uvm_fault.c revision 1.168 1 /* $NetBSD: uvm_fault.c,v 1.168 2010/02/24 04:20:45 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.168 2010/02/24 04:20:45 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0; lcv < n; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 struct uvm_faultctx {
696 vm_prot_t access_type;
697 vm_prot_t enter_prot;
698 vaddr_t startva;
699 int npages;
700 int centeridx;
701 struct vm_anon *anon_spare;
702 bool wire_mapping;
703 bool narrow;
704 bool wire_paging;
705 bool maxprot;
706 bool cow_now;
707 bool promote;
708 };
709
710 static inline int uvm_fault_check(
711 struct uvm_faultinfo *, struct uvm_faultctx *,
712 struct vm_anon ***, struct vm_page ***);
713
714 static int uvm_fault_upper(
715 struct uvm_faultinfo *, struct uvm_faultctx *,
716 struct vm_anon **);
717 static inline int uvm_fault_upper_lookup(
718 struct uvm_faultinfo *, struct uvm_faultctx *,
719 struct vm_anon **, struct vm_page **);
720 static inline void uvm_fault_upper_neighbor(
721 struct uvm_faultinfo *, struct uvm_faultctx *,
722 vaddr_t, struct vm_page *, bool);
723 static inline int uvm_fault_upper_loan(
724 struct uvm_faultinfo *, struct uvm_faultctx *,
725 struct vm_anon *, struct uvm_object **);
726 static inline int uvm_fault_upper_promote(
727 struct uvm_faultinfo *, struct uvm_faultctx *,
728 struct uvm_object *, struct vm_anon *);
729 static inline int uvm_fault_upper_direct(
730 struct uvm_faultinfo *, struct uvm_faultctx *,
731 struct uvm_object *, struct vm_anon *);
732 static int uvm_fault_upper_enter(
733 struct uvm_faultinfo *, struct uvm_faultctx *,
734 struct uvm_object *, struct vm_anon *,
735 struct vm_page *, struct vm_anon *);
736 static inline int uvm_fault_upper_done(
737 struct uvm_faultinfo *, struct uvm_faultctx *,
738 struct uvm_object *, struct vm_anon *,
739 struct vm_page *, struct vm_anon *);
740
741 static int uvm_fault_lower(
742 struct uvm_faultinfo *, struct uvm_faultctx *,
743 struct vm_page **);
744 static inline int uvm_fault_lower_lookup(
745 struct uvm_faultinfo *, struct uvm_faultctx *,
746 struct vm_page **);
747 static inline void uvm_fault_lower_neighbor(
748 struct uvm_faultinfo *, struct uvm_faultctx *,
749 vaddr_t, struct vm_page *, bool);
750 static inline int uvm_fault_lower1(
751 struct uvm_faultinfo *, struct uvm_faultctx *,
752 struct uvm_object *, struct vm_page *);
753 static inline int uvm_fault_lower_io(
754 struct uvm_faultinfo *, struct uvm_faultctx *,
755 struct uvm_object **, struct vm_page **);
756 static inline int uvm_fault_lower_direct(
757 struct uvm_faultinfo *, struct uvm_faultctx *,
758 struct uvm_object *, struct vm_page *);
759 static inline int uvm_fault_lower_direct_loan(
760 struct uvm_faultinfo *, struct uvm_faultctx *,
761 struct uvm_object *, struct vm_page **,
762 struct vm_page **);
763 static inline int uvm_fault_lower_promote(
764 struct uvm_faultinfo *, struct uvm_faultctx *,
765 struct uvm_object *, struct vm_page *);
766 static int uvm_fault_lower_enter(
767 struct uvm_faultinfo *, struct uvm_faultctx *,
768 struct uvm_object *,
769 struct vm_anon *, struct vm_page *,
770 struct vm_page *);
771 static inline int uvm_fault_lower_done(
772 struct uvm_faultinfo *, struct uvm_faultctx *,
773 struct uvm_object *,
774 struct vm_anon *, struct vm_page *);
775
776 int
777 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
778 vm_prot_t access_type, int fault_flag)
779 {
780 struct uvm_faultinfo ufi;
781 struct uvm_faultctx flt = {
782 .access_type = access_type,
783
784 /* don't look for neighborhood * pages on "wire" fault */
785 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
786
787 /* "wire" fault causes wiring of both mapping and paging */
788 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
789 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
790
791 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
792 };
793 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
794 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
795 int error;
796 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
797
798 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
799 orig_map, vaddr, access_type, fault_flag);
800
801 uvmexp.faults++; /* XXX: locking? */
802
803 /*
804 * init the IN parameters in the ufi
805 */
806
807 ufi.orig_map = orig_map;
808 ufi.orig_rvaddr = trunc_page(vaddr);
809 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
810
811 error = ERESTART;
812 while (error == ERESTART) {
813 anons = anons_store;
814 pages = pages_store;
815
816 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
817 if (error != 0)
818 continue;
819
820 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
821 if (error != 0)
822 continue;
823
824 if (pages[flt.centeridx] == PGO_DONTCARE)
825 error = uvm_fault_upper(&ufi, &flt, anons);
826 else {
827 struct uvm_object * const uobj = ufi.entry->object.uvm_obj;
828
829 if (uobj && uobj->pgops->pgo_fault != NULL) {
830 mutex_enter(&uobj->vmobjlock);
831 /* locked: maps(read), amap (if there), uobj */
832 error = uobj->pgops->pgo_fault(&ufi, flt.startva, pages, flt.npages,
833 flt.centeridx, flt.access_type, PGO_LOCKED|PGO_SYNCIO);
834
835 /* locked: nothing, pgo_fault has unlocked everything */
836
837 /*
838 * object fault routine responsible for pmap_update().
