uvm_fault.c revision 1.17.2.1 1 /* $NetBSD: uvm_fault.c,v 1.17.2.1 1998/11/09 06:06:37 chs Exp $ */
2
3 /*
4 * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
5 * >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
6 */
7 /*
8 *
9 * Copyright (c) 1997 Charles D. Cranor and Washington University.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor and
23 * Washington University.
24 * 4. The name of the author may not be used to endorse or promote products
25 * derived from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
28 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
29 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
31 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
32 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
33 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
34 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
36 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 *
38 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
39 */
40
41 #include "opt_uvmhist.h"
42
43 /*
44 * uvm_fault.c: fault handler
45 */
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/proc.h>
51 #include <sys/malloc.h>
52 #include <sys/mman.h>
53 #include <sys/user.h>
54
55 #include <vm/vm.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_kern.h>
58
59 #include <uvm/uvm.h>
60
61 /*
62 *
63 * a word on page faults:
64 *
65 * types of page faults we handle:
66 *
67 * CASE 1: upper layer faults CASE 2: lower layer faults
68 *
69 * CASE 1A CASE 1B CASE 2A CASE 2B
70 * read/write1 write>1 read/write +-cow_write/zero
71 * | | | |
72 * +--|--+ +--|--+ +-----+ + | + | +-----+
73 * amap | V | | ----------->new| | | | ^ |
74 * +-----+ +-----+ +-----+ + | + | +--|--+
75 * | | |
76 * +-----+ +-----+ +--|--+ | +--|--+
77 * uobj | d/c | | d/c | | V | +----| |
78 * +-----+ +-----+ +-----+ +-----+
79 *
80 * d/c = don't care
81 *
82 * case [0]: layerless fault
83 * no amap or uobj is present. this is an error.
84 *
85 * case [1]: upper layer fault [anon active]
86 * 1A: [read] or [write with anon->an_ref == 1]
87 * I/O takes place in top level anon and uobj is not touched.
88 * 1B: [write with anon->an_ref > 1]
89 * new anon is alloc'd and data is copied off ["COW"]
90 *
91 * case [2]: lower layer fault [uobj]
92 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
93 * I/O takes place directly in object.
94 * 2B: [write to copy_on_write] or [read on NULL uobj]
95 * data is "promoted" from uobj to a new anon.
96 * if uobj is null, then we zero fill.
97 *
98 * we follow the standard UVM locking protocol ordering:
99 *
100 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
101 * we hold a PG_BUSY page if we unlock for I/O
102 *
103 *
104 * the code is structured as follows:
105 *
106 * - init the "IN" params in the ufi structure
107 * ReFault:
108 * - do lookups [locks maps], check protection, handle needs_copy
109 * - check for case 0 fault (error)
110 * - establish "range" of fault
111 * - if we have an amap lock it and extract the anons
112 * - if sequential advice deactivate pages behind us
113 * - at the same time check pmap for unmapped areas and anon for pages
114 * that we could map in (and do map it if found)
115 * - check object for resident pages that we could map in
116 * - if (case 2) goto Case2
117 * - >>> handle case 1
118 * - ensure source anon is resident in RAM
119 * - if case 1B alloc new anon and copy from source
120 * - map the correct page in
121 * Case2:
122 * - >>> handle case 2
123 * - ensure source page is resident (if uobj)
124 * - if case 2B alloc new anon and copy from source (could be zero
125 * fill if uobj == NULL)
126 * - map the correct page in
127 * - done!
128 *
129 * note on paging:
130 * if we have to do I/O we place a PG_BUSY page in the correct object,
131 * unlock everything, and do the I/O. when I/O is done we must reverify
132 * the state of the world before assuming that our data structures are
133 * valid. [because mappings could change while the map is unlocked]
134 *
135 * alternative 1: unbusy the page in question and restart the page fault
136 * from the top (ReFault). this is easy but does not take advantage
137 * of the information that we already have from our previous lookup,
138 * although it is possible that the "hints" in the vm_map will help here.
139 *
140 * alternative 2: the system already keeps track of a "version" number of
141 * a map. [i.e. every time you write-lock a map (e.g. to change a
142 * mapping) you bump the version number up by one...] so, we can save
143 * the version number of the map before we release the lock and start I/O.
144 * then when I/O is done we can relock and check the version numbers
145 * to see if anything changed. this might save us some over 1 because
146 * we don't have to unbusy the page and may be less compares(?).
147 *
148 * alternative 3: put in backpointers or a way to "hold" part of a map
149 * in place while I/O is in progress. this could be complex to
150 * implement (especially with structures like amap that can be referenced
151 * by multiple map entries, and figuring out what should wait could be
152 * complex as well...).
153 *
154 * given that we are not currently multiprocessor or multithreaded we might
155 * as well choose alternative 2 now. maybe alternative 3 would be useful
156 * in the future. XXX keep in mind for future consideration//rechecking.
157 */
158
159 /*
160 * local data structures
161 */
162
163 struct uvm_advice {
164 int advice;
165 int nback;
166 int nforw;
167 };
168
169 /*
170 * page range array:
171 * note: index in array must match "advice" value
172 * XXX: borrowed numbers from freebsd. do they work well for us?
173 */
174
175 static struct uvm_advice uvmadvice[] = {
176 #ifdef UBC
177 /* XXX no read-ahead for now */
178 { MADV_NORMAL, 0, 0 },
179 { MADV_RANDOM, 0, 0 },
180 { MADV_SEQUENTIAL, 0, 0 },
181 #else
182 { MADV_NORMAL, 3, 4 },
183 { MADV_RANDOM, 0, 0 },
184 { MADV_SEQUENTIAL, 8, 7},
185 #endif
186 };
187
188 #define UVM_MAXRANGE 16 /* must be max() of nback+nforw+1 */
189
190 /*
191 * private prototypes
192 */
193
194 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
195 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
196
197 /*
198 * inline functions
199 */
200
201 /*
202 * uvmfault_anonflush: try and deactivate pages in specified anons
203 *
204 * => does not have to deactivate page if it is busy
205 */
206
207 static __inline void
208 uvmfault_anonflush(anons, n)
209 struct vm_anon **anons;
210 int n;
211 {
212 int lcv;
213 struct vm_page *pg;
214
215 for (lcv = 0 ; lcv < n ; lcv++) {
216 if (anons[lcv] == NULL)
217 continue;
218 simple_lock(&anons[lcv]->an_lock);
219 pg = anons[lcv]->u.an_page;
220 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
221 uvm_lock_pageq();
222 if (pg->wire_count == 0) {
223 pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
224 uvm_pagedeactivate(pg);
225 }
226 uvm_unlock_pageq();
227 }
228 simple_unlock(&anons[lcv]->an_lock);
229 }
230 }
231
232 /*
233 * normal functions
234 */
235
236 /*
237 * uvmfault_amapcopy: clear "needs_copy" in a map.
