uvm_fault.c revision 1.173.2.4 1 /* $NetBSD: uvm_fault.c,v 1.173.2.4 2010/07/03 01:20:06 rmind Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.173.2.4 2010/07/03 01:20:06 rmind Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { UVM_ADV_NORMAL, 3, 4 },
170 { UVM_ADV_RANDOM, 0, 0 },
171 { UVM_ADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0; lcv < n; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 KASSERT(mutex_owned(anons[lcv]->an_lock));
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 }
209 }
210
211 /*
212 * normal functions
213 */
214
215 /*
216 * uvmfault_amapcopy: clear "needs_copy" in a map.
217 *
218 * => called with VM data structures unlocked (usually, see below)
219 * => we get a write lock on the maps and clear needs_copy for a VA
220 * => if we are out of RAM we sleep (waiting for more)
221 */
222
223 static void
224 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
225 {
226 for (;;) {
227
228 /*
229 * no mapping? give up.
230 */
231
232 if (uvmfault_lookup(ufi, true) == false)
233 return;
234
235 /*
236 * copy if needed.
237 */
238
239 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
240 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
241 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
242
243 /*
244 * didn't work? must be out of RAM. unlock and sleep.
245 */
246
247 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
248 uvmfault_unlockmaps(ufi, true);
249 uvm_wait("fltamapcopy");
250 continue;
251 }
252
253 /*
254 * got it! unlock and return.
255 */
256
257 uvmfault_unlockmaps(ufi, true);
258 return;
259 }
260 /*NOTREACHED*/
261 }
262
263 /*
264 * uvmfault_anonget: get data in an anon into a non-busy, non-released
265 * page in that anon.
266 *
267 * => maps, amap, and anon locked by caller.
268 * => if we fail (result != 0) we unlock everything.
269 * => if we are successful, we return with everything still locked.
270 * => we don't move the page on the queues [gets moved later]
271 * => if we allocate a new page [we_own], it gets put on the queues.
272 * either way, the result is that the page is on the queues at return time
273 * => for pages which are on loan from a uvm_object (and thus are not
274 * owned by the anon): if successful, we return with the owning object
275 * locked. the caller must unlock this object when it unlocks everything
276 * else.
277 */
278
279 int
280 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
281 struct vm_anon *anon)
282 {
283 bool we_own; /* we own anon's page? */
284 bool locked; /* did we relock? */
285 struct vm_page *pg;
286 int error;
287 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
288
289 KASSERT(mutex_owned(anon->an_lock));
290 KASSERT(amap == NULL || anon->an_lock == amap->am_lock);
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg, anon->an_lock, 0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked || we_own) {
406 mutex_enter(anon->an_lock);
407 }
408
409 /*
410 * if we own the page (i.e. we set PG_BUSY), then we need
411 * to clean up after the I/O. there are three cases to
412 * consider:
413 * [1] page released during I/O: free anon and ReFault.
414 * [2] I/O not OK. free the page and cause the fault
415 * to fail.
416 * [3] I/O OK! activate the page and sync with the
417 * non-we_own case (i.e. drop anon lock if not locked).
418 */
419
420 if (we_own) {
421 #if defined(VMSWAP)
422 if (pg->flags & PG_WANTED) {
423 wakeup(pg);
424 }
425 if (error) {
426
427 /*
428 * remove the swap slot from the anon
429 * and mark the anon as having no real slot.
430 * don't free the swap slot, thus preventing
431 * it from being used again.
432 */
433
434 if (anon->an_swslot > 0)
435 uvm_swap_markbad(anon->an_swslot, 1);
436 anon->an_swslot = SWSLOT_BAD;
437
438 if ((pg->flags & PG_RELEASED) != 0)
439 goto released;
440
441 /*
442 * note: page was never !PG_BUSY, so it
443 * can't be mapped and thus no need to
444 * pmap_page_protect it...
445 */
446
447 mutex_enter(&uvm_pageqlock);
448 uvm_pagefree(pg);
449 mutex_exit(&uvm_pageqlock);
450
451 if (locked)
452 uvmfault_unlockall(ufi, NULL, NULL);
453 mutex_exit(anon->an_lock);
454 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
455 return error;
456 }
457
458 if ((pg->flags & PG_RELEASED) != 0) {
459 released:
460 KASSERT(anon->an_ref == 0);
461
462 /*
463 * released while we unlocked amap.
