uvm_fault.c revision 1.166.2.6 1 /* $NetBSD: uvm_fault.c,v 1.166.2.6 2010/02/28 06:52:12 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.166.2.6 2010/02/28 06:52:12 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45 #include "opt_device_page.h"
46 #include "opt_xip.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/proc.h>
52 #include <sys/malloc.h>
53 #include <sys/mman.h>
54
55 #include <uvm/uvm.h>
56
57 /*
58 *
59 * a word on page faults:
60 *
61 * types of page faults we handle:
62 *
63 * CASE 1: upper layer faults CASE 2: lower layer faults
64 *
65 * CASE 1A CASE 1B CASE 2A CASE 2B
66 * read/write1 write>1 read/write +-cow_write/zero
67 * | | | |
68 * +--|--+ +--|--+ +-----+ + | + | +-----+
69 * amap | V | | ---------> new | | | | ^ |
70 * +-----+ +-----+ +-----+ + | + | +--|--+
71 * | | |
72 * +-----+ +-----+ +--|--+ | +--|--+
73 * uobj | d/c | | d/c | | V | +----+ |
74 * +-----+ +-----+ +-----+ +-----+
75 *
76 * d/c = don't care
77 *
78 * case [0]: layerless fault
79 * no amap or uobj is present. this is an error.
80 *
81 * case [1]: upper layer fault [anon active]
82 * 1A: [read] or [write with anon->an_ref == 1]
83 * I/O takes place in upper level anon and uobj is not touched.
84 * 1B: [write with anon->an_ref > 1]
85 * new anon is alloc'd and data is copied off ["COW"]
86 *
87 * case [2]: lower layer fault [uobj]
88 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
89 * I/O takes place directly in object.
90 * 2B: [write to copy_on_write] or [read on NULL uobj]
91 * data is "promoted" from uobj to a new anon.
92 * if uobj is null, then we zero fill.
93 *
94 * we follow the standard UVM locking protocol ordering:
95 *
96 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
97 * we hold a PG_BUSY page if we unlock for I/O
98 *
99 *
100 * the code is structured as follows:
101 *
102 * - init the "IN" params in the ufi structure
103 * ReFault:
104 * - do lookups [locks maps], check protection, handle needs_copy
105 * - check for case 0 fault (error)
106 * - establish "range" of fault
107 * - if we have an amap lock it and extract the anons
108 * - if sequential advice deactivate pages behind us
109 * - at the same time check pmap for unmapped areas and anon for pages
110 * that we could map in (and do map it if found)
111 * - check object for resident pages that we could map in
112 * - if (case 2) goto Case2
113 * - >>> handle case 1
114 * - ensure source anon is resident in RAM
115 * - if case 1B alloc new anon and copy from source
116 * - map the correct page in
117 * Case2:
118 * - >>> handle case 2
119 * - ensure source page is resident (if uobj)
120 * - if case 2B alloc new anon and copy from source (could be zero
121 * fill if uobj == NULL)
122 * - map the correct page in
123 * - done!
124 *
125 * note on paging:
126 * if we have to do I/O we place a PG_BUSY page in the correct object,
127 * unlock everything, and do the I/O. when I/O is done we must reverify
128 * the state of the world before assuming that our data structures are
129 * valid. [because mappings could change while the map is unlocked]
130 *
131 * alternative 1: unbusy the page in question and restart the page fault
132 * from the top (ReFault). this is easy but does not take advantage
133 * of the information that we already have from our previous lookup,
134 * although it is possible that the "hints" in the vm_map will help here.
135 *
136 * alternative 2: the system already keeps track of a "version" number of
137 * a map. [i.e. every time you write-lock a map (e.g. to change a
138 * mapping) you bump the version number up by one...] so, we can save
139 * the version number of the map before we release the lock and start I/O.
140 * then when I/O is done we can relock and check the version numbers
141 * to see if anything changed. this might save us some over 1 because
142 * we don't have to unbusy the page and may be less compares(?).
143 *
144 * alternative 3: put in backpointers or a way to "hold" part of a map
145 * in place while I/O is in progress. this could be complex to
146 * implement (especially with structures like amap that can be referenced
147 * by multiple map entries, and figuring out what should wait could be
148 * complex as well...).
149 *
150 * we use alternative 2. given that we are multi-threaded now we may want
151 * to reconsider the choice.
152 */
153
154 /*
155 * local data structures
156 */
157
158 struct uvm_advice {
159 int advice;
160 int nback;
161 int nforw;
162 };
163
164 /*
165 * page range array:
166 * note: index in array must match "advice" value
167 * XXX: borrowed numbers from freebsd. do they work well for us?
168 */
169
170 static const struct uvm_advice uvmadvice[] = {
171 { MADV_NORMAL, 3, 4 },
172 { MADV_RANDOM, 0, 0 },
173 { MADV_SEQUENTIAL, 8, 7},
174 };
175
176 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
177
178 /*
179 * private prototypes
180 */
181
182 /*
183 * inline functions
184 */
185
186 /*
187 * uvmfault_anonflush: try and deactivate pages in specified anons
188 *
189 * => does not have to deactivate page if it is busy
190 */
191
192 static inline void
193 uvmfault_anonflush(struct vm_anon **anons, int n)
194 {
195 int lcv;
196 struct vm_page *pg;
197
198 for (lcv = 0; lcv < n; lcv++) {
199 if (anons[lcv] == NULL)
200 continue;
201 mutex_enter(&anons[lcv]->an_lock);
202 pg = anons[lcv]->an_page;
203 if (pg && (pg->flags & PG_BUSY) == 0) {
204 mutex_enter(&uvm_pageqlock);
205 if (pg->wire_count == 0) {
206 uvm_pagedeactivate(pg);
207 }
208 mutex_exit(&uvm_pageqlock);
209 }
210 mutex_exit(&anons[lcv]->an_lock);
211 }
212 }
213
214 /*
215 * normal functions
216 */
217
218 /*
219 * uvmfault_amapcopy: clear "needs_copy" in a map.
220 *
221 * => called with VM data structures unlocked (usually, see below)
222 * => we get a write lock on the maps and clear needs_copy for a VA
223 * => if we are out of RAM we sleep (waiting for more)
224 */
225
226 static void
227 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
228 {
229 for (;;) {
230
231 /*
232 * no mapping? give up.
233 */
234
235 if (uvmfault_lookup(ufi, true) == false)
236 return;
237
238 /*
239 * copy if needed.
240 */
241
242 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
243 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
244 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
245
246 /*
247 * didn't work? must be out of RAM. unlock and sleep.
248 */
249
250 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
251 uvmfault_unlockmaps(ufi, true);
252 uvm_wait("fltamapcopy");
253 continue;
254 }
255
256 /*
257 * got it! unlock and return.
258 */
259
260 uvmfault_unlockmaps(ufi, true);
261 return;
262 }
263 /*NOTREACHED*/
264 }
265
266 /*
267 * uvmfault_anonget: get data in an anon into a non-busy, non-released
268 * page in that anon.
269 *
270 * => maps, amap, and anon locked by caller.
271 * => if we fail (result != 0) we unlock everything.
272 * => if we are successful, we return with everything still locked.
273 * => we don't move the page on the queues [gets moved later]
274 * => if we allocate a new page [we_own], it gets put on the queues.
275 * either way, the result is that the page is on the queues at return time
276 * => for pages which are on loan from a uvm_object (and thus are not
277 * owned by the anon): if successful, we return with the owning object
278 * locked. the caller must unlock this object when it unlocks everything
279 * else.
280 */
281
282 int
283 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
284 struct vm_anon *anon)
285 {
286 bool we_own; /* we own anon's page? */
287 bool locked; /* did we relock? */
288 struct vm_page *pg;
289 int error;
290 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
291
292 KASSERT(mutex_owned(&anon->an_lock));
293
294 error = 0;
295 uvmexp.fltanget++;
296 /* bump rusage counters */
297 if (anon->an_page)
298 curlwp->l_ru.ru_minflt++;
299 else
300 curlwp->l_ru.ru_majflt++;
301
302 /*
303 * loop until we get it, or fail.
304 */
305
306 for (;;) {
307 we_own = false; /* true if we set PG_BUSY on a page */
308 pg = anon->an_page;
309
310 /*
311 * if there is a resident page and it is loaned, then anon
312 * may not own it. call out to uvm_anon_lockpage() to ensure
313 * the real owner of the page has been identified and locked.
314 */
315
316 if (pg && pg->loan_count)
317 pg = uvm_anon_lockloanpg(anon);
318
319 /*
320 * page there? make sure it is not busy/released.
321 */
322
323 if (pg) {
324
325 /*
326 * at this point, if the page has a uobject [meaning
327 * we have it on loan], then that uobject is locked
328 * by us! if the page is busy, we drop all the
329 * locks (including uobject) and try again.
