice[] = {
171 { MADV_NORMAL, 3, 4 },
172 { MADV_RANDOM, 0, 0 },
173 { MADV_SEQUENTIAL, 8, 7},
174 };
175
176 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
177
178 /*
179 * private prototypes
180 */
181
182 /*
183 * inline functions
184 */
185
186 /*
187 * uvmfault_anonflush: try and deactivate pages in specified anons
188 *
189 * => does not have to deactivate page if it is busy
190 */
191
192 static inline void
193 uvmfault_anonflush(struct vm_anon **anons, int n)
194 {
195 int lcv;
196 struct vm_page *pg;
197
198 for (lcv = 0; lcv < n; lcv++) {
199 if (anons[lcv] == NULL)
200 continue;
201 mutex_enter(&anons[lcv]->an_lock);
202 pg = anons[lcv]->an_page;
203 if (pg && (pg->flags & PG_BUSY) == 0) {
204 mutex_enter(&uvm_pageqlock);
205 if (pg->wire_count == 0) {
206 uvm_pagedeactivate(pg);
207 }
208 mutex_exit(&uvm_pageqlock);
209 }
210 mutex_exit(&anons[lcv]->an_lock);
211 }
212 }
213
214 /*
215 * normal functions
216 */
217
218 /*
219 * uvmfault_amapcopy: clear "needs_copy" in a map.
220 *
221 * => called with VM data structures unlocked (usually, see below)
222 * => we get a write lock on the maps and clear needs_copy for a VA
223 * => if we are out of RAM we sleep (waiting for more)
224 */
225
226 static void
227 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
228 {
229 for (;;) {
230
231 /*
232 * no mapping? give up.
233 */
234
235 if (uvmfault_lookup(ufi, true) == false)
236 return;
237
238 /*
239 * copy if needed.
240 */
241
242 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
243 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
244 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
245
246 /*
247 * didn't work? must be out of RAM. unlock and sleep.
248 */
249
250 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
251 uvmfault_unlockmaps(ufi, true);
252 uvm_wait("fltamapcopy");
253 continue;
254 }
255
256 /*
257 * got it! unlock and return.
258 */
259
260 uvmfault_unlockmaps(ufi, true);
261 return;
262 }
263 /*NOTREACHED*/
264 }
265
266 /*
267 * uvmfault_anonget: get data in an anon into a non-busy, non-released
268 * page in that anon.
269 *
270 * => maps, amap, and anon locked by caller.
271 * => if we fail (result != 0) we unlock everything.
272 * => if we are successful, we return with everything still locked.
273 * => we don't move the page on the queues [gets moved later]
274 * => if we allocate a new page [we_own], it gets put on the queues.
275 * either way, the result is that the page is on the queues at return time
276 * => for pages which are on loan from a uvm_object (and thus are not
277 * owned by the anon): if successful, we return with the owning object
278 * locked. the caller must unlock this object when it unlocks everything
279 * else.
280 */
281
282 int
283 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
284 struct vm_anon *anon)
285 {
286 bool we_own; /* we own anon's page? */
287 bool locked; /* did we relock? */
288 struct vm_page *pg;
289 int error;
290 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
291
292 KASSERT(mutex_owned(&anon->an_lock));
293
294 error = 0;
295 uvmexp.fltanget++;
296 /* bump rusage counters */
297 if (anon->an_page)
298 curlwp->l_ru.ru_minflt++;
299 else
300 curlwp->l_ru.ru_majflt++;
301
302 /*
303 * loop until we get it, or fail.
304 */
305
306 for (;;) {
307 we_own = false; /* true if we set PG_BUSY on a page */
308 pg = anon->an_page;
309
310 /*
311 * if there is a resident page and it is loaned, then anon
312 * may not own it. call out to uvm_anon_lockpage() to ensure
313 * the real owner of the page has been identified and locked.
314 */
315
316 if (pg && pg->loan_count)
317 pg = uvm_anon_lockloanpg(anon);
318
319 /*
320 * page there? make sure it is not busy/released.
321 */
322
323 if (pg) {
324
325 /*
326 * at this point, if the page has a uobject [meaning
327 * we have it on loan], then that uobject is locked
328 * by us! if the page is busy, we drop all the
329 * locks (including uobject) and try again.
330 */
331
332 if ((pg->flags & PG_BUSY) == 0) {
333 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
334 return (0);
335 }
336 pg->flags |= PG_WANTED;
337 uvmexp.fltpgwait++;
338
339 /*
340 * the last unlock must be an atomic unlock+wait on
341 * the owner of page
342 */
343
344 if (pg->uobject) { /* owner is uobject ? */
345 uvmfault_unlockall(ufi, amap, NULL, anon);
346 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
347 0,0,0);
348 UVM_UNLOCK_AND_WAIT(pg,
349 &pg->uobject->vmobjlock,
350 false, "anonget1",0);
351 } else {
352 /* anon owns page */
353 uvmfault_unlockall(ufi, amap, NULL, NULL);
354 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
355 0,0,0);
356 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
357 "anonget2",0);
358 }
359 } else {
360 #if defined(VMSWAP)
361
362 /*
363 * no page, we must try and bring it in.
364 */
365
366 pg = uvm_pagealloc(NULL, 0, anon, 0);
367 if (pg == NULL) { /* out of RAM. */
368 uvmfault_unlockall(ufi, amap, NULL, anon);
369 uvmexp.fltnoram++;
370 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
371 0,0,0);
372 if (!uvm_reclaimable()) {
373 return ENOMEM;
374 }
375 uvm_wait("flt_noram1");
376 } else {
377 /* we set the PG_BUSY bit */
378 we_own = true;
379 uvmfault_unlockall(ufi, amap, NULL, anon);
380
381 /*
382 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
383 * page into the uvm_swap_get function with
384 * all data structures unlocked. note that
385 * it is ok to read an_swslot here because
386 * we hold PG_BUSY on the page.
387 */
388 uvmexp.pageins++;
389 error = uvm_swap_get(pg, anon->an_swslot,
390 PGO_SYNCIO);
391
392 /*
393 * we clean up after the i/o below in the
394 * "we_own" case
395 */
396 }
397 #else /* defined(VMSWAP) */
398 panic("%s: no page", __func__);
399 #endif /* defined(VMSWAP) */
400 }
401
402 /*
403 * now relock and try again
404 */
405
406 locked = uvmfault_relock(ufi);
407 if (locked && amap != NULL) {
408 amap_lock(amap);
409 }
410 if (locked || we_own)
411 mutex_enter(&anon->an_lock);
412
413 /*
414 * if we own the page (i.e. we set PG_BUSY), then we need
415 * to clean up after the I/O. there are three cases to
416 * consider:
417 * [1] page released during I/O: free anon and ReFault.
418 * [2] I/O not OK. free the page and cause the fault
419 * to fail.
420 * [3] I/O OK! activate the page and sync with the
421 * non-we_own case (i.e. drop anon lock if not locked).
422 */
423
424 if (we_own) {
425 #if defined(VMSWAP)
426 if (pg->flags & PG_WANTED) {
427 wakeup(pg);
428 }
429 if (error) {
430
431 /*
432 * remove the swap slot from the anon
433 * and mark the anon as having no real slot.
434 * don't free the swap slot, thus preventing
435 * it from being used again.
436 */
437
438 if (anon->an_swslot > 0)
439 uvm_swap_markbad(anon->an_swslot, 1);
440 anon->an_swslot = SWSLOT_BAD;
441
442 if ((pg->flags & PG_RELEASED) != 0)
443 goto released;
444
445 /*
446 * note: page was never !PG_BUSY, so it
447 * can't be mapped and thus no need to
448 * pmap_page_protect it...