238 *
239 * => called with VM data structures unlocked (usually, see below)
240 * => we get a write lock on the maps and clear needs_copy for a VA
241 * => if we are out of RAM we sleep (waiting for more)
242 */
243
244 static void
245 uvmfault_amapcopy(ufi)
246 struct uvm_faultinfo *ufi;
247 {
248 /*
249 * while we haven't done the job
250 */
251
252 while (1) {
253
254 /*
255 * no mapping? give up.
256 */
257
258 if (uvmfault_lookup(ufi, TRUE) == FALSE)
259 return;
260
261 /*
262 * copy if needed.
263 */
264
265 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
266 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
267 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
268
269 /*
270 * didn't work? must be out of RAM. unlock and sleep.
271 */
272
273 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
274 uvmfault_unlockmaps(ufi, TRUE);
275 uvm_wait("fltamapcopy");
276 continue;
277 }
278
279 /*
280 * got it! unlock and return.
281 */
282
283 uvmfault_unlockmaps(ufi, TRUE);
284 return;
285 }
286 /*NOTREACHED*/
287 }
288
289 /*
290 * uvmfault_anonget: get data in an anon into a non-busy, non-released
291 * page in that anon.
292 *
293 * => maps, amap, and anon locked by caller.
294 * => if we fail (result != VM_PAGER_OK) we unlock everything.
295 * => if we are successful, we return with everything still locked.
296 * => we don't move the page on the queues [gets moved later]
297 * => if we allocate a new page [we_own], it gets put on the queues.
298 * either way, the result is that the page is on the queues at return time
299 * => for pages which are on loan from a uvm_object (and thus are not
300 * owned by the anon): if successful, we return with the owning object
301 * locked. the caller must unlock this object when it unlocks everything
302 * else.
303 */
304
305 int uvmfault_anonget(ufi, amap, anon)
306 struct uvm_faultinfo *ufi;
307 struct vm_amap *amap;
308 struct vm_anon *anon;
309 {
310 boolean_t we_own; /* we own anon's page? */
311 boolean_t locked; /* did we relock? */
312 struct vm_page *pg;
313 int result;
314 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
315
316 result = 0; /* XXX shut up gcc */
317 uvmexp.fltanget++;
318 /* bump rusage counters */
319 if (anon->u.an_page)
320 curproc->p_addr->u_stats.p_ru.ru_minflt++;
321 else
322 curproc->p_addr->u_stats.p_ru.ru_majflt++;
323
324 /*
325 * loop until we get it, or fail.
326 */
327
328 while (1) {
329
330 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
331 pg = anon->u.an_page;
332
333 /*
334 * if there is a resident page and it is loaned, then anon
335 * may not own it. call out to uvm_anon_lockpage() to ensure
336 * the real owner of the page has been identified and locked.
337 */
338
339 if (pg && pg->loan_count)
340 pg = uvm_anon_lockloanpg(anon);
341
342 /*
343 * page there? make sure it is not busy/released.
344 */
345
346 if (pg) {
347
348 /*
349 * at this point, if the page has a uobject [meaning
350 * we have it on loan], then that uobject is locked
351 * by us! if the page is busy, we drop all the
352 * locks (including uobject) and try again.
353 */
354
355 if ((pg->flags & (PG_BUSY|PG_RELEASED)) == 0) {
356 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
357 return (VM_PAGER_OK);
358 }
359 pg->flags |= PG_WANTED;
360 uvmexp.fltpgwait++;
361
362 /*
363 * the last unlock must be an atomic unlock+wait on
364 * the owner of page
365 */
366 if (pg->uobject) { /* owner is uobject ? */
367 uvmfault_unlockall(ufi, amap, NULL, anon);
368 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
369 0,0,0);
370 UVM_UNLOCK_AND_WAIT(pg,
371 &pg->uobject->vmobjlock,
372 FALSE, "anonget1",0);
373 } else {
374 /* anon owns page */
375 uvmfault_unlockall(ufi, amap, NULL, NULL);
376 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
377 0,0,0);
378 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
379 "anonget2",0);
380 }
381 /* ready to relock and try again */
382
383 } else {
384
385 /*
386 * no page, we must try and bring it in.
387 */
388 pg = uvm_pagealloc(NULL, 0, anon);
389
390 if (pg == NULL) { /* out of RAM. */
391
392 uvmfault_unlockall(ufi, amap, NULL, anon);
393 uvmexp.fltnoram++;
394 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
395 0,0,0);
396 uvm_wait("flt_noram1");
397 /* ready to relock and try again */
398
399 } else {
400
401 /* we set the PG_BUSY bit */
402 we_own = TRUE;
403 uvmfault_unlockall(ufi, amap, NULL, anon);
404
405 /*
406 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
407 * page into the uvm_swap_get function with
408 * all data structures unlocked.
409 */
410 uvmexp.pageins++;
411 result = uvm_swap_get(pg, anon->an_swslot,
412 PGO_SYNCIO);
413
414 /*
415 * we clean up after the i/o below in the
416 * "we_own" case
417 */
418 /* ready to relock and try again */
419 }
420 }
421
422 /*
423 * now relock and try again
424 */
425
426 locked = uvmfault_relock(ufi);
427 if (locked) {
428 simple_lock(&amap->am_l);
429 }
430 if (locked || we_own)
431 simple_lock(&anon->an_lock);
432
433 /*
434 * if we own the page (i.e. we set PG_BUSY), then we need
435 * to clean up after the I/O. there are three cases to
436 * consider:
437 * [1] page released during I/O: free anon and ReFault.
438 * [2] I/O not OK. free the page and cause the fault
439 * to fail.
440 * [3] I/O OK! activate the page and sync with the
441 * non-we_own case (i.e. drop anon lock if not locked).
442 */
443
444 if (we_own) {
445
446 if (pg->flags & PG_WANTED) {
447 /* still holding object lock */
448 thread_wakeup(pg);
449 }
450 /* un-busy! */
451 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
452 UVM_PAGE_OWN(pg, NULL);
453
454 /*
455 * if we were RELEASED during I/O, then our anon is
456 * no longer part of an amap. we need to free the
457 * anon and try again.
458 */
459 if (pg->flags & PG_RELEASED) {
460 pmap_page_protect(PMAP_PGARG(pg),
461 VM_PROT_NONE); /* to be safe */
462 simple_unlock(&anon->an_lock);
463 uvm_anfree(anon); /* frees page for us */
464 if (locked)
465 uvmfault_unlockall(ufi, amap, NULL, NULL);
466 uvmexp.fltpgrele++;
467 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
468 return (VM_PAGER_REFAULT); /* refault! */
469 }
470
471 if (result != VM_PAGER_OK) {
472 #ifdef DIAGNOSTIC
473 if (result == VM_PAGER_PEND)
474 panic("uvmfault_anonget: got PENDING for non-async I/O");
475 #endif
476 /* remove page from anon */
477 anon->u.an_page = NULL;
478
479 /*
480 * note: page was never !PG_BUSY, so it
481 * can't be mapped and thus no need to
482 * pmap_page_protect it...
