uvm_fault.c revision 1.167 1 /* $NetBSD: uvm_fault.c,v 1.167 2010/02/24 04:18:09 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.167 2010/02/24 04:18:09 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0; lcv < n; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 struct uvm_faultctx {
696 vm_prot_t access_type;
697 vm_prot_t enter_prot;
698 vaddr_t startva;
699 int npages;
700 int centeridx;
701 struct vm_anon *anon_spare;
702 bool wire_mapping;
703 bool narrow;
704 bool wire_paging;
705 bool maxprot;
706 bool cow_now;
707 };
708
709 static inline int uvm_fault_check(
710 struct uvm_faultinfo *, struct uvm_faultctx *,
711 struct vm_anon ***, struct vm_page ***);
712
713 static int uvm_fault_upper(
714 struct uvm_faultinfo *, struct uvm_faultctx *,
715 struct vm_anon **);
716 static inline int uvm_fault_upper_lookup(
717 struct uvm_faultinfo *, struct uvm_faultctx *,
718 struct vm_anon **, struct vm_page **);
719 static inline void uvm_fault_upper_neighbor(
720 struct uvm_faultinfo *, struct uvm_faultctx *,
721 vaddr_t, struct vm_page *, bool);
722 static inline int uvm_fault_upper_loan(
723 struct uvm_faultinfo *, struct uvm_faultctx *,
724 struct vm_anon *, struct uvm_object **);
725 static inline int uvm_fault_upper_promote(
726 struct uvm_faultinfo *, struct uvm_faultctx *,
727 struct uvm_object *, struct vm_anon *);
728 static inline int uvm_fault_upper_direct(
729 struct uvm_faultinfo *, struct uvm_faultctx *,
730 struct uvm_object *, struct vm_anon *);
731 static int uvm_fault_upper_enter(
732 struct uvm_faultinfo *, struct uvm_faultctx *,
733 struct uvm_object *, struct vm_anon *,
734 struct vm_page *, struct vm_anon *);
735 static inline int uvm_fault_upper_done(
736 struct uvm_faultinfo *, struct uvm_faultctx *,
737 struct uvm_object *, struct vm_anon *,
738 struct vm_page *, struct vm_anon *);
739
740 static int uvm_fault_lower(
741 struct uvm_faultinfo *, struct uvm_faultctx *,
742 struct vm_page **);
743 static inline int uvm_fault_lower_lookup(
744 struct uvm_faultinfo *, struct uvm_faultctx *,
745 struct vm_page **);
746 static inline void uvm_fault_lower_neighbor(
747 struct uvm_faultinfo *, struct uvm_faultctx *,
748 vaddr_t, struct vm_page *, bool);
749 static inline int uvm_fault_lower1(
750 struct uvm_faultinfo *, struct uvm_faultctx *,
751 struct uvm_object *, struct vm_page *);
752 static inline int uvm_fault_lower_io(
753 struct uvm_faultinfo *, struct uvm_faultctx *,
754 struct uvm_object **, struct vm_page **);
755 static inline int uvm_fault_lower_direct(
756 struct uvm_faultinfo *, struct uvm_faultctx *,
757 struct uvm_object *, struct vm_page *);
758 static inline int uvm_fault_lower_direct_loan(
759 struct uvm_faultinfo *, struct uvm_faultctx *,
760 struct uvm_object *, struct vm_page **,
761 struct vm_page **);
762 static inline int uvm_fault_lower_promote(
763 struct uvm_faultinfo *, struct uvm_faultctx *,
764 struct uvm_object *, struct vm_page *);
765 static int uvm_fault_lower_enter(
766 struct uvm_faultinfo *, struct uvm_faultctx *,
767 struct uvm_object *,
768 struct vm_anon *, struct vm_page *,
769 struct vm_page *);
770 static inline int uvm_fault_lower_done(
771 struct uvm_faultinfo *, struct uvm_faultctx *,
772 struct uvm_object *,
773 struct vm_anon *, struct vm_page *);
774
775 int
776 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
777 vm_prot_t access_type, int fault_flag)
778 {
779 struct uvm_faultinfo ufi;
780 struct uvm_faultctx flt = {
781 .access_type = access_type,
782
783 /* don't look for neighborhood * pages on "wire" fault */
784 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
785
786 /* "wire" fault causes wiring of both mapping and paging */
787 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
788 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
789
790 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
791 };
792 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
793 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
794 int error;
795 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
796
797 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
798 orig_map, vaddr, access_type, fault_flag);
799
800 uvmexp.faults++; /* XXX: locking? */
801
802 /*
803 * init the IN parameters in the ufi
804 */
805
806 ufi.orig_map = orig_map;
807 ufi.orig_rvaddr = trunc_page(vaddr);
808 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
809
810 error = ERESTART;
811 while (error == ERESTART) {
812 anons = anons_store;
813 pages = pages_store;
814
815 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
816 if (error != 0)
817 continue;
818
819 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
820 if (error != 0)
821 continue;
822
823 if (pages[flt.centeridx] == PGO_DONTCARE)
824 error = uvm_fault_upper(&ufi, &flt, anons);
825 else {
826 struct uvm_object * const uobj = ufi.entry->object.uvm_obj;
827
828 if (uobj && uobj->pgops->pgo_fault != NULL) {
829 mutex_enter(&uobj->vmobjlock);
830 /* locked: maps(read), amap (if there), uobj */
831 error = uobj->pgops->pgo_fault(&ufi, flt.startva, pages, flt.npages,
832 flt.centeridx, flt.access_type, PGO_LOCKED|PGO_SYNCIO);
833
834 /* locked: nothing, pgo_fault has unlocked everything */
835
836 /*
837 * object fault routine responsible for pmap_update().