464 */
465
466 if (locked)
467 uvmfault_unlockall(ufi, NULL, NULL);
468
469 uvm_anon_release(anon);
470
471 if (error) {
472 UVMHIST_LOG(maphist,
473 "<- ERROR/RELEASED", 0,0,0,0);
474 return error;
475 }
476
477 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
478 return ERESTART;
479 }
480
481 /*
482 * we've successfully read the page, activate it.
483 */
484
485 mutex_enter(&uvm_pageqlock);
486 uvm_pageactivate(pg);
487 mutex_exit(&uvm_pageqlock);
488 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
489 UVM_PAGE_OWN(pg, NULL);
490 #else /* defined(VMSWAP) */
491 panic("%s: we_own", __func__);
492 #endif /* defined(VMSWAP) */
493 }
494
495 /*
496 * we were not able to relock. restart fault.
497 */
498
499 if (!locked) {
500 if (we_own) {
501 mutex_exit(anon->an_lock);
502 }
503 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
504 return (ERESTART);
505 }
506
507 /*
508 * verify no one has touched the amap and moved the anon on us.
509 */
510
511 if (ufi != NULL && amap_lookup(&ufi->entry->aref,
512 ufi->orig_rvaddr - ufi->entry->start) != anon) {
513
514 uvmfault_unlockall(ufi, amap, NULL);
515 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
516 return (ERESTART);
517 }
518
519 /*
520 * try it again!
521 */
522
523 uvmexp.fltanretry++;
524 continue;
525 }
526 /*NOTREACHED*/
527 }
528
529 /*
530 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
531 *
532 * 1. allocate an anon and a page.
533 * 2. fill its contents.
534 * 3. put it into amap.
535 *
536 * => if we fail (result != 0) we unlock everything.
537 * => on success, return a new locked anon via 'nanon'.
538 * (*nanon)->an_page will be a resident, locked, dirty page.
539 */
540
541 static int
542 uvmfault_promote(struct uvm_faultinfo *ufi,
543 struct vm_anon *oanon,
544 struct vm_page *uobjpage,
545 struct vm_anon **nanon, /* OUT: allocated anon */
546 struct vm_anon **spare)
547 {
548 struct vm_amap *amap = ufi->entry->aref.ar_amap;
549 struct uvm_object *uobj;
550 struct vm_anon *anon;
551 struct vm_page *pg;
552 struct vm_page *opg;
553 int error;
554 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
555
556 if (oanon) {
557 /* anon COW */
558 opg = oanon->an_page;
559 KASSERT(opg != NULL);
560 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
561 } else if (uobjpage != PGO_DONTCARE) {
562 /* object-backed COW */
563 opg = uobjpage;
564 } else {
565 /* ZFOD */
566 opg = NULL;
567 }
568 if (opg != NULL) {
569 uobj = opg->uobject;
570 } else {
571 uobj = NULL;
572 }
573
574 KASSERT(amap != NULL);
575 KASSERT(uobjpage != NULL);
576 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
577 KASSERT(mutex_owned(amap->am_lock));
578 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
579 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
580
581 if (*spare != NULL) {
582 anon = *spare;
583 *spare = NULL;
584 } else if (ufi->map != kernel_map) {
585 anon = uvm_analloc();
586 } else {
587 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
588
589 /*
590 * we can't allocate anons with kernel_map locked.
591 */
592
593 uvm_page_unbusy(&uobjpage, 1);
594 uvmfault_unlockall(ufi, amap, uobj);
595
596 *spare = uvm_analloc();
597 if (*spare == NULL) {
598 goto nomem;
599 }
600 KASSERT((*spare)->an_lock == NULL);
601 error = ERESTART;
602 goto done;
603 }
604 if (anon) {
605
606 /*
607 * The new anon is locked.
608 *
609 * if opg == NULL, we want a zero'd, dirty page,
610 * so have uvm_pagealloc() do that for us.