449 */
450
451 mutex_enter(&uvm_pageqlock);
452 uvm_pagefree(pg);
453 mutex_exit(&uvm_pageqlock);
454
455 if (locked)
456 uvmfault_unlockall(ufi, amap, NULL,
457 anon);
458 else
459 mutex_exit(&anon->an_lock);
460 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
461 return error;
462 }
463
464 if ((pg->flags & PG_RELEASED) != 0) {
465 released:
466 KASSERT(anon->an_ref == 0);
467
468 /*
469 * released while we unlocked amap.
470 */
471
472 if (locked)
473 uvmfault_unlockall(ufi, amap, NULL,
474 NULL);
475
476 uvm_anon_release(anon);
477
478 if (error) {
479 UVMHIST_LOG(maphist,
480 "<- ERROR/RELEASED", 0,0,0,0);
481 return error;
482 }
483
484 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
485 return ERESTART;
486 }
487
488 /*
489 * we've successfully read the page, activate it.
490 */
491
492 mutex_enter(&uvm_pageqlock);
493 uvm_pageactivate(pg);
494 mutex_exit(&uvm_pageqlock);
495 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
496 UVM_PAGE_OWN(pg, NULL);
497 if (!locked)
498 mutex_exit(&anon->an_lock);
499 #else /* defined(VMSWAP) */
500 panic("%s: we_own", __func__);
501 #endif /* defined(VMSWAP) */
502 }
503
504 /*
505 * we were not able to relock. restart fault.
506 */
507
508 if (!locked) {
509 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
510 return (ERESTART);
511 }
512
513 /*
514 * verify no one has touched the amap and moved the anon on us.
515 */
516
517 if (ufi != NULL &&
518 amap_lookup(&ufi->entry->aref,
519 ufi->orig_rvaddr - ufi->entry->start) != anon) {
520
521 uvmfault_unlockall(ufi, amap, NULL, anon);
522 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
523 return (ERESTART);
524 }
525
526 /*
527 * try it again!
528 */
529
530 uvmexp.fltanretry++;
531 continue;
532 }
533 /*NOTREACHED*/
534 }
535
536 /*
537 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
538 *
539 * 1. allocate an anon and a page.
540 * 2. fill its contents.
541 * 3. put it into amap.
542 *
543 * => if we fail (result != 0) we unlock everything.
544 * => on success, return a new locked anon via 'nanon'.
545 * (*nanon)->an_page will be a resident, locked, dirty page.
546 */
547
548 static int
549 uvmfault_promote(struct uvm_faultinfo *ufi,
550 struct vm_anon *oanon,
551 struct uvm_object *uobj,
552 struct vm_page *uobjpage,
553 struct vm_anon **nanon, /* OUT: allocated anon */
554 struct vm_anon **spare)
555 {
556 struct vm_amap *amap = ufi->entry->aref.ar_amap;
557 struct vm_anon *anon;
558 struct vm_page *pg;
559 struct vm_page *opg;
560 int error;
561 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
562
563 if (oanon) {
564 /* anon COW */
565 opg = oanon->an_page;
566 KASSERT(opg != NULL);
567 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
568 } else if (uobjpage != PGO_DONTCARE) {
569 /* object-backed COW */
570 opg = uobjpage;
571 } else {
572 /* ZFOD */
573 opg = NULL;
574 }
575
576 KASSERT(amap != NULL);
577 KASSERT(uobjpage != NULL);
578 KASSERT(uobjpage == PGO_DONTCARE || uvm_pageisdevice_p(uobjpage) ||
579 (uobjpage->flags & PG_BUSY) != 0);
580 KASSERT(mutex_owned(&amap->am_l));
581 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
582 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
583 #if 0
584 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
585 #endif
586
587 if (*spare != NULL) {
588 anon = *spare;
589 *spare = NULL;
590 mutex_enter(&anon->an_lock);
591 } else if (ufi->map != kernel_map) {
592 anon = uvm_analloc();
593 } else {
594 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
595
596 /*
597 * we can't allocate anons with kernel_map locked.
598 */
599
600 uvm_page_unbusy(&uobjpage, 1);
601 uvmfault_unlockall(ufi, amap, uobj, oanon);
602
603 *spare = uvm_analloc();
604 if (*spare == NULL) {
605 goto nomem;
606 }
607 mutex_exit(&(*spare)->an_lock);
608 error = ERESTART;
609 goto done;
610 }
611 if (anon) {
612
613 /*
614 * The new anon is locked.
615 *
616 * if opg == NULL, we want a zero'd, dirty page,
617 * so have uvm_pagealloc() do that for us.
618 */
619
620 pg = uvm_pagealloc(NULL, 0, anon,
621 (opg == NULL) ? UVM_PGA_ZERO : 0);
622 } else {
623 pg = NULL;
624 }
625
626 /*
627 * out of memory resources?
628 */
629
630 if (pg == NULL) {
631 /* save anon for the next try. */
632 if (anon != NULL) {
633 mutex_exit(&anon->an_lock);
634 *spare = anon;
635 }
636
637 /* unlock and fail ... */
638 uvm_page_unbusy(&uobjpage, 1);
639 uvmfault_unlockall(ufi, amap, uobj, oanon);
640 nomem:
641 if (!uvm_reclaimable()) {
642 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
643 uvmexp.fltnoanon++;
644 error = ENOMEM;
645 goto done;
646 }
647
648 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
649 uvmexp.fltnoram++;
650 uvm_wait("flt_noram5");
651 error = ERESTART;
652 goto done;
653 }
654
655 /* copy page [pg now dirty] */
656 if (opg) {
657 uvm_pagecopy(opg, pg);
658 }
659
660 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
661 oanon != NULL);
662
663 *nanon = anon;
664 error = 0;
665 done:
666 return error;
667 }
668
669
670 /*
671 * F A U L T - m a i n e n t r y p o i n t
672 */
673
674 /*
675 * uvm_fault: page fault handler
676 *
677 * => called from MD code to resolve a page fault
678 * => VM data structures usually should be unlocked. however, it is
679 * possible to call here with the main map locked if the caller
680 * gets a write lock, sets it recusive, and then calls us (c.f.
681 * uvm_map_pageable). this should be avoided because it keeps
682 * the map locked off during I/O.