839 */
840 } else {
841 error = uvm_fault_lower(&ufi, &flt, pages);
842 }
843 }
844 }
845
846 if (flt.anon_spare != NULL) {
847 flt.anon_spare->an_ref--;
848 uvm_anfree(flt.anon_spare);
849 }
850 return error;
851 }
852
853 static int
854 uvm_fault_check(
855 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
856 struct vm_anon ***ranons, struct vm_page ***rpages)
857 {
858 struct vm_amap *amap;
859 struct uvm_object *uobj;
860 vm_prot_t check_prot;
861 int nback, nforw;
862 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
863
864 /*
865 * lookup and lock the maps
866 */
867
868 if (uvmfault_lookup(ufi, false) == false) {
869 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr, 0,0,0);
870 return EFAULT;
871 }
872 /* locked: maps(read) */
873
874 #ifdef DIAGNOSTIC
875 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
876 printf("Page fault on non-pageable map:\n");
877 printf("ufi->map = %p\n", ufi->map);
878 printf("ufi->orig_map = %p\n", ufi->orig_map);
879 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
880 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
881 }
882 #endif
883
884 /*
885 * check protection
886 */
887
888 check_prot = flt->maxprot ?
889 ufi->entry->max_protection : ufi->entry->protection;
890 if ((check_prot & flt->access_type) != flt->access_type) {
891 UVMHIST_LOG(maphist,
892 "<- protection failure (prot=0x%x, access=0x%x)",
893 ufi->entry->protection, flt->access_type, 0, 0);
894 uvmfault_unlockmaps(ufi, false);
895 return EACCES;
896 }
897
898 /*
899 * "enter_prot" is the protection we want to enter the page in at.
900 * for certain pages (e.g. copy-on-write pages) this protection can
901 * be more strict than ufi->entry->protection. "wired" means either
902 * the entry is wired or we are fault-wiring the pg.
903 */
904
905 flt->enter_prot = ufi->entry->protection;
906 if (VM_MAPENT_ISWIRED(ufi->entry))
907 flt->wire_mapping = true;
908
909 if (flt->wire_mapping) {
910 flt->access_type = flt->enter_prot; /* full access for wired */
911 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
912 } else {
913 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
914 }
915
916 flt->promote = false;
917
918 /*
919 * handle "needs_copy" case. if we need to copy the amap we will
920 * have to drop our readlock and relock it with a write lock. (we
921 * need a write lock to change anything in a map entry [e.g.
922 * needs_copy]).
923 */
924
925 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
926 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
927 KASSERT(!flt->maxprot);
928 /* need to clear */
929 UVMHIST_LOG(maphist,
930 " need to clear needs_copy and refault",0,0,0,0);
931 uvmfault_unlockmaps(ufi, false);
932 uvmfault_amapcopy(ufi);
933 uvmexp.fltamcopy++;
934 return ERESTART;
935
936 } else {
937
938 /*
939 * ensure that we pmap_enter page R/O since
940 * needs_copy is still true
941 */
942
943 flt->enter_prot &= ~VM_PROT_WRITE;
944 }
945 }
946
947 /*
948 * identify the players
949 */
950
951 amap = ufi->entry->aref.ar_amap; /* upper layer */
952 uobj = ufi->entry->object.uvm_obj; /* lower layer */
953
954 /*
955 * check for a case 0 fault. if nothing backing the entry then
956 * error now.
957 */
958
959 if (amap == NULL && uobj == NULL) {
960 uvmfault_unlockmaps(ufi, false);
961 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
962 return EFAULT;
963 }
964
965 /*
966 * establish range of interest based on advice from mapper
967 * and then clip to fit map entry. note that we only want
968 * to do this the first time through the fault. if we
969 * ReFault we will disable this by setting "narrow" to true.
970 */
971
972 if (flt->narrow == false) {
973
974 /* wide fault (!narrow) */
975 KASSERT(uvmadvice[ufi->entry->advice].advice ==
976 ufi->entry->advice);
977 nback = MIN(uvmadvice[ufi->entry->advice].nback,
978 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
979 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
980 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
981 ((ufi->entry->end - ufi->orig_rvaddr) >>
982 PAGE_SHIFT) - 1);
983 /*
984 * note: "-1" because we don't want to count the
985 * faulting page as forw
986 */
987 flt->npages = nback + nforw + 1;
988 flt->centeridx = nback;
989
990 flt->narrow = true; /* ensure only once per-fault */
991
992 } else {
993
994 /* narrow fault! */
995 nback = nforw = 0;
996 flt->startva = ufi->orig_rvaddr;
997 flt->npages = 1;
998 flt->centeridx = 0;
999
1000 }
1001 /* offset from entry's start to pgs' start */
1002 const voff_t eoff = flt->startva - ufi->entry->start;
1003
1004 /* locked: maps(read) */
1005 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
1006 flt->narrow, nback, nforw, flt->startva);
1007 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1008 amap, uobj, 0);
1009
1010 /*
1011 * if we've got an amap, lock it and extract current anons.
1012 */
1013
1014 if (amap) {
1015 amap_lock(amap);
1016 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1017 } else {
1018 *ranons = NULL; /* to be safe */
1019 }
1020
1021 /* locked: maps(read), amap(if there) */
1022 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1023
1024 /*
1025 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1026 * now and then forget about them (for the rest of the fault).