611 */
612
613 KASSERT(anon->an_lock == NULL);
614 anon->an_lock = amap->am_lock;
615 mutex_obj_hold(anon->an_lock);
616 pg = uvm_pagealloc(NULL, 0, anon,
617 (opg == NULL) ? UVM_PGA_ZERO : 0);
618 if (pg == NULL) {
619 mutex_obj_free(anon->an_lock);
620 anon->an_lock = NULL;
621 }
622 } else {
623 pg = NULL;
624 }
625
626 /*
627 * out of memory resources?
628 */
629
630 if (pg == NULL) {
631 /* save anon for the next try. */
632 if (anon != NULL) {
633 *spare = anon;
634 }
635
636 /* unlock and fail ... */
637 uvm_page_unbusy(&uobjpage, 1);
638 uvmfault_unlockall(ufi, amap, uobj);
639 nomem:
640 if (!uvm_reclaimable()) {
641 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
642 uvmexp.fltnoanon++;
643 error = ENOMEM;
644 goto done;
645 }
646
647 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
648 uvmexp.fltnoram++;
649 uvm_wait("flt_noram5");
650 error = ERESTART;
651 goto done;
652 }
653
654 /* copy page [pg now dirty] */
655 if (opg) {
656 uvm_pagecopy(opg, pg);
657 }
658
659 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
660 oanon != NULL);
661
662 *nanon = anon;
663 error = 0;
664 done:
665 return error;
666 }
667
668
669 /*
670 * F A U L T - m a i n e n t r y p o i n t
671 */
672
673 /*
674 * uvm_fault: page fault handler
675 *
676 * => called from MD code to resolve a page fault
677 * => VM data structures usually should be unlocked. however, it is
678 * possible to call here with the main map locked if the caller
679 * gets a write lock, sets it recusive, and then calls us (c.f.
680 * uvm_map_pageable). this should be avoided because it keeps
681 * the map locked off during I/O.
682 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
683 */
684
685 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
686 ~VM_PROT_WRITE : VM_PROT_ALL)
687
688 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
689 #define UVM_FAULT_WIRE (1 << 0)
690 #define UVM_FAULT_MAXPROT (1 << 1)
691
692 struct uvm_faultctx {
693 vm_prot_t access_type;
694 vm_prot_t enter_prot;
695 vaddr_t startva;
696 int npages;
697 int centeridx;
698 struct vm_anon *anon_spare;
699 bool wire_mapping;
700 bool narrow;
701 bool wire_paging;
702 bool maxprot;
703 bool cow_now;
704 bool promote;
705 };
706
707 static inline int uvm_fault_check(
708 struct uvm_faultinfo *, struct uvm_faultctx *,
709 struct vm_anon ***, struct vm_page ***);
710
711 static int uvm_fault_upper(
712 struct uvm_faultinfo *, struct uvm_faultctx *,
713 struct vm_anon **);
714 static inline int uvm_fault_upper_lookup(
715 struct uvm_faultinfo *, struct uvm_faultctx *,
716 struct vm_anon **, struct vm_page **);
717 static inline void uvm_fault_upper_neighbor(
718 struct uvm_faultinfo *, struct uvm_faultctx *,
719 vaddr_t, struct vm_page *, bool);
720 static inline int uvm_fault_upper_loan(
721 struct uvm_faultinfo *, struct uvm_faultctx *,
722 struct vm_anon *, struct uvm_object **);
723 static inline int uvm_fault_upper_promote(
724 struct uvm_faultinfo *, struct uvm_faultctx *,
725 struct uvm_object *, struct vm_anon *);
726 static inline int uvm_fault_upper_direct(
727 struct uvm_faultinfo *, struct uvm_faultctx *,
728 struct uvm_object *, struct vm_anon *);
729 static int uvm_fault_upper_enter(
730 struct uvm_faultinfo *, struct uvm_faultctx *,
731 struct uvm_object *, struct vm_anon *,
732 struct vm_page *, struct vm_anon *);
733 static inline void uvm_fault_upper_done(
734 struct uvm_faultinfo *, struct uvm_faultctx *,
735 struct uvm_object *, struct vm_anon *,
736 struct vm_page *);
737
738 static int uvm_fault_lower(
739 struct uvm_faultinfo *, struct uvm_faultctx *,
740 struct vm_page **);
741 static inline void uvm_fault_lower_lookup(
742 struct uvm_faultinfo *, struct uvm_faultctx *,
743 struct vm_page **);
744 static inline void uvm_fault_lower_neighbor(
745 struct uvm_faultinfo *, struct uvm_faultctx *,
