uvm_fault.c revision 1.173.2.1 1 /* $NetBSD: uvm_fault.c,v 1.173.2.1 2010/03/16 15:38:17 rmind Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.173.2.1 2010/03/16 15:38:17 rmind Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0; lcv < n; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 struct uvm_faultctx {
696 vm_prot_t access_type;
697 vm_prot_t enter_prot;
698 vaddr_t startva;
699 int npages;
700 int centeridx;
701 struct vm_anon *anon_spare;
702 bool wire_mapping;
703 bool narrow;
704 bool wire_paging;
705 bool maxprot;
706 bool cow_now;
707 bool promote;
708 };
709
710 static inline int uvm_fault_check(
711 struct uvm_faultinfo *, struct uvm_faultctx *,
712 struct vm_anon ***, struct vm_page ***);
713
714 static int uvm_fault_upper(
715 struct uvm_faultinfo *, struct uvm_faultctx *,
716 struct vm_anon **);
717 static inline int uvm_fault_upper_lookup(
718 struct uvm_faultinfo *, struct uvm_faultctx *,
719 struct vm_anon **, struct vm_page **);
720 static inline void uvm_fault_upper_neighbor(
721 struct uvm_faultinfo *, struct uvm_faultctx *,
722 vaddr_t, struct vm_page *, bool);
723 static inline int uvm_fault_upper_loan(
724 struct uvm_faultinfo *, struct uvm_faultctx *,
725 struct vm_anon *, struct uvm_object **);
726 static inline int uvm_fault_upper_promote(
727 struct uvm_faultinfo *, struct uvm_faultctx *,
728 struct uvm_object *, struct vm_anon *);
729 static inline int uvm_fault_upper_direct(
730 struct uvm_faultinfo *, struct uvm_faultctx *,
731 struct uvm_object *, struct vm_anon *);
732 static int uvm_fault_upper_enter(
733 struct uvm_faultinfo *, struct uvm_faultctx *,
734 struct uvm_object *, struct vm_anon *,
735 struct vm_page *, struct vm_anon *);
736 static inline void uvm_fault_upper_done(
737 struct uvm_faultinfo *, struct uvm_faultctx *,
738 struct uvm_object *, struct vm_anon *,
739 struct vm_page *);
740
741 static int uvm_fault_lower(
742 struct uvm_faultinfo *, struct uvm_faultctx *,
743 struct vm_page **);
744 static inline void uvm_fault_lower_lookup(
745 struct uvm_faultinfo *, struct uvm_faultctx *,
746 struct vm_page **);
747 static inline void uvm_fault_lower_neighbor(
748 struct uvm_faultinfo *, struct uvm_faultctx *,
749 vaddr_t, struct vm_page *, bool);
750 static inline int uvm_fault_lower_io(
751 struct uvm_faultinfo *, struct uvm_faultctx *,
752 struct uvm_object **, struct vm_page **);
753 static inline int uvm_fault_lower_direct(
754 struct uvm_faultinfo *, struct uvm_faultctx *,
755 struct uvm_object *, struct vm_page *);
756 static inline int uvm_fault_lower_direct_loan(
757 struct uvm_faultinfo *, struct uvm_faultctx *,
758 struct uvm_object *, struct vm_page **,
759 struct vm_page **);
760 static inline int uvm_fault_lower_promote(
761 struct uvm_faultinfo *, struct uvm_faultctx *,
762 struct uvm_object *, struct vm_page *);
763 static int uvm_fault_lower_enter(
764 struct uvm_faultinfo *, struct uvm_faultctx *,
765 struct uvm_object *,
766 struct vm_anon *, struct vm_page *,
767 struct vm_page *);
768 static inline void uvm_fault_lower_done(
769 struct uvm_faultinfo *, struct uvm_faultctx *,
770 struct uvm_object *, struct vm_anon *,
771 struct vm_page *);
772
773 int
774 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
775 vm_prot_t access_type, int fault_flag)
776 {
777 struct uvm_faultinfo ufi;
778 struct uvm_faultctx flt = {
779 .access_type = access_type,
780
781 /* don't look for neighborhood * pages on "wire" fault */
782 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
783
784 /* "wire" fault causes wiring of both mapping and paging */
785 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
786 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
787
788 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
789 };
790 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
791 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
792 int error;
793 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
794
795 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
796 orig_map, vaddr, access_type, fault_flag);
797
798 uvmexp.faults++; /* XXX: locking? */
799
800 /*
801 * init the IN parameters in the ufi
802 */
803
804 ufi.orig_map = orig_map;
805 ufi.orig_rvaddr = trunc_page(vaddr);
806 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
807
808 error = ERESTART;
809 while (error == ERESTART) {
810 anons = anons_store;
811 pages = pages_store;
812
813 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
814 if (error != 0)
815 continue;
816
817 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
818 if (error != 0)
819 continue;
820
821 if (pages[flt.centeridx] == PGO_DONTCARE)
822 error = uvm_fault_upper(&ufi, &flt, anons);
823 else {
824 struct uvm_object * const uobj = ufi.entry->object.uvm_obj;
825
826 if (uobj && uobj->pgops->pgo_fault != NULL) {
827 /*
828 * invoke "special" fault routine.
829 */
830 mutex_enter(uobj->vmobjlock);
831 /* locked: maps(read), amap(if there), uobj */
832 error = uobj->pgops->pgo_fault(&ufi,
833 flt.startva, pages, flt.npages,
834 flt.centeridx, flt.access_type,
835 PGO_LOCKED|PGO_SYNCIO);
836
837 /* locked: nothing, pgo_fault has unlocked everything */
838
839 /*
840 * object fault routine responsible for pmap_update().
841 */
842 } else {
843 error = uvm_fault_lower(&ufi, &flt, pages);
844 }
845 }
846 }
847
848 if (flt.anon_spare != NULL) {
849 flt.anon_spare->an_ref--;
850 uvm_anfree(flt.anon_spare);
851 }
852 return error;
853 }
854
855 /*
856 * uvm_fault_check: check prot, handle needs-copy, etc.
857 *
858 * 1. lookup entry.
859 * 2. check protection.
860 * 3. adjust fault condition (mainly for simulated fault).