483 */
484 uvm_lock_pageq();
485 uvm_pagefree(pg);
486 uvm_unlock_pageq();
487
488 if (locked)
489 uvmfault_unlockall(ufi, amap, NULL,
490 anon);
491 else
492 simple_unlock(&anon->an_lock);
493 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
494 return (VM_PAGER_ERROR);
495 }
496
497 /*
498 * must be OK, clear modify (already PG_CLEAN)
499 * and activate
500 */
501 pmap_clear_modify(PMAP_PGARG(pg));
502 uvm_lock_pageq();
503 uvm_pageactivate(pg);
504 uvm_unlock_pageq();
505 if (!locked)
506 simple_unlock(&anon->an_lock);
507 }
508
509 /*
510 * we were not able to relock. restart fault.
511 */
512
513 if (!locked) {
514 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
515 return (VM_PAGER_REFAULT);
516 }
517
518 /*
519 * verify no one has touched the amap and moved the anon on us.
520 */
521
522 if (amap_lookup(&ufi->entry->aref,
523 ufi->orig_rvaddr - ufi->entry->start) != anon) {
524
525 uvmfault_unlockall(ufi, amap, NULL, anon);
526 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
527 return (VM_PAGER_REFAULT);
528 }
529
530 /*
531 * try it again!
532 */
533
534 uvmexp.fltanretry++;
535 continue;
536
537 } /* while (1) */
538
539 /*NOTREACHED*/
540 }
541
542 /*
543 * F A U L T - m a i n e n t r y p o i n t
544 */
545
546 /*
547 * uvm_fault: page fault handler
548 *
549 * => called from MD code to resolve a page fault
550 * => VM data structures usually should be unlocked. however, it is
551 * possible to call here with the main map locked if the caller
552 * gets a write lock, sets it recusive, and then calls us (c.f.
553 * uvm_map_pageable). this should be avoided because it keeps
554 * the map locked off during I/O.
555 */
556
557 int
558 uvm_fault(orig_map, vaddr, fault_type, access_type)
559 vm_map_t orig_map;
560 vaddr_t vaddr;
561 vm_fault_t fault_type;
562 vm_prot_t access_type;
563 {
564 struct uvm_faultinfo ufi;
565 vm_prot_t enter_prot;
566 boolean_t wired, narrow, promote, locked, shadowed;
567 int npages, nback, nforw, centeridx, result, lcv, gotpages;
568 vaddr_t startva, objaddr, currva, offset;
569 paddr_t pa;
570 struct vm_amap *amap;
571 struct uvm_object *uobj;
572 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
573 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
574 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
575
576 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
577 orig_map, vaddr, fault_type, access_type);
578
579 anon = NULL; /* XXX: shut up gcc */
580
581 uvmexp.faults++; /* XXX: locking? */
582
583 /*
584 * init the IN parameters in the ufi
585 */
586
587 ufi.orig_map = orig_map;
588 ufi.orig_rvaddr = trunc_page(vaddr);
589 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
590 if (fault_type == VM_FAULT_WIRE)
591 narrow = TRUE; /* don't look for neighborhood
592 * pages on wire */
593 else
594 narrow = FALSE; /* normal fault */
595
596 /*
597 * "goto ReFault" means restart the page fault from ground zero.
598 */
599 ReFault:
600
601 /*
602 * lookup and lock the maps
603 */
604
605 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
606 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
607 return (KERN_INVALID_ADDRESS);
608 }
609 /* locked: maps(read) */
610
611 /*
612 * check protection
613 */
614
615 if ((ufi.entry->protection & access_type) != access_type) {
616 UVMHIST_LOG(maphist,
617 "<- protection failure (prot=0x%x, access=0x%x)",
618 ufi.entry->protection, access_type, 0, 0);
619 uvmfault_unlockmaps(&ufi, FALSE);
620 return (KERN_PROTECTION_FAILURE);
621 }
622
623 /*
624 * "enter_prot" is the protection we want to enter the page in at.
625 * for certain pages (e.g. copy-on-write pages) this protection can
626 * be more strict than ufi.entry->protection. "wired" means either
627 * the entry is wired or we are fault-wiring the pg.
628 */
629
630 enter_prot = ufi.entry->protection;
631 wired = (ufi.entry->wired_count != 0) || (fault_type == VM_FAULT_WIRE);
632 if (wired)
633 access_type = enter_prot; /* full access for wired */
634
635 /*
636 * handle "needs_copy" case. if we need to copy the amap we will
637 * have to drop our readlock and relock it with a write lock. (we
638 * need a write lock to change anything in a map entry [e.g.
639 * needs_copy]).
640 */
641
642 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
643 if ((access_type & VM_PROT_WRITE) ||
644 (ufi.entry->object.uvm_obj == NULL)) {
645 /* need to clear */
646 UVMHIST_LOG(maphist,
647 " need to clear needs_copy and refault",0,0,0,0);
648 uvmfault_unlockmaps(&ufi, FALSE);
649 uvmfault_amapcopy(&ufi);
650 uvmexp.fltamcopy++;
651 goto ReFault;
652
653 } else {
654
655 /*
656 * ensure that we pmap_enter page R/O since
657 * needs_copy is still true
658 */
659 enter_prot = enter_prot & ~VM_PROT_WRITE;
660
661 }
662 }
663
664 /*
665 * identify the players
666 */
667
668 amap = ufi.entry->aref.ar_amap; /* top layer */
669 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
670
671 /*
672 * check for a case 0 fault. if nothing backing the entry then
673 * error now.
674 */
675
676 if (amap == NULL && uobj == NULL) {
677 uvmfault_unlockmaps(&ufi, FALSE);
678 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
679 return (KERN_INVALID_ADDRESS);
680 }
681
682 /*
683 * establish range of interest based on advice from mapper
684 * and then clip to fit map entry. note that we only want
685 * to do this the first time through the fault. if we
686 * ReFault we will disable this by setting "narrow" to true.
687 */
688
689 if (narrow == FALSE) {
690
691 /* wide fault (!narrow) */
692 #ifdef DIAGNOSTIC
693 if (uvmadvice[ufi.entry->advice].advice != ufi.entry->advice)
694 panic("fault: advice mismatch!");
695 #endif
696 nback = min(uvmadvice[ufi.entry->advice].nback,
697 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
698 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
699 nforw = min(uvmadvice[ufi.entry->advice].nforw,
700 ((ufi.entry->end - ufi.orig_rvaddr) >>
701 PAGE_SHIFT) - 1);
702 /*
703 * note: "-1" because we don't want to count the
704 * faulting page as forw
705 */
706 npages = nback + nforw + 1;
707 centeridx = nback;
708
709 narrow = FALSE; /* ensure only once per-fault */
710
711 } else {
712
713 /* narrow fault! */
714 nback = nforw = 0;
715 startva = ufi.orig_rvaddr;
716 npages = 1;
717 centeridx = 0;
718
719 }
720
721 /* locked: maps(read) */
722 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
723 narrow, nback, nforw, startva);
724 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
725 amap, uobj, 0);
726
727 /*
728 * if we've got an amap, lock it and extract current anons.