746 vaddr_t, struct vm_page *, bool);
747 static inline int uvm_fault_lower_io(
748 struct uvm_faultinfo *, struct uvm_faultctx *,
749 struct uvm_object **, struct vm_page **);
750 static inline int uvm_fault_lower_direct(
751 struct uvm_faultinfo *, struct uvm_faultctx *,
752 struct uvm_object *, struct vm_page *);
753 static inline int uvm_fault_lower_direct_loan(
754 struct uvm_faultinfo *, struct uvm_faultctx *,
755 struct uvm_object *, struct vm_page **,
756 struct vm_page **);
757 static inline int uvm_fault_lower_promote(
758 struct uvm_faultinfo *, struct uvm_faultctx *,
759 struct uvm_object *, struct vm_page *);
760 static int uvm_fault_lower_enter(
761 struct uvm_faultinfo *, struct uvm_faultctx *,
762 struct uvm_object *,
763 struct vm_anon *, struct vm_page *,
764 struct vm_page *);
765 static inline void uvm_fault_lower_done(
766 struct uvm_faultinfo *, struct uvm_faultctx *,
767 struct uvm_object *, struct vm_anon *,
768 struct vm_page *);
769
770 int
771 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
772 vm_prot_t access_type, int fault_flag)
773 {
774 struct uvm_faultinfo ufi;
775 struct uvm_faultctx flt = {
776 .access_type = access_type,
777
778 /* don't look for neighborhood * pages on "wire" fault */
779 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
780
781 /* "wire" fault causes wiring of both mapping and paging */
782 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
783 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
784
785 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
786 };
787 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
788 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
789 int error;
790 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
791
792 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
793 orig_map, vaddr, access_type, fault_flag);
794
795 uvmexp.faults++; /* XXX: locking? */
796
797 /*
798 * init the IN parameters in the ufi
799 */
800
801 ufi.orig_map = orig_map;
802 ufi.orig_rvaddr = trunc_page(vaddr);
803 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
804
805 error = ERESTART;
806 while (error == ERESTART) {
807 anons = anons_store;
808 pages = pages_store;
809
810 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
811 if (error != 0)
812 continue;
813
814 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
815 if (error != 0)
816 continue;
817
818 if (pages[flt.centeridx] == PGO_DONTCARE)
819 error = uvm_fault_upper(&ufi, &flt, anons);
820 else {
821 struct uvm_object * const uobj = ufi.entry->object.uvm_obj;
822
823 if (uobj && uobj->pgops->pgo_fault != NULL) {
824 /*
825 * invoke "special" fault routine.
826 */
827 mutex_enter(uobj->vmobjlock);
828 /* locked: maps(read), amap(if there), uobj */
829 error = uobj->pgops->pgo_fault(&ufi,
830 flt.startva, pages, flt.npages,
831 flt.centeridx, flt.access_type,
832 PGO_LOCKED|PGO_SYNCIO);
833
834 /* locked: nothing, pgo_fault has unlocked everything */
835
836 /*
837 * object fault routine responsible for pmap_update().
838 */
839 } else {
840 error = uvm_fault_lower(&ufi, &flt, pages);
841 }
842 }
843 }
844
845 if (flt.anon_spare != NULL) {
846 flt.anon_spare->an_ref--;
847 KASSERT(flt.anon_spare->an_ref == 0);
848 KASSERT(flt.anon_spare->an_lock == NULL);
849 uvm_anfree(flt.anon_spare);
850 }
851 return error;
852 }
853
854 /*
855 * uvm_fault_check: check prot, handle needs-copy, etc.
856 *
857 * 1. lookup entry.
858 * 2. check protection.
859 * 3. adjust fault condition (mainly for simulated fault).
860 * 4. handle needs-copy (lazy amap copy).
861 * 5. establish range of interest for neighbor fault (aka pre-fault).
862 * 6. look up anons (if amap exists).
863 * 7. flush pages (if MADV_SEQUENTIAL)
864 *
865 * => called with nothing locked.
866 * => if we fail (result != 0) we unlock everything.