838 */
839 } else {
840 error = uvm_fault_lower(&ufi, &flt, pages);
841 }
842 }
843 }
844
845 if (flt.anon_spare != NULL) {
846 flt.anon_spare->an_ref--;
847 uvm_anfree(flt.anon_spare);
848 }
849 return error;
850 }
851
852 static int
853 uvm_fault_check(
854 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
855 struct vm_anon ***ranons, struct vm_page ***rpages)
856 {
857 struct vm_amap *amap;
858 struct uvm_object *uobj;
859 vm_prot_t check_prot;
860 int nback, nforw;
861 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
862
863 /*
864 * lookup and lock the maps
865 */
866
867 if (uvmfault_lookup(ufi, false) == false) {
868 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr, 0,0,0);
869 return EFAULT;
870 }
871 /* locked: maps(read) */
872
873 #ifdef DIAGNOSTIC
874 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
875 printf("Page fault on non-pageable map:\n");
876 printf("ufi->map = %p\n", ufi->map);
877 printf("ufi->orig_map = %p\n", ufi->orig_map);
878 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
879 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
880 }
881 #endif
882
883 /*
884 * check protection
885 */
886
887 check_prot = flt->maxprot ?
888 ufi->entry->max_protection : ufi->entry->protection;
889 if ((check_prot & flt->access_type) != flt->access_type) {
890 UVMHIST_LOG(maphist,
891 "<- protection failure (prot=0x%x, access=0x%x)",
892 ufi->entry->protection, flt->access_type, 0, 0);
893 uvmfault_unlockmaps(ufi, false);
894 return EACCES;
895 }
896
897 /*
898 * "enter_prot" is the protection we want to enter the page in at.
899 * for certain pages (e.g. copy-on-write pages) this protection can
900 * be more strict than ufi->entry->protection. "wired" means either
901 * the entry is wired or we are fault-wiring the pg.
902 */
903
904 flt->enter_prot = ufi->entry->protection;
905 if (VM_MAPENT_ISWIRED(ufi->entry))
906 flt->wire_mapping = true;
907
908 if (flt->wire_mapping) {
909 flt->access_type = flt->enter_prot; /* full access for wired */
910 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
911 } else {
912 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
913 }
914
915 /*
916 * handle "needs_copy" case. if we need to copy the amap we will
917 * have to drop our readlock and relock it with a write lock. (we
918 * need a write lock to change anything in a map entry [e.g.
919 * needs_copy]).
920 */
921
922 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
923 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
924 KASSERT(!flt->maxprot);
925 /* need to clear */
926 UVMHIST_LOG(maphist,
927 " need to clear needs_copy and refault",0,0,0,0);
928 uvmfault_unlockmaps(ufi, false);
929 uvmfault_amapcopy(ufi);
930 uvmexp.fltamcopy++;
931 return ERESTART;
932
933 } else {
934
935 /*
936 * ensure that we pmap_enter page R/O since
937 * needs_copy is still true
938 */
939
940 flt->enter_prot &= ~VM_PROT_WRITE;
941 }
942 }
943
944 /*
945 * identify the players
946 */
947
948 amap = ufi->entry->aref.ar_amap; /* upper layer */
949 uobj = ufi->entry->object.uvm_obj; /* lower layer */
950
951 /*
952 * check for a case 0 fault. if nothing backing the entry then
953 * error now.
954 */
955
956 if (amap == NULL && uobj == NULL) {
957 uvmfault_unlockmaps(ufi, false);
958 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
959 return EFAULT;
960 }
961
962 /*
963 * establish range of interest based on advice from mapper
964 * and then clip to fit map entry. note that we only want
965 * to do this the first time through the fault. if we
966 * ReFault we will disable this by setting "narrow" to true.
967 */
968
969 if (flt->narrow == false) {
970
971 /* wide fault (!narrow) */
972 KASSERT(uvmadvice[ufi->entry->advice].advice ==
973 ufi->entry->advice);
974 nback = MIN(uvmadvice[ufi->entry->advice].nback,
975 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
976 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
977 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
978 ((ufi->entry->end - ufi->orig_rvaddr) >>
979 PAGE_SHIFT) - 1);
980 /*
981 * note: "-1" because we don't want to count the
982 * faulting page as forw
983 */
984 flt->npages = nback + nforw + 1;
985 flt->centeridx = nback;
986
987 flt->narrow = true; /* ensure only once per-fault */
988
989 } else {
990
991 /* narrow fault! */
992 nback = nforw = 0;
993 flt->startva = ufi->orig_rvaddr;
994 flt->npages = 1;
995 flt->centeridx = 0;
996
997 }
998 /* offset from entry's start to pgs' start */
999 const voff_t eoff = flt->startva - ufi->entry->start;
1000
1001 /* locked: maps(read) */
1002 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
1003 flt->narrow, nback, nforw, flt->startva);
1004 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1005 amap, uobj, 0);
1006
1007 /*
1008 * if we've got an amap, lock it and extract current anons.
1009 */
1010
1011 if (amap) {
1012 amap_lock(amap);
1013 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1014 } else {
1015 *ranons = NULL; /* to be safe */
1016 }
1017
1018 /* locked: maps(read), amap(if there) */
1019 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1020
1021 /*
1022 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1023 * now and then forget about them (for the rest of the fault).