683 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
684 */
685
686 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
687 ~VM_PROT_WRITE : VM_PROT_ALL)
688
689 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
690 #define UVM_FAULT_WIRE (1 << 0)
691 #define UVM_FAULT_MAXPROT (1 << 1)
692
693 struct uvm_faultctx {
694 vm_prot_t access_type;
695 vm_prot_t enter_prot;
696 vaddr_t startva;
697 int npages;
698 int centeridx;
699 struct vm_anon *anon_spare;
700 bool wire_mapping;
701 bool narrow;
702 bool wire_paging;
703 bool maxprot;
704 bool cow_now;
705 };
706
707 static inline int uvm_fault_check(
708 struct uvm_faultinfo *, struct uvm_faultctx *,
709 struct vm_anon ***, struct vm_page ***);
710
711 static int uvm_fault_upper(
712 struct uvm_faultinfo *, struct uvm_faultctx *,
713 struct vm_anon **);
714 static inline int uvm_fault_upper_lookup(
715 struct uvm_faultinfo *, struct uvm_faultctx *,
716 struct vm_anon **, struct vm_page **);
717 static inline void uvm_fault_upper_neighbor(
718 struct uvm_faultinfo *, struct uvm_faultctx *,
719 vaddr_t, struct vm_page *, bool);
720 static inline int uvm_fault_upper_loan(
721 struct uvm_faultinfo *, struct uvm_faultctx *,
722 struct vm_anon *, struct uvm_object **);
723 static inline int uvm_fault_upper_promote(
724 struct uvm_faultinfo *, struct uvm_faultctx *,
725 struct uvm_object *, struct vm_anon *);
726 static inline int uvm_fault_upper_direct(
727 struct uvm_faultinfo *, struct uvm_faultctx *,
728 struct uvm_object *, struct vm_anon *);
729 static int uvm_fault_upper_enter(
730 struct uvm_faultinfo *, struct uvm_faultctx *,
731 struct uvm_object *, struct vm_anon *,
732 struct vm_page *, struct vm_anon *);
733 static inline int uvm_fault_upper_done(
734 struct uvm_faultinfo *, struct uvm_faultctx *,
735 struct uvm_object *, struct vm_anon *,
736 struct vm_page *, struct vm_anon *);
737
738 static int uvm_fault_lower(
739 struct uvm_faultinfo *, struct uvm_faultctx *,
740 struct vm_page **);
741 static inline int uvm_fault_lower_special(
742 struct uvm_faultinfo *, struct uvm_faultctx *,
743 struct vm_page **);
744 static inline int uvm_fault_lower_lookup(
745 struct uvm_faultinfo *, struct uvm_faultctx *,
746 struct vm_page **);
747 static inline void uvm_fault_lower_neighbor(
748 struct uvm_faultinfo *, struct uvm_faultctx *,
749 vaddr_t, struct vm_page *, bool);
750 static inline int uvm_fault_lower_generic(
751 struct uvm_faultinfo *, struct uvm_faultctx *,
752 struct vm_page **);
753 static inline int uvm_fault_lower1(
754 struct uvm_faultinfo *, struct uvm_faultctx *,
755 struct uvm_object *, struct vm_page *);
756 static inline int uvm_fault_lower_io(
757 struct uvm_faultinfo *, struct uvm_faultctx *,
758 struct uvm_object **, struct vm_page **);
759 static inline int uvm_fault_lower_direct(
760 struct uvm_faultinfo *, struct uvm_faultctx *,
761 struct uvm_object *, struct vm_page *);
762 static inline int uvm_fault_lower_direct_loan(
763 struct uvm_faultinfo *, struct uvm_faultctx *,
764 struct uvm_object *, struct vm_page **,
765 struct vm_page **);
766 static inline int uvm_fault_lower_promote(
767 struct uvm_faultinfo *, struct uvm_faultctx *,
768 struct uvm_object *, struct vm_page *);
769 static int uvm_fault_lower_enter(
770 struct uvm_faultinfo *, struct uvm_faultctx *,
771 struct uvm_object *,
772 struct vm_anon *, struct vm_page *,
773 struct vm_page *);
774 static inline int uvm_fault_lower_done(
775 struct uvm_faultinfo *, struct uvm_faultctx *,
776 struct uvm_object *,
777 struct vm_anon *, struct vm_page *);
778
779 int
780 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
781 vm_prot_t access_type, int fault_flag)
782 {
783 struct uvm_faultinfo ufi;
784 struct uvm_faultctx flt = {
785 .access_type = access_type,
786
787 /* don't look for neighborhood * pages on "wire" fault */
788 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
789
790 /* "wire" fault causes wiring of both mapping and paging */
791 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
792 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
793
794 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
795 };
796 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
797 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
798 int error;
799 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
800
801 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
802 orig_map, vaddr, access_type, fault_flag);
803
804 uvmexp.faults++; /* XXX: locking? */
805
806 /*
807 * init the IN parameters in the ufi
808 */
809
810 ufi.orig_map = orig_map;
811 ufi.orig_rvaddr = trunc_page(vaddr);
812 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
813
814 error = ERESTART;
815 while (error == ERESTART) {
816 anons = anons_store;
817 pages = pages_store;
818
819 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
820 if (error != 0)
821 continue;
822
823 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
824 if (error != 0)
825 continue;
826
827 if (pages[flt.centeridx] == PGO_DONTCARE)
828 error = uvm_fault_upper(&ufi, &flt, anons);
829 else
830 error = uvm_fault_lower(&ufi, &flt, pages);
831 }
832
833 if (flt.anon_spare != NULL) {
834 flt.anon_spare->an_ref--;
835 uvm_anfree(flt.anon_spare);
836 }
837 return error;
838 }
839
840 static int
841 uvm_fault_check(
842 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
843 struct vm_anon ***ranons, struct vm_page ***rpages)
844 {
845 struct vm_amap *amap;
846 struct uvm_object *uobj;
847 vm_prot_t check_prot;
848 int nback, nforw;
849 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
850
851 /*
852 * lookup and lock the maps
853 */
854
855 if (uvmfault_lookup(ufi, false) == false) {
856 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr, 0,0,0);
857 return EFAULT;
858 }
859 /* locked: maps(read) */
860
861 #ifdef DIAGNOSTIC
862 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
863 printf("Page fault on non-pageable map:\n");
864 printf("ufi->map = %p\n", ufi->map);
865 printf("ufi->orig_map = %p\n", ufi->orig_map);
866 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
867 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
868 }
869 #endif
870
871 /*
872 * check protection
873 */
874
875 check_prot = flt->maxprot ?
876 ufi->entry->max_protection : ufi->entry->protection;
877 if ((check_prot & flt->access_type) != flt->access_type) {
878 UVMHIST_LOG(maphist,
879 "<- protection failure (prot=0x%x, access=0x%x)",
880 ufi->entry->protection, flt->access_type, 0, 0);
881 uvmfault_unlockmaps(ufi, false);
882 return EACCES;
883 }
884
885 /*
886 * "enter_prot" is the protection we want to enter the page in at.
887 * for certain pages (e.g. copy-on-write pages) this protection can
888 * be more strict than ufi->entry->protection. "wired" means either
889 * the entry is wired or we are fault-wiring the pg.
890 */
891
892 flt->enter_prot = ufi->entry->protection;
893 if (VM_MAPENT_ISWIRED(ufi->entry))
894 flt->wire_mapping = true;
895
896 if (flt->wire_mapping) {
897 flt->access_type = flt->enter_prot; /* full access for wired */
898 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
899 } else {
900 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
901 }
902
903 /*
904 * handle "needs_copy" case. if we need to copy the amap we will
905 * have to drop our readlock and relock it with a write lock. (we
906 * need a write lock to change anything in a map entry [e.g.
907 * needs_copy]).
908 */
909
910 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
911 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
912 KASSERT(!flt->maxprot);
913 /* need to clear */
914 UVMHIST_LOG(maphist,
915 " need to clear needs_copy and refault",0,0,0,0);
916 uvmfault_unlockmaps(ufi, false);
917 uvmfault_amapcopy(ufi);
918 uvmexp.fltamcopy++;
919 return ERESTART;
920
921 } else {
922
923 /*
924 * ensure that we pmap_enter page R/O since
925 * needs_copy is still true
926 */
927
928 flt->enter_prot &= ~VM_PROT_WRITE;
929 }
930 }
931
932 /*
933 * identify the players
934 */
935
936 amap = ufi->entry->aref.ar_amap; /* upper layer */
937 uobj = ufi->entry->object.uvm_obj; /* lower layer */
938
939 /*
940 * check for a case 0 fault. if nothing backing the entry then
941 * error now.
942 */
943
944 if (amap == NULL && uobj == NULL) {
945 uvmfault_unlockmaps(ufi, false);
946 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
947 return EFAULT;
948 }
949
950 /*
951 * establish range of interest based on advice from mapper
952 * and then clip to fit map entry. note that we only want
953 * to do this the first time through the fault. if we
954 * ReFault we will disable this by setting "narrow" to true.
955 */
956
957 if (flt->narrow == false) {
958
959 /* wide fault (!narrow) */
960 KASSERT(uvmadvice[ufi->entry->advice].advice ==
961 ufi->entry->advice);
962 nback = MIN(uvmadvice[ufi->entry->advice].nback,
963 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
964 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
965 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
966 ((ufi->entry->end - ufi->orig_rvaddr) >>
967 PAGE_SHIFT) - 1);
968 /*
969 * note: "-1" because we don't want to count the
970 * faulting page as forw
971 */
972 flt->npages = nback + nforw + 1;
973 flt->centeridx = nback;
974
975 flt->narrow = true; /* ensure only once per-fault */
976
977 } else {
978
979 /* narrow fault! */
980 nback = nforw = 0;
981 flt->startva = ufi->orig_rvaddr;
982 flt->npages = 1;
983 flt->centeridx = 0;
984
985 }
986 /* offset from entry's start to pgs' start */
987 const voff_t eoff = flt->startva - ufi->entry->start;
988
989 /* locked: maps(read) */
990 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
991 flt->narrow, nback, nforw, flt->startva);
992 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
993 amap, uobj, 0);
994
995 /*
996 * if we've got an amap, lock it and extract current anons.