729 */
730
731 if (amap) {
732 simple_lock(&amap->am_l);
733 anons = anons_store;
734 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
735 anons, npages);
736 } else {
737 anons = NULL; /* to be safe */
738 }
739
740 /* locked: maps(read), amap(if there) */
741
742 /*
743 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
744 * now and then forget about them (for the rest of the fault).
745 */
746
747 if (ufi.entry->advice == MADV_SEQUENTIAL) {
748
749 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
750 0,0,0,0);
751 /* flush back-page anons? */
752 if (amap)
753 uvmfault_anonflush(anons, nback);
754
755 /* flush object? */
756 if (uobj) {
757 objaddr =
758 (startva - ufi.entry->start) + ufi.entry->offset;
759 simple_lock(&uobj->vmobjlock);
760 (void) uobj->pgops->pgo_flush(uobj, objaddr, objaddr +
761 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
762 simple_unlock(&uobj->vmobjlock);
763 }
764
765 /* now forget about the backpages */
766 if (amap)
767 anons += nback;
768 startva += (nback << PAGE_SHIFT);
769 npages -= nback;
770 nback = centeridx = 0;
771 }
772
773 /* locked: maps(read), amap(if there) */
774
775 /*
776 * map in the backpages and frontpages we found in the amap in hopes
777 * of preventing future faults. we also init the pages[] array as
778 * we go.
779 */
780
781 currva = startva;
782 shadowed = FALSE;
783 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
784
785 /*
786 * dont play with VAs that are already mapped
787 * except for center)
788 * XXX: return value of pmap_extract disallows PA 0
789 */
790 if (lcv != centeridx) {
791 pa = pmap_extract(ufi.orig_map->pmap, currva);
792 if (pa != NULL) {
793 pages[lcv] = PGO_DONTCARE;
794 continue;
795 }
796 }
797
798 /*
799 * unmapped or center page. check if any anon at this level.
800 */
801 if (amap == NULL || anons[lcv] == NULL) {
802 pages[lcv] = NULL;
803 continue;
804 }
805
806 /*
807 * check for present page and map if possible. re-activate it.
808 */
809
810 pages[lcv] = PGO_DONTCARE;
811 if (lcv == centeridx) { /* save center for later! */
812 shadowed = TRUE;
813 continue;
814 }
815 anon = anons[lcv];
816 simple_lock(&anon->an_lock);
817 /* ignore loaned pages */
818 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
819 (anon->u.an_page->flags & (PG_RELEASED|PG_BUSY)) == 0) {
820 uvm_lock_pageq();
821 uvm_pageactivate(anon->u.an_page); /* reactivate */
822 uvm_unlock_pageq();
823 UVMHIST_LOG(maphist,
824 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
825 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
826 uvmexp.fltnamap++;
827 pmap_enter(ufi.orig_map->pmap, currva,
828 VM_PAGE_TO_PHYS(anon->u.an_page),
829 (anon->an_ref > 1) ? VM_PROT_READ : enter_prot,
830 (ufi.entry->wired_count != 0));
831 }
832 simple_unlock(&anon->an_lock);
833 }
834
835 /* locked: maps(read), amap(if there) */
836 /* (shadowed == TRUE) if there is an anon at the faulting address */
837 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
838 (uobj && shadowed == FALSE),0,0);
839
840 /*
841 * note that if we are really short of RAM we could sleep in the above
842 * call to pmap_enter with everything locked. bad?
843 * XXXCDC: this is fixed in PMAP_NEW (no sleep alloc's in pmap)
844 */
845
846 /*
847 * if the desired page is not shadowed by the amap and we have a
848 * backing object, then we check to see if the backing object would
849 * prefer to handle the fault itself (rather than letting us do it
850 * with the usual pgo_get hook). the backing object signals this by
851 * providing a pgo_fault routine.
852 */
853
854 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
855
856 /*
857 * XXXCHS this splhigh is horribly wrong, but it will mask
858 * some simple_lock problems until I get around to fixing it.
859 */
860 int s = splhigh();
861
862 simple_lock(&uobj->vmobjlock);
863
864 /* locked: maps(read), amap (if there), uobj */
865 result = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
866 centeridx, fault_type, access_type,
867 PGO_LOCKED);
868 splx(s);
869
870 /* locked: nothing, pgo_fault has unlocked everything */
871 simple_lock_assert(&uobj->vmobjlock, 0);
872
873 if (result == VM_PAGER_OK)
874 return (KERN_SUCCESS); /* pgo_fault did pmap enter */
875 else if (result == VM_PAGER_REFAULT)
876 goto ReFault; /* try again! */
877 else
878 return (KERN_PROTECTION_FAILURE);
879 }
880
881 /*
882 * now, if the desired page is not shadowed by the amap and we have
883 * a backing object that does not have a special fault routine, then
884 * we ask (with pgo_get) the object for resident pages that we care
885 * about and attempt to map them in. we do not let pgo_get block
886 * (PGO_LOCKED).
887 *
888 * ("get" has the option of doing a pmap_enter for us)
889 */
890
891 if (uobj && shadowed == FALSE) {
892 simple_lock(&uobj->vmobjlock);
893
894 /* locked (!shadowed): maps(read), amap (if there), uobj */
895 /*
896 * the following call to pgo_get does _not_ change locking state
897 */
898
899 uvmexp.fltlget++;
900 gotpages = npages;
901 result = uobj->pgops->pgo_get(uobj, ufi.entry->offset +
902 (startva - ufi.entry->start),
903 pages, &gotpages, centeridx,
904 UVM_ET_ISCOPYONWRITE(ufi.entry) ?
905 VM_PROT_READ : access_type,
906 ufi.entry->advice, PGO_LOCKED);
907
908 simple_lock_assert(&uobj->vmobjlock, 1);
909
910 /*
911 * check for pages to map, if we got any
912 */
913
914 uobjpage = NULL;
915
916 if (gotpages) {
917 currva = startva;
918 for (lcv = 0 ; lcv < npages ;
919 lcv++, currva += PAGE_SIZE) {
920
921 if (pages[lcv] == NULL ||
922 pages[lcv] == PGO_DONTCARE)
923 continue;
924
925 #ifdef DIAGNOSTIC
926 /*
927 * pager sanity check: pgo_get with
928 * PGO_LOCKED should never return a
929 * released page to us.