1024 */
1025
1026 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1027
1028 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1029 0,0,0,0);
1030 /* flush back-page anons? */
1031 if (amap)
1032 uvmfault_anonflush(*ranons, nback);
1033
1034 /* flush object? */
1035 if (uobj) {
1036 voff_t uoff;
1037
1038 uoff = ufi->entry->offset + eoff;
1039 mutex_enter(&uobj->vmobjlock);
1040 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1041 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1042 }
1043
1044 /* now forget about the backpages */
1045 if (amap)
1046 *ranons += nback;
1047 #if 0
1048 /* XXXUEBS */
1049 if (uobj)
1050 *rpages += nback;
1051 #endif
1052 flt->startva += (nback << PAGE_SHIFT);
1053 flt->npages -= nback;
1054 flt->centeridx = 0;
1055 }
1056 /*
1057 * => startva is fixed
1058 * => npages is fixed
1059 */
1060
1061 return 0;
1062 }
1063
1064 static int
1065 uvm_fault_upper_lookup(
1066 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1067 struct vm_anon **anons, struct vm_page **pages)
1068 {
1069 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1070 int lcv;
1071 vaddr_t currva;
1072 bool shadowed;
1073 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1074
1075 /* locked: maps(read), amap(if there) */
1076 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1077
1078 /*
1079 * map in the backpages and frontpages we found in the amap in hopes
1080 * of preventing future faults. we also init the pages[] array as
1081 * we go.
1082 */
1083
1084 currva = flt->startva;
1085 shadowed = false;
1086 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1087 /*
1088 * dont play with VAs that are already mapped
1089 * except for center)
1090 */
1091 if (lcv != flt->centeridx &&
1092 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1093 pages[lcv] = PGO_DONTCARE;
1094 continue;
1095 }
1096
1097 /*
1098 * unmapped or center page. check if any anon at this level.
1099 */
1100 if (amap == NULL || anons[lcv] == NULL) {
1101 pages[lcv] = NULL;
1102 continue;
1103 }
1104
1105 /*
1106 * check for present page and map if possible. re-activate it.
1107 */
1108
1109 pages[lcv] = PGO_DONTCARE;
1110 if (lcv == flt->centeridx) { /* save center for later! */
1111 shadowed = true;
1112 } else {
1113 struct vm_anon *anon = anons[lcv];
1114
1115 mutex_enter(&anon->an_lock);
1116 uvm_fault_upper_neighbor(ufi, flt, currva,
1117 anon->an_page, anon->an_ref > 1);
1118 mutex_exit(&anon->an_lock);
1119 }
1120 }
1121
1122 /* locked: maps(read), amap(if there) */
1123 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1124 /* (shadowed == true) if there is an anon at the faulting address */
1125 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1126 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1127
1128 /*
1129 * note that if we are really short of RAM we could sleep in the above
1130 * call to pmap_enter with everything locked. bad?
1131 *
1132 * XXX Actually, that is bad; pmap_enter() should just fail in that
1133 * XXX case. --thorpej
1134 */
1135
1136 return 0;
1137 }
1138
1139 static void
1140 uvm_fault_upper_neighbor(
1141 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1142 vaddr_t currva, struct vm_page *pg, bool readonly)
1143 {
1144 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1145
1146 /* ignore loaned and busy pages */
1147 if (pg == NULL || pg->loan_count != 0 ||
1148 (pg->flags & PG_BUSY) != 0)
1149 goto uvm_fault_upper_lookup_enter_done;
1150
1151 mutex_enter(&uvm_pageqlock);
1152 uvm_pageenqueue(pg);
1153 mutex_exit(&uvm_pageqlock);
1154 UVMHIST_LOG(maphist,
1155 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1156 ufi->orig_map->pmap, currva, pg, 0);
1157 uvmexp.fltnamap++;
1158
1159 /*
1160 * Since this page isn't the page that's actually faulting,
1161 * ignore pmap_enter() failures; it's not critical that we
1162 * enter these right now.
1163 */
1164
1165 (void) pmap_enter(ufi->orig_map->pmap, currva,
1166 VM_PAGE_TO_PHYS(pg),
1167 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1168 flt->enter_prot,
1169 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1170
1171 uvm_fault_upper_lookup_enter_done:
1172 pmap_update(ufi->orig_map->pmap);
1173 }
1174
1175 static int
1176 uvm_fault_lower(
1177 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1178 struct vm_page **pages)
1179 {
1180 #ifdef DIAGNOSTIC
1181 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1182 #endif
1183 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1184 struct vm_page *uobjpage;
1185
1186 /*
1187 * if the desired page is not shadowed by the amap and we have a
1188 * backing object, then we check to see if the backing object would
1189 * prefer to handle the fault itself (rather than letting us do it
1190 * with the usual pgo_get hook). the backing object signals this by
1191 * providing a pgo_fault routine.
1192 */
1193
1194 /*
1195 * now, if the desired page is not shadowed by the amap and we have
1196 * a backing object that does not have a special fault routine, then
1197 * we ask (with pgo_get) the object for resident pages that we care
1198 * about and attempt to map them in. we do not let pgo_get block
1199 * (PGO_LOCKED).
1200 */
1201
1202 if (uobj == NULL) {
1203 /* zero fill; don't care neighbor pages */
1204 uobjpage = NULL;
1205 } else {
1206 uvm_fault_lower_lookup(ufi, flt, pages);
1207 uobjpage = pages[flt->centeridx];
1208 }
1209
1210 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1211 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1212 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1213 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1214
1215 /*
1216 * note that at this point we are done with any front or back pages.
1217 * we are now going to focus on the center page (i.e. the one we've
1218 * faulted on). if we have faulted on the upper (anon) layer
1219 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1220 * not touched it yet). if we have faulted on the bottom (uobj)
1221 * layer [i.e. case 2] and the page was both present and available,
1222 * then we've got a pointer to it as "uobjpage" and we've already
1223 * made it BUSY.
1224 */
1225
1226 /*
1227 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1228 */
1229
1230 /*
1231 * redirect case 2: if we are not shadowed, go to case 2.