997 */
998
999 if (amap) {
1000 amap_lock(amap);
1001 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1002 } else {
1003 *ranons = NULL; /* to be safe */
1004 }
1005
1006 /* locked: maps(read), amap(if there) */
1007 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1008
1009 /*
1010 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1011 * now and then forget about them (for the rest of the fault).
1012 */
1013
1014 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1015
1016 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1017 0,0,0,0);
1018 /* flush back-page anons? */
1019 if (amap)
1020 uvmfault_anonflush(*ranons, nback);
1021
1022 /* flush object? */
1023 if (uobj) {
1024 voff_t uoff;
1025
1026 uoff = ufi->entry->offset + eoff;
1027 mutex_enter(&uobj->vmobjlock);
1028 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1029 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1030 }
1031
1032 /* now forget about the backpages */
1033 if (amap)
1034 *ranons += nback;
1035 #if 0
1036 /* XXXUEBS */
1037 if (uobj)
1038 *rpages += nback;
1039 #endif
1040 flt->startva += (nback << PAGE_SHIFT);
1041 flt->npages -= nback;
1042 flt->centeridx = 0;
1043 }
1044 /*
1045 * => startva is fixed
1046 * => npages is fixed
1047 */
1048
1049 return 0;
1050 }
1051
1052 static int
1053 uvm_fault_upper_lookup(
1054 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1055 struct vm_anon **anons, struct vm_page **pages)
1056 {
1057 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1058 int lcv;
1059 vaddr_t currva;
1060 bool shadowed;
1061 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1062
1063 /* locked: maps(read), amap(if there) */
1064 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1065
1066 /*
1067 * map in the backpages and frontpages we found in the amap in hopes
1068 * of preventing future faults. we also init the pages[] array as
1069 * we go.
1070 */
1071
1072 currva = flt->startva;
1073 shadowed = false;
1074 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1075 /*
1076 * dont play with VAs that are already mapped
1077 * except for center)
1078 */
1079 if (lcv != flt->centeridx &&
1080 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1081 pages[lcv] = PGO_DONTCARE;
1082 continue;
1083 }
1084
1085 /*
1086 * unmapped or center page. check if any anon at this level.
1087 */
1088 if (amap == NULL || anons[lcv] == NULL) {
1089 pages[lcv] = NULL;
1090 continue;
1091 }
1092
1093 /*
1094 * check for present page and map if possible. re-activate it.
1095 */
1096
1097 pages[lcv] = PGO_DONTCARE;
1098 if (lcv == flt->centeridx) { /* save center for later! */
1099 shadowed = true;
1100 } else {
1101 struct vm_anon *anon = anons[lcv];
1102
1103 mutex_enter(&anon->an_lock);
1104 uvm_fault_upper_neighbor(ufi, flt, currva,
1105 anon->an_page, anon->an_ref > 1);
1106 mutex_exit(&anon->an_lock);
1107 }
1108 }
1109
1110 /* locked: maps(read), amap(if there) */
1111 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1112 /* (shadowed == true) if there is an anon at the faulting address */
1113 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1114 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1115
1116 /*
1117 * note that if we are really short of RAM we could sleep in the above
1118 * call to pmap_enter with everything locked. bad?
1119 *
1120 * XXX Actually, that is bad; pmap_enter() should just fail in that
1121 * XXX case. --thorpej
1122 */
1123
1124 return 0;
1125 }
1126
1127 static void
1128 uvm_fault_upper_neighbor(
1129 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1130 vaddr_t currva, struct vm_page *pg, bool readonly)
1131 {
1132 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1133
1134 /* ignore loaned and busy pages */
1135 if (pg == NULL || pg->loan_count != 0 ||
1136 (pg->flags & PG_BUSY) != 0)
1137 goto uvm_fault_upper_lookup_enter_done;
1138
1139 mutex_enter(&uvm_pageqlock);
1140 uvm_pageenqueue(pg);
1141 mutex_exit(&uvm_pageqlock);
1142 UVMHIST_LOG(maphist,
1143 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1144 ufi->orig_map->pmap, currva, pg, 0);
1145 uvmexp.fltnamap++;
1146
1147 /*
1148 * Since this page isn't the page that's actually faulting,
1149 * ignore pmap_enter() failures; it's not critical that we
1150 * enter these right now.
1151 */
1152
1153 (void) pmap_enter(ufi->orig_map->pmap, currva,
1154 VM_PAGE_TO_PHYS(pg),
1155 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1156 flt->enter_prot,
1157 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1158
1159 uvm_fault_upper_lookup_enter_done:
1160 pmap_update(ufi->orig_map->pmap);
1161 }
1162
1163 static int
1164 uvm_fault_lower(
1165 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1166 struct vm_page **pages)
1167 {
1168 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1169 int error;
1170
1171 /*
1172 * if the desired page is not shadowed by the amap and we have a
1173 * backing object, then we check to see if the backing object would
1174 * prefer to handle the fault itself (rather than letting us do it
1175 * with the usual pgo_get hook). the backing object signals this by
1176 * providing a pgo_fault routine.
1177 */
1178
1179 if (uobj && uobj->pgops->pgo_fault != NULL) {
1180 error = uvm_fault_lower_special(ufi, flt, pages);
1181 } else {
1182 error = uvm_fault_lower_generic(ufi, flt, pages);
1183 }
1184 return error;
1185 }
1186
1187 static int
1188 uvm_fault_lower_special(
1189 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1190 struct vm_page **pages)
1191 {
1192 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1193 int error;
1194
1195 mutex_enter(&uobj->vmobjlock);
1196 /* locked: maps(read), amap (if there), uobj */
1197 error = uobj->pgops->pgo_fault(ufi, flt->startva, pages, flt->npages,
1198 flt->centeridx, flt->access_type, PGO_LOCKED|PGO_SYNCIO);
1199
1200 /* locked: nothing, pgo_fault has unlocked everything */
1201
1202 if (error == ERESTART)
1203 error = ERESTART; /* try again! */
1204 /*
1205 * object fault routine responsible for pmap_update().
1206 */
1207
1208 return error;
1209 }
1210
1211 static int
1212 uvm_fault_lower_generic(
1213 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1214 struct vm_page **pages)
1215 {
1216 #ifdef DIAGNOSTIC
1217 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1218 #endif
1219 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1220 struct vm_page *uobjpage;
1221
1222 /*
1223 * now, if the desired page is not shadowed by the amap and we have
1224 * a backing object that does not have a special fault routine, then
1225 * we ask (with pgo_get) the object for resident pages that we care
1226 * about and attempt to map them in. we do not let pgo_get block
1227 * (PGO_LOCKED).
1228 */
1229
1230 if (uobj == NULL) {
1231 /* zero fill; don't care neighbor pages */
1232 uobjpage = NULL;
1233 } else {
1234 uvm_fault_lower_lookup(ufi, flt, pages);
1235 uobjpage = pages[flt->centeridx];
1236 }
1237
1238 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1239 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1240 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1241 KASSERT(uobjpage == NULL || uvm_pageisdevice_p(uobjpage) ||
1242 (uobjpage->flags & PG_BUSY) != 0);
1243
1244 /*
1245 * note that at this point we are done with any front or back pages.
1246 * we are now going to focus on the center page (i.e. the one we've
1247 * faulted on). if we have faulted on the upper (anon) layer
1248 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1249 * not touched it yet). if we have faulted on the bottom (uobj)
1250 * layer [i.e. case 2] and the page was both present and available,
1251 * then we've got a pointer to it as "uobjpage" and we've already
1252 * made it BUSY.