861 * 4. handle needs-copy (lazy amap copy).
862 * 5. establish range of interest for neighbor fault (aka pre-fault).
863 * 6. look up anons (if amap exists).
864 * 7. flush pages (if MADV_SEQUENTIAL)
865 *
866 * => called with nothing locked.
867 * => if we fail (result != 0) we unlock everything.
868 */
869
870 static int
871 uvm_fault_check(
872 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
873 struct vm_anon ***ranons, struct vm_page ***rpages)
874 {
875 struct vm_amap *amap;
876 struct uvm_object *uobj;
877 vm_prot_t check_prot;
878 int nback, nforw;
879 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
880
881 /*
882 * lookup and lock the maps
883 */
884
885 if (uvmfault_lookup(ufi, false) == false) {
886 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr, 0,0,0);
887 return EFAULT;
888 }
889 /* locked: maps(read) */
890
891 #ifdef DIAGNOSTIC
892 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
893 printf("Page fault on non-pageable map:\n");
894 printf("ufi->map = %p\n", ufi->map);
895 printf("ufi->orig_map = %p\n", ufi->orig_map);
896 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
897 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
898 }
899 #endif
900
901 /*
902 * check protection
903 */
904
905 check_prot = flt->maxprot ?
906 ufi->entry->max_protection : ufi->entry->protection;
907 if ((check_prot & flt->access_type) != flt->access_type) {
908 UVMHIST_LOG(maphist,
909 "<- protection failure (prot=0x%x, access=0x%x)",
910 ufi->entry->protection, flt->access_type, 0, 0);
911 uvmfault_unlockmaps(ufi, false);
912 return EACCES;
913 }
914
915 /*
916 * "enter_prot" is the protection we want to enter the page in at.
917 * for certain pages (e.g. copy-on-write pages) this protection can
918 * be more strict than ufi->entry->protection. "wired" means either
919 * the entry is wired or we are fault-wiring the pg.
920 */
921
922 flt->enter_prot = ufi->entry->protection;
923 if (VM_MAPENT_ISWIRED(ufi->entry))
924 flt->wire_mapping = true;
925
926 if (flt->wire_mapping) {
927 flt->access_type = flt->enter_prot; /* full access for wired */
928 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
929 } else {
930 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
931 }
932
933 flt->promote = false;
934
935 /*
936 * handle "needs_copy" case. if we need to copy the amap we will
937 * have to drop our readlock and relock it with a write lock. (we
938 * need a write lock to change anything in a map entry [e.g.
939 * needs_copy]).
940 */
941
942 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
943 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
944 KASSERT(!flt->maxprot);
945 /* need to clear */
946 UVMHIST_LOG(maphist,
947 " need to clear needs_copy and refault",0,0,0,0);
948 uvmfault_unlockmaps(ufi, false);
949 uvmfault_amapcopy(ufi);
950 uvmexp.fltamcopy++;
951 return ERESTART;
952
953 } else {
954
955 /*
956 * ensure that we pmap_enter page R/O since
957 * needs_copy is still true
958 */
959
960 flt->enter_prot &= ~VM_PROT_WRITE;
961 }
962 }
963
964 /*
965 * identify the players
966 */
967
968 amap = ufi->entry->aref.ar_amap; /* upper layer */
969 uobj = ufi->entry->object.uvm_obj; /* lower layer */
970
971 /*
972 * check for a case 0 fault. if nothing backing the entry then
973 * error now.
974 */
975
976 if (amap == NULL && uobj == NULL) {
977 uvmfault_unlockmaps(ufi, false);
978 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
979 return EFAULT;
980 }
981
982 /*
983 * establish range of interest based on advice from mapper
984 * and then clip to fit map entry. note that we only want
985 * to do this the first time through the fault. if we
986 * ReFault we will disable this by setting "narrow" to true.
987 */
988
989 if (flt->narrow == false) {
990
991 /* wide fault (!narrow) */
992 KASSERT(uvmadvice[ufi->entry->advice].advice ==
993 ufi->entry->advice);
994 nback = MIN(uvmadvice[ufi->entry->advice].nback,
995 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
996 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
997 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
998 ((ufi->entry->end - ufi->orig_rvaddr) >>
999 PAGE_SHIFT) - 1);
1000 /*
1001 * note: "-1" because we don't want to count the
1002 * faulting page as forw
1003 */
1004 flt->npages = nback + nforw + 1;
1005 flt->centeridx = nback;
1006
1007 flt->narrow = true; /* ensure only once per-fault */
1008
1009 } else {
1010
1011 /* narrow fault! */
1012 nback = nforw = 0;
1013 flt->startva = ufi->orig_rvaddr;
1014 flt->npages = 1;
1015 flt->centeridx = 0;
1016
1017 }
1018 /* offset from entry's start to pgs' start */
1019 const voff_t eoff = flt->startva - ufi->entry->start;
1020
1021 /* locked: maps(read) */
1022 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
1023 flt->narrow, nback, nforw, flt->startva);
1024 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1025 amap, uobj, 0);
1026
1027 /*
1028 * if we've got an amap, lock it and extract current anons.
1029 */
1030
1031 if (amap) {
1032 amap_lock(amap);
1033 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1034 } else {
1035 *ranons = NULL; /* to be safe */
1036 }
1037
1038 /* locked: maps(read), amap(if there) */
1039 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1040
1041 /*
1042 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1043 * now and then forget about them (for the rest of the fault).
1044 */
1045
1046 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1047
1048 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1049 0,0,0,0);
1050 /* flush back-page anons? */
1051 if (amap)
1052 uvmfault_anonflush(*ranons, nback);
1053
1054 /* flush object? */
1055 if (uobj) {
1056 voff_t uoff;
1057
1058 uoff = ufi->entry->offset + eoff;
1059 mutex_enter(uobj->vmobjlock);
1060 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1061 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1062 }
1063
1064 /* now forget about the backpages */
1065 if (amap)
1066 *ranons += nback;
1067 flt->startva += (nback << PAGE_SHIFT);
1068 flt->npages -= nback;
1069 flt->centeridx = 0;
1070 }
1071 /*
1072 * => startva is fixed
1073 * => npages is fixed
1074 */
1075
1076 return 0;
1077 }
1078
1079 /*
1080 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1081 *
1082 * iterate range of interest:
1083 * 1. check if h/w mapping exists. if yes, we don't care
1084 * 2. check if anon exists. if not, page is lower.