1232 */
1233
1234 return uvm_fault_lower1(ufi, flt, uobj, uobjpage);
1235 }
1236
1237 static int
1238 uvm_fault_lower_lookup(
1239 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1240 struct vm_page **pages)
1241 {
1242 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1243 int lcv, gotpages;
1244 vaddr_t currva;
1245 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1246
1247 mutex_enter(&uobj->vmobjlock);
1248 /* locked (!shadowed): maps(read), amap (if there), uobj */
1249 /*
1250 * the following call to pgo_get does _not_ change locking state
1251 */
1252
1253 uvmexp.fltlget++;
1254 gotpages = flt->npages;
1255 (void) uobj->pgops->pgo_get(uobj,
1256 ufi->entry->offset + flt->startva - ufi->entry->start,
1257 pages, &gotpages, flt->centeridx,
1258 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1259
1260 /*
1261 * check for pages to map, if we got any
1262 */
1263
1264 if (gotpages == 0) {
1265 pages[flt->centeridx] = NULL;
1266 return 0;
1267 }
1268
1269 currva = flt->startva;
1270 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1271 struct vm_page *curpg;
1272
1273 curpg = pages[lcv];
1274 if (curpg == NULL || curpg == PGO_DONTCARE) {
1275 continue;
1276 }
1277 KASSERT(curpg->uobject == uobj);
1278
1279 /*
1280 * if center page is resident and not PG_BUSY|PG_RELEASED
1281 * then pgo_get made it PG_BUSY for us and gave us a handle
1282 * to it. remember this page as "uobjpage." (for later use).
1283 */
1284
1285 if (lcv == flt->centeridx) {
1286 UVMHIST_LOG(maphist, " got uobjpage "
1287 "(0x%x) with locked get",
1288 curpg, 0,0,0);
1289 } else {
1290 bool readonly = (curpg->flags & PG_RDONLY)
1291 || (curpg->loan_count > 0)
1292 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1293
1294 uvm_fault_lower_neighbor(ufi, flt,
1295 currva, curpg, readonly);
1296 }
1297 }
1298 pmap_update(ufi->orig_map->pmap);
1299 return 0;
1300 }
1301
1302 static void
1303 uvm_fault_lower_neighbor(
1304 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1305 vaddr_t currva, struct vm_page *pg, bool readonly)
1306 {
1307 UVMHIST_FUNC("uvm_fault_lower_neighor"); UVMHIST_CALLED(maphist);
1308
1309 /*
1310 * calling pgo_get with PGO_LOCKED returns us pages which
1311 * are neither busy nor released, so we don't need to check
1312 * for this. we can just directly enter the pages.
1313 */
1314
1315 mutex_enter(&uvm_pageqlock);
1316 uvm_pageenqueue(pg);
1317 mutex_exit(&uvm_pageqlock);
1318 UVMHIST_LOG(maphist,
1319 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1320 ufi->orig_map->pmap, currva, pg, 0);
1321 uvmexp.fltnomap++;
1322
1323 /*
1324 * Since this page isn't the page that's actually faulting,
1325 * ignore pmap_enter() failures; it's not critical that we
1326 * enter these right now.
1327 */
1328 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1329 KASSERT((pg->flags & PG_RELEASED) == 0);
1330 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
1331 (pg->flags & PG_CLEAN) != 0);
1332
1333 (void) pmap_enter(ufi->orig_map->pmap, currva,
1334 VM_PAGE_TO_PHYS(pg),
1335 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1336 flt->enter_prot & MASK(ufi->entry),
1337 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1338
1339 /*
1340 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1341 * held the lock the whole time we've had the handle.
1342 */
1343 KASSERT((pg->flags & PG_WANTED) == 0);
1344 KASSERT((pg->flags & PG_RELEASED) == 0);
1345
1346 pg->flags &= ~(PG_BUSY);
1347 UVM_PAGE_OWN(pg, NULL);
1348 }
1349
1350 static int
1351 uvm_fault_upper(
1352 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1353 struct vm_anon **anons)
1354 {
1355 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1356 struct vm_anon * const anon = anons[flt->centeridx];
1357 struct uvm_object *uobj;
1358 int error;
1359 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1360
1361 /* locked: maps(read), amap */
1362 KASSERT(mutex_owned(&amap->am_l));
1363
1364 /*
1365 * handle case 1: fault on an anon in our amap
1366 */
1367
1368 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1369 mutex_enter(&anon->an_lock);
1370
1371 /* locked: maps(read), amap, anon */
1372 KASSERT(mutex_owned(&amap->am_l));
1373 KASSERT(mutex_owned(&anon->an_lock));
1374
1375 /*
1376 * no matter if we have case 1A or case 1B we are going to need to
1377 * have the anon's memory resident. ensure that now.
1378 */
1379
1380 /*
1381 * let uvmfault_anonget do the dirty work.
1382 * if it fails (!OK) it will unlock everything for us.
1383 * if it succeeds, locks are still valid and locked.
1384 * also, if it is OK, then the anon's page is on the queues.
1385 * if the page is on loan from a uvm_object, then anonget will
1386 * lock that object for us if it does not fail.
1387 */
1388
1389 error = uvmfault_anonget(ufi, amap, anon);
1390 switch (error) {
1391 case 0:
1392 break;
1393
1394 case ERESTART:
1395 return ERESTART;
1396
1397 case EAGAIN:
1398 kpause("fltagain1", false, hz/2, NULL);
1399 return ERESTART;
1400
1401 default:
1402 return error;
1403 }
1404
1405 /*
1406 * uobj is non null if the page is on loan from an object (i.e. uobj)
1407 */
1408
1409 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1410
1411 /* locked: maps(read), amap, anon, uobj(if one) */
1412 KASSERT(mutex_owned(&amap->am_l));
1413 KASSERT(mutex_owned(&anon->an_lock));
1414 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1415
1416 /*
1417 * special handling for loaned pages
1418 */
1419
1420 if (anon->an_page->loan_count) {
1421 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1422 if (error != 0)
1423 return error;
1424 }
1425
1426 /*
1427 * if we are case 1B then we will need to allocate a new blank
1428 * anon to transfer the data into. note that we have a lock
1429 * on anon, so no one can busy or release the page until we are done.