1253 */
1254
1255 /*
1256 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1257 */
1258
1259 /*
1260 * redirect case 2: if we are not shadowed, go to case 2.
1261 */
1262
1263 return uvm_fault_lower1(ufi, flt, uobj, uobjpage);
1264 }
1265
1266 static int
1267 uvm_fault_lower_lookup(
1268 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1269 struct vm_page **pages)
1270 {
1271 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1272 int lcv, gotpages;
1273 vaddr_t currva;
1274 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1275
1276 mutex_enter(&uobj->vmobjlock);
1277 /* locked (!shadowed): maps(read), amap (if there), uobj */
1278 /*
1279 * the following call to pgo_get does _not_ change locking state
1280 */
1281
1282 uvmexp.fltlget++;
1283 gotpages = flt->npages;
1284 (void) uobj->pgops->pgo_get(uobj,
1285 ufi->entry->offset + flt->startva - ufi->entry->start,
1286 pages, &gotpages, flt->centeridx,
1287 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1288
1289 /*
1290 * check for pages to map, if we got any
1291 */
1292
1293 if (gotpages == 0) {
1294 pages[flt->centeridx] = NULL;
1295 return 0;
1296 }
1297
1298 currva = flt->startva;
1299 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1300 struct vm_page *curpg;
1301
1302 curpg = pages[lcv];
1303 if (curpg == NULL || curpg == PGO_DONTCARE) {
1304 continue;
1305 }
1306 KASSERT(uvm_pageisdevice_p(curpg) || curpg->uobject == uobj);
1307
1308 /*
1309 * if center page is resident and not PG_BUSY|PG_RELEASED
1310 * then pgo_get made it PG_BUSY for us and gave us a handle
1311 * to it. remember this page as "uobjpage." (for later use).
1312 */
1313
1314 if (lcv == flt->centeridx) {
1315 UVMHIST_LOG(maphist, " got uobjpage "
1316 "(0x%x) with locked get",
1317 curpg, 0,0,0);
1318 } else {
1319 bool readonly = uvm_pageisdevice_p(curpg)
1320 || (curpg->flags & PG_RDONLY)
1321 || (curpg->loan_count > 0)
1322 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1323
1324 uvm_fault_lower_neighbor(ufi, flt,
1325 currva, curpg, readonly);
1326 }
1327 }
1328 pmap_update(ufi->orig_map->pmap);
1329 return 0;
1330 }
1331
1332 static void
1333 uvm_fault_lower_neighbor(
1334 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1335 vaddr_t currva, struct vm_page *pg, bool readonly)
1336 {
1337 UVMHIST_FUNC("uvm_fault_lower_neighor"); UVMHIST_CALLED(maphist);
1338
1339 if (uvm_pageisdevice_p(pg))
1340 goto uvm_fault_lower_neighbor_enter;
1341
1342 /*
1343 * calling pgo_get with PGO_LOCKED returns us pages which
1344 * are neither busy nor released, so we don't need to check
1345 * for this. we can just directly enter the pages.
1346 */
1347
1348 mutex_enter(&uvm_pageqlock);
1349 uvm_pageenqueue(pg);
1350 mutex_exit(&uvm_pageqlock);
1351 UVMHIST_LOG(maphist,
1352 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1353 ufi->orig_map->pmap, currva, pg, 0);
1354 uvmexp.fltnomap++;
1355
1356 /*
1357 * Since this page isn't the page that's actually faulting,
1358 * ignore pmap_enter() failures; it's not critical that we
1359 * enter these right now.
1360 */
1361 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1362 KASSERT((pg->flags & PG_RELEASED) == 0);
1363 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
1364 (pg->flags & PG_CLEAN) != 0);
1365
1366 uvm_fault_lower_neighbor_enter:
1367 (void) pmap_enter(ufi->orig_map->pmap, currva,
1368 VM_PAGE_TO_PHYS(pg),
1369 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1370 flt->enter_prot & MASK(ufi->entry),
1371 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1372
1373 if (uvm_pageisdevice_p(pg))
1374 goto uvm_fault_lower_neighbor_done;
1375
1376 /*
1377 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1378 * held the lock the whole time we've had the handle.
1379 */
1380 KASSERT((pg->flags & PG_WANTED) == 0);
1381 KASSERT((pg->flags & PG_RELEASED) == 0);
1382
1383 pg->flags &= ~(PG_BUSY);
1384 UVM_PAGE_OWN(pg, NULL);
1385
1386 uvm_fault_lower_neighbor_done:
1387 ;
1388 }
1389
1390 static int
1391 uvm_fault_upper(
1392 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1393 struct vm_anon **anons)
1394 {
1395 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1396 struct vm_anon * const anon = anons[flt->centeridx];
1397 struct uvm_object *uobj;
1398 int error;
1399 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1400
1401 /* locked: maps(read), amap */
1402 KASSERT(mutex_owned(&amap->am_l));
1403
1404 /*
1405 * handle case 1: fault on an anon in our amap
1406 */
1407
1408 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1409 mutex_enter(&anon->an_lock);
1410
1411 /* locked: maps(read), amap, anon */
1412 KASSERT(mutex_owned(&amap->am_l));
1413 KASSERT(mutex_owned(&anon->an_lock));
1414
1415 /*
1416 * no matter if we have case 1A or case 1B we are going to need to
1417 * have the anon's memory resident. ensure that now.
1418 */
1419
1420 /*
1421 * let uvmfault_anonget do the dirty work.
1422 * if it fails (!OK) it will unlock everything for us.
1423 * if it succeeds, locks are still valid and locked.
1424 * also, if it is OK, then the anon's page is on the queues.
1425 * if the page is on loan from a uvm_object, then anonget will
1426 * lock that object for us if it does not fail.
1427 */
1428
1429 error = uvmfault_anonget(ufi, amap, anon);
1430 switch (error) {
1431 case 0:
1432 break;
1433
1434 case ERESTART:
1435 return ERESTART;
1436
1437 case EAGAIN:
1438 kpause("fltagain1", false, hz/2, NULL);
1439 return ERESTART;
1440
1441 default:
1442 return error;
1443 }
1444
1445 /*
1446 * uobj is non null if the page is on loan from an object (i.e. uobj)
1447 */
1448
1449 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1450
1451 /* locked: maps(read), amap, anon, uobj(if one) */
1452 KASSERT(mutex_owned(&amap->am_l));
1453 KASSERT(mutex_owned(&anon->an_lock));
1454 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1455
1456 /*
1457 * special handling for loaned pages
1458 */
1459
1460 if (anon->an_page->loan_count) {
1461 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1462 if (error != 0)
1463 return error;
1464 }
1465
1466 /*
1467 * if we are case 1B then we will need to allocate a new blank
1468 * anon to transfer the data into. note that we have a lock
1469 * on anon, so no one can busy or release the page until we are done.
1470 * also note that the ref count can't drop to zero here because
1471 * it is > 1 and we are only dropping one ref.
1472 *
1473 * in the (hopefully very rare) case that we are out of RAM we
1474 * will unlock, wait for more RAM, and refault.
1475 *
1476 * if we are out of anon VM we kill the process (XXX: could wait?).
1477 */
1478
1479 if (flt->cow_now && anon->an_ref > 1) {
1480 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1481 } else {
1482 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1483 }
1484 return error;
1485 }
1486
1487 static int
1488 uvm_fault_upper_loan(
1489 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1490 struct vm_anon *anon, struct uvm_object **ruobj)
1491 {
1492 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1493 int error = 0;
1494
1495 if (!flt->cow_now) {
1496
1497 /*
1498 * for read faults on loaned pages we just cap the
1499 * protection at read-only.
1500 */
1501
1502 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1503
1504 } else {
1505 /*
1506 * note that we can't allow writes into a loaned page!
1507 *
1508 * if we have a write fault on a loaned page in an
1509 * anon then we need to look at the anon's ref count.