1085 * 3. if anon exists, enter h/w mapping for neighbors.
1086 *
1087 * => called with amap locked (if exists).
1088 */
1089
1090 static int
1091 uvm_fault_upper_lookup(
1092 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1093 struct vm_anon **anons, struct vm_page **pages)
1094 {
1095 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1096 int lcv;
1097 vaddr_t currva;
1098 bool shadowed;
1099 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1100
1101 /* locked: maps(read), amap(if there) */
1102 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1103
1104 /*
1105 * map in the backpages and frontpages we found in the amap in hopes
1106 * of preventing future faults. we also init the pages[] array as
1107 * we go.
1108 */
1109
1110 currva = flt->startva;
1111 shadowed = false;
1112 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1113 /*
1114 * dont play with VAs that are already mapped
1115 * except for center)
1116 */
1117 if (lcv != flt->centeridx &&
1118 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1119 pages[lcv] = PGO_DONTCARE;
1120 continue;
1121 }
1122
1123 /*
1124 * unmapped or center page. check if any anon at this level.
1125 */
1126 if (amap == NULL || anons[lcv] == NULL) {
1127 pages[lcv] = NULL;
1128 continue;
1129 }
1130
1131 /*
1132 * check for present page and map if possible. re-activate it.
1133 */
1134
1135 pages[lcv] = PGO_DONTCARE;
1136 if (lcv == flt->centeridx) { /* save center for later! */
1137 shadowed = true;
1138 } else {
1139 struct vm_anon *anon = anons[lcv];
1140
1141 mutex_enter(&anon->an_lock);
1142 struct vm_page *pg = anon->an_page;
1143
1144 /* ignore loaned and busy pages */
1145 if (pg != NULL && pg->loan_count == 0 &&
1146 (pg->flags & PG_BUSY) == 0)
1147 uvm_fault_upper_neighbor(ufi, flt, currva,
1148 pg, anon->an_ref > 1);
1149 mutex_exit(&anon->an_lock);
1150 }
1151 }
1152
1153 /* locked: maps(read), amap(if there) */
1154 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1155 /* (shadowed == true) if there is an anon at the faulting address */
1156 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1157 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1158
1159 /*
1160 * note that if we are really short of RAM we could sleep in the above
1161 * call to pmap_enter with everything locked. bad?
1162 *
1163 * XXX Actually, that is bad; pmap_enter() should just fail in that
1164 * XXX case. --thorpej
1165 */
1166
1167 return 0;
1168 }
1169
1170 /*
1171 * uvm_fault_upper_neighbor: enter single lower neighbor page.
1172 *
1173 * => called with amap and anon locked.
1174 */
1175
1176 static void
1177 uvm_fault_upper_neighbor(
1178 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1179 vaddr_t currva, struct vm_page *pg, bool readonly)
1180 {
1181 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1182
1183 /* locked: amap, anon */
1184
1185 mutex_enter(&uvm_pageqlock);
1186 uvm_pageenqueue(pg);
1187 mutex_exit(&uvm_pageqlock);
1188 UVMHIST_LOG(maphist,
1189 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1190 ufi->orig_map->pmap, currva, pg, 0);
1191 uvmexp.fltnamap++;
1192
1193 /*
1194 * Since this page isn't the page that's actually faulting,
1195 * ignore pmap_enter() failures; it's not critical that we
1196 * enter these right now.
1197 */
1198
1199 (void) pmap_enter(ufi->orig_map->pmap, currva,
1200 VM_PAGE_TO_PHYS(pg),
1201 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1202 flt->enter_prot,
1203 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1204
1205 pmap_update(ufi->orig_map->pmap);
1206 }
1207
1208 /*
1209 * uvm_fault_upper: handle upper fault.
1210 *
1211 * 1. acquire anon lock.
1212 * 2. get anon. let uvmfault_anonget do the dirty work.
1213 * 3. handle loan.
1214 * 4. dispatch direct or promote handlers.
1215 */
1216
1217 static int
1218 uvm_fault_upper(
1219 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1220 struct vm_anon **anons)
1221 {
1222 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1223 struct vm_anon * const anon = anons[flt->centeridx];
1224 struct uvm_object *uobj;
1225 int error;
1226 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1227
1228 /* locked: maps(read), amap */
1229 KASSERT(mutex_owned(&amap->am_l));
1230
1231 /*
1232 * handle case 1: fault on an anon in our amap
1233 */
1234
1235 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1236 mutex_enter(&anon->an_lock);
1237
1238 /* locked: maps(read), amap, anon */
1239 KASSERT(mutex_owned(&amap->am_l));
1240 KASSERT(mutex_owned(&anon->an_lock));
1241
1242 /*
1243 * no matter if we have case 1A or case 1B we are going to need to
1244 * have the anon's memory resident. ensure that now.
1245 */
1246
1247 /*
1248 * let uvmfault_anonget do the dirty work.
1249 * if it fails (!OK) it will unlock everything for us.
1250 * if it succeeds, locks are still valid and locked.
1251 * also, if it is OK, then the anon's page is on the queues.
1252 * if the page is on loan from a uvm_object, then anonget will
1253 * lock that object for us if it does not fail.
1254 */
1255
1256 error = uvmfault_anonget(ufi, amap, anon);
1257 switch (error) {
1258 case 0:
1259 break;
1260
1261 case ERESTART:
1262 return ERESTART;
1263
1264 case EAGAIN:
1265 kpause("fltagain1", false, hz/2, NULL);
1266 return ERESTART;
1267
1268 default:
1269 return error;
1270 }
1271
1272 /*
1273 * uobj is non null if the page is on loan from an object (i.e. uobj)
1274 */
1275
1276 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1277
1278 /* locked: maps(read), amap, anon, uobj(if one) */
1279 KASSERT(mutex_owned(&amap->am_l));
1280 KASSERT(mutex_owned(&anon->an_lock));
1281 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1282
1283 /*
1284 * special handling for loaned pages
1285 */
1286
1287 if (anon->an_page->loan_count) {
1288 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1289 if (error != 0)
1290 return error;
1291 }
1292
1293 /*
1294 * if we are case 1B then we will need to allocate a new blank
1295 * anon to transfer the data into. note that we have a lock
1296 * on anon, so no one can busy or release the page until we are done.