1027 */
1028
1029 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1030
1031 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1032 0,0,0,0);
1033 /* flush back-page anons? */
1034 if (amap)
1035 uvmfault_anonflush(*ranons, nback);
1036
1037 /* flush object? */
1038 if (uobj) {
1039 voff_t uoff;
1040
1041 uoff = ufi->entry->offset + eoff;
1042 mutex_enter(&uobj->vmobjlock);
1043 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1044 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1045 }
1046
1047 /* now forget about the backpages */
1048 if (amap)
1049 *ranons += nback;
1050 #if 0
1051 /* XXXUEBS */
1052 if (uobj)
1053 *rpages += nback;
1054 #endif
1055 flt->startva += (nback << PAGE_SHIFT);
1056 flt->npages -= nback;
1057 flt->centeridx = 0;
1058 }
1059 /*
1060 * => startva is fixed
1061 * => npages is fixed
1062 */
1063
1064 return 0;
1065 }
1066
1067 static int
1068 uvm_fault_upper_lookup(
1069 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1070 struct vm_anon **anons, struct vm_page **pages)
1071 {
1072 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1073 int lcv;
1074 vaddr_t currva;
1075 bool shadowed;
1076 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1077
1078 /* locked: maps(read), amap(if there) */
1079 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1080
1081 /*
1082 * map in the backpages and frontpages we found in the amap in hopes
1083 * of preventing future faults. we also init the pages[] array as
1084 * we go.
1085 */
1086
1087 currva = flt->startva;
1088 shadowed = false;
1089 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1090 /*
1091 * dont play with VAs that are already mapped
1092 * except for center)
1093 */
1094 if (lcv != flt->centeridx &&
1095 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1096 pages[lcv] = PGO_DONTCARE;
1097 continue;
1098 }
1099
1100 /*
1101 * unmapped or center page. check if any anon at this level.
1102 */
1103 if (amap == NULL || anons[lcv] == NULL) {
1104 pages[lcv] = NULL;
1105 continue;
1106 }
1107
1108 /*
1109 * check for present page and map if possible. re-activate it.
1110 */
1111
1112 pages[lcv] = PGO_DONTCARE;
1113 if (lcv == flt->centeridx) { /* save center for later! */
1114 shadowed = true;
1115 } else {
1116 struct vm_anon *anon = anons[lcv];
1117
1118 mutex_enter(&anon->an_lock);
1119 uvm_fault_upper_neighbor(ufi, flt, currva,
1120 anon->an_page, anon->an_ref > 1);
1121 mutex_exit(&anon->an_lock);
1122 }
1123 }
1124
1125 /* locked: maps(read), amap(if there) */
1126 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1127 /* (shadowed == true) if there is an anon at the faulting address */
1128 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1129 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1130
1131 /*
1132 * note that if we are really short of RAM we could sleep in the above
1133 * call to pmap_enter with everything locked. bad?
1134 *
1135 * XXX Actually, that is bad; pmap_enter() should just fail in that
1136 * XXX case. --thorpej
1137 */
1138
1139 return 0;
1140 }
1141
1142 static void
1143 uvm_fault_upper_neighbor(
1144 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1145 vaddr_t currva, struct vm_page *pg, bool readonly)
1146 {
1147 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1148
1149 /* ignore loaned and busy pages */
1150 if (pg == NULL || pg->loan_count != 0 ||
1151 (pg->flags & PG_BUSY) != 0)
1152 goto uvm_fault_upper_lookup_enter_done;
1153
1154 mutex_enter(&uvm_pageqlock);
1155 uvm_pageenqueue(pg);
1156 mutex_exit(&uvm_pageqlock);
1157 UVMHIST_LOG(maphist,
1158 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1159 ufi->orig_map->pmap, currva, pg, 0);
1160 uvmexp.fltnamap++;
1161
1162 /*
1163 * Since this page isn't the page that's actually faulting,
1164 * ignore pmap_enter() failures; it's not critical that we
1165 * enter these right now.
1166 */
1167
1168 (void) pmap_enter(ufi->orig_map->pmap, currva,
1169 VM_PAGE_TO_PHYS(pg),
1170 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1171 flt->enter_prot,
1172 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1173
1174 uvm_fault_upper_lookup_enter_done:
1175 pmap_update(ufi->orig_map->pmap);
1176 }
1177
1178 static int
1179 uvm_fault_lower(
1180 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1181 struct vm_page **pages)
1182 {
1183 #ifdef DIAGNOSTIC
1184 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1185 #endif
1186 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1187 struct vm_page *uobjpage;
1188
1189 /*
1190 * if the desired page is not shadowed by the amap and we have a
1191 * backing object, then we check to see if the backing object would
1192 * prefer to handle the fault itself (rather than letting us do it
1193 * with the usual pgo_get hook). the backing object signals this by
1194 * providing a pgo_fault routine.
1195 */
1196
1197 /*
1198 * now, if the desired page is not shadowed by the amap and we have
1199 * a backing object that does not have a special fault routine, then
1200 * we ask (with pgo_get) the object for resident pages that we care
1201 * about and attempt to map them in. we do not let pgo_get block
1202 * (PGO_LOCKED).
1203 */
1204
1205 if (uobj == NULL) {
1206 /* zero fill; don't care neighbor pages */
1207 uobjpage = NULL;
1208 } else {
1209 uvm_fault_lower_lookup(ufi, flt, pages);
1210 uobjpage = pages[flt->centeridx];
1211 }
1212
1213 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1214 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1215 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1216 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1217
1218 /*
1219 * note that at this point we are done with any front or back pages.
1220 * we are now going to focus on the center page (i.e. the one we've
1221 * faulted on). if we have faulted on the upper (anon) layer
1222 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1223 * not touched it yet). if we have faulted on the bottom (uobj)
1224 * layer [i.e. case 2] and the page was both present and available,
1225 * then we've got a pointer to it as "uobjpage" and we've already
1226 * made it BUSY.
1227 */
1228
1229 /*
1230 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1231 */
1232
1233 /*
1234 * redirect case 2: if we are not shadowed, go to case 2.