1510 * if it is greater than one then we are going to do
1511 * a normal copy-on-write fault into a new anon (this
1512 * is not a problem). however, if the reference count
1513 * is one (a case where we would normally allow a
1514 * write directly to the page) then we need to kill
1515 * the loan before we continue.
1516 */
1517
1518 /* >1 case is already ok */
1519 if (anon->an_ref == 1) {
1520 error = uvm_loanbreak_anon(anon, *ruobj);
1521 if (error != 0) {
1522 uvmfault_unlockall(ufi, amap, *ruobj, anon);
1523 uvm_wait("flt_noram2");
1524 return ERESTART;
1525 }
1526 /* if we were a loan reciever uobj is gone */
1527 if (*ruobj)
1528 *ruobj = NULL;
1529 }
1530 }
1531 return error;
1532 }
1533
1534 static int
1535 uvm_fault_upper_promote(
1536 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1537 struct uvm_object *uobj, struct vm_anon *anon)
1538 {
1539 struct vm_anon * const oanon = anon;
1540 struct vm_page *pg;
1541 int error;
1542 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1543
1544 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1545 uvmexp.flt_acow++;
1546
1547 error = uvmfault_promote(ufi, oanon, NULL, PGO_DONTCARE,
1548 &anon, &flt->anon_spare);
1549 switch (error) {
1550 case 0:
1551 break;
1552 case ERESTART:
1553 return ERESTART;
1554 default:
1555 return error;
1556 }
1557
1558 pg = anon->an_page;
1559 mutex_enter(&uvm_pageqlock);
1560 uvm_pageactivate(pg);
1561 mutex_exit(&uvm_pageqlock);
1562 pg->flags &= ~(PG_BUSY|PG_FAKE);
1563 UVM_PAGE_OWN(pg, NULL);
1564
1565 /* deref: can not drop to zero here by defn! */
1566 oanon->an_ref--;
1567
1568 /*
1569 * note: oanon is still locked, as is the new anon. we
1570 * need to check for this later when we unlock oanon; if
1571 * oanon != anon, we'll have to unlock anon, too.
1572 */
1573
1574 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1575 }
1576
1577 static int
1578 uvm_fault_upper_direct(
1579 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1580 struct uvm_object *uobj, struct vm_anon *anon)
1581 {
1582 struct vm_anon * const oanon = anon;
1583 struct vm_page *pg;
1584
1585 uvmexp.flt_anon++;
1586 pg = anon->an_page;
1587 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1588 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1589
1590 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1591 }
1592
1593 static int
1594 uvm_fault_upper_enter(
1595 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1596 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1597 struct vm_anon *oanon)
1598 {
1599 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1600 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1601
1602 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1603 KASSERT(mutex_owned(&amap->am_l));
1604 KASSERT(mutex_owned(&anon->an_lock));
1605 KASSERT(mutex_owned(&oanon->an_lock));
1606
1607 /*
1608 * now map the page in.
1609 */
1610
1611 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1612 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
1613 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1614 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1615 != 0) {
1616
1617 /*
1618 * No need to undo what we did; we can simply think of
1619 * this as the pmap throwing away the mapping information.
1620 *
1621 * We do, however, have to go through the ReFault path,
1622 * as the map may change while we're asleep.
1623 */
1624
1625 if (anon != oanon)
1626 mutex_exit(&anon->an_lock);
1627 uvmfault_unlockall(ufi, amap, uobj, oanon);
1628 if (!uvm_reclaimable()) {
1629 UVMHIST_LOG(maphist,
1630 "<- failed. out of VM",0,0,0,0);
1631 /* XXX instrumentation */
1632 return ENOMEM;
1633 }
1634 /* XXX instrumentation */
1635 uvm_wait("flt_pmfail1");
1636 return ERESTART;
1637 }
1638
1639 return uvm_fault_upper_done(ufi, flt, uobj, anon, pg, oanon);
1640 }
1641
1642 static int
1643 uvm_fault_upper_done(
1644 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1645 struct uvm_object *uobj, struct vm_anon *anon,
1646 struct vm_page *pg, struct vm_anon *oanon)
1647 {
1648 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1649
1650 /*
1651 * ... update the page queues.
1652 */
1653
1654 mutex_enter(&uvm_pageqlock);
1655 if (flt->wire_paging) {
1656 uvm_pagewire(pg);
1657
1658 /*
1659 * since the now-wired page cannot be paged out,
1660 * release its swap resources for others to use.
1661 * since an anon with no swap cannot be PG_CLEAN,
1662 * clear its clean flag now.
1663 */
1664
1665 pg->flags &= ~(PG_CLEAN);
1666 uvm_anon_dropswap(anon);
1667 } else {
1668 uvm_pageactivate(pg);
1669 }
1670 mutex_exit(&uvm_pageqlock);
1671
1672 /*
1673 * done case 1! finish up by unlocking everything and returning success
1674 */
1675
1676 if (anon != oanon)
1677 mutex_exit(&anon->an_lock);
1678 uvmfault_unlockall(ufi, amap, uobj, oanon);
1679 pmap_update(ufi->orig_map->pmap);
1680 return 0;
1681 }
1682
1683 static int
1684 uvm_fault_lower1(
1685 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1686 struct uvm_object *uobj, struct vm_page *uobjpage)
1687 {
1688 #ifdef DIAGNOSTIC
1689 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1690 #endif
1691 bool promote;
1692 int error;
1693 UVMHIST_FUNC("uvm_fault_lower1"); UVMHIST_CALLED(maphist);
1694
1695 /*
1696 * handle case 2: faulting on backing object or zero fill
1697 */
1698
1699 /*
1700 * locked:
1701 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1702 */
1703 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1704 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1705 KASSERT(uobjpage == NULL || uvm_pageisdevice_p(uobjpage) ||
1706 (uobjpage->flags & PG_BUSY) != 0);
1707
1708 /*
1709 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1710 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1711 * have a backing object, check and see if we are going to promote
1712 * the data up to an anon during the fault.
1713 */
1714
1715 if (uobj == NULL) {
1716 uobjpage = PGO_DONTCARE;
1717 promote = true; /* always need anon here */
1718 } else {
1719 KASSERT(uobjpage != PGO_DONTCARE);
1720 promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1721 }
1722 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1723 promote, (uobj == NULL), 0,0);
1724
1725 /*
1726 * if uobjpage is not null then we do not need to do I/O to get the
1727 * uobjpage.
1728 *
1729 * if uobjpage is null, then we need to unlock and ask the pager to
1730 * get the data for us. once we have the data, we need to reverify
1731 * the state the world. we are currently not holding any resources.