1297 * also note that the ref count can't drop to zero here because
1298 * it is > 1 and we are only dropping one ref.
1299 *
1300 * in the (hopefully very rare) case that we are out of RAM we
1301 * will unlock, wait for more RAM, and refault.
1302 *
1303 * if we are out of anon VM we kill the process (XXX: could wait?).
1304 */
1305
1306 if (flt->cow_now && anon->an_ref > 1) {
1307 flt->promote = true;
1308 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1309 } else {
1310 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1311 }
1312 return error;
1313 }
1314
1315 /*
1316 * uvm_fault_upper_loan: handle loaned upper page.
1317 *
1318 * 1. if not cow'ing now, just mark enter_prot as read-only.
1319 * 2. if cow'ing now, and if ref count is 1, break loan.
1320 */
1321
1322 static int
1323 uvm_fault_upper_loan(
1324 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1325 struct vm_anon *anon, struct uvm_object **ruobj)
1326 {
1327 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1328 int error = 0;
1329 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1330
1331 if (!flt->cow_now) {
1332
1333 /*
1334 * for read faults on loaned pages we just cap the
1335 * protection at read-only.
1336 */
1337
1338 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1339
1340 } else {
1341 /*
1342 * note that we can't allow writes into a loaned page!
1343 *
1344 * if we have a write fault on a loaned page in an
1345 * anon then we need to look at the anon's ref count.
1346 * if it is greater than one then we are going to do
1347 * a normal copy-on-write fault into a new anon (this
1348 * is not a problem). however, if the reference count
1349 * is one (a case where we would normally allow a
1350 * write directly to the page) then we need to kill
1351 * the loan before we continue.
1352 */
1353
1354 /* >1 case is already ok */
1355 if (anon->an_ref == 1) {
1356 error = uvm_loanbreak_anon(anon, *ruobj);
1357 if (error != 0) {
1358 uvmfault_unlockall(ufi, amap, *ruobj, anon);
1359 uvm_wait("flt_noram2");
1360 return ERESTART;
1361 }
1362 /* if we were a loan reciever uobj is gone */
1363 if (*ruobj)
1364 *ruobj = NULL;
1365 }
1366 }
1367 return error;
1368 }
1369
1370 /*
1371 * uvm_fault_upper_promote: promote upper page.
1372 *
1373 * 1. call uvmfault_promote.
1374 * 2. enqueue page.
1375 * 3. deref.
1376 * 4. pass page to uvm_fault_upper_enter.
1377 */
1378
1379 static int
1380 uvm_fault_upper_promote(
1381 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1382 struct uvm_object *uobj, struct vm_anon *anon)
1383 {
1384 struct vm_anon * const oanon = anon;
1385 struct vm_page *pg;
1386 int error;
1387 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1388
1389 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1390 uvmexp.flt_acow++;
1391
1392 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1393 &anon, &flt->anon_spare);
1394 switch (error) {
1395 case 0:
1396 break;
1397 case ERESTART:
1398 return ERESTART;
1399 default:
1400 return error;
1401 }
1402
1403 pg = anon->an_page;
1404 mutex_enter(&uvm_pageqlock);
1405 uvm_pageactivate(pg);
1406 mutex_exit(&uvm_pageqlock);
1407 pg->flags &= ~(PG_BUSY|PG_FAKE);
1408 UVM_PAGE_OWN(pg, NULL);
1409
1410 /* deref: can not drop to zero here by defn! */
1411 oanon->an_ref--;
1412
1413 /*
1414 * note: oanon is still locked, as is the new anon. we
1415 * need to check for this later when we unlock oanon; if
1416 * oanon != anon, we'll have to unlock anon, too.
1417 */
1418
1419 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1420 }
1421
1422 /*
1423 * uvm_fault_upper_direct: handle direct fault.
1424 */
1425
1426 static int
1427 uvm_fault_upper_direct(
1428 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1429 struct uvm_object *uobj, struct vm_anon *anon)
1430 {
1431 struct vm_anon * const oanon = anon;
1432 struct vm_page *pg;
1433 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1434
1435 uvmexp.flt_anon++;
1436 pg = anon->an_page;
1437 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1438 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1439
1440 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1441 }
1442
1443 /*
1444 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1445 */
1446
1447 static int
1448 uvm_fault_upper_enter(
1449 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1450 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1451 struct vm_anon *oanon)
1452 {
1453 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1454 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1455
1456 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1457 KASSERT(mutex_owned(&amap->am_l));
1458 KASSERT(mutex_owned(&anon->an_lock));
1459 KASSERT(mutex_owned(&oanon->an_lock));
1460
1461 /*
1462 * now map the page in.
1463 */
1464
1465 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1466 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1467 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1468 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1469 != 0) {
1470
1471 /*
1472 * No need to undo what we did; we can simply think of
1473 * this as the pmap throwing away the mapping information.
1474 *
1475 * We do, however, have to go through the ReFault path,
1476 * as the map may change while we're asleep.
1477 */
1478
1479 if (anon != oanon)
1480 mutex_exit(&anon->an_lock);
1481 uvmfault_unlockall(ufi, amap, uobj, oanon);
1482 if (!uvm_reclaimable()) {
1483 UVMHIST_LOG(maphist,
1484 "<- failed. out of VM",0,0,0,0);
1485 /* XXX instrumentation */
1486 return ENOMEM;
1487 }
1488 /* XXX instrumentation */
1489 uvm_wait("flt_pmfail1");
1490 return ERESTART;
1491 }
1492
1493 uvm_fault_upper_done(ufi, flt, uobj, anon, pg);
1494
1495 /*
1496 * done case 1! finish up by unlocking everything and returning success
1497 */
1498
1499 if (anon != oanon)
1500 mutex_exit(&anon->an_lock);
1501 uvmfault_unlockall(ufi, amap, uobj, oanon);
1502 pmap_update(ufi->orig_map->pmap);
1503 return 0;
1504 }
1505
1506 /*
1507 * uvm_fault_upper_done: queue upper center page.