330 */
331
332 if ((pg->flags & PG_BUSY) == 0) {
333 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
334 return (0);
335 }
336 pg->flags |= PG_WANTED;
337 uvmexp.fltpgwait++;
338
339 /*
340 * the last unlock must be an atomic unlock+wait on
341 * the owner of page
342 */
343
344 if (pg->uobject) { /* owner is uobject ? */
345 uvmfault_unlockall(ufi, amap, NULL, anon);
346 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
347 0,0,0);
348 UVM_UNLOCK_AND_WAIT(pg,
349 &pg->uobject->vmobjlock,
350 false, "anonget1",0);
351 } else {
352 /* anon owns page */
353 uvmfault_unlockall(ufi, amap, NULL, NULL);
354 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
355 0,0,0);
356 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
357 "anonget2",0);
358 }
359 } else {
360 #if defined(VMSWAP)
361
362 /*
363 * no page, we must try and bring it in.
364 */
365
366 pg = uvm_pagealloc(NULL, 0, anon, 0);
367 if (pg == NULL) { /* out of RAM. */
368 uvmfault_unlockall(ufi, amap, NULL, anon);
369 uvmexp.fltnoram++;
370 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
371 0,0,0);
372 if (!uvm_reclaimable()) {
373 return ENOMEM;
374 }
375 uvm_wait("flt_noram1");
376 } else {
377 /* we set the PG_BUSY bit */
378 we_own = true;
379 uvmfault_unlockall(ufi, amap, NULL, anon);
380
381 /*
382 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
383 * page into the uvm_swap_get function with
384 * all data structures unlocked. note that
385 * it is ok to read an_swslot here because
386 * we hold PG_BUSY on the page.
387 */
388 uvmexp.pageins++;
389 error = uvm_swap_get(pg, anon->an_swslot,
390 PGO_SYNCIO);
391
392 /*
393 * we clean up after the i/o below in the
394 * "we_own" case
395 */
396 }
397 #else /* defined(VMSWAP) */
398 panic("%s: no page", __func__);
399 #endif /* defined(VMSWAP) */
400 }
401
402 /*
403 * now relock and try again
404 */
405
406 locked = uvmfault_relock(ufi);
407 if (locked && amap != NULL) {
408 amap_lock(amap);
409 }
410 if (locked || we_own)
411 mutex_enter(&anon->an_lock);
412
413 /*
414 * if we own the page (i.e. we set PG_BUSY), then we need
415 * to clean up after the I/O. there are three cases to
416 * consider:
417 * [1] page released during I/O: free anon and ReFault.
418 * [2] I/O not OK. free the page and cause the fault
419 * to fail.
420 * [3] I/O OK! activate the page and sync with the
421 * non-we_own case (i.e. drop anon lock if not locked).
422 */
423
424 if (we_own) {
425 #if defined(VMSWAP)
426 if (pg->flags & PG_WANTED) {
427 wakeup(pg);
428 }
429 if (error) {
430
431 /*
432 * remove the swap slot from the anon
433 * and mark the anon as having no real slot.
434 * don't free the swap slot, thus preventing
435 * it from being used again.
436 */
437
438 if (anon->an_swslot > 0)
439 uvm_swap_markbad(anon->an_swslot, 1);
440 anon->an_swslot = SWSLOT_BAD;
441
442 if ((pg->flags & PG_RELEASED) != 0)
443 goto released;
444
445 /*
446 * note: page was never !PG_BUSY, so it
447 * can't be mapped and thus no need to
448 * pmap_page_protect it...
449 */
450
451 mutex_enter(&uvm_pageqlock);
452 uvm_pagefree(pg);
453 mutex_exit(&uvm_pageqlock);
454
455 if (locked)
456 uvmfault_unlockall(ufi, amap, NULL,
457 anon);
458 else
459 mutex_exit(&anon->an_lock);
460 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
461 return error;
462 }
463
464 if ((pg->flags & PG_RELEASED) != 0) {
465 released:
466 KASSERT(anon->an_ref == 0);
467
468 /*
469 * released while we unlocked amap.
470 */
471
472 if (locked)
473 uvmfault_unlockall(ufi, amap, NULL,
474 NULL);
475
476 uvm_anon_release(anon);
477
478 if (error) {
479 UVMHIST_LOG(maphist,
480 "<- ERROR/RELEASED", 0,0,0,0);
481 return error;
482 }
483
484 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
485 return ERESTART;
486 }
487
488 /*
489 * we've successfully read the page, activate it.
490 */
491
492 mutex_enter(&uvm_pageqlock);
493 uvm_pageactivate(pg);
494 mutex_exit(&uvm_pageqlock);
495 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
496 UVM_PAGE_OWN(pg, NULL);
497 if (!locked)
498 mutex_exit(&anon->an_lock);
499 #else /* defined(VMSWAP) */
500 panic("%s: we_own", __func__);
501 #endif /* defined(VMSWAP) */
502 }
503
504 /*
505 * we were not able to relock. restart fault.
506 */
507
508 if (!locked) {
509 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
510 return (ERESTART);
511 }
512
513 /*
514 * verify no one has touched the amap and moved the anon on us.
515 */
516
517 if (ufi != NULL &&
518 amap_lookup(&ufi->entry->aref,
519 ufi->orig_rvaddr - ufi->entry->start) != anon) {
520
521 uvmfault_unlockall(ufi, amap, NULL, anon);
522 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
523 return (ERESTART);
524 }
525
526 /*
527 * try it again!
528 */
529
530 uvmexp.fltanretry++;
531 continue;
532 }
533 /*NOTREACHED*/
534 }
535
536 /*
537 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
538 *
539 * 1. allocate an anon and a page.
540 * 2. fill its contents.
541 * 3. put it into amap.
542 *
543 * => if we fail (result != 0) we unlock everything.
544 * => on success, return a new locked anon via 'nanon'.
545 * (*nanon)->an_page will be a resident, locked, dirty page.
546 */
547
548 static int
549 uvmfault_promote(struct uvm_faultinfo *ufi,
550 struct vm_anon *oanon,
551 struct uvm_object *uobj,
552 struct vm_page *uobjpage,
553 struct vm_anon **nanon, /* OUT: allocated anon */
554 struct vm_anon **spare)
555 {
556 struct vm_amap *amap = ufi->entry->aref.ar_amap;
557 struct vm_anon *anon;
558 struct vm_page *pg;
559 struct vm_page *opg;
560 int error;
561 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
562
563 if (oanon) {
564 /* anon COW */
565 opg = oanon->an_page;
566 KASSERT(opg != NULL);
567 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
568 } else if (uobjpage != PGO_DONTCARE) {
569 /* object-backed COW */
570 opg = uobjpage;
571 } else {
572 /* ZFOD */
573 opg = NULL;
574 }
575
576 KASSERT(amap != NULL);
577 KASSERT(uobjpage != NULL);
578 KASSERT(uobjpage == PGO_DONTCARE || uvm_pageisdevice_p(uobjpage) ||
579 (uobjpage->flags & PG_BUSY) != 0);
580 KASSERT(mutex_owned(&amap->am_l));
581 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
582 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
583 #if 0
584 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
585 #endif
586
587 if (*spare != NULL) {
588 anon = *spare;
589 *spare = NULL;
590 mutex_enter(&anon->an_lock);
591 } else if (ufi->map != kernel_map) {
592 anon = uvm_analloc();
593 } else {
594 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
595
596 /*
597 * we can't allocate anons with kernel_map locked.
598 */
599
600 uvm_page_unbusy(&uobjpage, 1);
601 uvmfault_unlockall(ufi, amap, uobj, oanon);
602
603 *spare = uvm_analloc();
604 if (*spare == NULL) {
605 goto nomem;
606 }
607 mutex_exit(&(*spare)->an_lock);
608 error = ERESTART;
609 goto done;
610 }
611 if (anon) {
612
613 /*
614 * The new anon is locked.
615 *
616 * if opg == NULL, we want a zero'd, dirty page,
617 * so have uvm_pagealloc() do that for us.
618 */
619
620 pg = uvm_pagealloc(NULL, 0, anon,
621 (opg == NULL) ? UVM_PGA_ZERO : 0);
622 } else {
623 pg = NULL;
624 }
625
626 /*
627 * out of memory resources?