1235 */
1236
1237 return uvm_fault_lower1(ufi, flt, uobj, uobjpage);
1238 }
1239
1240 static int
1241 uvm_fault_lower_lookup(
1242 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1243 struct vm_page **pages)
1244 {
1245 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1246 int lcv, gotpages;
1247 vaddr_t currva;
1248 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1249
1250 mutex_enter(&uobj->vmobjlock);
1251 /* locked (!shadowed): maps(read), amap (if there), uobj */
1252 /*
1253 * the following call to pgo_get does _not_ change locking state
1254 */
1255
1256 uvmexp.fltlget++;
1257 gotpages = flt->npages;
1258 (void) uobj->pgops->pgo_get(uobj,
1259 ufi->entry->offset + flt->startva - ufi->entry->start,
1260 pages, &gotpages, flt->centeridx,
1261 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1262
1263 /*
1264 * check for pages to map, if we got any
1265 */
1266
1267 if (gotpages == 0) {
1268 pages[flt->centeridx] = NULL;
1269 return 0;
1270 }
1271
1272 currva = flt->startva;
1273 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1274 struct vm_page *curpg;
1275
1276 curpg = pages[lcv];
1277 if (curpg == NULL || curpg == PGO_DONTCARE) {
1278 continue;
1279 }
1280 KASSERT(curpg->uobject == uobj);
1281
1282 /*
1283 * if center page is resident and not PG_BUSY|PG_RELEASED
1284 * then pgo_get made it PG_BUSY for us and gave us a handle
1285 * to it. remember this page as "uobjpage." (for later use).
1286 */
1287
1288 if (lcv == flt->centeridx) {
1289 UVMHIST_LOG(maphist, " got uobjpage "
1290 "(0x%x) with locked get",
1291 curpg, 0,0,0);
1292 } else {
1293 bool readonly = (curpg->flags & PG_RDONLY)
1294 || (curpg->loan_count > 0)
1295 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1296
1297 uvm_fault_lower_neighbor(ufi, flt,
1298 currva, curpg, readonly);
1299 }
1300 }
1301 pmap_update(ufi->orig_map->pmap);
1302 return 0;
1303 }
1304
1305 static void
1306 uvm_fault_lower_neighbor(
1307 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1308 vaddr_t currva, struct vm_page *pg, bool readonly)
1309 {
1310 UVMHIST_FUNC("uvm_fault_lower_neighor"); UVMHIST_CALLED(maphist);
1311
1312 /*
1313 * calling pgo_get with PGO_LOCKED returns us pages which
1314 * are neither busy nor released, so we don't need to check
1315 * for this. we can just directly enter the pages.
1316 */
1317
1318 mutex_enter(&uvm_pageqlock);
1319 uvm_pageenqueue(pg);
1320 mutex_exit(&uvm_pageqlock);
1321 UVMHIST_LOG(maphist,
1322 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1323 ufi->orig_map->pmap, currva, pg, 0);
1324 uvmexp.fltnomap++;
1325
1326 /*
1327 * Since this page isn't the page that's actually faulting,
1328 * ignore pmap_enter() failures; it's not critical that we
1329 * enter these right now.
1330 */
1331 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1332 KASSERT((pg->flags & PG_RELEASED) == 0);
1333 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
1334 (pg->flags & PG_CLEAN) != 0);
1335
1336 (void) pmap_enter(ufi->orig_map->pmap, currva,
1337 VM_PAGE_TO_PHYS(pg),
1338 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1339 flt->enter_prot & MASK(ufi->entry),
1340 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1341
1342 /*
1343 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1344 * held the lock the whole time we've had the handle.
1345 */
1346 KASSERT((pg->flags & PG_WANTED) == 0);
1347 KASSERT((pg->flags & PG_RELEASED) == 0);
1348
1349 pg->flags &= ~(PG_BUSY);
1350 UVM_PAGE_OWN(pg, NULL);
1351 }
1352
1353 static int
1354 uvm_fault_upper(
1355 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1356 struct vm_anon **anons)
1357 {
1358 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1359 struct vm_anon * const anon = anons[flt->centeridx];
1360 struct uvm_object *uobj;
1361 int error;
1362 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1363
1364 /* locked: maps(read), amap */
1365 KASSERT(mutex_owned(&amap->am_l));
1366
1367 /*
1368 * handle case 1: fault on an anon in our amap
1369 */
1370
1371 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1372 mutex_enter(&anon->an_lock);
1373
1374 /* locked: maps(read), amap, anon */
1375 KASSERT(mutex_owned(&amap->am_l));
1376 KASSERT(mutex_owned(&anon->an_lock));
1377
1378 /*
1379 * no matter if we have case 1A or case 1B we are going to need to
1380 * have the anon's memory resident. ensure that now.
1381 */
1382
1383 /*
1384 * let uvmfault_anonget do the dirty work.
1385 * if it fails (!OK) it will unlock everything for us.
1386 * if it succeeds, locks are still valid and locked.
1387 * also, if it is OK, then the anon's page is on the queues.
1388 * if the page is on loan from a uvm_object, then anonget will
1389 * lock that object for us if it does not fail.
1390 */
1391
1392 error = uvmfault_anonget(ufi, amap, anon);
1393 switch (error) {
1394 case 0:
1395 break;
1396
1397 case ERESTART:
1398 return ERESTART;
1399
1400 case EAGAIN:
1401 kpause("fltagain1", false, hz/2, NULL);
1402 return ERESTART;
1403
1404 default:
1405 return error;
1406 }
1407
1408 /*
1409 * uobj is non null if the page is on loan from an object (i.e. uobj)
1410 */
1411
1412 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1413
1414 /* locked: maps(read), amap, anon, uobj(if one) */
1415 KASSERT(mutex_owned(&amap->am_l));
1416 KASSERT(mutex_owned(&anon->an_lock));
1417 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1418
1419 /*
1420 * special handling for loaned pages
1421 */
1422
1423 if (anon->an_page->loan_count) {
1424 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1425 if (error != 0)
1426 return error;
1427 }
1428
1429 /*
1430 * if we are case 1B then we will need to allocate a new blank
1431 * anon to transfer the data into. note that we have a lock
1432 * on anon, so no one can busy or release the page until we are done.