1430 * also note that the ref count can't drop to zero here because
1431 * it is > 1 and we are only dropping one ref.
1432 *
1433 * in the (hopefully very rare) case that we are out of RAM we
1434 * will unlock, wait for more RAM, and refault.
1435 *
1436 * if we are out of anon VM we kill the process (XXX: could wait?).
1437 */
1438
1439 if (flt->cow_now && anon->an_ref > 1) {
1440 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1441 } else {
1442 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1443 }
1444 return error;
1445 }
1446
1447 static int
1448 uvm_fault_upper_loan(
1449 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1450 struct vm_anon *anon, struct uvm_object **ruobj)
1451 {
1452 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1453 int error = 0;
1454
1455 if (!flt->cow_now) {
1456
1457 /*
1458 * for read faults on loaned pages we just cap the
1459 * protection at read-only.
1460 */
1461
1462 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1463
1464 } else {
1465 /*
1466 * note that we can't allow writes into a loaned page!
1467 *
1468 * if we have a write fault on a loaned page in an
1469 * anon then we need to look at the anon's ref count.
1470 * if it is greater than one then we are going to do
1471 * a normal copy-on-write fault into a new anon (this
1472 * is not a problem). however, if the reference count
1473 * is one (a case where we would normally allow a
1474 * write directly to the page) then we need to kill
1475 * the loan before we continue.
1476 */
1477
1478 /* >1 case is already ok */
1479 if (anon->an_ref == 1) {
1480 error = uvm_loanbreak_anon(anon, *ruobj);
1481 if (error != 0) {
1482 uvmfault_unlockall(ufi, amap, *ruobj, anon);
1483 uvm_wait("flt_noram2");
1484 return ERESTART;
1485 }
1486 /* if we were a loan reciever uobj is gone */
1487 if (*ruobj)
1488 *ruobj = NULL;
1489 }
1490 }
1491 return error;
1492 }
1493
1494 static int
1495 uvm_fault_upper_promote(
1496 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1497 struct uvm_object *uobj, struct vm_anon *anon)
1498 {
1499 struct vm_anon * const oanon = anon;
1500 struct vm_page *pg;
1501 int error;
1502 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1503
1504 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1505 uvmexp.flt_acow++;
1506
1507 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1508 &anon, &flt->anon_spare);
1509 switch (error) {
1510 case 0:
1511 break;
1512 case ERESTART:
1513 return ERESTART;
1514 default:
1515 return error;
1516 }
1517
1518 pg = anon->an_page;
1519 mutex_enter(&uvm_pageqlock);
1520 uvm_pageactivate(pg);
1521 mutex_exit(&uvm_pageqlock);
1522 pg->flags &= ~(PG_BUSY|PG_FAKE);
1523 UVM_PAGE_OWN(pg, NULL);
1524
1525 /* deref: can not drop to zero here by defn! */
1526 oanon->an_ref--;
1527
1528 /*
1529 * note: oanon is still locked, as is the new anon. we
1530 * need to check for this later when we unlock oanon; if
1531 * oanon != anon, we'll have to unlock anon, too.
1532 */
1533
1534 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1535 }
1536
1537 static int
1538 uvm_fault_upper_direct(
1539 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1540 struct uvm_object *uobj, struct vm_anon *anon)
1541 {
1542 struct vm_anon * const oanon = anon;
1543 struct vm_page *pg;
1544
1545 uvmexp.flt_anon++;
1546 pg = anon->an_page;
1547 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1548 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1549
1550 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1551 }
1552
1553 static int
1554 uvm_fault_upper_enter(
1555 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1556 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1557 struct vm_anon *oanon)
1558 {
1559 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1560 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1561
1562 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1563 KASSERT(mutex_owned(&amap->am_l));
1564 KASSERT(mutex_owned(&anon->an_lock));
1565 KASSERT(mutex_owned(&oanon->an_lock));
1566
1567 /*
1568 * now map the page in.
1569 */
1570
1571 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1572 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
1573 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1574 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1575 != 0) {
1576
1577 /*
1578 * No need to undo what we did; we can simply think of
1579 * this as the pmap throwing away the mapping information.
1580 *
1581 * We do, however, have to go through the ReFault path,
1582 * as the map may change while we're asleep.
1583 */
1584
1585 if (anon != oanon)
1586 mutex_exit(&anon->an_lock);
1587 uvmfault_unlockall(ufi, amap, uobj, oanon);
1588 if (!uvm_reclaimable()) {
1589 UVMHIST_LOG(maphist,
1590 "<- failed. out of VM",0,0,0,0);
1591 /* XXX instrumentation */
1592 return ENOMEM;
1593 }
1594 /* XXX instrumentation */
1595 uvm_wait("flt_pmfail1");
1596 return ERESTART;
1597 }
1598
1599 return uvm_fault_upper_done(ufi, flt, uobj, anon, pg, oanon);
1600 }
1601
1602 static int
1603 uvm_fault_upper_done(
1604 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1605 struct uvm_object *uobj, struct vm_anon *anon,
1606 struct vm_page *pg, struct vm_anon *oanon)
1607 {
1608 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1609
1610 /*
1611 * ... update the page queues.
1612 */
1613
1614 mutex_enter(&uvm_pageqlock);
1615 if (flt->wire_paging) {
1616 uvm_pagewire(pg);
1617
1618 /*
1619 * since the now-wired page cannot be paged out,
1620 * release its swap resources for others to use.
1621 * since an anon with no swap cannot be PG_CLEAN,
1622 * clear its clean flag now.