628 */
629
630 if (pg == NULL) {
631 /* save anon for the next try. */
632 if (anon != NULL) {
633 mutex_exit(&anon->an_lock);
634 *spare = anon;
635 }
636
637 /* unlock and fail ... */
638 uvm_page_unbusy(&uobjpage, 1);
639 uvmfault_unlockall(ufi, amap, uobj, oanon);
640 nomem:
641 if (!uvm_reclaimable()) {
642 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
643 uvmexp.fltnoanon++;
644 error = ENOMEM;
645 goto done;
646 }
647
648 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
649 uvmexp.fltnoram++;
650 uvm_wait("flt_noram5");
651 error = ERESTART;
652 goto done;
653 }
654
655 /* copy page [pg now dirty] */
656 if (opg) {
657 uvm_pagecopy(opg, pg);
658 }
659
660 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
661 oanon != NULL);
662
663 *nanon = anon;
664 error = 0;
665 done:
666 return error;
667 }
668
669
670 /*
671 * F A U L T - m a i n e n t r y p o i n t
672 */
673
674 /*
675 * uvm_fault: page fault handler
676 *
677 * => called from MD code to resolve a page fault
678 * => VM data structures usually should be unlocked. however, it is
679 * possible to call here with the main map locked if the caller
680 * gets a write lock, sets it recusive, and then calls us (c.f.
681 * uvm_map_pageable). this should be avoided because it keeps
682 * the map locked off during I/O.
683 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
684 */
685
686 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
687 ~VM_PROT_WRITE : VM_PROT_ALL)
688
689 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
690 #define UVM_FAULT_WIRE (1 << 0)
691 #define UVM_FAULT_MAXPROT (1 << 1)
692
693 struct uvm_faultctx {
694 vm_prot_t access_type;
695 vm_prot_t enter_prot;
696 vaddr_t startva;
697 int npages;
698 int centeridx;
699 struct vm_anon *anon_spare;
700 bool wire_mapping;
701 bool narrow;
702 bool wire_paging;
703 bool maxprot;
704 bool cow_now;
705 bool promote;
706 };
707
708 static inline int uvm_fault_check(
709 struct uvm_faultinfo *, struct uvm_faultctx *,
710 struct vm_anon ***, struct vm_page ***);
711
712 static int uvm_fault_upper(
713 struct uvm_faultinfo *, struct uvm_faultctx *,
714 struct vm_anon **);
715 static inline int uvm_fault_upper_lookup(
716 struct uvm_faultinfo *, struct uvm_faultctx *,
717 struct vm_anon **, struct vm_page **);
718 static inline void uvm_fault_upper_neighbor(
719 struct uvm_faultinfo *, struct uvm_faultctx *,
720 vaddr_t, struct vm_page *, bool);
721 static inline int uvm_fault_upper_loan(
722 struct uvm_faultinfo *, struct uvm_faultctx *,
723 struct vm_anon *, struct uvm_object **);
724 static inline int uvm_fault_upper_promote(
725 struct uvm_faultinfo *, struct uvm_faultctx *,
726 struct uvm_object *, struct vm_anon *);
727 static inline int uvm_fault_upper_direct(
728 struct uvm_faultinfo *, struct uvm_faultctx *,
729 struct uvm_object *, struct vm_anon *);
730 static int uvm_fault_upper_enter(
731 struct uvm_faultinfo *, struct uvm_faultctx *,
732 struct uvm_object *, struct vm_anon *,
733 struct vm_page *, struct vm_anon *);
734 static inline void uvm_fault_upper_done(
735 struct uvm_faultinfo *, struct uvm_faultctx *,
736 struct uvm_object *, struct vm_anon *,
737 struct vm_page *);
738
739 static int uvm_fault_lower(
740 struct uvm_faultinfo *, struct uvm_faultctx *,
741 struct vm_page **);
742 static inline void uvm_fault_lower_lookup(
743 struct uvm_faultinfo *, struct uvm_faultctx *,
744 struct vm_page **);
745 static inline void uvm_fault_lower_neighbor(
746 struct uvm_faultinfo *, struct uvm_faultctx *,
747 vaddr_t, struct vm_page *, bool);
748 static inline int uvm_fault_lower_io(
749 struct uvm_faultinfo *, struct uvm_faultctx *,
750 struct uvm_object **, struct vm_page **);
751 static inline int uvm_fault_lower_direct(
752 struct uvm_faultinfo *, struct uvm_faultctx *,
753 struct uvm_object *, struct vm_page *);
754 static inline int uvm_fault_lower_direct_loan(
755 struct uvm_faultinfo *, struct uvm_faultctx *,
756 struct uvm_object *, struct vm_page **,
757 struct vm_page **);
758 static inline int uvm_fault_lower_promote(
759 struct uvm_faultinfo *, struct uvm_faultctx *,
760 struct uvm_object *, struct vm_page *);
761 static int uvm_fault_lower_enter(
762 struct uvm_faultinfo *, struct uvm_faultctx *,
763 struct uvm_object *,
764 struct vm_anon *, struct vm_page *,
765 struct vm_page *);
766 static inline void uvm_fault_lower_done(
767 struct uvm_faultinfo *, struct uvm_faultctx *,
768 struct uvm_object *, struct vm_anon *,
769 struct vm_page *);
770
771 int
772 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
773 vm_prot_t access_type, int fault_flag)
774 {
775 struct uvm_faultinfo ufi;
776 struct uvm_faultctx flt = {
777 .access_type = access_type,
778
779 /* don't look for neighborhood * pages on "wire" fault */
780 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
781
782 /* "wire" fault causes wiring of both mapping and paging */
783 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
784 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
785
786 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
787 };
788 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
789 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
790 int error;
791 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
792
793 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
794 orig_map, vaddr, access_type, fault_flag);
795
796 uvmexp.faults++; /* XXX: locking? */
797
798 /*
799 * init the IN parameters in the ufi
800 */
801
802 ufi.orig_map = orig_map;
803 ufi.orig_rvaddr = trunc_page(vaddr);
804 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
805
806 error = ERESTART;
807 while (error == ERESTART) {
808 anons = anons_store;
809 pages = pages_store;
810
811 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
812 if (error != 0)
813 continue;
814
815 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
816 if (error != 0)
817 continue;
818
819 if (pages[flt.centeridx] == PGO_DONTCARE)
820 error = uvm_fault_upper(&ufi, &flt, anons);
821 else {
822 struct uvm_object * const uobj = ufi.entry->object.uvm_obj;
823
824 if (uobj && uobj->pgops->pgo_fault != NULL) {
825 /*
826 * invoke "special" fault routine.
827 */
828 mutex_enter(&uobj->vmobjlock);
829 /* locked: maps(read), amap(if there), uobj */
830 error = uobj->pgops->pgo_fault(&ufi,
831 flt.startva, pages, flt.npages,
832 flt.centeridx, flt.access_type,
833 PGO_LOCKED|PGO_SYNCIO);
834
835 /* locked: nothing, pgo_fault has unlocked everything */
836
837 /*
838 * object fault routine responsible for pmap_update().
839 */
840 } else {
841 error = uvm_fault_lower(&ufi, &flt, pages);
842 }
843 }
844 }
845
846 if (flt.anon_spare != NULL) {
847 flt.anon_spare->an_ref--;
848 uvm_anfree(flt.anon_spare);
849 }
850 return error;
851 }
852
853 /*
854 * uvm_fault_check: check prot, handle needs-copy, etc.
855 *
856 * 1. lookup entry.
857 * 2. check protection.
858 * 3. adjust fault condition (mainly for simulated fault).
859 * 4. handle needs-copy (lazy amap copy).
860 * 5. establish range of interest for neighbor fault (aka pre-fault).
861 * 6. look up anons (if amap exists).
862 * 7. flush pages (if MADV_SEQUENTIAL)
863 *
864 * => called with nothing locked.
865 * => if we fail (result != 0) we unlock everything.
866 */
867
868 static int
869 uvm_fault_check(
870 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
871 struct vm_anon ***ranons, struct vm_page ***rpages)
872 {
873 struct vm_amap *amap;
874 struct uvm_object *uobj;
875 vm_prot_t check_prot;
876 int nback, nforw;
877 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
878
879 /*
880 * lookup and lock the maps
881 */
882
883 if (uvmfault_lookup(ufi, false) == false) {
884 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr, 0,0,0);
885 return EFAULT;
886 }
887 /* locked: maps(read) */
888
889 #ifdef DIAGNOSTIC
890 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
891 printf("Page fault on non-pageable map:\n");
892 printf("ufi->map = %p\n", ufi->map);
893 printf("ufi->orig_map = %p\n", ufi->orig_map);
894 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
895 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
896 }
897 #endif
898
899 /*
900 * check protection
901 */
902
903 check_prot = flt->maxprot ?
904 ufi->entry->max_protection : ufi->entry->protection;
905 if ((check_prot & flt->access_type) != flt->access_type) {
906 UVMHIST_LOG(maphist,
907 "<- protection failure (prot=0x%x, access=0x%x)",
908 ufi->entry->protection, flt->access_type, 0, 0);
909 uvmfault_unlockmaps(ufi, false);
910 return EACCES;
911 }
912
913 /*
914 * "enter_prot" is the protection we want to enter the page in at.