1433 * also note that the ref count can't drop to zero here because
1434 * it is > 1 and we are only dropping one ref.
1435 *
1436 * in the (hopefully very rare) case that we are out of RAM we
1437 * will unlock, wait for more RAM, and refault.
1438 *
1439 * if we are out of anon VM we kill the process (XXX: could wait?).
1440 */
1441
1442 if (flt->cow_now && anon->an_ref > 1) {
1443 flt->promote = true;
1444 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1445 } else {
1446 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1447 }
1448 return error;
1449 }
1450
1451 static int
1452 uvm_fault_upper_loan(
1453 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1454 struct vm_anon *anon, struct uvm_object **ruobj)
1455 {
1456 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1457 int error = 0;
1458
1459 if (!flt->cow_now) {
1460
1461 /*
1462 * for read faults on loaned pages we just cap the
1463 * protection at read-only.
1464 */
1465
1466 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1467
1468 } else {
1469 /*
1470 * note that we can't allow writes into a loaned page!
1471 *
1472 * if we have a write fault on a loaned page in an
1473 * anon then we need to look at the anon's ref count.
1474 * if it is greater than one then we are going to do
1475 * a normal copy-on-write fault into a new anon (this
1476 * is not a problem). however, if the reference count
1477 * is one (a case where we would normally allow a
1478 * write directly to the page) then we need to kill
1479 * the loan before we continue.
1480 */
1481
1482 /* >1 case is already ok */
1483 if (anon->an_ref == 1) {
1484 error = uvm_loanbreak_anon(anon, *ruobj);
1485 if (error != 0) {
1486 uvmfault_unlockall(ufi, amap, *ruobj, anon);
1487 uvm_wait("flt_noram2");
1488 return ERESTART;
1489 }
1490 /* if we were a loan reciever uobj is gone */
1491 if (*ruobj)
1492 *ruobj = NULL;
1493 }
1494 }
1495 return error;
1496 }
1497
1498 static int
1499 uvm_fault_upper_promote(
1500 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1501 struct uvm_object *uobj, struct vm_anon *anon)
1502 {
1503 struct vm_anon * const oanon = anon;
1504 struct vm_page *pg;
1505 int error;
1506 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1507
1508 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1509 uvmexp.flt_acow++;
1510
1511 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1512 &anon, &flt->anon_spare);
1513 switch (error) {
1514 case 0:
1515 break;
1516 case ERESTART:
1517 return ERESTART;
1518 default:
1519 return error;
1520 }
1521
1522 pg = anon->an_page;
1523 mutex_enter(&uvm_pageqlock);
1524 uvm_pageactivate(pg);
1525 mutex_exit(&uvm_pageqlock);
1526 pg->flags &= ~(PG_BUSY|PG_FAKE);
1527 UVM_PAGE_OWN(pg, NULL);
1528
1529 /* deref: can not drop to zero here by defn! */
1530 oanon->an_ref--;
1531
1532 /*
1533 * note: oanon is still locked, as is the new anon. we
1534 * need to check for this later when we unlock oanon; if
1535 * oanon != anon, we'll have to unlock anon, too.
1536 */
1537
1538 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1539 }
1540
1541 static int
1542 uvm_fault_upper_direct(
1543 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1544 struct uvm_object *uobj, struct vm_anon *anon)
1545 {
1546 struct vm_anon * const oanon = anon;
1547 struct vm_page *pg;
1548
1549 uvmexp.flt_anon++;
1550 pg = anon->an_page;
1551 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1552 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1553
1554 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1555 }
1556
1557 static int
1558 uvm_fault_upper_enter(
1559 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1560 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1561 struct vm_anon *oanon)
1562 {
1563 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1564 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1565
1566 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1567 KASSERT(mutex_owned(&amap->am_l));
1568 KASSERT(mutex_owned(&anon->an_lock));
1569 KASSERT(mutex_owned(&oanon->an_lock));
1570
1571 /*
1572 * now map the page in.
1573 */
1574
1575 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1576 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1577 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1578 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1579 != 0) {
1580
1581 /*
1582 * No need to undo what we did; we can simply think of
1583 * this as the pmap throwing away the mapping information.
1584 *
1585 * We do, however, have to go through the ReFault path,
1586 * as the map may change while we're asleep.
1587 */
1588
1589 if (anon != oanon)
1590 mutex_exit(&anon->an_lock);
1591 uvmfault_unlockall(ufi, amap, uobj, oanon);
1592 if (!uvm_reclaimable()) {
1593 UVMHIST_LOG(maphist,
1594 "<- failed. out of VM",0,0,0,0);
1595 /* XXX instrumentation */
1596 return ENOMEM;
1597 }
1598 /* XXX instrumentation */
1599 uvm_wait("flt_pmfail1");
1600 return ERESTART;
1601 }
1602
1603 return uvm_fault_upper_done(ufi, flt, uobj, anon, pg, oanon);
1604 }
1605
1606 static int
1607 uvm_fault_upper_done(
1608 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1609 struct uvm_object *uobj, struct vm_anon *anon,
1610 struct vm_page *pg, struct vm_anon *oanon)
1611 {
1612 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1613
1614 /*
1615 * ... update the page queues.
1616 */
1617
1618 mutex_enter(&uvm_pageqlock);
1619 if (flt->wire_paging) {
1620 uvm_pagewire(pg);
1621
1622 /*
1623 * since the now-wired page cannot be paged out,
1624 * release its swap resources for others to use.
1625 * since an anon with no swap cannot be PG_CLEAN,
1626 * clear its clean flag now.