1732 */
1733
1734 if (uobjpage) {
1735 /* update rusage counters */
1736 curlwp->l_ru.ru_minflt++;
1737 } else {
1738 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1739 if (error != 0)
1740 return error;
1741 }
1742
1743 /*
1744 * locked:
1745 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1746 */
1747 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1748 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1749 KASSERT(uobj == NULL || uvm_pageisdevice_p(uobjpage) ||
1750 (uobjpage->flags & PG_BUSY) != 0);
1751
1752 /*
1753 * notes:
1754 * - at this point uobjpage can not be NULL
1755 * - at this point uobjpage can not be PG_RELEASED (since we checked
1756 * for it above)
1757 * - at this point uobjpage could be PG_WANTED (handle later)
1758 */
1759
1760 KASSERT(uvm_pageisdevice_p(uobjpage) || uobj == NULL ||
1761 uobj == uobjpage->uobject);
1762 KASSERT(uvm_pageisdevice_p(uobjpage) || uobj == NULL ||
1763 !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1764 (uobjpage->flags & PG_CLEAN) != 0);
1765
1766 if (promote == false) {
1767 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1768 } else {
1769 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1770 }
1771 return error;
1772 }
1773
1774 static int
1775 uvm_fault_lower_io(
1776 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1777 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1778 {
1779 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1780 struct uvm_object *uobj = *ruobj;
1781 struct vm_page *pg;
1782 bool locked;
1783 int gotpages;
1784 int error;
1785 voff_t uoff;
1786 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1787
1788 /* update rusage counters */
1789 curlwp->l_ru.ru_majflt++;
1790
1791 /* locked: maps(read), amap(if there), uobj */
1792 uvmfault_unlockall(ufi, amap, NULL, NULL);
1793 /* locked: uobj */
1794
1795 uvmexp.fltget++;
1796 gotpages = 1;
1797 pg = NULL;
1798 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1799 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1800 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1801 PGO_SYNCIO);
1802 /* locked: pg(if no error) */
1803
1804 /*
1805 * recover from I/O
1806 */
1807
1808 if (error) {
1809 if (error == EAGAIN) {
1810 UVMHIST_LOG(maphist,
1811 " pgo_get says TRY AGAIN!",0,0,0,0);
1812 kpause("fltagain2", false, hz/2, NULL);
1813 return ERESTART;
1814 }
1815
1816 #if 0
1817 KASSERT(error != ERESTART);
1818 #else
1819 /* XXXUEBS don't re-fault? */
1820 if (error == ERESTART)
1821 error = EIO;
1822 #endif
1823
1824 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1825 error, 0,0,0);
1826 return error;
1827 }
1828
1829 /* locked: pg */
1830
1831 KASSERT((pg->flags & PG_BUSY) != 0);
1832
1833 mutex_enter(&uvm_pageqlock);
1834 uvm_pageactivate(pg);
1835 mutex_exit(&uvm_pageqlock);
1836
1837 /*
1838 * re-verify the state of the world by first trying to relock
1839 * the maps. always relock the object.
1840 */
1841
1842 locked = uvmfault_relock(ufi);
1843 if (locked && amap)
1844 amap_lock(amap);
1845
1846 /* might be changed */
1847 uobj = pg->uobject;
1848
1849 mutex_enter(&uobj->vmobjlock);
1850
1851 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1852 /* locked(!locked): uobj, pg */
1853
1854 /*
1855 * verify that the page has not be released and re-verify
1856 * that amap slot is still free. if there is a problem,
1857 * we unlock and clean up.
1858 */
1859
1860 if ((pg->flags & PG_RELEASED) != 0 ||
1861 (locked && amap && amap_lookup(&ufi->entry->aref,
1862 ufi->orig_rvaddr - ufi->entry->start))) {
1863 if (locked)
1864 uvmfault_unlockall(ufi, amap, NULL, NULL);
1865 locked = false;
1866 }
1867
1868 /*
1869 * didn't get the lock? release the page and retry.
1870 */
1871
1872 if (locked == false) {
1873 UVMHIST_LOG(maphist,
1874 " wasn't able to relock after fault: retry",
1875 0,0,0,0);
1876 if (pg->flags & PG_WANTED) {
1877 wakeup(pg);
1878 }
1879 if (pg->flags & PG_RELEASED) {
1880 uvmexp.fltpgrele++;
1881 uvm_pagefree(pg);
1882 mutex_exit(&uobj->vmobjlock);
1883 return ERESTART;
1884 }
1885 pg->flags &= ~(PG_BUSY|PG_WANTED);
1886 UVM_PAGE_OWN(pg, NULL);
1887 mutex_exit(&uobj->vmobjlock);
1888 return ERESTART;
1889 }
1890
1891 /*
1892 * we have the data in pg which is busy and
1893 * not released. we are holding object lock (so the page
1894 * can't be released on us).
1895 */
1896
1897 /* locked: maps(read), amap(if !null), uobj, pg */
1898
1899 *ruobj = uobj;
1900 *ruobjpage = pg;
1901 return 0;
1902 }
1903
1904 int
1905 uvm_fault_lower_direct(
1906 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1907 struct uvm_object *uobj, struct vm_page *uobjpage)
1908 {
1909 struct vm_page *pg;
1910
1911 /*
1912 * we are not promoting. if the mapping is COW ensure that we
1913 * don't give more access than we should (e.g. when doing a read
1914 * fault on a COPYONWRITE mapping we want to map the COW page in
1915 * R/O even though the entry protection could be R/W).
1916 *
1917 * set "pg" to the page we want to map in (uobjpage, usually)
1918 */
1919 pg = uobjpage; /* map in the actual object */
1920 uvmexp.flt_obj++;
1921
1922 if (uvm_pageisdevice_p(uobjpage))
1923 goto uvm_fault_lower_direct_done;
1924
1925 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1926 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1927 flt->enter_prot &= ~VM_PROT_WRITE;
1928
1929 KASSERT(uobjpage != PGO_DONTCARE);
1930
1931 /*
1932 * we are faulting directly on the page. be careful
1933 * about writing to loaned pages...
1934 */
1935
1936 if (uobjpage->loan_count) {
1937 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1938 }
1939 KASSERT(pg == uobjpage);
1940
1941 uvm_fault_lower_direct_done:
1942 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1943 }
1944
1945 static int
1946 uvm_fault_lower_direct_loan(
1947 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1948 struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage)
1949 {
1950 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1951 struct vm_page *pg;
1952 struct vm_page *uobjpage = *ruobjpage;
1953 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
1954
1955 if (!flt->cow_now) {
1956 /* read fault: cap the protection at readonly */
1957 /* cap! */
1958 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1959 } else {
1960 /* write fault: must break the loan here */
1961
1962 pg = uvm_loanbreak(uobjpage);
1963 if (pg == NULL) {
1964
1965 /*
1966 * drop ownership of page, it can't be released
1967 */
1968
1969 if (uobjpage->flags & PG_WANTED)
1970 wakeup(uobjpage);
1971 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1972 UVM_PAGE_OWN(uobjpage, NULL);
1973
1974 uvmfault_unlockall(ufi, amap, uobj, NULL);
1975 UVMHIST_LOG(maphist,
1976 " out of RAM breaking loan, waiting",
1977 0,0,0,0);
1978 uvmexp.fltnoram++;
1979 uvm_wait("flt_noram4");
1980 return ERESTART;
1981 }
1982 *rpg = pg;
1983 *ruobjpage = pg;
1984 }
1985 return 0;
1986 }
1987
1988 int
1989 uvm_fault_lower_promote(
1990 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1991 struct uvm_object *uobj, struct vm_page *uobjpage)
1992 {
1993 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1994 struct vm_anon *anon;
1995 struct vm_page *pg;
1996 int error;
1997 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
1998
1999 /*
2000 * if we are going to promote the data to an anon we
2001 * allocate a blank anon here and plug it into our amap.
2002 */
2003 #if DIAGNOSTIC
2004 if (amap == NULL)
2005 panic("uvm_fault: want to promote data, but no anon");
2006 #endif
2007 error = uvmfault_promote(ufi, NULL, uobj, uobjpage,
2008 &anon, &flt->anon_spare);
2009 switch (error) {
2010 case 0:
2011 break;
2012 case ERESTART:
2013 return ERESTART;
2014 default:
2015 return error;
2016 }
2017
2018 pg = anon->an_page;
2019
2020 /*
2021 * fill in the data
2022 */
2023
2024 if (uobjpage != PGO_DONTCARE) {
2025 uvmexp.flt_prcopy++;
2026
2027 /*
2028 * promote to shared amap? make sure all sharing
2029 * procs see it
2030 */
2031
2032 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2033 pmap_page_protect(uobjpage, VM_PROT_NONE);
2034 /*
2035 * XXX: PAGE MIGHT BE WIRED!
2036 */
2037 }
2038
2039 if (uvm_pageisdevice_p(uobjpage))
2040 goto uvm_fault_lower_promote_done;
2041
2042 /*
2043 * dispose of uobjpage. it can't be PG_RELEASED
2044 * since we still hold the object lock.
2045 * drop handle to uobj as well.