915 * for certain pages (e.g. copy-on-write pages) this protection can
916 * be more strict than ufi->entry->protection. "wired" means either
917 * the entry is wired or we are fault-wiring the pg.
918 */
919
920 flt->enter_prot = ufi->entry->protection;
921 if (VM_MAPENT_ISWIRED(ufi->entry))
922 flt->wire_mapping = true;
923
924 if (flt->wire_mapping) {
925 flt->access_type = flt->enter_prot; /* full access for wired */
926 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
927 } else {
928 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
929 }
930
931 flt->promote = false;
932
933 /*
934 * handle "needs_copy" case. if we need to copy the amap we will
935 * have to drop our readlock and relock it with a write lock. (we
936 * need a write lock to change anything in a map entry [e.g.
937 * needs_copy]).
938 */
939
940 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
941 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
942 KASSERT(!flt->maxprot);
943 /* need to clear */
944 UVMHIST_LOG(maphist,
945 " need to clear needs_copy and refault",0,0,0,0);
946 uvmfault_unlockmaps(ufi, false);
947 uvmfault_amapcopy(ufi);
948 uvmexp.fltamcopy++;
949 return ERESTART;
950
951 } else {
952
953 /*
954 * ensure that we pmap_enter page R/O since
955 * needs_copy is still true
956 */
957
958 flt->enter_prot &= ~VM_PROT_WRITE;
959 }
960 }
961
962 /*
963 * identify the players
964 */
965
966 amap = ufi->entry->aref.ar_amap; /* upper layer */
967 uobj = ufi->entry->object.uvm_obj; /* lower layer */
968
969 /*
970 * check for a case 0 fault. if nothing backing the entry then
971 * error now.
972 */
973
974 if (amap == NULL && uobj == NULL) {
975 uvmfault_unlockmaps(ufi, false);
976 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
977 return EFAULT;
978 }
979
980 /*
981 * establish range of interest based on advice from mapper
982 * and then clip to fit map entry. note that we only want
983 * to do this the first time through the fault. if we
984 * ReFault we will disable this by setting "narrow" to true.
985 */
986
987 if (flt->narrow == false) {
988
989 /* wide fault (!narrow) */
990 KASSERT(uvmadvice[ufi->entry->advice].advice ==
991 ufi->entry->advice);
992 nback = MIN(uvmadvice[ufi->entry->advice].nback,
993 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
994 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
995 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
996 ((ufi->entry->end - ufi->orig_rvaddr) >>
997 PAGE_SHIFT) - 1);
998 /*
999 * note: "-1" because we don't want to count the
1000 * faulting page as forw
1001 */
1002 flt->npages = nback + nforw + 1;
1003 flt->centeridx = nback;
1004
1005 flt->narrow = true; /* ensure only once per-fault */
1006
1007 } else {
1008
1009 /* narrow fault! */
1010 nback = nforw = 0;
1011 flt->startva = ufi->orig_rvaddr;
1012 flt->npages = 1;
1013 flt->centeridx = 0;
1014
1015 }
1016 /* offset from entry's start to pgs' start */
1017 const voff_t eoff = flt->startva - ufi->entry->start;
1018
1019 /* locked: maps(read) */
1020 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
1021 flt->narrow, nback, nforw, flt->startva);
1022 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1023 amap, uobj, 0);
1024
1025 /*
1026 * if we've got an amap, lock it and extract current anons.
1027 */
1028
1029 if (amap) {
1030 amap_lock(amap);
1031 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1032 } else {
1033 *ranons = NULL; /* to be safe */
1034 }
1035
1036 /* locked: maps(read), amap(if there) */
1037 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1038
1039 /*
1040 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1041 * now and then forget about them (for the rest of the fault).
1042 */
1043
1044 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1045
1046 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1047 0,0,0,0);
1048 /* flush back-page anons? */
1049 if (amap)
1050 uvmfault_anonflush(*ranons, nback);
1051
1052 /* flush object? */
1053 if (uobj) {
1054 voff_t uoff;
1055
1056 uoff = ufi->entry->offset + eoff;
1057 mutex_enter(&uobj->vmobjlock);
1058 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1059 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1060 }
1061
1062 /* now forget about the backpages */
1063 if (amap)
1064 *ranons += nback;
1065 flt->startva += (nback << PAGE_SHIFT);
1066 flt->npages -= nback;
1067 flt->centeridx = 0;
1068 }
1069 /*
1070 * => startva is fixed
1071 * => npages is fixed
1072 */
1073
1074 return 0;
1075 }
1076
1077 /*
1078 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1079 *
1080 * iterate range of interest:
1081 * 1. check if h/w mapping exists. if yes, we don't care
1082 * 2. check if anon exists. if not, page is lower.
1083 * 3. if anon exists, enter h/w mapping for neighbors.
1084 *
1085 * => called with amap locked (if exists).
1086 */
1087
1088 static int
1089 uvm_fault_upper_lookup(
1090 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1091 struct vm_anon **anons, struct vm_page **pages)
1092 {
1093 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1094 int lcv;
1095 vaddr_t currva;
1096 bool shadowed;
1097 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1098
1099 /* locked: maps(read), amap(if there) */
1100 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1101
1102 /*
1103 * map in the backpages and frontpages we found in the amap in hopes
1104 * of preventing future faults. we also init the pages[] array as
1105 * we go.
1106 */
1107
1108 currva = flt->startva;
1109 shadowed = false;
1110 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1111 /*
1112 * dont play with VAs that are already mapped
1113 * except for center)
1114 */
1115 if (lcv != flt->centeridx &&
1116 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1117 pages[lcv] = PGO_DONTCARE;
1118 continue;
1119 }
1120
1121 /*
1122 * unmapped or center page. check if any anon at this level.
1123 */
1124 if (amap == NULL || anons[lcv] == NULL) {
1125 pages[lcv] = NULL;
1126 continue;
1127 }
1128
1129 /*
1130 * check for present page and map if possible. re-activate it.
1131 */
1132
1133 pages[lcv] = PGO_DONTCARE;
1134 if (lcv == flt->centeridx) { /* save center for later! */
1135 shadowed = true;
1136 } else {
1137 struct vm_anon *anon = anons[lcv];
1138
1139 mutex_enter(&anon->an_lock);
1140 struct vm_page *pg = anon->an_page;
1141
1142 /* ignore loaned and busy pages */
1143 if (pg != NULL && pg->loan_count == 0 &&
1144 (pg->flags & PG_BUSY) == 0)
1145 uvm_fault_upper_neighbor(ufi, flt, currva,
1146 pg, anon->an_ref > 1);
1147 mutex_exit(&anon->an_lock);
1148 }
1149 }
1150
1151 /* locked: maps(read), amap(if there) */
1152 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1153 /* (shadowed == true) if there is an anon at the faulting address */
1154 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1155 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1156
1157 /*
1158 * note that if we are really short of RAM we could sleep in the above
1159 * call to pmap_enter with everything locked. bad?
1160 *
1161 * XXX Actually, that is bad; pmap_enter() should just fail in that
1162 * XXX case. --thorpej
1163 */
1164
1165 return 0;
1166 }
1167
1168 /*
1169 * uvm_fault_upper_neighbor: enter single lower neighbor page.
1170 *
1171 * => called with amap and anon locked.
1172 */
1173
1174 static void
1175 uvm_fault_upper_neighbor(
1176 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1177 vaddr_t currva, struct vm_page *pg, bool readonly)
1178 {
1179 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1180
1181 /* locked: amap, anon */
1182
1183 mutex_enter(&uvm_pageqlock);
1184 uvm_pageenqueue(pg);
1185 mutex_exit(&uvm_pageqlock);
1186 UVMHIST_LOG(maphist,
1187 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1188 ufi->orig_map->pmap, currva, pg, 0);
1189 uvmexp.fltnamap++;
1190
1191 /*
1192 * Since this page isn't the page that's actually faulting,
1193 * ignore pmap_enter() failures; it's not critical that we
1194 * enter these right now.
1195 */
1196
1197 (void) pmap_enter(ufi->orig_map->pmap, currva,
1198 VM_PAGE_TO_PHYS(pg),
1199 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1200 flt->enter_prot,
1201 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1202
1203 pmap_update(ufi->orig_map->pmap);
1204 }
1205
1206 /*
1207 * uvm_fault_upper: handle upper fault.
1208 *
1209 * 1. acquire anon lock.
1210 * 2. get anon. let uvmfault_anonget do the dirty work.
1211 * 3. handle loan.
1212 * 4. dispatch direct or promote handlers.