1627 */
1628
1629 pg->flags &= ~(PG_CLEAN);
1630 uvm_anon_dropswap(anon);
1631 } else {
1632 uvm_pageactivate(pg);
1633 }
1634 mutex_exit(&uvm_pageqlock);
1635
1636 /*
1637 * done case 1! finish up by unlocking everything and returning success
1638 */
1639
1640 if (anon != oanon)
1641 mutex_exit(&anon->an_lock);
1642 uvmfault_unlockall(ufi, amap, uobj, oanon);
1643 pmap_update(ufi->orig_map->pmap);
1644 return 0;
1645 }
1646
1647 static int
1648 uvm_fault_lower1(
1649 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1650 struct uvm_object *uobj, struct vm_page *uobjpage)
1651 {
1652 #ifdef DIAGNOSTIC
1653 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1654 #endif
1655 int error;
1656 UVMHIST_FUNC("uvm_fault_lower1"); UVMHIST_CALLED(maphist);
1657
1658 /*
1659 * handle case 2: faulting on backing object or zero fill
1660 */
1661
1662 /*
1663 * locked:
1664 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1665 */
1666 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1667 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1668 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1669
1670 /*
1671 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1672 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1673 * have a backing object, check and see if we are going to promote
1674 * the data up to an anon during the fault.
1675 */
1676
1677 if (uobj == NULL) {
1678 uobjpage = PGO_DONTCARE;
1679 flt->promote = true; /* always need anon here */
1680 } else {
1681 KASSERT(uobjpage != PGO_DONTCARE);
1682 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1683 }
1684 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1685 flt->promote, (uobj == NULL), 0,0);
1686
1687 /*
1688 * if uobjpage is not null then we do not need to do I/O to get the
1689 * uobjpage.
1690 *
1691 * if uobjpage is null, then we need to unlock and ask the pager to
1692 * get the data for us. once we have the data, we need to reverify
1693 * the state the world. we are currently not holding any resources.
1694 */
1695
1696 if (uobjpage) {
1697 /* update rusage counters */
1698 curlwp->l_ru.ru_minflt++;
1699 } else {
1700 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1701 if (error != 0)
1702 return error;
1703 }
1704
1705 /*
1706 * locked:
1707 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1708 */
1709 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1710 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1711 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1712
1713 /*
1714 * notes:
1715 * - at this point uobjpage can not be NULL
1716 * - at this point uobjpage can not be PG_RELEASED (since we checked
1717 * for it above)
1718 * - at this point uobjpage could be PG_WANTED (handle later)
1719 */
1720
1721 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1722 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1723 (uobjpage->flags & PG_CLEAN) != 0);
1724
1725 if (flt->promote == false) {
1726 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1727 } else {
1728 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1729 }
1730 return error;
1731 }
1732
1733 static int
1734 uvm_fault_lower_io(
1735 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1736 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1737 {
1738 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1739 struct uvm_object *uobj = *ruobj;
1740 struct vm_page *pg;
1741 bool locked;
1742 int gotpages;
1743 int error;
1744 voff_t uoff;
1745 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1746
1747 /* update rusage counters */
1748 curlwp->l_ru.ru_majflt++;
1749
1750 /* locked: maps(read), amap(if there), uobj */
1751 uvmfault_unlockall(ufi, amap, NULL, NULL);
1752 /* locked: uobj */
1753
1754 uvmexp.fltget++;
1755 gotpages = 1;
1756 pg = NULL;
1757 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1758 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1759 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1760 PGO_SYNCIO);
1761 /* locked: pg(if no error) */
1762
1763 /*
1764 * recover from I/O
1765 */
1766
1767 if (error) {
1768 if (error == EAGAIN) {
1769 UVMHIST_LOG(maphist,
1770 " pgo_get says TRY AGAIN!",0,0,0,0);
1771 kpause("fltagain2", false, hz/2, NULL);
1772 return ERESTART;
1773 }
1774
1775 #if 0
1776 KASSERT(error != ERESTART);
1777 #else
1778 /* XXXUEBS don't re-fault? */
1779 if (error == ERESTART)
1780 error = EIO;
1781 #endif
1782
1783 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1784 error, 0,0,0);
1785 return error;
1786 }
1787
1788 /* locked: pg */
1789
1790 KASSERT((pg->flags & PG_BUSY) != 0);
1791
1792 mutex_enter(&uvm_pageqlock);
1793 uvm_pageactivate(pg);
1794 mutex_exit(&uvm_pageqlock);
1795
1796 /*
1797 * re-verify the state of the world by first trying to relock
1798 * the maps. always relock the object.
1799 */
1800
1801 locked = uvmfault_relock(ufi);
1802 if (locked && amap)
1803 amap_lock(amap);
1804
1805 /* might be changed */
1806 uobj = pg->uobject;
1807
1808 mutex_enter(&uobj->vmobjlock);
1809
1810 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1811 /* locked(!locked): uobj, pg */
1812
1813 /*
1814 * verify that the page has not be released and re-verify
1815 * that amap slot is still free. if there is a problem,
1816 * we unlock and clean up.
1817 */
1818
1819 if ((pg->flags & PG_RELEASED) != 0 ||
1820 (locked && amap && amap_lookup(&ufi->entry->aref,
1821 ufi->orig_rvaddr - ufi->entry->start))) {
1822 if (locked)
1823 uvmfault_unlockall(ufi, amap, NULL, NULL);
1824 locked = false;
1825 }
1826
1827 /*
1828 * didn't get the lock? release the page and retry.
1829 */
1830
1831 if (locked == false) {
1832 UVMHIST_LOG(maphist,
1833 " wasn't able to relock after fault: retry",
1834 0,0,0,0);
1835 if (pg->flags & PG_WANTED) {
1836 wakeup(pg);
1837 }
1838 if (pg->flags & PG_RELEASED) {
1839 uvmexp.fltpgrele++;
1840 uvm_pagefree(pg);
1841 mutex_exit(&uobj->vmobjlock);
1842 return ERESTART;
1843 }
1844 pg->flags &= ~(PG_BUSY|PG_WANTED);
1845 UVM_PAGE_OWN(pg, NULL);
1846 mutex_exit(&uobj->vmobjlock);
1847 return ERESTART;
1848 }
1849
1850 /*
1851 * we have the data in pg which is busy and
1852 * not released. we are holding object lock (so the page
1853 * can't be released on us).