1623 */
1624
1625 pg->flags &= ~(PG_CLEAN);
1626 uvm_anon_dropswap(anon);
1627 } else {
1628 uvm_pageactivate(pg);
1629 }
1630 mutex_exit(&uvm_pageqlock);
1631
1632 /*
1633 * done case 1! finish up by unlocking everything and returning success
1634 */
1635
1636 if (anon != oanon)
1637 mutex_exit(&anon->an_lock);
1638 uvmfault_unlockall(ufi, amap, uobj, oanon);
1639 pmap_update(ufi->orig_map->pmap);
1640 return 0;
1641 }
1642
1643 static int
1644 uvm_fault_lower1(
1645 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1646 struct uvm_object *uobj, struct vm_page *uobjpage)
1647 {
1648 #ifdef DIAGNOSTIC
1649 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1650 #endif
1651 bool promote;
1652 int error;
1653 UVMHIST_FUNC("uvm_fault_lower1"); UVMHIST_CALLED(maphist);
1654
1655 /*
1656 * handle case 2: faulting on backing object or zero fill
1657 */
1658
1659 /*
1660 * locked:
1661 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1662 */
1663 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1664 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1665 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1666
1667 /*
1668 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1669 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1670 * have a backing object, check and see if we are going to promote
1671 * the data up to an anon during the fault.
1672 */
1673
1674 if (uobj == NULL) {
1675 uobjpage = PGO_DONTCARE;
1676 promote = true; /* always need anon here */
1677 } else {
1678 KASSERT(uobjpage != PGO_DONTCARE);
1679 promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1680 }
1681 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1682 promote, (uobj == NULL), 0,0);
1683
1684 /*
1685 * if uobjpage is not null then we do not need to do I/O to get the
1686 * uobjpage.
1687 *
1688 * if uobjpage is null, then we need to unlock and ask the pager to
1689 * get the data for us. once we have the data, we need to reverify
1690 * the state the world. we are currently not holding any resources.
1691 */
1692
1693 if (uobjpage) {
1694 /* update rusage counters */
1695 curlwp->l_ru.ru_minflt++;
1696 } else {
1697 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1698 if (error != 0)
1699 return error;
1700 }
1701
1702 /*
1703 * locked:
1704 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1705 */
1706 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1707 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1708 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1709
1710 /*
1711 * notes:
1712 * - at this point uobjpage can not be NULL
1713 * - at this point uobjpage can not be PG_RELEASED (since we checked
1714 * for it above)
1715 * - at this point uobjpage could be PG_WANTED (handle later)
1716 */
1717
1718 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1719 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1720 (uobjpage->flags & PG_CLEAN) != 0);
1721
1722 if (promote == false) {
1723 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1724 } else {
1725 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1726 }
1727 return error;
1728 }
1729
1730 static int
1731 uvm_fault_lower_io(
1732 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1733 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1734 {
1735 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1736 struct uvm_object *uobj = *ruobj;
1737 struct vm_page *pg;
1738 bool locked;
1739 int gotpages;
1740 int error;
1741 voff_t uoff;
1742 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1743
1744 /* update rusage counters */
1745 curlwp->l_ru.ru_majflt++;
1746
1747 /* locked: maps(read), amap(if there), uobj */
1748 uvmfault_unlockall(ufi, amap, NULL, NULL);
1749 /* locked: uobj */
1750
1751 uvmexp.fltget++;
1752 gotpages = 1;
1753 pg = NULL;
1754 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1755 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1756 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1757 PGO_SYNCIO);
1758 /* locked: pg(if no error) */
1759
1760 /*
1761 * recover from I/O
1762 */
1763
1764 if (error) {
1765 if (error == EAGAIN) {
1766 UVMHIST_LOG(maphist,
1767 " pgo_get says TRY AGAIN!",0,0,0,0);
1768 kpause("fltagain2", false, hz/2, NULL);
1769 return ERESTART;
1770 }
1771
1772 #if 0
1773 KASSERT(error != ERESTART);
1774 #else
1775 /* XXXUEBS don't re-fault? */
1776 if (error == ERESTART)
1777 error = EIO;
1778 #endif
1779
1780 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1781 error, 0,0,0);
1782 return error;
1783 }
1784
1785 /* locked: pg */
1786
1787 KASSERT((pg->flags & PG_BUSY) != 0);
1788
1789 mutex_enter(&uvm_pageqlock);
1790 uvm_pageactivate(pg);
1791 mutex_exit(&uvm_pageqlock);
1792
1793 /*
1794 * re-verify the state of the world by first trying to relock
1795 * the maps. always relock the object.
1796 */
1797
1798 locked = uvmfault_relock(ufi);
1799 if (locked && amap)
1800 amap_lock(amap);
1801
1802 /* might be changed */
1803 uobj = pg->uobject;
1804
1805 mutex_enter(&uobj->vmobjlock);
1806
1807 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1808 /* locked(!locked): uobj, pg */
1809
1810 /*
1811 * verify that the page has not be released and re-verify
1812 * that amap slot is still free. if there is a problem,
1813 * we unlock and clean up.
1814 */
1815
1816 if ((pg->flags & PG_RELEASED) != 0 ||
1817 (locked && amap && amap_lookup(&ufi->entry->aref,
1818 ufi->orig_rvaddr - ufi->entry->start))) {
1819 if (locked)
1820 uvmfault_unlockall(ufi, amap, NULL, NULL);
1821 locked = false;
1822 }
1823
1824 /*
1825 * didn't get the lock? release the page and retry.
1826 */
1827
1828 if (locked == false) {
1829 UVMHIST_LOG(maphist,
1830 " wasn't able to relock after fault: retry",
1831 0,0,0,0);
1832 if (pg->flags & PG_WANTED) {
1833 wakeup(pg);
1834 }
1835 if (pg->flags & PG_RELEASED) {
1836 uvmexp.fltpgrele++;
1837 uvm_pagefree(pg);
1838 mutex_exit(&uobj->vmobjlock);
1839 return ERESTART;
1840 }
1841 pg->flags &= ~(PG_BUSY|PG_WANTED);
1842 UVM_PAGE_OWN(pg, NULL);
1843 mutex_exit(&uobj->vmobjlock);
1844 return ERESTART;
1845 }
1846
1847 /*
1848 * we have the data in pg which is busy and
1849 * not released. we are holding object lock (so the page
1850 * can't be released on us).