1213 */
1214
1215 static int
1216 uvm_fault_upper(
1217 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1218 struct vm_anon **anons)
1219 {
1220 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1221 struct vm_anon * const anon = anons[flt->centeridx];
1222 struct uvm_object *uobj;
1223 int error;
1224 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1225
1226 /* locked: maps(read), amap */
1227 KASSERT(mutex_owned(&amap->am_l));
1228
1229 /*
1230 * handle case 1: fault on an anon in our amap
1231 */
1232
1233 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1234 mutex_enter(&anon->an_lock);
1235
1236 /* locked: maps(read), amap, anon */
1237 KASSERT(mutex_owned(&amap->am_l));
1238 KASSERT(mutex_owned(&anon->an_lock));
1239
1240 /*
1241 * no matter if we have case 1A or case 1B we are going to need to
1242 * have the anon's memory resident. ensure that now.
1243 */
1244
1245 /*
1246 * let uvmfault_anonget do the dirty work.
1247 * if it fails (!OK) it will unlock everything for us.
1248 * if it succeeds, locks are still valid and locked.
1249 * also, if it is OK, then the anon's page is on the queues.
1250 * if the page is on loan from a uvm_object, then anonget will
1251 * lock that object for us if it does not fail.
1252 */
1253
1254 error = uvmfault_anonget(ufi, amap, anon);
1255 switch (error) {
1256 case 0:
1257 break;
1258
1259 case ERESTART:
1260 return ERESTART;
1261
1262 case EAGAIN:
1263 kpause("fltagain1", false, hz/2, NULL);
1264 return ERESTART;
1265
1266 default:
1267 return error;
1268 }
1269
1270 /*
1271 * uobj is non null if the page is on loan from an object (i.e. uobj)
1272 */
1273
1274 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1275
1276 /* locked: maps(read), amap, anon, uobj(if one) */
1277 KASSERT(mutex_owned(&amap->am_l));
1278 KASSERT(mutex_owned(&anon->an_lock));
1279 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1280
1281 /*
1282 * special handling for loaned pages
1283 */
1284
1285 if (anon->an_page->loan_count) {
1286 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1287 if (error != 0)
1288 return error;
1289 }
1290
1291 /*
1292 * if we are case 1B then we will need to allocate a new blank
1293 * anon to transfer the data into. note that we have a lock
1294 * on anon, so no one can busy or release the page until we are done.
1295 * also note that the ref count can't drop to zero here because
1296 * it is > 1 and we are only dropping one ref.
1297 *
1298 * in the (hopefully very rare) case that we are out of RAM we
1299 * will unlock, wait for more RAM, and refault.
1300 *
1301 * if we are out of anon VM we kill the process (XXX: could wait?).
1302 */
1303
1304 if (flt->cow_now && anon->an_ref > 1) {
1305 flt->promote = true;
1306 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1307 } else {
1308 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1309 }
1310 return error;
1311 }
1312
1313 /*
1314 * uvm_fault_upper_loan: handle loaned upper page.
1315 *
1316 * 1. if not cow'ing now, just mark enter_prot as read-only.
1317 * 2. if cow'ing now, and if ref count is 1, break loan.
1318 */
1319
1320 static int
1321 uvm_fault_upper_loan(
1322 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1323 struct vm_anon *anon, struct uvm_object **ruobj)
1324 {
1325 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1326 int error = 0;
1327 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1328
1329 if (!flt->cow_now) {
1330
1331 /*
1332 * for read faults on loaned pages we just cap the
1333 * protection at read-only.
1334 */
1335
1336 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1337
1338 } else {
1339 /*
1340 * note that we can't allow writes into a loaned page!
1341 *
1342 * if we have a write fault on a loaned page in an
1343 * anon then we need to look at the anon's ref count.
1344 * if it is greater than one then we are going to do
1345 * a normal copy-on-write fault into a new anon (this
1346 * is not a problem). however, if the reference count
1347 * is one (a case where we would normally allow a
1348 * write directly to the page) then we need to kill
1349 * the loan before we continue.
1350 */
1351
1352 /* >1 case is already ok */
1353 if (anon->an_ref == 1) {
1354 error = uvm_loanbreak_anon(anon, *ruobj);
1355 if (error != 0) {
1356 uvmfault_unlockall(ufi, amap, *ruobj, anon);
1357 uvm_wait("flt_noram2");
1358 return ERESTART;
1359 }
1360 /* if we were a loan reciever uobj is gone */
1361 if (*ruobj)
1362 *ruobj = NULL;
1363 }
1364 }
1365 return error;
1366 }
1367
1368 /*
1369 * uvm_fault_upper_promote: promote upper page.
1370 *
1371 * 1. call uvmfault_promote.
1372 * 2. enqueue page.
1373 * 3. deref.
1374 * 4. pass page to uvm_fault_upper_enter.
1375 */
1376
1377 static int
1378 uvm_fault_upper_promote(
1379 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1380 struct uvm_object *uobj, struct vm_anon *anon)
1381 {
1382 struct vm_anon * const oanon = anon;
1383 struct vm_page *pg;
1384 int error;
1385 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1386
1387 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1388 uvmexp.flt_acow++;
1389
1390 error = uvmfault_promote(ufi, oanon, NULL, PGO_DONTCARE,
1391 &anon, &flt->anon_spare);
1392 switch (error) {
1393 case 0:
1394 break;
1395 case ERESTART:
1396 return ERESTART;
1397 default:
1398 return error;
1399 }
1400
1401 pg = anon->an_page;
1402 mutex_enter(&uvm_pageqlock);
1403 uvm_pageactivate(pg);
1404 mutex_exit(&uvm_pageqlock);
1405 pg->flags &= ~(PG_BUSY|PG_FAKE);
1406 UVM_PAGE_OWN(pg, NULL);
1407
1408 /* deref: can not drop to zero here by defn! */
1409 oanon->an_ref--;
1410
1411 /*
1412 * note: oanon is still locked, as is the new anon. we
1413 * need to check for this later when we unlock oanon; if
1414 * oanon != anon, we'll have to unlock anon, too.
1415 */
1416
1417 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1418 }
1419
1420 /*
1421 * uvm_fault_upper_direct: handle direct fault.
1422 */
1423
1424 static int
1425 uvm_fault_upper_direct(
1426 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1427 struct uvm_object *uobj, struct vm_anon *anon)
1428 {
1429 struct vm_anon * const oanon = anon;
1430 struct vm_page *pg;
1431 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1432
1433 uvmexp.flt_anon++;
1434 pg = anon->an_page;
1435 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1436 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1437
1438 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1439 }
1440
1441 /*
1442 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1443 */
1444
1445 static int
1446 uvm_fault_upper_enter(
1447 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1448 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1449 struct vm_anon *oanon)
1450 {
1451 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1452 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1453
1454 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1455 KASSERT(mutex_owned(&amap->am_l));
1456 KASSERT(mutex_owned(&anon->an_lock));
1457 KASSERT(mutex_owned(&oanon->an_lock));
1458
1459 /*
1460 * now map the page in.
1461 */
1462
1463 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1464 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1465 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1466 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1467 != 0) {
1468
1469 /*
1470 * No need to undo what we did; we can simply think of
1471 * this as the pmap throwing away the mapping information.
1472 *
1473 * We do, however, have to go through the ReFault path,
1474 * as the map may change while we're asleep.
1475 */
1476
1477 if (anon != oanon)
1478 mutex_exit(&anon->an_lock);
1479 uvmfault_unlockall(ufi, amap, uobj, oanon);
1480 if (!uvm_reclaimable()) {
1481 UVMHIST_LOG(maphist,
1482 "<- failed. out of VM",0,0,0,0);
1483 /* XXX instrumentation */
1484 return ENOMEM;
1485 }
1486 /* XXX instrumentation */
1487 uvm_wait("flt_pmfail1");
1488 return ERESTART;
1489 }
1490
1491 uvm_fault_upper_done(ufi, flt, uobj, anon, pg);
1492
1493 /*
1494 * done case 1! finish up by unlocking everything and returning success
1495 */
1496
1497 if (anon != oanon)
1498 mutex_exit(&anon->an_lock);
1499 uvmfault_unlockall(ufi, amap, uobj, oanon);
1500 pmap_update(ufi->orig_map->pmap);
1501 return 0;
1502 }
1503
1504 /*
1505 * uvm_fault_upper_done: queue upper center page.
1506 */
1507
1508 static void
1509 uvm_fault_upper_done(
1510 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1511 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
1512 {
1513 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1514
1515 /*
1516 * ... update the page queues.
1517 */
1518
1519 mutex_enter(&uvm_pageqlock);
1520 if (flt->wire_paging) {
1521 uvm_pagewire(pg);
1522
1523 /*
1524 * since the now-wired page cannot be paged out,
1525 * release its swap resources for others to use.