930 */
931 if (pages[lcv]->flags & PG_RELEASED)
932 panic("uvm_fault: pgo_get PGO_LOCKED gave us a RELEASED page");
933 #endif
934
935 /*
936 * if center page is resident and not
937 * PG_BUSY|PG_RELEASED then pgo_get
938 * made it PG_BUSY for us and gave
939 * us a handle to it. remember this
940 * page as "uobjpage." (for later use).
941 */
942
943 if (lcv == centeridx) {
944 uobjpage = pages[lcv];
945 UVMHIST_LOG(maphist, " got uobjpage (0x%x) with locked get",
946 uobjpage, 0,0,0);
947 continue;
948 }
949
950 /*
951 * note: calling pgo_get with locked data
952 * structures returns us pages which are
953 * neither busy nor released, so we don't
954 * need to check for this. we can just
955 * directly enter the page (after moving it
956 * to the head of the active queue [useful?]).
957 */
958
959 uvm_lock_pageq();
960 uvm_pageactivate(pages[lcv]); /* reactivate */
961 uvm_unlock_pageq();
962 UVMHIST_LOG(maphist,
963 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
964 ufi.orig_map->pmap, currva, pages[lcv], 0);
965 uvmexp.fltnomap++;
966 pmap_enter(ufi.orig_map->pmap, currva,
967 VM_PAGE_TO_PHYS(pages[lcv]),
968 UVM_ET_ISCOPYONWRITE(ufi.entry) ?
969 VM_PROT_READ : enter_prot, wired);
970
971 /*
972 * NOTE: page can't be PG_WANTED or PG_RELEASED
973 * because we've held the lock the whole time
974 * we've had the handle.
975 */
976 pages[lcv]->flags &= ~(PG_BUSY); /* un-busy! */
977 UVM_PAGE_OWN(pages[lcv], NULL);
978
979 /* done! */
980 } /* for "lcv" loop */
981 } /* "gotpages" != 0 */
982
983 /* note: object still _locked_ */
984 simple_lock_assert(&uobj->vmobjlock, 1);
985 } else {
986
987 uobjpage = NULL;
988
989 }
990
991 /* locked (shadowed): maps(read), amap */
992 /* locked (!shadowed): maps(read), amap(if there),
993 uobj(if !null), uobjpage(if !null) */
994
995 /*
996 * note that at this point we are done with any front or back pages.
997 * we are now going to focus on the center page (i.e. the one we've
998 * faulted on). if we have faulted on the top (anon) layer
999 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1000 * not touched it yet). if we have faulted on the bottom (uobj)
1001 * layer [i.e. case 2] and the page was both present and available,
1002 * then we've got a pointer to it as "uobjpage" and we've already
1003 * made it BUSY.
1004 */
1005
1006 /*
1007 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1008 */
1009
1010 /*
1011 * redirect case 2: if we are not shadowed, go to case 2.
1012 */
1013
1014 if (shadowed == FALSE)
1015 goto Case2;
1016
1017 /* locked: maps(read), amap */
1018
1019 /*
1020 * handle case 1: fault on an anon in our amap
1021 */
1022
1023 anon = anons[centeridx];
1024 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1025 simple_lock(&anon->an_lock);
1026
1027 /* locked: maps(read), amap, anon */
1028
1029 simple_lock_assert(&amap->am_l, 1);
1030 simple_lock_assert(&anon->an_lock, 1);
1031
1032 /*
1033 * no matter if we have case 1A or case 1B we are going to need to
1034 * have the anon's memory resident. ensure that now.
1035 */
1036
1037 /*
1038 * let uvmfault_anonget do the dirty work. if it fails (!OK) it will
1039 * unlock for us. if it is OK, locks are still valid and locked.
1040 * also, if it is OK, then the anon's page is on the queues.
1041 * if the page is on loan from a uvm_object, then anonget will
1042 * lock that object for us if it does not fail.
1043 */
1044
1045 result = uvmfault_anonget(&ufi, amap, anon);
1046
1047 if (result == VM_PAGER_REFAULT)
1048 goto ReFault;
1049
1050 if (result == VM_PAGER_AGAIN) {
1051 tsleep(&lbolt, PVM, "fltagain1", 0);
1052 goto ReFault;
1053 }
1054
1055 if (result != VM_PAGER_OK)
1056 return (KERN_PROTECTION_FAILURE); /* XXX??? */
1057
1058 /*
1059 * uobj is non null if the page is on loan from an object (i.e. uobj)
1060 */
1061
1062 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1063
1064 /* locked: maps(read), amap, anon, uobj(if one) */
1065 simple_lock_assert(&amap->am_l, 1);
1066 simple_lock_assert(&anon->an_lock, 1);
1067 if (uobj) {
1068 simple_lock_assert(&uobj->vmobjlock, 1);
1069 }
1070
1071 /*
1072 * special handling for loaned pages
1073 */
1074 if (anon->u.an_page->loan_count) {
1075
1076 if ((access_type & VM_PROT_WRITE) == 0) {
1077
1078 /*
1079 * for read faults on loaned pages we just cap the
1080 * protection at read-only.
1081 */
1082
1083 enter_prot = enter_prot & ~VM_PROT_WRITE;
1084
1085 } else {
1086 /*
1087 * note that we can't allow writes into a loaned page!
1088 *
1089 * if we have a write fault on a loaned page in an
1090 * anon then we need to look at the anon's ref count.
1091 * if it is greater than one then we are going to do
1092 * a normal copy-on-write fault into a new anon (this
1093 * is not a problem). however, if the reference count
1094 * is one (a case where we would normally allow a
1095 * write directly to the page) then we need to kill
1096 * the loan before we continue.
1097 */
1098
1099 /* >1 case is already ok */
1100 if (anon->an_ref == 1) {
1101
1102 /* get new un-owned replacement page */
1103 pg = uvm_pagealloc(NULL, 0, NULL);
1104 if (pg == NULL) {
1105 uvmfault_unlockall(&ufi, amap, uobj,
1106 anon);
1107 uvm_wait("flt_noram2");
1108 goto ReFault;
1109 }
1110
1111 /*
1112 * copy data, kill loan, and drop uobj lock
1113 * (if any)
1114 */
1115 /* copy old -> new */
1116 uvm_pagecopy(anon->u.an_page, pg);
1117
1118 /* force reload */
1119 pmap_page_protect(PMAP_PGARG(anon->u.an_page),
1120 VM_PROT_NONE);
1121 uvm_lock_pageq(); /* KILL loan */
1122 if (uobj)
1123 /* if we were loaning */
1124 anon->u.an_page->loan_count--;
1125 anon->u.an_page->uanon = NULL;
1126 /* in case we owned */
1127 anon->u.an_page->pqflags &= ~PQ_ANON;
1128 uvm_unlock_pageq();
1129 if (uobj) {
1130 simple_unlock(&uobj->vmobjlock);
1131 uobj = NULL;
1132 }
1133
1134 /* install new page in anon */
1135 anon->u.an_page = pg;
1136 pg->uanon = anon;
1137 pg->pqflags |= PQ_ANON;
1138 pg->flags &= ~(PG_BUSY|PG_FAKE);
1139 UVM_PAGE_OWN(pg, NULL);
1140
1141 /* done! */
1142 } /* ref == 1 */
1143 } /* write fault */
1144 } /* loan count */
1145
1146 /*
1147 * if we are case 1B then we will need to allocate a new blank
1148 * anon to transfer the data into. note that we have a lock
1149 * on anon, so no one can busy or release the page until we are done.