1851 */
1852
1853 /* locked: maps(read), amap(if !null), uobj, pg */
1854
1855 *ruobj = uobj;
1856 *ruobjpage = pg;
1857 return 0;
1858 }
1859
1860 int
1861 uvm_fault_lower_direct(
1862 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1863 struct uvm_object *uobj, struct vm_page *uobjpage)
1864 {
1865 struct vm_page *pg;
1866
1867 /*
1868 * we are not promoting. if the mapping is COW ensure that we
1869 * don't give more access than we should (e.g. when doing a read
1870 * fault on a COPYONWRITE mapping we want to map the COW page in
1871 * R/O even though the entry protection could be R/W).
1872 *
1873 * set "pg" to the page we want to map in (uobjpage, usually)
1874 */
1875
1876 uvmexp.flt_obj++;
1877 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1878 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1879 flt->enter_prot &= ~VM_PROT_WRITE;
1880 pg = uobjpage; /* map in the actual object */
1881
1882 KASSERT(uobjpage != PGO_DONTCARE);
1883
1884 /*
1885 * we are faulting directly on the page. be careful
1886 * about writing to loaned pages...
1887 */
1888
1889 if (uobjpage->loan_count) {
1890 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1891 }
1892 KASSERT(pg == uobjpage);
1893
1894 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1895 }
1896
1897 static int
1898 uvm_fault_lower_direct_loan(
1899 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1900 struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage)
1901 {
1902 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1903 struct vm_page *pg;
1904 struct vm_page *uobjpage = *ruobjpage;
1905 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
1906
1907 if (!flt->cow_now) {
1908 /* read fault: cap the protection at readonly */
1909 /* cap! */
1910 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1911 } else {
1912 /* write fault: must break the loan here */
1913
1914 pg = uvm_loanbreak(uobjpage);
1915 if (pg == NULL) {
1916
1917 /*
1918 * drop ownership of page, it can't be released
1919 */
1920
1921 if (uobjpage->flags & PG_WANTED)
1922 wakeup(uobjpage);
1923 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1924 UVM_PAGE_OWN(uobjpage, NULL);
1925
1926 uvmfault_unlockall(ufi, amap, uobj, NULL);
1927 UVMHIST_LOG(maphist,
1928 " out of RAM breaking loan, waiting",
1929 0,0,0,0);
1930 uvmexp.fltnoram++;
1931 uvm_wait("flt_noram4");
1932 return ERESTART;
1933 }
1934 *rpg = pg;
1935 *ruobjpage = pg;
1936 }
1937 return 0;
1938 }
1939
1940 int
1941 uvm_fault_lower_promote(
1942 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1943 struct uvm_object *uobj, struct vm_page *uobjpage)
1944 {
1945 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1946 struct vm_anon *anon;
1947 struct vm_page *pg;
1948 int error;
1949 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
1950
1951 /*
1952 * if we are going to promote the data to an anon we
1953 * allocate a blank anon here and plug it into our amap.
1954 */
1955 #if DIAGNOSTIC
1956 if (amap == NULL)
1957 panic("uvm_fault: want to promote data, but no anon");
1958 #endif
1959 error = uvmfault_promote(ufi, NULL, uobjpage,
1960 &anon, &flt->anon_spare);
1961 switch (error) {
1962 case 0:
1963 break;
1964 case ERESTART:
1965 return ERESTART;
1966 default:
1967 return error;
1968 }
1969
1970 pg = anon->an_page;
1971
1972 /*
1973 * fill in the data
1974 */
1975
1976 if (uobjpage != PGO_DONTCARE) {
1977 uvmexp.flt_prcopy++;
1978
1979 /*
1980 * promote to shared amap? make sure all sharing
1981 * procs see it
1982 */
1983
1984 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1985 pmap_page_protect(uobjpage, VM_PROT_NONE);
1986 /*
1987 * XXX: PAGE MIGHT BE WIRED!
1988 */
1989 }
1990
1991 /*
1992 * dispose of uobjpage. it can't be PG_RELEASED
1993 * since we still hold the object lock.
1994 * drop handle to uobj as well.
1995 */
1996
1997 if (uobjpage->flags & PG_WANTED)
1998 /* still have the obj lock */
1999 wakeup(uobjpage);
2000 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2001 UVM_PAGE_OWN(uobjpage, NULL);
2002 mutex_exit(&uobj->vmobjlock);
2003 uobj = NULL;
2004
2005 UVMHIST_LOG(maphist,
2006 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2007 uobjpage, anon, pg, 0);
2008
2009 } else {
2010 uvmexp.flt_przero++;
2011
2012 /*
2013 * Page is zero'd and marked dirty by
2014 * uvmfault_promote().
2015 */
2016
2017 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2018 anon, pg, 0, 0);
2019 }
2020
2021 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage);
2022 }
2023
2024 int
2025 uvm_fault_lower_enter(
2026 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2027 struct uvm_object *uobj,
2028 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2029 {
2030 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2031 int error;
2032 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2033
2034 /*
2035 * locked:
2036 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2037 * anon(if !null), pg(if anon)
2038 *
2039 * note: pg is either the uobjpage or the new page in the new anon
2040 */
2041 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2042 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2043 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2044 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2045 KASSERT((pg->flags & PG_BUSY) != 0);
2046
2047 /*
2048 * all resources are present. we can now map it in and free our
2049 * resources.