1526 * since an anon with no swap cannot be PG_CLEAN,
1527 * clear its clean flag now.
1528 */
1529
1530 pg->flags &= ~(PG_CLEAN);
1531 uvm_anon_dropswap(anon);
1532 } else {
1533 uvm_pageactivate(pg);
1534 }
1535 mutex_exit(&uvm_pageqlock);
1536 }
1537
1538 /*
1539 * uvm_fault_lower: handle lower fault.
1540 *
1541 * 1. check uobj
1542 * 1.1. if null, ZFOD.
1543 * 1.2. if not null, look up unnmapped neighbor pages.
1544 * 2. for center page, check if promote.
1545 * 2.1. ZFOD always needs promotion.
1546 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1547 * 3. if uobj is not ZFOD and page is not found, do i/o.
1548 * 4. dispatch either direct / promote fault.
1549 */
1550
1551 static int
1552 uvm_fault_lower(
1553 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1554 struct vm_page **pages)
1555 {
1556 #ifdef DIAGNOSTIC
1557 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1558 #endif
1559 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1560 struct vm_page *uobjpage;
1561 int error;
1562 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1563
1564 /* locked: maps(read), amap(if there), uobj(if !null) */
1565
1566 /*
1567 * now, if the desired page is not shadowed by the amap and we have
1568 * a backing object that does not have a special fault routine, then
1569 * we ask (with pgo_get) the object for resident pages that we care
1570 * about and attempt to map them in. we do not let pgo_get block
1571 * (PGO_LOCKED).
1572 */
1573
1574 if (uobj == NULL) {
1575 /* zero fill; don't care neighbor pages */
1576 uobjpage = NULL;
1577 } else {
1578 uvm_fault_lower_lookup(ufi, flt, pages);
1579 uobjpage = pages[flt->centeridx];
1580 }
1581
1582 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1583 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1585 KASSERT(uobjpage == NULL || uvm_pageisdevice_p(uobjpage) ||
1586 (uobjpage->flags & PG_BUSY) != 0);
1587
1588 /*
1589 * note that at this point we are done with any front or back pages.
1590 * we are now going to focus on the center page (i.e. the one we've
1591 * faulted on). if we have faulted on the upper (anon) layer
1592 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1593 * not touched it yet). if we have faulted on the bottom (uobj)
1594 * layer [i.e. case 2] and the page was both present and available,
1595 * then we've got a pointer to it as "uobjpage" and we've already
1596 * made it BUSY.
1597 */
1598
1599 /*
1600 * locked:
1601 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1602 */
1603 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1604 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1605 KASSERT(uobjpage == NULL || uvm_pageisdevice_p(uobjpage) ||
1606 (uobjpage->flags & PG_BUSY) != 0);
1607
1608 /*
1609 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1610 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1611 * have a backing object, check and see if we are going to promote
1612 * the data up to an anon during the fault.
1613 */
1614
1615 if (uobj == NULL) {
1616 uobjpage = PGO_DONTCARE;
1617 flt->promote = true; /* always need anon here */
1618 } else {
1619 KASSERT(uobjpage != PGO_DONTCARE);
1620 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1621 }
1622 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1623 flt->promote, (uobj == NULL), 0,0);
1624
1625 /*
1626 * if uobjpage is not null then we do not need to do I/O to get the
1627 * uobjpage.
1628 *
1629 * if uobjpage is null, then we need to unlock and ask the pager to
1630 * get the data for us. once we have the data, we need to reverify
1631 * the state the world. we are currently not holding any resources.
1632 */
1633
1634 if (uobjpage) {
1635 /* update rusage counters */
1636 curlwp->l_ru.ru_minflt++;
1637 } else {
1638 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1639 if (error != 0)
1640 return error;
1641 }
1642
1643 /*
1644 * locked:
1645 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1646 */
1647 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1648 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1649 KASSERT(uobj == NULL || uvm_pageisdevice_p(uobjpage) ||
1650 (uobjpage->flags & PG_BUSY) != 0);
1651
1652 /*
1653 * notes:
1654 * - at this point uobjpage can not be NULL
1655 * - at this point uobjpage can not be PG_RELEASED (since we checked
1656 * for it above)
1657 * - at this point uobjpage could be PG_WANTED (handle later)
1658 */
1659
1660 KASSERT(uvm_pageisdevice_p(uobjpage) || uobj == NULL ||
1661 uobj == uobjpage->uobject);
1662 KASSERT(uvm_pageisdevice_p(uobjpage) || uobj == NULL ||
1663 !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1664 (uobjpage->flags & PG_CLEAN) != 0);
1665
1666 if (flt->promote == false) {
1667 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1668 } else {
1669 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1670 }
1671 return error;
1672 }
1673
1674 /*
1675 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1676 *
1677 * 1. get on-memory pages.
1678 * 2. if failed, give up (get only center page later).
1679 * 3. if succeeded, enter h/w mapping of neighbor pages.
1680 */
1681
1682 static void
1683 uvm_fault_lower_lookup(
1684 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1685 struct vm_page **pages)
1686 {
1687 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1688 int lcv, gotpages;
1689 vaddr_t currva;
1690 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1691
1692 mutex_enter(&uobj->vmobjlock);
1693 /* locked: maps(read), amap(if there), uobj */
1694 /*
1695 * the following call to pgo_get does _not_ change locking state
1696 */
1697
1698 uvmexp.fltlget++;
1699 gotpages = flt->npages;
1700 (void) uobj->pgops->pgo_get(uobj,
1701 ufi->entry->offset + flt->startva - ufi->entry->start,
1702 pages, &gotpages, flt->centeridx,
1703 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1704
1705 /*
1706 * check for pages to map, if we got any
1707 */
1708
1709 if (gotpages == 0) {
1710 pages[flt->centeridx] = NULL;
1711 return;
1712 }
1713
1714 currva = flt->startva;
1715 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1716 struct vm_page *curpg;
1717
1718 curpg = pages[lcv];
1719 if (curpg == NULL || curpg == PGO_DONTCARE) {
1720 continue;
1721 }
1722 KASSERT(uvm_pageisdevice_p(uobjpage) || curpg->uobject == uobj);
1723
1724 /*
1725 * if center page is resident and not PG_BUSY|PG_RELEASED
1726 * then pgo_get made it PG_BUSY for us and gave us a handle
1727 * to it.
1728 */
1729
1730 if (lcv == flt->centeridx) {
1731 UVMHIST_LOG(maphist, " got uobjpage "
1732 "(0x%x) with locked get",
1733 curpg, 0,0,0);
1734 } else {
1735 bool readonly = uvm_pageisdevice_p(uobjpage)
1736 || (curpg->flags & PG_RDONLY)
1737 || (curpg->loan_count > 0)
1738 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1739
1740 uvm_fault_lower_neighbor(ufi, flt,
1741 currva, curpg, readonly);
1742 }
1743 }
1744 pmap_update(ufi->orig_map->pmap);
1745 }
1746
1747 /*
1748 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1749 */
1750
1751 static void
1752 uvm_fault_lower_neighbor(
1753 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1754 vaddr_t currva, struct vm_page *pg, bool readonly)
1755 {
1756 UVMHIST_FUNC("uvm_fault_lower_neighor"); UVMHIST_CALLED(maphist);
1757
1758 /* locked: maps(read), amap(if there), uobj */
1759
1760 if (uvm_pageisdevice_p(pg))
1761 goto uvm_fault_lower_neighbor_enter;
1762
1763 /*
1764 * calling pgo_get with PGO_LOCKED returns us pages which
1765 * are neither busy nor released, so we don't need to check
1766 * for this. we can just directly enter the pages.
1767 */
1768
1769 mutex_enter(&uvm_pageqlock);
1770 uvm_pageenqueue(pg);
1771 mutex_exit(&uvm_pageqlock);
1772
1773 /*
1774 * Since this page isn't the page that's actually faulting,
1775 * ignore pmap_enter() failures; it's not critical that we
1776 * enter these right now.
1777 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1778 * held the lock the whole time we've had the handle.
1779 */
1780 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1781 KASSERT((pg->flags & PG_RELEASED) == 0);
1782 KASSERT((pg->flags & PG_WANTED) == 0);
1783 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
1784 (pg->flags & PG_CLEAN) != 0);
1785 pg->flags &= ~(PG_BUSY);
1786 UVM_PAGE_OWN(pg, NULL);
1787
1788 uvm_fault_lower_neighbor_enter:
1789 UVMHIST_LOG(maphist,
1790 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1791 ufi->orig_map->pmap, currva, pg, 0);
1792 uvmexp.fltnomap++;
1793
1794 (void) pmap_enter(ufi->orig_map->pmap, currva,
1795 VM_PAGE_TO_PHYS(pg),
1796 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1797 flt->enter_prot & MASK(ufi->entry),
1798 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1799 }
1800
1801 /*
1802 * uvm_fault_lower_io: get lower page from backing store.