2046 */
2047
2048 if (uobjpage->flags & PG_WANTED)
2049 /* still have the obj lock */
2050 wakeup(uobjpage);
2051 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2052 UVM_PAGE_OWN(uobjpage, NULL);
2053
2054 uvm_fault_lower_promote_done:
2055 mutex_exit(&uobj->vmobjlock);
2056 uobj = NULL;
2057
2058 UVMHIST_LOG(maphist,
2059 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2060 uobjpage, anon, pg, 0);
2061
2062 } else {
2063 uvmexp.flt_przero++;
2064
2065 /*
2066 * Page is zero'd and marked dirty by
2067 * uvmfault_promote().
2068 */
2069
2070 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2071 anon, pg, 0, 0);
2072 }
2073
2074 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage);
2075 }
2076
2077 int
2078 uvm_fault_lower_enter(
2079 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2080 struct uvm_object *uobj,
2081 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2082 {
2083 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2084 int error;
2085 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2086
2087 /*
2088 * locked:
2089 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2090 * anon(if !null), pg(if anon)
2091 *
2092 * note: pg is either the uobjpage or the new page in the new anon
2093 */
2094 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2095 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2096 KASSERT(uobj == NULL || uvm_pageisdevice_p(uobjpage) ||
2097 (uobjpage->flags & PG_BUSY) != 0);
2098 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2099 KASSERT(uvm_pageisdevice_p(pg) || (pg->flags & PG_BUSY) != 0);
2100
2101 /*
2102 * all resources are present. we can now map it in and free our
2103 * resources.
2104 */
2105
2106 UVMHIST_LOG(maphist,
2107 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=XXX",
2108 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
2109 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2110 uvm_pageisdevice_p(pg) || (pg->flags & PG_RDONLY) == 0);
2111 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2112 VM_PAGE_TO_PHYS(pg),
2113 (uvm_pageisdevice_p(pg) || pg->flags & PG_RDONLY) ?
2114 (flt->enter_prot & ~VM_PROT_WRITE) : flt->enter_prot,
2115 flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2116
2117 if (uvm_pageisdevice_p(pg))
2118 goto uvm_fault_lower_enter_error_done;
2119
2120 /*
2121 * No need to undo what we did; we can simply think of
2122 * this as the pmap throwing away the mapping information.
2123 *
2124 * We do, however, have to go through the ReFault path,
2125 * as the map may change while we're asleep.
2126 */
2127
2128 if (pg->flags & PG_WANTED)
2129 wakeup(pg);
2130
2131 /*
2132 * note that pg can't be PG_RELEASED since we did not drop
2133 * the object lock since the last time we checked.
2134 */
2135 KASSERT((pg->flags & PG_RELEASED) == 0);
2136
2137 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2138 UVM_PAGE_OWN(pg, NULL);
2139
2140 uvm_fault_lower_enter_error_done:
2141 uvmfault_unlockall(ufi, amap, uobj, anon);
2142 if (!uvm_reclaimable()) {
2143 UVMHIST_LOG(maphist,
2144 "<- failed. out of VM",0,0,0,0);
2145 /* XXX instrumentation */
2146 error = ENOMEM;
2147 return error;
2148 }
2149 /* XXX instrumentation */
2150 uvm_wait("flt_pmfail2");
2151 return ERESTART;
2152 }
2153
2154 return uvm_fault_lower_done(ufi, flt, uobj, anon, pg);
2155 }
2156
2157 int
2158 uvm_fault_lower_done(
2159 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2160 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2161 {
2162 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2163 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2164
2165 if (uvm_pageisdevice_p(pg))
2166 goto uvm_fault_lower_done_done;
2167
2168 mutex_enter(&uvm_pageqlock);
2169 if (flt->wire_paging) {
2170 uvm_pagewire(pg);
2171 if (pg->pqflags & PQ_AOBJ) {
2172
2173 /*
2174 * since the now-wired page cannot be paged out,
2175 * release its swap resources for others to use.
2176 * since an aobj page with no swap cannot be PG_CLEAN,
2177 * clear its clean flag now.
2178 */
2179
2180 KASSERT(uobj != NULL);
2181 pg->flags &= ~(PG_CLEAN);
2182 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2183 }
2184 } else {
2185 uvm_pageactivate(pg);
2186 }
2187 mutex_exit(&uvm_pageqlock);
2188 if (pg->flags & PG_WANTED)
2189 wakeup(pg);
2190
2191 /*
2192 * note that pg can't be PG_RELEASED since we did not drop the object
2193 * lock since the last time we checked.
2194 */
2195 KASSERT((pg->flags & PG_RELEASED) == 0);
2196
2197 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2198 UVM_PAGE_OWN(pg, NULL);
2199
2200 uvm_fault_lower_done_done:
2201 uvmfault_unlockall(ufi, amap, uobj, anon);
2202 pmap_update(ufi->orig_map->pmap);
2203 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2204 return 0;
2205 }
2206
2207
2208 /*
2209 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2210 *
2211 * => map may be read-locked by caller, but MUST NOT be write-locked.
2212 * => if map is read-locked, any operations which may cause map to
2213 * be write-locked in uvm_fault() must be taken care of by
2214 * the caller. See uvm_map_pageable().
2215 */
2216
2217 int
2218 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2219 vm_prot_t access_type, int maxprot)
2220 {
2221 vaddr_t va;
2222 int error;
2223
2224 /*
2225 * now fault it in a page at a time. if the fault fails then we have
2226 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2227 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2228 */
2229
2230 /*
2231 * XXX work around overflowing a vaddr_t. this prevents us from
2232 * wiring the last page in the address space, though.
2233 */
2234 if (start > end) {
2235 return EFAULT;
2236 }
2237
2238 for (va = start; va < end; va += PAGE_SIZE) {
2239 error = uvm_fault_internal(map, va, access_type,
2240 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2241 if (error) {
2242 if (va != start) {
2243 uvm_fault_unwire(map, start, va);
2244 }
2245 return error;
2246 }
2247 }
2248 return 0;
2249 }
2250
2251 /*
2252 * uvm_fault_unwire(): unwire range of virtual space.
2253 */
2254
2255 void
2256 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2257 {
2258 vm_map_lock_read(map);
2259 uvm_fault_unwire_locked(map, start, end);
2260 vm_map_unlock_read(map);
2261 }
2262
2263 /*
2264 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2265 *
2266 * => map must be at least read-locked.
2267 */
2268
2269 void
2270 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2271 {
2272 struct vm_map_entry *entry;
2273 pmap_t pmap = vm_map_pmap(map);
2274 vaddr_t va;
2275 paddr_t pa;
2276 struct vm_page *pg;
2277
2278 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2279
2280 /*
2281 * we assume that the area we are unwiring has actually been wired
2282 * in the first place. this means that we should be able to extract
2283 * the PAs from the pmap. we also lock out the page daemon so that
2284 * we can call uvm_pageunwire.
2285 */
2286
2287 mutex_enter(&uvm_pageqlock);
2288
2289 /*
2290 * find the beginning map entry for the region.
2291 */
2292
2293 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2294 if (uvm_map_lookup_entry(map, start, &entry) == false)
2295 panic("uvm_fault_unwire_locked: address not in map");
2296
2297 for (va = start; va < end; va += PAGE_SIZE) {
2298 if (pmap_extract(pmap, va, &pa) == false)
2299 continue;
2300
2301 /*
2302 * find the map entry for the current address.
2303 */
2304
2305 KASSERT(va >= entry->start);
2306 while (va >= entry->end) {
2307 KASSERT(entry->next != &map->header &&
2308 entry->next->start <= entry->end);
2309 entry = entry->next;
2310 }
2311
2312 /*
2313 * if the entry is no longer wired, tell the pmap.
2314 */
2315
2316 if (VM_MAPENT_ISWIRED(entry) == 0)
2317 pmap_unwire(pmap, va);
2318
2319 pg = PHYS_TO_VM_PAGE(pa);
2320 if (pg)
2321 uvm_pageunwire(pg);
2322 }
2323
2324 mutex_exit(&uvm_pageqlock);
2325 }
2326