1508 */
1509
1510 static void
1511 uvm_fault_upper_done(
1512 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1513 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
1514 {
1515 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1516
1517 /*
1518 * ... update the page queues.
1519 */
1520
1521 mutex_enter(&uvm_pageqlock);
1522 if (flt->wire_paging) {
1523 uvm_pagewire(pg);
1524
1525 /*
1526 * since the now-wired page cannot be paged out,
1527 * release its swap resources for others to use.
1528 * since an anon with no swap cannot be PG_CLEAN,
1529 * clear its clean flag now.
1530 */
1531
1532 pg->flags &= ~(PG_CLEAN);
1533 uvm_anon_dropswap(anon);
1534 } else {
1535 uvm_pageactivate(pg);
1536 }
1537 mutex_exit(&uvm_pageqlock);
1538 }
1539
1540 /*
1541 * uvm_fault_lower: handle lower fault.
1542 *
1543 * 1. check uobj
1544 * 1.1. if null, ZFOD.
1545 * 1.2. if not null, look up unnmapped neighbor pages.
1546 * 2. for center page, check if promote.
1547 * 2.1. ZFOD always needs promotion.
1548 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1549 * 3. if uobj is not ZFOD and page is not found, do i/o.
1550 * 4. dispatch either direct / promote fault.
1551 */
1552
1553 static int
1554 uvm_fault_lower(
1555 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1556 struct vm_page **pages)
1557 {
1558 #ifdef DIAGNOSTIC
1559 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1560 #endif
1561 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1562 struct vm_page *uobjpage;
1563 int error;
1564 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1565
1566 /* locked: maps(read), amap(if there), uobj(if !null) */
1567
1568 /*
1569 * now, if the desired page is not shadowed by the amap and we have
1570 * a backing object that does not have a special fault routine, then
1571 * we ask (with pgo_get) the object for resident pages that we care
1572 * about and attempt to map them in. we do not let pgo_get block
1573 * (PGO_LOCKED).
1574 */
1575
1576 if (uobj == NULL) {
1577 /* zero fill; don't care neighbor pages */
1578 uobjpage = NULL;
1579 } else {
1580 uvm_fault_lower_lookup(ufi, flt, pages);
1581 uobjpage = pages[flt->centeridx];
1582 }
1583
1584 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1585 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1586 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1587 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1588
1589 /*
1590 * note that at this point we are done with any front or back pages.
1591 * we are now going to focus on the center page (i.e. the one we've
1592 * faulted on). if we have faulted on the upper (anon) layer
1593 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1594 * not touched it yet). if we have faulted on the bottom (uobj)
1595 * layer [i.e. case 2] and the page was both present and available,
1596 * then we've got a pointer to it as "uobjpage" and we've already
1597 * made it BUSY.
1598 */
1599
1600 /*
1601 * locked:
1602 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1603 */
1604 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1605 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1606 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1607
1608 /*
1609 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1610 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1611 * have a backing object, check and see if we are going to promote
1612 * the data up to an anon during the fault.
1613 */
1614
1615 if (uobj == NULL) {
1616 uobjpage = PGO_DONTCARE;
1617 flt->promote = true; /* always need anon here */
1618 } else {
1619 KASSERT(uobjpage != PGO_DONTCARE);
1620 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1621 }
1622 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1623 flt->promote, (uobj == NULL), 0,0);
1624
1625 /*
1626 * if uobjpage is not null then we do not need to do I/O to get the
1627 * uobjpage.
1628 *
1629 * if uobjpage is null, then we need to unlock and ask the pager to
1630 * get the data for us. once we have the data, we need to reverify
1631 * the state the world. we are currently not holding any resources.
1632 */
1633
1634 if (uobjpage) {
1635 /* update rusage counters */
1636 curlwp->l_ru.ru_minflt++;
1637 } else {
1638 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1639 if (error != 0)
1640 return error;
1641 }
1642
1643 /*
1644 * locked:
1645 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1646 */
1647 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1648 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1649 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1650
1651 /*
1652 * notes:
1653 * - at this point uobjpage can not be NULL
1654 * - at this point uobjpage can not be PG_RELEASED (since we checked
1655 * for it above)
1656 * - at this point uobjpage could be PG_WANTED (handle later)
1657 */
1658
1659 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1660 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1661 (uobjpage->flags & PG_CLEAN) != 0);
1662
1663 if (flt->promote == false) {
1664 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1665 } else {
1666 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1667 }
1668 return error;
1669 }
1670
1671 /*
1672 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1673 *
1674 * 1. get on-memory pages.
1675 * 2. if failed, give up (get only center page later).
1676 * 3. if succeeded, enter h/w mapping of neighbor pages.
1677 */
1678
1679 static void
1680 uvm_fault_lower_lookup(
1681 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1682 struct vm_page **pages)
1683 {
1684 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1685 int lcv, gotpages;
1686 vaddr_t currva;
1687 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1688
1689 mutex_enter(uobj->vmobjlock);
1690 /* locked: maps(read), amap(if there), uobj */
1691 /*
1692 * the following call to pgo_get does _not_ change locking state
1693 */
1694
1695 uvmexp.fltlget++;
1696 gotpages = flt->npages;
1697 (void) uobj->pgops->pgo_get(uobj,
1698 ufi->entry->offset + flt->startva - ufi->entry->start,
1699 pages, &gotpages, flt->centeridx,
1700 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1701
1702 /*
1703 * check for pages to map, if we got any
1704 */
1705
1706 if (gotpages == 0) {
1707 pages[flt->centeridx] = NULL;
1708 return;
1709 }
1710
1711 currva = flt->startva;
1712 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1713 struct vm_page *curpg;
1714
1715 curpg = pages[lcv];
1716 if (curpg == NULL || curpg == PGO_DONTCARE) {
1717 continue;
1718 }
1719 KASSERT(curpg->uobject == uobj);
1720
1721 /*
1722 * if center page is resident and not PG_BUSY|PG_RELEASED
1723 * then pgo_get made it PG_BUSY for us and gave us a handle
1724 * to it.