1803 *
1804 * 1. unlock everything, because i/o will block.
1805 * 2. call pgo_get.
1806 * 3. if failed, recover.
1807 * 4. if succeeded, relock everything and verify things.
1808 */
1809
1810 static int
1811 uvm_fault_lower_io(
1812 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1813 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1814 {
1815 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1816 struct uvm_object *uobj = *ruobj;
1817 struct vm_page *pg;
1818 bool locked;
1819 int gotpages;
1820 int error;
1821 voff_t uoff;
1822 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1823
1824 /* update rusage counters */
1825 curlwp->l_ru.ru_majflt++;
1826
1827 /* locked: maps(read), amap(if there), uobj */
1828 uvmfault_unlockall(ufi, amap, NULL, NULL);
1829 /* locked: uobj */
1830
1831 uvmexp.fltget++;
1832 gotpages = 1;
1833 pg = NULL;
1834 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1835 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1836 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1837 PGO_SYNCIO);
1838 /* locked: pg(if no error) */
1839
1840 /*
1841 * recover from I/O
1842 */
1843
1844 if (error) {
1845 if (error == EAGAIN) {
1846 UVMHIST_LOG(maphist,
1847 " pgo_get says TRY AGAIN!",0,0,0,0);
1848 kpause("fltagain2", false, hz/2, NULL);
1849 return ERESTART;
1850 }
1851
1852 #if 0
1853 KASSERT(error != ERESTART);
1854 #else
1855 /* XXXUEBS don't re-fault? */
1856 if (error == ERESTART)
1857 error = EIO;
1858 #endif
1859
1860 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1861 error, 0,0,0);
1862 return error;
1863 }
1864
1865 /* locked: pg */
1866
1867 KASSERT((pg->flags & PG_BUSY) != 0);
1868
1869 mutex_enter(&uvm_pageqlock);
1870 uvm_pageactivate(pg);
1871 mutex_exit(&uvm_pageqlock);
1872
1873 /*
1874 * re-verify the state of the world by first trying to relock
1875 * the maps. always relock the object.
1876 */
1877
1878 locked = uvmfault_relock(ufi);
1879 if (locked && amap)
1880 amap_lock(amap);
1881
1882 /* might be changed */
1883 uobj = pg->uobject;
1884
1885 mutex_enter(&uobj->vmobjlock);
1886
1887 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1888 /* locked(!locked): uobj, pg */
1889
1890 /*
1891 * verify that the page has not be released and re-verify
1892 * that amap slot is still free. if there is a problem,
1893 * we unlock and clean up.
1894 */
1895
1896 if ((pg->flags & PG_RELEASED) != 0 ||
1897 (locked && amap && amap_lookup(&ufi->entry->aref,
1898 ufi->orig_rvaddr - ufi->entry->start))) {
1899 if (locked)
1900 uvmfault_unlockall(ufi, amap, NULL, NULL);
1901 locked = false;
1902 }
1903
1904 /*
1905 * didn't get the lock? release the page and retry.
1906 */
1907
1908 if (locked == false) {
1909 UVMHIST_LOG(maphist,
1910 " wasn't able to relock after fault: retry",
1911 0,0,0,0);
1912 if (pg->flags & PG_WANTED) {
1913 wakeup(pg);
1914 }
1915 if (pg->flags & PG_RELEASED) {
1916 uvmexp.fltpgrele++;
1917 uvm_pagefree(pg);
1918 mutex_exit(&uobj->vmobjlock);
1919 return ERESTART;
1920 }
1921 pg->flags &= ~(PG_BUSY|PG_WANTED);
1922 UVM_PAGE_OWN(pg, NULL);
1923 mutex_exit(&uobj->vmobjlock);
1924 return ERESTART;
1925 }
1926
1927 /*
1928 * we have the data in pg which is busy and
1929 * not released. we are holding object lock (so the page
1930 * can't be released on us).
1931 */
1932
1933 /* locked: maps(read), amap(if !null), uobj, pg */
1934
1935 *ruobj = uobj;
1936 *ruobjpage = pg;
1937 return 0;
1938 }
1939
1940 /*
1941 * uvm_fault_lower_direct: fault lower center page
1942 *
1943 * 1. adjust h/w mapping protection.
1944 * 2. if page is loaned, resolve.
1945 */
1946
1947 int
1948 uvm_fault_lower_direct(
1949 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1950 struct uvm_object *uobj, struct vm_page *uobjpage)
1951 {
1952 struct vm_page *pg;
1953 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1954
1955 /*
1956 * we are not promoting. if the mapping is COW ensure that we
1957 * don't give more access than we should (e.g. when doing a read
1958 * fault on a COPYONWRITE mapping we want to map the COW page in
1959 * R/O even though the entry protection could be R/W).
1960 *
1961 * set "pg" to the page we want to map in (uobjpage, usually)
1962 */
1963 pg = uobjpage; /* map in the actual object */
1964 uvmexp.flt_obj++;
1965
1966 if (uvm_pageisdevice_p(uobjpage)) {
1967 /* XIP'ed device pages are always read-only */
1968 goto uvm_fault_lower_direct_done;
1969 }
1970
1971 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1972 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1973 flt->enter_prot &= ~VM_PROT_WRITE;
1974
1975 KASSERT(uobjpage != PGO_DONTCARE);
1976
1977 /*
1978 * we are faulting directly on the page. be careful
1979 * about writing to loaned pages...
1980 */
1981
1982 if (uobjpage->loan_count) {
1983 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1984 }
1985 KASSERT(pg == uobjpage);
1986
1987 uvm_fault_lower_direct_done:
1988 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1989 }
1990
1991 /*
1992 * uvm_fault_lower_direct_loan: resolve loaned page.
1993 *
1994 * 1. if not cow'ing, adjust h/w mapping protection.
1995 * 2. if cow'ing, break loan.
1996 */
1997
1998 static int
1999 uvm_fault_lower_direct_loan(
2000 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2001 struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage)
2002 {
2003 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2004 struct vm_page *pg;
2005 struct vm_page *uobjpage = *ruobjpage;
2006 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
2007
2008 if (!flt->cow_now) {
2009 /* read fault: cap the protection at readonly */
2010 /* cap! */
2011 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2012 } else {
2013 /* write fault: must break the loan here */
2014
2015 pg = uvm_loanbreak(uobjpage);
2016 if (pg == NULL) {
2017
2018 /*
2019 * drop ownership of page, it can't be released
2020 */
2021
2022 if (uobjpage->flags & PG_WANTED)
2023 wakeup(uobjpage);
2024 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2025 UVM_PAGE_OWN(uobjpage, NULL);
2026
2027 uvmfault_unlockall(ufi, amap, uobj, NULL);
2028 UVMHIST_LOG(maphist,
2029 " out of RAM breaking loan, waiting",
2030 0,0,0,0);
2031 uvmexp.fltnoram++;
2032 uvm_wait("flt_noram4");
2033 return ERESTART;
2034 }
2035 *rpg = pg;
2036 *ruobjpage = pg;
2037 }
2038 return 0;
2039 }
2040
2041 /*
2042 * uvm_fault_lower_promote: promote lower page.
2043 *
2044 * 1. call uvmfault_promote.
2045 * 2. fill in data.
2046 * 3. if not ZFOD, dispose old page.
2047 */
2048
2049 int
2050 uvm_fault_lower_promote(
2051 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2052 struct uvm_object *uobj, struct vm_page *uobjpage)
2053 {
2054 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2055 struct vm_anon *anon;
2056 struct vm_page *pg;
2057 int error;
2058 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2059
2060 /*
2061 * if we are going to promote the data to an anon we
2062 * allocate a blank anon here and plug it into our amap.
2063 */
2064 #if DIAGNOSTIC
2065 if (amap == NULL)
2066 panic("uvm_fault: want to promote data, but no anon");
2067 #endif
2068 error = uvmfault_promote(ufi, NULL, uobj, uobjpage,
2069 &anon, &flt->anon_spare);
2070 switch (error) {
2071 case 0:
2072 break;
2073 case ERESTART:
2074 return ERESTART;
2075 default:
2076 return error;
2077 }
2078
2079 pg = anon->an_page;
2080
2081 /*
2082 * fill in the data
2083 */
2084
2085 if (uobjpage != PGO_DONTCARE) {
2086 uvmexp.flt_prcopy++;
2087
2088 /*
2089 * promote to shared amap? make sure all sharing
2090 * procs see it
2091 */
2092
2093 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2094 pmap_page_protect(uobjpage, VM_PROT_NONE);
2095 /*
2096 * XXX: PAGE MIGHT BE WIRED!