2050 */
2051
2052 UVMHIST_LOG(maphist,
2053 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=XXX",
2054 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
2055 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2056 (pg->flags & PG_RDONLY) == 0);
2057 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
2058 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2059 flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2060
2061 /*
2062 * No need to undo what we did; we can simply think of
2063 * this as the pmap throwing away the mapping information.
2064 *
2065 * We do, however, have to go through the ReFault path,
2066 * as the map may change while we're asleep.
2067 */
2068
2069 if (pg->flags & PG_WANTED)
2070 wakeup(pg);
2071
2072 /*
2073 * note that pg can't be PG_RELEASED since we did not drop
2074 * the object lock since the last time we checked.
2075 */
2076 KASSERT((pg->flags & PG_RELEASED) == 0);
2077
2078 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2079 UVM_PAGE_OWN(pg, NULL);
2080 uvmfault_unlockall(ufi, amap, uobj, anon);
2081 if (!uvm_reclaimable()) {
2082 UVMHIST_LOG(maphist,
2083 "<- failed. out of VM",0,0,0,0);
2084 /* XXX instrumentation */
2085 error = ENOMEM;
2086 return error;
2087 }
2088 /* XXX instrumentation */
2089 uvm_wait("flt_pmfail2");
2090 return ERESTART;
2091 }
2092
2093 return uvm_fault_lower_done(ufi, flt, uobj, anon, pg);
2094 }
2095
2096 int
2097 uvm_fault_lower_done(
2098 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2099 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2100 {
2101 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2102 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2103
2104 mutex_enter(&uvm_pageqlock);
2105 if (flt->wire_paging) {
2106 uvm_pagewire(pg);
2107 if (pg->pqflags & PQ_AOBJ) {
2108
2109 /*
2110 * since the now-wired page cannot be paged out,
2111 * release its swap resources for others to use.
2112 * since an aobj page with no swap cannot be PG_CLEAN,
2113 * clear its clean flag now.
2114 */
2115
2116 KASSERT(uobj != NULL);
2117 pg->flags &= ~(PG_CLEAN);
2118 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2119 }
2120 } else {
2121 uvm_pageactivate(pg);
2122 }
2123 mutex_exit(&uvm_pageqlock);
2124 if (pg->flags & PG_WANTED)
2125 wakeup(pg);
2126
2127 /*
2128 * note that pg can't be PG_RELEASED since we did not drop the object
2129 * lock since the last time we checked.
2130 */
2131 KASSERT((pg->flags & PG_RELEASED) == 0);
2132
2133 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2134 UVM_PAGE_OWN(pg, NULL);
2135 uvmfault_unlockall(ufi, amap, uobj, anon);
2136 pmap_update(ufi->orig_map->pmap);
2137 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2138 return 0;
2139 }
2140
2141
2142 /*
2143 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2144 *
2145 * => map may be read-locked by caller, but MUST NOT be write-locked.
2146 * => if map is read-locked, any operations which may cause map to
2147 * be write-locked in uvm_fault() must be taken care of by
2148 * the caller. See uvm_map_pageable().
2149 */
2150
2151 int
2152 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2153 vm_prot_t access_type, int maxprot)
2154 {
2155 vaddr_t va;
2156 int error;
2157
2158 /*
2159 * now fault it in a page at a time. if the fault fails then we have
2160 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2161 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2162 */
2163
2164 /*
2165 * XXX work around overflowing a vaddr_t. this prevents us from
2166 * wiring the last page in the address space, though.
2167 */
2168 if (start > end) {
2169 return EFAULT;
2170 }
2171
2172 for (va = start; va < end; va += PAGE_SIZE) {
2173 error = uvm_fault_internal(map, va, access_type,
2174 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2175 if (error) {
2176 if (va != start) {
2177 uvm_fault_unwire(map, start, va);
2178 }
2179 return error;
2180 }
2181 }
2182 return 0;
2183 }
2184
2185 /*
2186 * uvm_fault_unwire(): unwire range of virtual space.
2187 */
2188
2189 void
2190 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2191 {
2192 vm_map_lock_read(map);
2193 uvm_fault_unwire_locked(map, start, end);
2194 vm_map_unlock_read(map);
2195 }
2196
2197 /*
2198 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2199 *
2200 * => map must be at least read-locked.
2201 */
2202
2203 void
2204 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2205 {
2206 struct vm_map_entry *entry;
2207 pmap_t pmap = vm_map_pmap(map);
2208 vaddr_t va;
2209 paddr_t pa;
2210 struct vm_page *pg;
2211
2212 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2213
2214 /*
2215 * we assume that the area we are unwiring has actually been wired
2216 * in the first place. this means that we should be able to extract
2217 * the PAs from the pmap. we also lock out the page daemon so that
2218 * we can call uvm_pageunwire.
2219 */
2220
2221 mutex_enter(&uvm_pageqlock);
2222
2223 /*
2224 * find the beginning map entry for the region.
2225 */
2226
2227 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2228 if (uvm_map_lookup_entry(map, start, &entry) == false)
2229 panic("uvm_fault_unwire_locked: address not in map");
2230
2231 for (va = start; va < end; va += PAGE_SIZE) {
2232 if (pmap_extract(pmap, va, &pa) == false)
2233 continue;
2234
2235 /*
2236 * find the map entry for the current address.
2237 */
2238
2239 KASSERT(va >= entry->start);
2240 while (va >= entry->end) {
2241 KASSERT(entry->next != &map->header &&
2242 entry->next->start <= entry->end);
2243 entry = entry->next;
2244 }
2245
2246 /*
2247 * if the entry is no longer wired, tell the pmap.
2248 */
2249
2250 if (VM_MAPENT_ISWIRED(entry) == 0)
2251 pmap_unwire(pmap, va);
2252
2253 pg = PHYS_TO_VM_PAGE(pa);
2254 if (pg)
2255 uvm_pageunwire(pg);
2256 }
2257
2258 mutex_exit(&uvm_pageqlock);
2259 }
2260