1725 */
1726
1727 if (lcv == flt->centeridx) {
1728 UVMHIST_LOG(maphist, " got uobjpage "
1729 "(0x%x) with locked get",
1730 curpg, 0,0,0);
1731 } else {
1732 bool readonly = (curpg->flags & PG_RDONLY)
1733 || (curpg->loan_count > 0)
1734 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1735
1736 uvm_fault_lower_neighbor(ufi, flt,
1737 currva, curpg, readonly);
1738 }
1739 }
1740 pmap_update(ufi->orig_map->pmap);
1741 }
1742
1743 /*
1744 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1745 */
1746
1747 static void
1748 uvm_fault_lower_neighbor(
1749 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1750 vaddr_t currva, struct vm_page *pg, bool readonly)
1751 {
1752 UVMHIST_FUNC("uvm_fault_lower_neighor"); UVMHIST_CALLED(maphist);
1753
1754 /* locked: maps(read), amap(if there), uobj */
1755
1756 /*
1757 * calling pgo_get with PGO_LOCKED returns us pages which
1758 * are neither busy nor released, so we don't need to check
1759 * for this. we can just directly enter the pages.
1760 */
1761
1762 mutex_enter(&uvm_pageqlock);
1763 uvm_pageenqueue(pg);
1764 mutex_exit(&uvm_pageqlock);
1765 UVMHIST_LOG(maphist,
1766 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1767 ufi->orig_map->pmap, currva, pg, 0);
1768 uvmexp.fltnomap++;
1769
1770 /*
1771 * Since this page isn't the page that's actually faulting,
1772 * ignore pmap_enter() failures; it's not critical that we
1773 * enter these right now.
1774 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1775 * held the lock the whole time we've had the handle.
1776 */
1777 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1778 KASSERT((pg->flags & PG_RELEASED) == 0);
1779 KASSERT((pg->flags & PG_WANTED) == 0);
1780 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
1781 (pg->flags & PG_CLEAN) != 0);
1782 pg->flags &= ~(PG_BUSY);
1783 UVM_PAGE_OWN(pg, NULL);
1784
1785 (void) pmap_enter(ufi->orig_map->pmap, currva,
1786 VM_PAGE_TO_PHYS(pg),
1787 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1788 flt->enter_prot & MASK(ufi->entry),
1789 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1790 }
1791
1792 /*
1793 * uvm_fault_lower_io: get lower page from backing store.
1794 *
1795 * 1. unlock everything, because i/o will block.
1796 * 2. call pgo_get.
1797 * 3. if failed, recover.
1798 * 4. if succeeded, relock everything and verify things.
1799 */
1800
1801 static int
1802 uvm_fault_lower_io(
1803 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1804 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1805 {
1806 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1807 struct uvm_object *uobj = *ruobj;
1808 struct vm_page *pg;
1809 bool locked;
1810 int gotpages;
1811 int error;
1812 voff_t uoff;
1813 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1814
1815 /* update rusage counters */
1816 curlwp->l_ru.ru_majflt++;
1817
1818 /* locked: maps(read), amap(if there), uobj */
1819 uvmfault_unlockall(ufi, amap, NULL, NULL);
1820 /* locked: uobj */
1821
1822 uvmexp.fltget++;
1823 gotpages = 1;
1824 pg = NULL;
1825 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1826 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1827 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1828 PGO_SYNCIO);
1829 /* locked: pg(if no error) */
1830
1831 /*
1832 * recover from I/O
1833 */
1834
1835 if (error) {
1836 if (error == EAGAIN) {
1837 UVMHIST_LOG(maphist,
1838 " pgo_get says TRY AGAIN!",0,0,0,0);
1839 kpause("fltagain2", false, hz/2, NULL);
1840 return ERESTART;
1841 }
1842
1843 #if 0
1844 KASSERT(error != ERESTART);
1845 #else
1846 /* XXXUEBS don't re-fault? */
1847 if (error == ERESTART)
1848 error = EIO;
1849 #endif
1850
1851 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1852 error, 0,0,0);
1853 return error;
1854 }
1855
1856 /* locked: pg */
1857
1858 KASSERT((pg->flags & PG_BUSY) != 0);
1859
1860 mutex_enter(&uvm_pageqlock);
1861 uvm_pageactivate(pg);
1862 mutex_exit(&uvm_pageqlock);
1863
1864 /*
1865 * re-verify the state of the world by first trying to relock
1866 * the maps. always relock the object.
1867 */
1868
1869 locked = uvmfault_relock(ufi);
1870 if (locked && amap)
1871 amap_lock(amap);
1872
1873 /* might be changed */
1874 uobj = pg->uobject;
1875
1876 mutex_enter(uobj->vmobjlock);
1877
1878 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1879 /* locked(!locked): uobj, pg */
1880
1881 /*
1882 * verify that the page has not be released and re-verify
1883 * that amap slot is still free. if there is a problem,
1884 * we unlock and clean up.
1885 */
1886
1887 if ((pg->flags & PG_RELEASED) != 0 ||
1888 (locked && amap && amap_lookup(&ufi->entry->aref,
1889 ufi->orig_rvaddr - ufi->entry->start))) {
1890 if (locked)
1891 uvmfault_unlockall(ufi, amap, NULL, NULL);
1892 locked = false;
1893 }
1894
1895 /*
1896 * didn't get the lock? release the page and retry.
1897 */
1898
1899 if (locked == false) {
1900 UVMHIST_LOG(maphist,
1901 " wasn't able to relock after fault: retry",
1902 0,0,0,0);
1903 if (pg->flags & PG_WANTED) {
1904 wakeup(pg);
1905 }
1906 if (pg->flags & PG_RELEASED) {
1907 uvmexp.fltpgrele++;
1908 uvm_pagefree(pg);
1909 mutex_exit(uobj->vmobjlock);
1910 return ERESTART;
1911 }
1912 pg->flags &= ~(PG_BUSY|PG_WANTED);
1913 UVM_PAGE_OWN(pg, NULL);
1914 mutex_exit(uobj->vmobjlock);
1915 return ERESTART;
1916 }
1917
1918 /*
1919 * we have the data in pg which is busy and
1920 * not released. we are holding object lock (so the page
1921 * can't be released on us).