1854 */
1855
1856 /* locked: maps(read), amap(if !null), uobj, pg */
1857
1858 *ruobj = uobj;
1859 *ruobjpage = pg;
1860 return 0;
1861 }
1862
1863 int
1864 uvm_fault_lower_direct(
1865 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1866 struct uvm_object *uobj, struct vm_page *uobjpage)
1867 {
1868 struct vm_page *pg;
1869
1870 /*
1871 * we are not promoting. if the mapping is COW ensure that we
1872 * don't give more access than we should (e.g. when doing a read
1873 * fault on a COPYONWRITE mapping we want to map the COW page in
1874 * R/O even though the entry protection could be R/W).
1875 *
1876 * set "pg" to the page we want to map in (uobjpage, usually)
1877 */
1878
1879 uvmexp.flt_obj++;
1880 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1881 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1882 flt->enter_prot &= ~VM_PROT_WRITE;
1883 pg = uobjpage; /* map in the actual object */
1884
1885 KASSERT(uobjpage != PGO_DONTCARE);
1886
1887 /*
1888 * we are faulting directly on the page. be careful
1889 * about writing to loaned pages...
1890 */
1891
1892 if (uobjpage->loan_count) {
1893 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1894 }
1895 KASSERT(pg == uobjpage);
1896
1897 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1898 }
1899
1900 static int
1901 uvm_fault_lower_direct_loan(
1902 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1903 struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage)
1904 {
1905 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1906 struct vm_page *pg;
1907 struct vm_page *uobjpage = *ruobjpage;
1908 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
1909
1910 if (!flt->cow_now) {
1911 /* read fault: cap the protection at readonly */
1912 /* cap! */
1913 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1914 } else {
1915 /* write fault: must break the loan here */
1916
1917 pg = uvm_loanbreak(uobjpage);
1918 if (pg == NULL) {
1919
1920 /*
1921 * drop ownership of page, it can't be released
1922 */
1923
1924 if (uobjpage->flags & PG_WANTED)
1925 wakeup(uobjpage);
1926 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1927 UVM_PAGE_OWN(uobjpage, NULL);
1928
1929 uvmfault_unlockall(ufi, amap, uobj, NULL);
1930 UVMHIST_LOG(maphist,
1931 " out of RAM breaking loan, waiting",
1932 0,0,0,0);
1933 uvmexp.fltnoram++;
1934 uvm_wait("flt_noram4");
1935 return ERESTART;
1936 }
1937 *rpg = pg;
1938 *ruobjpage = pg;
1939 }
1940 return 0;
1941 }
1942
1943 int
1944 uvm_fault_lower_promote(
1945 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1946 struct uvm_object *uobj, struct vm_page *uobjpage)
1947 {
1948 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1949 struct vm_anon *anon;
1950 struct vm_page *pg;
1951 int error;
1952 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
1953
1954 /*
1955 * if we are going to promote the data to an anon we
1956 * allocate a blank anon here and plug it into our amap.
1957 */
1958 #if DIAGNOSTIC
1959 if (amap == NULL)
1960 panic("uvm_fault: want to promote data, but no anon");
1961 #endif
1962 error = uvmfault_promote(ufi, NULL, uobjpage,
1963 &anon, &flt->anon_spare);
1964 switch (error) {
1965 case 0:
1966 break;
1967 case ERESTART:
1968 return ERESTART;
1969 default:
1970 return error;
1971 }
1972
1973 pg = anon->an_page;
1974
1975 /*
1976 * fill in the data
1977 */
1978
1979 if (uobjpage != PGO_DONTCARE) {
1980 uvmexp.flt_prcopy++;
1981
1982 /*
1983 * promote to shared amap? make sure all sharing
1984 * procs see it
1985 */
1986
1987 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1988 pmap_page_protect(uobjpage, VM_PROT_NONE);
1989 /*
1990 * XXX: PAGE MIGHT BE WIRED!
1991 */
1992 }
1993
1994 /*
1995 * dispose of uobjpage. it can't be PG_RELEASED
1996 * since we still hold the object lock.
1997 * drop handle to uobj as well.
1998 */
1999
2000 if (uobjpage->flags & PG_WANTED)
2001 /* still have the obj lock */
2002 wakeup(uobjpage);
2003 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2004 UVM_PAGE_OWN(uobjpage, NULL);
2005 mutex_exit(&uobj->vmobjlock);
2006 uobj = NULL;
2007
2008 UVMHIST_LOG(maphist,
2009 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2010 uobjpage, anon, pg, 0);
2011
2012 } else {
2013 uvmexp.flt_przero++;
2014
2015 /*
2016 * Page is zero'd and marked dirty by
2017 * uvmfault_promote().
2018 */
2019
2020 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2021 anon, pg, 0, 0);
2022 }
2023
2024 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage);
2025 }
2026
2027 int
2028 uvm_fault_lower_enter(
2029 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2030 struct uvm_object *uobj,
2031 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2032 {
2033 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2034 int error;
2035 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2036
2037 /*
2038 * locked:
2039 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2040 * anon(if !null), pg(if anon)
2041 *
2042 * note: pg is either the uobjpage or the new page in the new anon
2043 */
2044 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2045 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2046 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2047 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2048 KASSERT((pg->flags & PG_BUSY) != 0);
2049
2050 /*
2051 * all resources are present. we can now map it in and free our
2052 * resources.