1150 * also note that the ref count can't drop to zero here because
1151 * it is > 1 and we are only dropping one ref.
1152 *
1153 * in the (hopefully very rare) case that we are out of RAM we
1154 * will unlock, wait for more RAM, and refault.
1155 *
1156 * if we are out of anon VM we kill the process (XXX: could wait?).
1157 */
1158
1159 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) {
1160
1161 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1162 uvmexp.flt_acow++;
1163 oanon = anon; /* oanon = old, locked anon */
1164 anon = uvm_analloc();
1165 if (anon)
1166 pg = uvm_pagealloc(NULL, 0, anon);
1167 #ifdef __GNUC__
1168 else
1169 pg = NULL; /* XXX: gcc */
1170 #endif
1171
1172 /* check for out of RAM */
1173 if (anon == NULL || pg == NULL) {
1174 if (anon) {
1175 uvm_anfree(anon);
1176 }
1177 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1178
1179 if (anon == NULL || uvmexp.swpages == uvmexp.swpguniq) {
1180 UVMHIST_LOG(maphist,
1181 "<- failed. out of VM",0,0,0,0);
1182 uvmexp.fltnoanon++;
1183 /* XXX: OUT OF VM, ??? */
1184 return (KERN_RESOURCE_SHORTAGE);
1185 }
1186
1187 uvmexp.fltnoram++;
1188 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1189 goto ReFault;
1190 }
1191
1192 /* got all resources, replace anon with nanon */
1193
1194 uvm_pagecopy(oanon->u.an_page, pg); /* pg now !PG_CLEAN */
1195 pg->flags &= ~(PG_BUSY|PG_FAKE); /* un-busy! new page */
1196 UVM_PAGE_OWN(pg, NULL);
1197 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1198 anon, 1);
1199
1200 /* deref: can not drop to zero here by defn! */
1201 oanon->an_ref--;
1202
1203 /*
1204 * note: oanon still locked. anon is _not_ locked, but we
1205 * have the sole references to in from amap which _is_ locked.
1206 * thus, no one can get at it until we are done with it.
1207 */
1208
1209 } else {
1210
1211 uvmexp.flt_anon++;
1212 oanon = anon; /* old, locked anon is same as anon */
1213 pg = anon->u.an_page;
1214 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1215 enter_prot = enter_prot & ~VM_PROT_WRITE;
1216
1217 }
1218
1219 /* locked: maps(read), amap, oanon */
1220 simple_lock_assert(&amap->am_l, 1);
1221 simple_lock_assert(&oanon->an_lock, 1);
1222
1223 /*
1224 * now map the page in ...
1225 * XXX: old fault unlocks object before pmap_enter. this seems
1226 * suspect since some other thread could blast the page out from
1227 * under us between the unlock and the pmap_enter.
1228 */
1229
1230 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1231 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1232 pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1233 enter_prot, wired);
1234
1235 /*
1236 * ... and update the page queues.
1237 */
1238
1239 uvm_lock_pageq();
1240
1241 if (fault_type == VM_FAULT_WIRE) {
1242 uvm_pagewire(pg);
1243 } else {
1244 /* activate it */
1245 uvm_pageactivate(pg);
1246
1247 }
1248
1249 uvm_unlock_pageq();
1250
1251 /*
1252 * done case 1! finish up by unlocking everything and returning success
1253 */
1254
1255 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1256 return (KERN_SUCCESS);
1257
1258
1259 Case2:
1260 /*
1261 * handle case 2: faulting on backing object or zero fill
1262 */
1263
1264 /*
1265 * locked:
1266 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1267 */
1268 if (uobj) {
1269 simple_lock_assert(&uobj->vmobjlock, 1);
1270 }
1271
1272 /*
1273 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1274 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1275 * have a backing object, check and see if we are going to promote
1276 * the data up to an anon during the fault.
1277 */
1278
1279 if (uobj == NULL) {
1280 uobjpage = PGO_DONTCARE;
1281 promote = TRUE; /* always need anon here */
1282 } else {
1283 /* assert(uobjpage != PGO_DONTCARE) */
1284 promote = (access_type & VM_PROT_WRITE) &&
1285 UVM_ET_ISCOPYONWRITE(ufi.entry);
1286 }
1287 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1288 promote, (uobj == NULL), 0,0);
1289
1290 /*
1291 * if uobjpage is not null then we do not need to do I/O to get the
1292 * uobjpage.
1293 *
1294 * if uobjpage is null, then we need to unlock and ask the pager to
1295 * get the data for us. once we have the data, we need to reverify
1296 * the state the world. we are currently not holding any resources.
1297 */
1298
1299 if (uobjpage) {
1300 /* update rusage counters */
1301 curproc->p_addr->u_stats.p_ru.ru_minflt++;
1302 } else {
1303 /* update rusage counters */
1304 curproc->p_addr->u_stats.p_ru.ru_majflt++;
1305
1306 /* locked: maps(read), amap(if there), uobj */
1307 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1308 /* locked: uobj */
1309 simple_lock_assert(&uobj->vmobjlock, 1);
1310
1311 uvmexp.fltget++;
1312 gotpages = 1;
1313 result = uobj->pgops->pgo_get(uobj,
1314 (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset,
1315 &uobjpage, &gotpages, 0,
1316 UVM_ET_ISCOPYONWRITE(ufi.entry) ?
1317 VM_PROT_READ : access_type,
1318 ufi.entry->advice, 0);
1319
1320 /* locked: uobjpage(if result OK) */
1321 simple_lock_assert(&uobj->vmobjlock, 0);
1322
1323 /*
1324 * recover from I/O
1325 */
1326
1327 if (result != VM_PAGER_OK) {
1328
1329 #ifdef DIAGNOSTIC
1330 if (result == VM_PAGER_PEND)
1331 panic("uvm_fault: pgo_get got PENDing "
1332 "on non-async I/O");
1333 #endif
1334
1335 if (result == VM_PAGER_AGAIN) {
1336 UVMHIST_LOG(maphist, " pgo_get says AGAIN!",
1337 0,0,0,0);
1338 tsleep(&lbolt, PVM, "fltagain2", 0);
1339 goto ReFault;
1340 }
1341
1342 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1343 result, 0,0,0);
1344 return (KERN_PROTECTION_FAILURE); /* XXX i/o error */
1345 }
1346
1347 /* locked: uobjpage */
1348
1349 /*
1350 * re-verify the state of the world by first trying to relock
1351 * the maps. always relock the object.