867 */
868
869 static int
870 uvm_fault_check(
871 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
872 struct vm_anon ***ranons, struct vm_page ***rpages)
873 {
874 struct vm_amap *amap;
875 struct uvm_object *uobj;
876 vm_prot_t check_prot;
877 int nback, nforw;
878 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
879
880 /*
881 * lookup and lock the maps
882 */
883
884 if (uvmfault_lookup(ufi, false) == false) {
885 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr, 0,0,0);
886 return EFAULT;
887 }
888 /* locked: maps(read) */
889
890 #ifdef DIAGNOSTIC
891 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
892 printf("Page fault on non-pageable map:\n");
893 printf("ufi->map = %p\n", ufi->map);
894 printf("ufi->orig_map = %p\n", ufi->orig_map);
895 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
896 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
897 }
898 #endif
899
900 /*
901 * check protection
902 */
903
904 check_prot = flt->maxprot ?
905 ufi->entry->max_protection : ufi->entry->protection;
906 if ((check_prot & flt->access_type) != flt->access_type) {
907 UVMHIST_LOG(maphist,
908 "<- protection failure (prot=0x%x, access=0x%x)",
909 ufi->entry->protection, flt->access_type, 0, 0);
910 uvmfault_unlockmaps(ufi, false);
911 return EACCES;
912 }
913
914 /*
915 * "enter_prot" is the protection we want to enter the page in at.
916 * for certain pages (e.g. copy-on-write pages) this protection can
917 * be more strict than ufi->entry->protection. "wired" means either
918 * the entry is wired or we are fault-wiring the pg.
919 */
920
921 flt->enter_prot = ufi->entry->protection;
922 if (VM_MAPENT_ISWIRED(ufi->entry))
923 flt->wire_mapping = true;
924
925 if (flt->wire_mapping) {
926 flt->access_type = flt->enter_prot; /* full access for wired */
927 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
928 } else {
929 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
930 }
931
932 flt->promote = false;
933
934 /*
935 * handle "needs_copy" case. if we need to copy the amap we will
936 * have to drop our readlock and relock it with a write lock. (we
937 * need a write lock to change anything in a map entry [e.g.
938 * needs_copy]).
939 */
940
941 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
942 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
943 KASSERT(!flt->maxprot);
944 /* need to clear */
945 UVMHIST_LOG(maphist,
946 " need to clear needs_copy and refault",0,0,0,0);
947 uvmfault_unlockmaps(ufi, false);
948 uvmfault_amapcopy(ufi);
949 uvmexp.fltamcopy++;
950 return ERESTART;
951
952 } else {
953
954 /*
955 * ensure that we pmap_enter page R/O since
956 * needs_copy is still true
957 */
958
959 flt->enter_prot &= ~VM_PROT_WRITE;
960 }
961 }
962
963 /*
964 * identify the players
965 */
966
967 amap = ufi->entry->aref.ar_amap; /* upper layer */
968 uobj = ufi->entry->object.uvm_obj; /* lower layer */
969
970 /*
971 * check for a case 0 fault. if nothing backing the entry then
972 * error now.
973 */
974
975 if (amap == NULL && uobj == NULL) {
976 uvmfault_unlockmaps(ufi, false);
977 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
978 return EFAULT;
979 }
980
981 /*
982 * establish range of interest based on advice from mapper
983 * and then clip to fit map entry. note that we only want
984 * to do this the first time through the fault. if we
985 * ReFault we will disable this by setting "narrow" to true.
986 */
987
988 if (flt->narrow == false) {
989
990 /* wide fault (!narrow) */
991 KASSERT(uvmadvice[ufi->entry->advice].advice ==
992 ufi->entry->advice);
993 nback = MIN(uvmadvice[ufi->entry->advice].nback,
994 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
995 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
996 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
997 ((ufi->entry->end - ufi->orig_rvaddr) >>
998 PAGE_SHIFT) - 1);
999 /*
1000 * note: "-1" because we don't want to count the
1001 * faulting page as forw
1002 */
1003 flt->npages = nback + nforw + 1;
1004 flt->centeridx = nback;
1005
1006 flt->narrow = true; /* ensure only once per-fault */
1007
1008 } else {
1009
1010 /* narrow fault! */
1011 nback = nforw = 0;
1012 flt->startva = ufi->orig_rvaddr;
1013 flt->npages = 1;
1014 flt->centeridx = 0;
1015
1016 }
1017 /* offset from entry's start to pgs' start */
1018 const voff_t eoff = flt->startva - ufi->entry->start;
1019
1020 /* locked: maps(read) */
1021 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
1022 flt->narrow, nback, nforw, flt->startva);
1023 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1024 amap, uobj, 0);
1025
1026 /*
1027 * if we've got an amap, lock it and extract current anons.