1922 */
1923
1924 /* locked: maps(read), amap(if !null), uobj, pg */
1925
1926 *ruobj = uobj;
1927 *ruobjpage = pg;
1928 return 0;
1929 }
1930
1931 /*
1932 * uvm_fault_lower_direct: fault lower center page
1933 *
1934 * 1. adjust h/w mapping protection.
1935 * 2. if page is loaned, resolve.
1936 */
1937
1938 int
1939 uvm_fault_lower_direct(
1940 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1941 struct uvm_object *uobj, struct vm_page *uobjpage)
1942 {
1943 struct vm_page *pg;
1944 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1945
1946 /*
1947 * we are not promoting. if the mapping is COW ensure that we
1948 * don't give more access than we should (e.g. when doing a read
1949 * fault on a COPYONWRITE mapping we want to map the COW page in
1950 * R/O even though the entry protection could be R/W).
1951 *
1952 * set "pg" to the page we want to map in (uobjpage, usually)
1953 */
1954
1955 uvmexp.flt_obj++;
1956 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1957 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1958 flt->enter_prot &= ~VM_PROT_WRITE;
1959 pg = uobjpage; /* map in the actual object */
1960
1961 KASSERT(uobjpage != PGO_DONTCARE);
1962
1963 /*
1964 * we are faulting directly on the page. be careful
1965 * about writing to loaned pages...
1966 */
1967
1968 if (uobjpage->loan_count) {
1969 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1970 }
1971 KASSERT(pg == uobjpage);
1972
1973 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1974 }
1975
1976 /*
1977 * uvm_fault_lower_direct_loan: resolve loaned page.
1978 *
1979 * 1. if not cow'ing, adjust h/w mapping protection.
1980 * 2. if cow'ing, break loan.
1981 */
1982
1983 static int
1984 uvm_fault_lower_direct_loan(
1985 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1986 struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage)
1987 {
1988 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1989 struct vm_page *pg;
1990 struct vm_page *uobjpage = *ruobjpage;
1991 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
1992
1993 if (!flt->cow_now) {
1994 /* read fault: cap the protection at readonly */
1995 /* cap! */
1996 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1997 } else {
1998 /* write fault: must break the loan here */
1999
2000 pg = uvm_loanbreak(uobjpage);
2001 if (pg == NULL) {
2002
2003 /*
2004 * drop ownership of page, it can't be released
2005 */
2006
2007 if (uobjpage->flags & PG_WANTED)
2008 wakeup(uobjpage);
2009 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2010 UVM_PAGE_OWN(uobjpage, NULL);
2011
2012 uvmfault_unlockall(ufi, amap, uobj, NULL);
2013 UVMHIST_LOG(maphist,
2014 " out of RAM breaking loan, waiting",
2015 0,0,0,0);
2016 uvmexp.fltnoram++;
2017 uvm_wait("flt_noram4");
2018 return ERESTART;
2019 }
2020 *rpg = pg;
2021 *ruobjpage = pg;
2022 }
2023 return 0;
2024 }
2025
2026 /*
2027 * uvm_fault_lower_promote: promote lower page.
2028 *
2029 * 1. call uvmfault_promote.
2030 * 2. fill in data.
2031 * 3. if not ZFOD, dispose old page.
2032 */
2033
2034 int
2035 uvm_fault_lower_promote(
2036 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2037 struct uvm_object *uobj, struct vm_page *uobjpage)
2038 {
2039 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2040 struct vm_anon *anon;
2041 struct vm_page *pg;
2042 int error;
2043 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2044
2045 /*
2046 * if we are going to promote the data to an anon we
2047 * allocate a blank anon here and plug it into our amap.
2048 */
2049 #if DIAGNOSTIC
2050 if (amap == NULL)
2051 panic("uvm_fault: want to promote data, but no anon");
2052 #endif
2053 error = uvmfault_promote(ufi, NULL, uobjpage,
2054 &anon, &flt->anon_spare);
2055 switch (error) {
2056 case 0:
2057 break;
2058 case ERESTART:
2059 return ERESTART;
2060 default:
2061 return error;
2062 }
2063
2064 pg = anon->an_page;
2065
2066 /*
2067 * fill in the data
2068 */
2069
2070 if (uobjpage != PGO_DONTCARE) {
2071 uvmexp.flt_prcopy++;
2072
2073 /*
2074 * promote to shared amap? make sure all sharing
2075 * procs see it
2076 */
2077
2078 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2079 pmap_page_protect(uobjpage, VM_PROT_NONE);
2080 /*
2081 * XXX: PAGE MIGHT BE WIRED!
2082 */
2083 }
2084
2085 /*
2086 * dispose of uobjpage. it can't be PG_RELEASED
2087 * since we still hold the object lock.
2088 * drop handle to uobj as well.
2089 */
2090
2091 if (uobjpage->flags & PG_WANTED)
2092 /* still have the obj lock */
2093 wakeup(uobjpage);
2094 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2095 UVM_PAGE_OWN(uobjpage, NULL);
2096 mutex_exit(uobj->vmobjlock);
2097 uobj = NULL;
2098
2099 UVMHIST_LOG(maphist,
2100 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2101 uobjpage, anon, pg, 0);
2102
2103 } else {
2104 uvmexp.flt_przero++;
2105
2106 /*
2107 * Page is zero'd and marked dirty by
2108 * uvmfault_promote().
2109 */
2110
2111 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2112 anon, pg, 0, 0);
2113 }
2114
2115 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage);
2116 }
2117
2118 /*
2119 * uvm_fault_lower_enter: enter h/w mapping of lower page.
2120 */
2121
2122 int
2123 uvm_fault_lower_enter(
2124 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2125 struct uvm_object *uobj,
2126 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2127 {
2128 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2129 int error;
2130 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2131
2132 /*
2133 * locked:
2134 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2135 * anon(if !null), pg(if anon)
2136 *
2137 * note: pg is either the uobjpage or the new page in the new anon
2138 */
2139 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2140 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
2141 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2142 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2143 KASSERT((pg->flags & PG_BUSY) != 0);
2144
2145 /*
2146 * all resources are present. we can now map it in and free our
2147 * resources.