1352 */
1353
1354 locked = uvmfault_relock(&ufi);
1355 if (locked && amap)
1356 simple_lock(&amap->am_l);
1357 simple_lock(&uobj->vmobjlock);
1358
1359 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1360 /* locked(!locked): uobj, uobjpage */
1361 simple_lock_assert(&uobj->vmobjlock, 1);
1362
1363 /*
1364 * verify that the page has not be released and re-verify
1365 * that amap slot is still free. if there is a problem,
1366 * we unlock and clean up.
1367 */
1368
1369 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1370 (locked && amap &&
1371 amap_lookup(&ufi.entry->aref,
1372 ufi.orig_rvaddr - ufi.entry->start))) {
1373 if (locked)
1374 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1375 locked = FALSE;
1376 }
1377
1378 /*
1379 * didn't get the lock? release the page and retry.
1380 */
1381
1382 if (locked == FALSE) {
1383
1384 UVMHIST_LOG(maphist,
1385 " wasn't able to relock after fault: retry",
1386 0,0,0,0);
1387 if (uobjpage->flags & PG_WANTED)
1388 /* still holding object lock */
1389 thread_wakeup(uobjpage);
1390
1391 if (uobjpage->flags & PG_RELEASED) {
1392 uvmexp.fltpgrele++;
1393 #ifdef DIAGNOSTIC
1394 if (uobj->pgops->pgo_releasepg == NULL)
1395 panic("uvm_fault: object has no releasepg function");
1396 #endif
1397 /* frees page */
1398 if (uobj->pgops->pgo_releasepg(uobjpage,NULL))
1399 /* unlock if still alive */
1400 simple_unlock(&uobj->vmobjlock);
1401 goto ReFault;
1402 }
1403
1404 uvm_lock_pageq();
1405 /* make sure it is in queues */
1406 uvm_pageactivate(uobjpage);
1407
1408 uvm_unlock_pageq();
1409 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1410 UVM_PAGE_OWN(uobjpage, NULL);
1411 simple_unlock(&uobj->vmobjlock);
1412 goto ReFault;
1413
1414 }
1415
1416 /*
1417 * we have the data in uobjpage which is PG_BUSY and
1418 * !PG_RELEASED. we are holding object lock (so the page
1419 * can't be released on us).
1420 */
1421
1422 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1423 simple_lock_assert(&uobj->vmobjlock, 1);
1424 }
1425
1426 /*
1427 * locked:
1428 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1429 */
1430 if (amap) {
1431 simple_lock_assert(&amap->am_l, 1);
1432 }
1433 if (uobj) {
1434 simple_lock_assert(&uobj->vmobjlock, 1);
1435 }
1436
1437 /*
1438 * notes:
1439 * - at this point uobjpage can not be NULL
1440 * - at this point uobjpage can not be PG_RELEASED (since we checked
1441 * for it above)
1442 * - at this point uobjpage could be PG_WANTED (handle later)
1443 */
1444
1445 if (promote == FALSE) {
1446
1447 /*
1448 * we are not promoting. if the mapping is COW ensure that we
1449 * don't give more access than we should (e.g. when doing a read
1450 * fault on a COPYONWRITE mapping we want to map the COW page in
1451 * R/O even though the entry protection could be R/W).
1452 *
1453 * set "pg" to the page we want to map in (uobjpage, usually)
1454 */
1455
1456 uvmexp.flt_obj++;
1457 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1458 enter_prot = enter_prot & ~VM_PROT_WRITE;
1459 pg = uobjpage; /* map in the actual object */
1460
1461 /* assert(uobjpage != PGO_DONTCARE) */
1462
1463 /*
1464 * we are faulting directly on the page. be careful
1465 * about writing to loaned pages...
1466 */
1467 if (uobjpage->loan_count) {
1468
1469 if ((access_type & VM_PROT_WRITE) == 0) {
1470 /* read fault: cap the protection at readonly */
1471 /* cap! */
1472 enter_prot = enter_prot & ~VM_PROT_WRITE;
1473 } else {
1474 /* write fault: must break the loan here */
1475
1476 /* alloc new un-owned page */
1477 pg = uvm_pagealloc(NULL, 0, NULL);
1478
1479 if (pg == NULL) {
1480 /*
1481 * drop ownership of page, it can't
1482 * be released
1483 * */
1484 if (uobjpage->flags & PG_WANTED)
1485 thread_wakeup(uobjpage);
1486 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1487 UVM_PAGE_OWN(uobjpage, NULL);
1488
1489 uvm_lock_pageq();
1490 /* activate: we will need it later */
1491 uvm_pageactivate(uobjpage);
1492
1493 uvm_unlock_pageq();
1494 uvmfault_unlockall(&ufi, amap, uobj,
1495 NULL);
1496 UVMHIST_LOG(maphist,
1497 " out of RAM breaking loan, waiting", 0,0,0,0);
1498 uvmexp.fltnoram++;
1499 uvm_wait("flt_noram4");
1500 goto ReFault;
1501 }
1502
1503 /*
1504 * copy the data from the old page to the new
1505 * one and clear the fake/clean flags on the
1506 * new page (keep it busy). force a reload
1507 * of the old page by clearing it from all
1508 * pmaps. then lock the page queues to
1509 * rename the pages.
1510 */
1511 uvm_pagecopy(uobjpage, pg); /* old -> new */
1512 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1513 pmap_page_protect(PMAP_PGARG(uobjpage),
1514 VM_PROT_NONE);
1515 if (uobjpage->flags & PG_WANTED)
1516 thread_wakeup(uobjpage);
1517 /* uobj still locked */
1518 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1519 UVM_PAGE_OWN(uobjpage, NULL);
1520
1521 uvm_lock_pageq();
1522 offset = uobjpage->offset;
1523 /* remove old page */
1524 uvm_pagerealloc(uobjpage, NULL, 0);
1525
1526 /*
1527 * at this point we have absolutely no
1528 * control over uobjpage
1529 */
1530 /* install new page */
1531 uvm_pagerealloc(pg, uobj, offset);
1532 uvm_unlock_pageq();
1533
1534 /*
1535 * done! loan is broken and "pg" is
1536 * PG_BUSY. it can now replace uobjpage.
1537 */
1538
1539 uobjpage = pg;
1540
1541 } /* write fault case */
1542 } /* if loan_count */
1543
1544 } else {
1545
1546 /*
1547 * if we are going to promote the data to an anon we
1548 * allocate a blank anon here and plug it into our amap.
1549 */
1550 #if DIAGNOSTIC
1551 if (amap == NULL)
1552 panic("uvm_fault: want to promote data, but no anon");
1553 #endif
1554
1555 anon = uvm_analloc();
1556 if (anon)
1557 pg = uvm_pagealloc(NULL, 0, anon); /* BUSY+CLEAN+FAKE */
1558 #ifdef __GNUC__
1559 else
1560 pg = NULL; /* XXX: gcc */
1561 #endif
1562
1563 /*
1564 * out of memory resources?