1028 */
1029
1030 if (amap) {
1031 amap_lock(amap);
1032 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1033 } else {
1034 *ranons = NULL; /* to be safe */
1035 }
1036
1037 /* locked: maps(read), amap(if there) */
1038 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1039
1040 /*
1041 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1042 * now and then forget about them (for the rest of the fault).
1043 */
1044
1045 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1046
1047 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1048 0,0,0,0);
1049 /* flush back-page anons? */
1050 if (amap)
1051 uvmfault_anonflush(*ranons, nback);
1052
1053 /* flush object? */
1054 if (uobj) {
1055 voff_t uoff;
1056
1057 uoff = ufi->entry->offset + eoff;
1058 mutex_enter(uobj->vmobjlock);
1059 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1060 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1061 }
1062
1063 /* now forget about the backpages */
1064 if (amap)
1065 *ranons += nback;
1066 flt->startva += (nback << PAGE_SHIFT);
1067 flt->npages -= nback;
1068 flt->centeridx = 0;
1069 }
1070 /*
1071 * => startva is fixed
1072 * => npages is fixed
1073 */
1074
1075 return 0;
1076 }
1077
1078 /*
1079 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1080 *
1081 * iterate range of interest:
1082 * 1. check if h/w mapping exists. if yes, we don't care
1083 * 2. check if anon exists. if not, page is lower.
1084 * 3. if anon exists, enter h/w mapping for neighbors.
1085 *
1086 * => called with amap locked (if exists).
1087 */
1088
1089 static int
1090 uvm_fault_upper_lookup(
1091 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1092 struct vm_anon **anons, struct vm_page **pages)
1093 {
1094 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1095 int lcv;
1096 vaddr_t currva;
1097 bool shadowed;
1098 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1099
1100 /* locked: maps(read), amap(if there) */
1101 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1102
1103 /*
1104 * map in the backpages and frontpages we found in the amap in hopes
1105 * of preventing future faults. we also init the pages[] array as
1106 * we go.
1107 */
1108
1109 currva = flt->startva;
1110 shadowed = false;
1111 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1112 /*
1113 * dont play with VAs that are already mapped
1114 * except for center)
1115 */
1116 if (lcv != flt->centeridx &&
1117 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1118 pages[lcv] = PGO_DONTCARE;
1119 continue;
1120 }
1121
1122 /*
1123 * unmapped or center page. check if any anon at this level.
1124 */
1125 if (amap == NULL || anons[lcv] == NULL) {
1126 pages[lcv] = NULL;
1127 continue;
1128 }
1129
1130 /*
1131 * check for present page and map if possible. re-activate it.
1132 */
1133
1134 pages[lcv] = PGO_DONTCARE;
1135 if (lcv == flt->centeridx) { /* save center for later! */
1136 shadowed = true;
1137 continue;
1138 }
1139
1140 struct vm_anon *anon = anons[lcv];
1141 struct vm_page *pg = anon->an_page;
1142
1143 KASSERT(anon->an_lock == amap->am_lock);
1144
1145 /* Ignore loaned and busy pages. */
1146 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
1147 uvm_fault_upper_neighbor(ufi, flt, currva,
1148 pg, anon->an_ref > 1);
1149 }
1150 }
1151
1152 /* locked: maps(read), amap(if there) */
1153 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1154 /* (shadowed == true) if there is an anon at the faulting address */
1155 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1156 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1157
1158 /*
1159 * note that if we are really short of RAM we could sleep in the above
1160 * call to pmap_enter with everything locked. bad?
1161 *
1162 * XXX Actually, that is bad; pmap_enter() should just fail in that
1163 * XXX case. --thorpej
1164 */
1165
1166 return 0;
1167 }
1168
1169 /*
1170 * uvm_fault_upper_neighbor: enter single lower neighbor page.
1171 *
1172 * => called with amap and anon locked.