2148 */
2149
2150 UVMHIST_LOG(maphist,
2151 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2152 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2153 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2154 (pg->flags & PG_RDONLY) == 0);
2155 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
2156 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2157 flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2158
2159 /*
2160 * No need to undo what we did; we can simply think of
2161 * this as the pmap throwing away the mapping information.
2162 *
2163 * We do, however, have to go through the ReFault path,
2164 * as the map may change while we're asleep.
2165 */
2166
2167 if (pg->flags & PG_WANTED)
2168 wakeup(pg);
2169
2170 /*
2171 * note that pg can't be PG_RELEASED since we did not drop
2172 * the object lock since the last time we checked.
2173 */
2174 KASSERT((pg->flags & PG_RELEASED) == 0);
2175
2176 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2177 UVM_PAGE_OWN(pg, NULL);
2178
2179 uvmfault_unlockall(ufi, amap, uobj, anon);
2180 if (!uvm_reclaimable()) {
2181 UVMHIST_LOG(maphist,
2182 "<- failed. out of VM",0,0,0,0);
2183 /* XXX instrumentation */
2184 error = ENOMEM;
2185 return error;
2186 }
2187 /* XXX instrumentation */
2188 uvm_wait("flt_pmfail2");
2189 return ERESTART;
2190 }
2191
2192 uvm_fault_lower_done(ufi, flt, uobj, anon, pg);
2193
2194 uvmfault_unlockall(ufi, amap, uobj, anon);
2195 pmap_update(ufi->orig_map->pmap);
2196 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2197 return 0;
2198 }
2199
2200 /*
2201 * uvm_fault_lower_done: queue lower center page.
2202 */
2203
2204 void
2205 uvm_fault_lower_done(
2206 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2207 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2208 {
2209 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2210
2211 mutex_enter(&uvm_pageqlock);
2212 if (flt->wire_paging) {
2213 uvm_pagewire(pg);
2214 if (pg->pqflags & PQ_AOBJ) {
2215
2216 /*
2217 * since the now-wired page cannot be paged out,
2218 * release its swap resources for others to use.
2219 * since an aobj page with no swap cannot be PG_CLEAN,
2220 * clear its clean flag now.
2221 */
2222
2223 KASSERT(uobj != NULL);
2224 pg->flags &= ~(PG_CLEAN);
2225 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2226 }
2227 } else {
2228 uvm_pageactivate(pg);
2229 }
2230 mutex_exit(&uvm_pageqlock);
2231
2232 if (pg->flags & PG_WANTED)
2233 wakeup(pg);
2234
2235 /*
2236 * note that pg can't be PG_RELEASED since we did not drop the object
2237 * lock since the last time we checked.
2238 */
2239 KASSERT((pg->flags & PG_RELEASED) == 0);
2240
2241 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2242 UVM_PAGE_OWN(pg, NULL);
2243 }
2244
2245
2246 /*
2247 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2248 *
2249 * => map may be read-locked by caller, but MUST NOT be write-locked.
2250 * => if map is read-locked, any operations which may cause map to
2251 * be write-locked in uvm_fault() must be taken care of by
2252 * the caller. See uvm_map_pageable().
2253 */
2254
2255 int
2256 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2257 vm_prot_t access_type, int maxprot)
2258 {
2259 vaddr_t va;
2260 int error;
2261
2262 /*
2263 * now fault it in a page at a time. if the fault fails then we have
2264 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2265 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2266 */
2267
2268 /*
2269 * XXX work around overflowing a vaddr_t. this prevents us from
2270 * wiring the last page in the address space, though.
2271 */
2272 if (start > end) {
2273 return EFAULT;
2274 }
2275
2276 for (va = start; va < end; va += PAGE_SIZE) {
2277 error = uvm_fault_internal(map, va, access_type,
2278 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2279 if (error) {
2280 if (va != start) {
2281 uvm_fault_unwire(map, start, va);
2282 }
2283 return error;
2284 }
2285 }
2286 return 0;
2287 }
2288
2289 /*
2290 * uvm_fault_unwire(): unwire range of virtual space.
2291 */
2292
2293 void
2294 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2295 {
2296 vm_map_lock_read(map);
2297 uvm_fault_unwire_locked(map, start, end);
2298 vm_map_unlock_read(map);
2299 }
2300
2301 /*
2302 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2303 *
2304 * => map must be at least read-locked.
2305 */
2306
2307 void
2308 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2309 {
2310 struct vm_map_entry *entry;
2311 pmap_t pmap = vm_map_pmap(map);
2312 vaddr_t va;
2313 paddr_t pa;
2314 struct vm_page *pg;
2315
2316 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2317
2318 /*
2319 * we assume that the area we are unwiring has actually been wired
2320 * in the first place. this means that we should be able to extract
2321 * the PAs from the pmap. we also lock out the page daemon so that
2322 * we can call uvm_pageunwire.
2323 */
2324
2325 mutex_enter(&uvm_pageqlock);
2326
2327 /*
2328 * find the beginning map entry for the region.
2329 */
2330
2331 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2332 if (uvm_map_lookup_entry(map, start, &entry) == false)
2333 panic("uvm_fault_unwire_locked: address not in map");
2334
2335 for (va = start; va < end; va += PAGE_SIZE) {
2336 if (pmap_extract(pmap, va, &pa) == false)
2337 continue;
2338
2339 /*
2340 * find the map entry for the current address.
2341 */
2342
2343 KASSERT(va >= entry->start);
2344 while (va >= entry->end) {
2345 KASSERT(entry->next != &map->header &&
2346 entry->next->start <= entry->end);
2347 entry = entry->next;
2348 }
2349
2350 /*
2351 * if the entry is no longer wired, tell the pmap.
2352 */
2353
2354 if (VM_MAPENT_ISWIRED(entry) == 0)
2355 pmap_unwire(pmap, va);
2356
2357 pg = PHYS_TO_VM_PAGE(pa);
2358 if (pg)
2359 uvm_pageunwire(pg);
2360 }
2361
2362 mutex_exit(&uvm_pageqlock);
2363 }
2364