1565 */
1566 if (anon == NULL || pg == NULL) {
1567
1568 /*
1569 * arg! must unbusy our page and fail or sleep.
1570 */
1571 if (uobjpage != PGO_DONTCARE) {
1572 /* still holding object lock */
1573 simple_lock_assert(&uobj->vmobjlock, 1);
1574
1575 if (uobjpage->flags & PG_WANTED)
1576 thread_wakeup(uobjpage);
1577
1578 uvm_lock_pageq();
1579 uvm_pageactivate(uobjpage);
1580 uvm_unlock_pageq();
1581 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1582 UVM_PAGE_OWN(uobjpage, NULL);
1583 }
1584
1585 /* unlock and fail ... */
1586 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1587 if (anon == NULL || uvmexp.swpages == uvmexp.swpguniq) {
1588 UVMHIST_LOG(maphist, " promote: out of VM",
1589 0,0,0,0);
1590 uvmexp.fltnoanon++;
1591 /* XXX: out of VM */
1592 return (KERN_RESOURCE_SHORTAGE);
1593 }
1594 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1595 0,0,0,0);
1596 uvm_anfree(anon);
1597 uvmexp.fltnoram++;
1598 uvm_wait("flt_noram5");
1599 goto ReFault;
1600 }
1601
1602 /*
1603 * fill in the data
1604 */
1605
1606 if (uobjpage != PGO_DONTCARE) {
1607 simple_lock_assert(&uobj->vmobjlock, 1);
1608
1609 uvmexp.flt_prcopy++;
1610 /* copy page [pg now dirty] */
1611 uvm_pagecopy(uobjpage, pg);
1612
1613 /*
1614 * promote to shared amap? make sure all sharing
1615 * procs see it
1616 */
1617 if ((amap->am_flags & AMAP_SHARED) != 0) {
1618 pmap_page_protect(PMAP_PGARG(uobjpage),
1619 VM_PROT_NONE);
1620 }
1621
1622 /*
1623 * dispose of uobjpage. it can't be PG_RELEASED
1624 * since we still hold the object lock.
1625 * drop handle to uobj as well.
1626 */
1627
1628 if (uobjpage->flags & PG_WANTED)
1629 thread_wakeup(uobjpage);
1630 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1631 UVM_PAGE_OWN(uobjpage, NULL);
1632 uvm_lock_pageq();
1633 uvm_pageactivate(uobjpage);
1634 uvm_unlock_pageq();
1635 simple_unlock(&uobj->vmobjlock);
1636 uobj = NULL;
1637
1638 UVMHIST_LOG(maphist,
1639 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1640 uobjpage, anon, pg, 0);
1641
1642 } else {
1643 uvmexp.flt_przero++;
1644 uvm_pagezero(pg); /* zero page [pg now dirty] */
1645 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1646 anon, pg, 0, 0);
1647 }
1648
1649 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1650 anon, 0);
1651
1652 }
1653
1654 /*
1655 * locked:
1656 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1657 *
1658 * note: pg is either the uobjpage or the new page in the new anon
1659 */
1660
1661 /*
1662 * all resources are present. we can now map it in and free our
1663 * resources.
1664 */
1665
1666 UVMHIST_LOG(maphist,
1667 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1668 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1669 pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1670 enter_prot, wired);
1671
1672 uvm_lock_pageq();
1673 if (fault_type == VM_FAULT_WIRE) {
1674 uvm_pagewire(pg);
1675 } else {
1676 uvm_pageactivate(pg);
1677 }
1678 uvm_unlock_pageq();
1679
1680 if (pg->flags & PG_WANTED) {
1681 thread_wakeup(pg);
1682 }
1683
1684 /*
1685 * note that pg can't be PG_RELEASED since we did not drop the object
1686 * lock since the last time we checked.
1687 */
1688
1689 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1690 UVM_PAGE_OWN(pg, NULL);
1691 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1692
1693 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1694 return (KERN_SUCCESS);
1695 }
1696
1697
1698 /*
1699 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1700 *
1701 * => map should be locked by caller? If so how can we call
1702 * uvm_fault? WRONG.
1703 * => XXXCDC: locking here is all screwed up!!! start with
1704 * uvm_map_pageable and fix it.
1705 */
1706
1707 int
1708 uvm_fault_wire(map, start, end)
1709 vm_map_t map;
1710 vaddr_t start, end;
1711 {
1712 vaddr_t va;
1713 pmap_t pmap;
1714 int rv;
1715
1716 pmap = vm_map_pmap(map);
1717
1718 /*
1719 * call pmap pageable: this tells the pmap layer to lock down these
1720 * page tables.
1721 */
1722
1723 pmap_pageable(pmap, start, end, FALSE);
1724
1725 /*
1726 * now fault it in page at a time. if the fault fails then we have
1727 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1728 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1729 */
1730
1731 for (va = start ; va < end ; va += PAGE_SIZE) {
1732 rv = uvm_fault(map, va, VM_FAULT_WIRE, VM_PROT_NONE);
1733 if (rv) {
1734 if (va != start) {
1735 uvm_fault_unwire(map->pmap, start, va);
1736 }
1737 return (rv);
1738 }
1739 }
1740
1741 return (KERN_SUCCESS);
1742 }
1743
1744 /*
1745 * uvm_fault_unwire(): unwire range of virtual space.
1746 *
1747 * => caller holds reference to pmap (via its map)
1748 */
1749
1750 void
1751 uvm_fault_unwire(pmap, start, end)
1752 struct pmap *pmap;
1753 vaddr_t start, end;
1754 {
1755 vaddr_t va;
1756 paddr_t pa;
1757 struct vm_page *pg;
1758
1759 /*
1760 * we assume that the area we are unwiring has actually been wired
1761 * in the first place. this means that we should be able to extract
1762 * the PAs from the pmap. we also lock out the page daemon so that
1763 * we can call uvm_pageunwire.
1764 */
1765
1766 uvm_lock_pageq();
1767
1768 for (va = start; va < end ; va += PAGE_SIZE) {
1769 pa = pmap_extract(pmap, va);
1770
1771 /* XXX: assumes PA 0 cannot be in map */
1772 if (pa == (paddr_t) 0) {
1773 panic("uvm_fault_unwire: unwiring non-wired memory");
1774 }
1775 pmap_change_wiring(pmap, va, FALSE); /* tell the pmap */
1776 pg = PHYS_TO_VM_PAGE(pa);
1777 if (pg)
1778 uvm_pageunwire(pg);
1779 }
1780
1781 uvm_unlock_pageq();
1782
1783 /*
1784 * now we call pmap_pageable to let the pmap know that the page tables
1785 * in this space no longer need to be wired.
1786 */
1787
1788 pmap_pageable(pmap, start, end, TRUE);
1789
1790 }
1791