1173 */
1174
1175 static void
1176 uvm_fault_upper_neighbor(
1177 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1178 vaddr_t currva, struct vm_page *pg, bool readonly)
1179 {
1180 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1181
1182 /* locked: amap, anon */
1183
1184 mutex_enter(&uvm_pageqlock);
1185 uvm_pageenqueue(pg);
1186 mutex_exit(&uvm_pageqlock);
1187 UVMHIST_LOG(maphist,
1188 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1189 ufi->orig_map->pmap, currva, pg, 0);
1190 uvmexp.fltnamap++;
1191
1192 /*
1193 * Since this page isn't the page that's actually faulting,
1194 * ignore pmap_enter() failures; it's not critical that we
1195 * enter these right now.
1196 */
1197
1198 (void) pmap_enter(ufi->orig_map->pmap, currva,
1199 VM_PAGE_TO_PHYS(pg),
1200 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1201 flt->enter_prot,
1202 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1203
1204 pmap_update(ufi->orig_map->pmap);
1205 }
1206
1207 /*
1208 * uvm_fault_upper: handle upper fault.
1209 *
1210 * 1. acquire anon lock.
1211 * 2. get anon. let uvmfault_anonget do the dirty work.
1212 * 3. handle loan.
1213 * 4. dispatch direct or promote handlers.
1214 */
1215
1216 static int
1217 uvm_fault_upper(
1218 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1219 struct vm_anon **anons)
1220 {
1221 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1222 struct vm_anon * const anon = anons[flt->centeridx];
1223 struct uvm_object *uobj;
1224 int error;
1225 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1226
1227 /* locked: maps(read), amap, anon */
1228 KASSERT(mutex_owned(amap->am_lock));
1229 KASSERT(anon->an_lock == amap->am_lock);
1230
1231 /*
1232 * handle case 1: fault on an anon in our amap
1233 */
1234
1235 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1236
1237 /*
1238 * no matter if we have case 1A or case 1B we are going to need to
1239 * have the anon's memory resident. ensure that now.
1240 */
1241
1242 /*
1243 * let uvmfault_anonget do the dirty work.
1244 * if it fails (!OK) it will unlock everything for us.
1245 * if it succeeds, locks are still valid and locked.
1246 * also, if it is OK, then the anon's page is on the queues.
1247 * if the page is on loan from a uvm_object, then anonget will
1248 * lock that object for us if it does not fail.
1249 */
1250
1251 error = uvmfault_anonget(ufi, amap, anon);
1252 switch (error) {
1253 case 0:
1254 break;
1255
1256 case ERESTART:
1257 return ERESTART;
1258
1259 case EAGAIN:
1260 kpause("fltagain1", false, hz/2, NULL);
1261 return ERESTART;
1262
1263 default:
1264 return error;
1265 }
1266
1267 /*
1268 * uobj is non null if the page is on loan from an object (i.e. uobj)
1269 */
1270
1271 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1272
1273 /* locked: maps(read), amap, anon, uobj(if one) */
1274 KASSERT(mutex_owned(amap->am_lock));
1275 KASSERT(anon->an_lock == amap->am_lock);
1276 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1277
1278 /*
1279 * special handling for loaned pages
1280 */
1281
1282 if (anon->an_page->loan_count) {
1283 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1284 if (error != 0)
1285 return error;
1286 }
1287
1288 /*
1289 * if we are case 1B then we will need to allocate a new blank
1290 * anon to transfer the data into. note that we have a lock
1291 * on anon, so no one can busy or release the page until we are done.
1292 * also note that the ref count can't drop to zero here because
1293 * it is > 1 and we are only dropping one ref.
1294 *
1295 * in the (hopefully very rare) case that we are out of RAM we
1296 * will unlock, wait for more RAM, and refault.
1297 *
1298 * if we are out of anon VM we kill the process (XXX: could wait?).
1299 */
1300
1301 if (flt->cow_now && anon->an_ref > 1) {
1302 flt->promote = true;
1303 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1304 } else {
1305 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1306 }
1307 return error;
1308 }
1309
1310 /*
1311 * uvm_fault_upper_loan: handle loaned upper page.
1312 *
1313 * 1. if not cow'ing now, just mark enter_prot as read-only.