2097 */
2098 }
2099
2100 if (uvm_pageisdevice_p(uobjpage)) {
2101 /*
2102 * XIP devices pages are never paged out, no need to
2103 * dispose.
2104 */
2105 goto uvm_fault_lower_promote_done;
2106 }
2107
2108 /*
2109 * dispose of uobjpage. it can't be PG_RELEASED
2110 * since we still hold the object lock.
2111 * drop handle to uobj as well.
2112 */
2113
2114 if (uobjpage->flags & PG_WANTED)
2115 /* still have the obj lock */
2116 wakeup(uobjpage);
2117 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2118 UVM_PAGE_OWN(uobjpage, NULL);
2119
2120 uvm_fault_lower_promote_done:
2121 mutex_exit(&uobj->vmobjlock);
2122 uobj = NULL;
2123
2124 UVMHIST_LOG(maphist,
2125 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2126 uobjpage, anon, pg, 0);
2127
2128 } else {
2129 uvmexp.flt_przero++;
2130
2131 /*
2132 * Page is zero'd and marked dirty by
2133 * uvmfault_promote().
2134 */
2135
2136 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2137 anon, pg, 0, 0);
2138 }
2139
2140 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage);
2141 }
2142
2143 /*
2144 * uvm_fault_lower_enter: enter h/w mapping of lower page.
2145 */
2146
2147 int
2148 uvm_fault_lower_enter(
2149 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2150 struct uvm_object *uobj,
2151 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2152 {
2153 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2154 int error;
2155 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2156
2157 /*
2158 * locked:
2159 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2160 * anon(if !null), pg(if anon)
2161 *
2162 * note: pg is either the uobjpage or the new page in the new anon
2163 */
2164 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2165 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2166 KASSERT(uobj == NULL || uvm_pageisdevice_p(uobjpage) ||
2167 (uobjpage->flags & PG_BUSY) != 0);
2168 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2169 KASSERT(uvm_pageisdevice_p(pg) || (pg->flags & PG_BUSY) != 0);
2170
2171 /*
2172 * all resources are present. we can now map it in and free our
2173 * resources.
2174 */
2175
2176 UVMHIST_LOG(maphist,
2177 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2178 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2179 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2180 uvm_pageisdevice_p(pg) || (pg->flags & PG_RDONLY) == 0);
2181 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2182 VM_PAGE_TO_PHYS(pg),
2183 (uvm_pageisdevice_p(pg) || pg->flags & PG_RDONLY) ?
2184 (flt->enter_prot & ~VM_PROT_WRITE) : flt->enter_prot,
2185 flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2186
2187 if (uvm_pageisdevice_p(pg)) {
2188 /* Device pages never involve paging activity. */
2189 goto uvm_fault_lower_enter_error_done;
2190 }
2191
2192 /*
2193 * No need to undo what we did; we can simply think of
2194 * this as the pmap throwing away the mapping information.
2195 *
2196 * We do, however, have to go through the ReFault path,
2197 * as the map may change while we're asleep.
2198 */
2199
2200 if (pg->flags & PG_WANTED)
2201 wakeup(pg);
2202
2203 /*
2204 * note that pg can't be PG_RELEASED since we did not drop
2205 * the object lock since the last time we checked.
2206 */
2207 KASSERT((pg->flags & PG_RELEASED) == 0);
2208
2209 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2210 UVM_PAGE_OWN(pg, NULL);
2211
2212 uvm_fault_lower_enter_error_done:
2213 uvmfault_unlockall(ufi, amap, uobj, anon);
2214 if (!uvm_reclaimable()) {
2215 UVMHIST_LOG(maphist,
2216 "<- failed. out of VM",0,0,0,0);
2217 /* XXX instrumentation */
2218 error = ENOMEM;
2219 return error;
2220 }
2221 /* XXX instrumentation */
2222 uvm_wait("flt_pmfail2");
2223 return ERESTART;
2224 }
2225
2226 if (!uvm_pageisdevice_p(pg))
2227 uvm_fault_lower_done(ufi, flt, uobj, anon, pg);
2228
2229 uvmfault_unlockall(ufi, amap, uobj, anon);
2230 pmap_update(ufi->orig_map->pmap);
2231 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2232 return 0;
2233 }
2234
2235 /*
2236 * uvm_fault_lower_done: queue lower center page.
2237 */
2238
2239 void
2240 uvm_fault_lower_done(
2241 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2242 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2243 {
2244 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2245
2246 mutex_enter(&uvm_pageqlock);
2247 if (flt->wire_paging) {
2248 uvm_pagewire(pg);
2249 if (pg->pqflags & PQ_AOBJ) {
2250
2251 /*
2252 * since the now-wired page cannot be paged out,
2253 * release its swap resources for others to use.
2254 * since an aobj page with no swap cannot be PG_CLEAN,
2255 * clear its clean flag now.
2256 */
2257
2258 KASSERT(uobj != NULL);
2259 pg->flags &= ~(PG_CLEAN);
2260 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2261 }
2262 } else {
2263 uvm_pageactivate(pg);
2264 }
2265 mutex_exit(&uvm_pageqlock);
2266
2267 if (pg->flags & PG_WANTED)
2268 wakeup(pg);
2269
2270 /*
2271 * note that pg can't be PG_RELEASED since we did not drop the object
2272 * lock since the last time we checked.
2273 */
2274 KASSERT((pg->flags & PG_RELEASED) == 0);
2275
2276 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2277 UVM_PAGE_OWN(pg, NULL);
2278 }
2279
2280
2281 /*
2282 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2283 *
2284 * => map may be read-locked by caller, but MUST NOT be write-locked.
2285 * => if map is read-locked, any operations which may cause map to
2286 * be write-locked in uvm_fault() must be taken care of by
2287 * the caller. See uvm_map_pageable().
2288 */
2289
2290 int
2291 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2292 vm_prot_t access_type, int maxprot)
2293 {
2294 vaddr_t va;
2295 int error;
2296
2297 /*
2298 * now fault it in a page at a time. if the fault fails then we have
2299 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2300 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2301 */
2302
2303 /*
2304 * XXX work around overflowing a vaddr_t. this prevents us from
2305 * wiring the last page in the address space, though.
2306 */
2307 if (start > end) {
2308 return EFAULT;
2309 }
2310
2311 for (va = start; va < end; va += PAGE_SIZE) {
2312 error = uvm_fault_internal(map, va, access_type,
2313 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2314 if (error) {
2315 if (va != start) {
2316 uvm_fault_unwire(map, start, va);
2317 }
2318 return error;
2319 }
2320 }
2321 return 0;
2322 }
2323
2324 /*
2325 * uvm_fault_unwire(): unwire range of virtual space.
2326 */
2327
2328 void
2329 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2330 {
2331 vm_map_lock_read(map);
2332 uvm_fault_unwire_locked(map, start, end);
2333 vm_map_unlock_read(map);
2334 }
2335
2336 /*
2337 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2338 *
2339 * => map must be at least read-locked.
2340 */
2341
2342 void
2343 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2344 {
2345 struct vm_map_entry *entry;
2346 pmap_t pmap = vm_map_pmap(map);
2347 vaddr_t va;
2348 paddr_t pa;
2349 struct vm_page *pg;
2350
2351 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2352
2353 /*
2354 * we assume that the area we are unwiring has actually been wired
2355 * in the first place. this means that we should be able to extract
2356 * the PAs from the pmap. we also lock out the page daemon so that
2357 * we can call uvm_pageunwire.
2358 */
2359
2360 mutex_enter(&uvm_pageqlock);
2361
2362 /*
2363 * find the beginning map entry for the region.
2364 */
2365
2366 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2367 if (uvm_map_lookup_entry(map, start, &entry) == false)
2368 panic("uvm_fault_unwire_locked: address not in map");
2369
2370 for (va = start; va < end; va += PAGE_SIZE) {
2371 if (pmap_extract(pmap, va, &pa) == false)
2372 continue;
2373
2374 /*
2375 * find the map entry for the current address.
2376 */
2377
2378 KASSERT(va >= entry->start);
2379 while (va >= entry->end) {
2380 KASSERT(entry->next != &map->header &&
2381 entry->next->start <= entry->end);
2382 entry = entry->next;
2383 }
2384
2385 /*
2386 * if the entry is no longer wired, tell the pmap.
2387 */
2388
2389 if (VM_MAPENT_ISWIRED(entry) == 0)
2390 pmap_unwire(pmap, va);
2391
2392 pg = PHYS_TO_VM_PAGE(pa);
2393 if (pg)
2394 uvm_pageunwire(pg);
2395 }
2396
2397 mutex_exit(&uvm_pageqlock);
2398 }
2399