2053 */
2054
2055 UVMHIST_LOG(maphist,
2056 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2057 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2058 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2059 (pg->flags & PG_RDONLY) == 0);
2060 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
2061 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2062 flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2063
2064 /*
2065 * No need to undo what we did; we can simply think of
2066 * this as the pmap throwing away the mapping information.
2067 *
2068 * We do, however, have to go through the ReFault path,
2069 * as the map may change while we're asleep.
2070 */
2071
2072 if (pg->flags & PG_WANTED)
2073 wakeup(pg);
2074
2075 /*
2076 * note that pg can't be PG_RELEASED since we did not drop
2077 * the object lock since the last time we checked.
2078 */
2079 KASSERT((pg->flags & PG_RELEASED) == 0);
2080
2081 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2082 UVM_PAGE_OWN(pg, NULL);
2083 uvmfault_unlockall(ufi, amap, uobj, anon);
2084 if (!uvm_reclaimable()) {
2085 UVMHIST_LOG(maphist,
2086 "<- failed. out of VM",0,0,0,0);
2087 /* XXX instrumentation */
2088 error = ENOMEM;
2089 return error;
2090 }
2091 /* XXX instrumentation */
2092 uvm_wait("flt_pmfail2");
2093 return ERESTART;
2094 }
2095
2096 return uvm_fault_lower_done(ufi, flt, uobj, anon, pg);
2097 }
2098
2099 int
2100 uvm_fault_lower_done(
2101 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2102 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2103 {
2104 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2105 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2106
2107 mutex_enter(&uvm_pageqlock);
2108 if (flt->wire_paging) {
2109 uvm_pagewire(pg);
2110 if (pg->pqflags & PQ_AOBJ) {
2111
2112 /*
2113 * since the now-wired page cannot be paged out,
2114 * release its swap resources for others to use.
2115 * since an aobj page with no swap cannot be PG_CLEAN,
2116 * clear its clean flag now.
2117 */
2118
2119 KASSERT(uobj != NULL);
2120 pg->flags &= ~(PG_CLEAN);
2121 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2122 }
2123 } else {
2124 uvm_pageactivate(pg);
2125 }
2126 mutex_exit(&uvm_pageqlock);
2127 if (pg->flags & PG_WANTED)
2128 wakeup(pg);
2129
2130 /*
2131 * note that pg can't be PG_RELEASED since we did not drop the object
2132 * lock since the last time we checked.
2133 */
2134 KASSERT((pg->flags & PG_RELEASED) == 0);
2135
2136 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2137 UVM_PAGE_OWN(pg, NULL);
2138 uvmfault_unlockall(ufi, amap, uobj, anon);
2139 pmap_update(ufi->orig_map->pmap);
2140 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2141 return 0;
2142 }
2143
2144
2145 /*
2146 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2147 *
2148 * => map may be read-locked by caller, but MUST NOT be write-locked.
2149 * => if map is read-locked, any operations which may cause map to
2150 * be write-locked in uvm_fault() must be taken care of by
2151 * the caller. See uvm_map_pageable().
2152 */
2153
2154 int
2155 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2156 vm_prot_t access_type, int maxprot)
2157 {
2158 vaddr_t va;
2159 int error;
2160
2161 /*
2162 * now fault it in a page at a time. if the fault fails then we have
2163 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2164 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2165 */
2166
2167 /*
2168 * XXX work around overflowing a vaddr_t. this prevents us from
2169 * wiring the last page in the address space, though.
2170 */
2171 if (start > end) {
2172 return EFAULT;
2173 }
2174
2175 for (va = start; va < end; va += PAGE_SIZE) {
2176 error = uvm_fault_internal(map, va, access_type,
2177 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2178 if (error) {
2179 if (va != start) {
2180 uvm_fault_unwire(map, start, va);
2181 }
2182 return error;
2183 }
2184 }
2185 return 0;
2186 }
2187
2188 /*
2189 * uvm_fault_unwire(): unwire range of virtual space.
2190 */
2191
2192 void
2193 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2194 {
2195 vm_map_lock_read(map);
2196 uvm_fault_unwire_locked(map, start, end);
2197 vm_map_unlock_read(map);
2198 }
2199
2200 /*
2201 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2202 *
2203 * => map must be at least read-locked.
2204 */
2205
2206 void
2207 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2208 {
2209 struct vm_map_entry *entry;
2210 pmap_t pmap = vm_map_pmap(map);
2211 vaddr_t va;
2212 paddr_t pa;
2213 struct vm_page *pg;
2214
2215 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2216
2217 /*
2218 * we assume that the area we are unwiring has actually been wired
2219 * in the first place. this means that we should be able to extract
2220 * the PAs from the pmap. we also lock out the page daemon so that
2221 * we can call uvm_pageunwire.
2222 */
2223
2224 mutex_enter(&uvm_pageqlock);
2225
2226 /*
2227 * find the beginning map entry for the region.
2228 */
2229
2230 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2231 if (uvm_map_lookup_entry(map, start, &entry) == false)
2232 panic("uvm_fault_unwire_locked: address not in map");
2233
2234 for (va = start; va < end; va += PAGE_SIZE) {
2235 if (pmap_extract(pmap, va, &pa) == false)
2236 continue;
2237
2238 /*
2239 * find the map entry for the current address.
2240 */
2241
2242 KASSERT(va >= entry->start);
2243 while (va >= entry->end) {
2244 KASSERT(entry->next != &map->header &&
2245 entry->next->start <= entry->end);
2246 entry = entry->next;
2247 }
2248
2249 /*
2250 * if the entry is no longer wired, tell the pmap.
2251 */
2252
2253 if (VM_MAPENT_ISWIRED(entry) == 0)
2254 pmap_unwire(pmap, va);
2255
2256 pg = PHYS_TO_VM_PAGE(pa);
2257 if (pg)
2258 uvm_pageunwire(pg);
2259 }
2260
2261 mutex_exit(&uvm_pageqlock);
2262 }
2263