1314 * 2. if cow'ing now, and if ref count is 1, break loan.
1315 */
1316
1317 static int
1318 uvm_fault_upper_loan(
1319 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1320 struct vm_anon *anon, struct uvm_object **ruobj)
1321 {
1322 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1323 int error = 0;
1324 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1325
1326 if (!flt->cow_now) {
1327
1328 /*
1329 * for read faults on loaned pages we just cap the
1330 * protection at read-only.
1331 */
1332
1333 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1334
1335 } else {
1336 /*
1337 * note that we can't allow writes into a loaned page!
1338 *
1339 * if we have a write fault on a loaned page in an
1340 * anon then we need to look at the anon's ref count.
1341 * if it is greater than one then we are going to do
1342 * a normal copy-on-write fault into a new anon (this
1343 * is not a problem). however, if the reference count
1344 * is one (a case where we would normally allow a
1345 * write directly to the page) then we need to kill
1346 * the loan before we continue.
1347 */
1348
1349 /* >1 case is already ok */
1350 if (anon->an_ref == 1) {
1351 error = uvm_loanbreak_anon(anon, *ruobj);
1352 if (error != 0) {
1353 uvmfault_unlockall(ufi, amap, *ruobj);
1354 uvm_wait("flt_noram2");
1355 return ERESTART;
1356 }
1357 /* if we were a loan reciever uobj is gone */
1358 if (*ruobj)
1359 *ruobj = NULL;
1360 }
1361 }
1362 return error;
1363 }
1364
1365 /*
1366 * uvm_fault_upper_promote: promote upper page.
1367 *
1368 * 1. call uvmfault_promote.
1369 * 2. enqueue page.
1370 * 3. deref.
1371 * 4. pass page to uvm_fault_upper_enter.
1372 */
1373
1374 static int
1375 uvm_fault_upper_promote(
1376 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1377 struct uvm_object *uobj, struct vm_anon *anon)
1378 {
1379 struct vm_anon * const oanon = anon;
1380 struct vm_page *pg;
1381 int error;
1382 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1383
1384 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1385 uvmexp.flt_acow++;
1386
1387 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1388 &anon, &flt->anon_spare);
1389 switch (error) {
1390 case 0:
1391 break;
1392 case ERESTART:
1393 return ERESTART;
1394 default:
1395 return error;
1396 }
1397
1398 KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
1399
1400 pg = anon->an_page;
1401 mutex_enter(&uvm_pageqlock);
1402 uvm_pageactivate(pg);
1403 mutex_exit(&uvm_pageqlock);
1404 pg->flags &= ~(PG_BUSY|PG_FAKE);
1405 UVM_PAGE_OWN(pg, NULL);
1406
1407 /* deref: can not drop to zero here by defn! */
1408 oanon->an_ref--;
1409
1410 /*
1411 * note: oanon is still locked, as is the new anon. we
1412 * need to check for this later when we unlock oanon; if
1413 * oanon != anon, we'll have to unlock anon, too.
1414 */
1415
1416 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1417 }
1418
1419 /*
1420 * uvm_fault_upper_direct: handle direct fault.
1421 */
1422
1423 static int
1424 uvm_fault_upper_direct(
1425 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1426 struct uvm_object *uobj, struct vm_anon *anon)
1427 {
1428 struct vm_anon * const oanon = anon;
1429 struct vm_page *pg;
1430 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1431
1432 uvmexp.flt_anon++;
1433 pg = anon->an_page;
1434 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1435 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1436
1437 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1438 }
1439
1440 /*
1441 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1442 */
1443
1444 static int
1445 uvm_fault_upper_enter(
1446 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1447 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1448 struct vm_anon *oanon)
1449 {
1450 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1451 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1452
1453 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1454 KASSERT(mutex_owned(amap->am_lock));
1455 KASSERT(anon->an_lock == amap->am_lock);
1456 KASSERT(oanon->an_lock == amap->am_lock);
1457 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1458
1459 /*
1460 * now map the page in.
1461 */
1462
1463 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1464 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1465 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1466 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1467 != 0) {
1468
1469 /*
1470 * No need to undo what we did; we can simply think of
1471 * this as the pmap throwing away the mapping information.
1472 *
1473 * We do, however, have to go through the ReFault path,
1474 * as the map may change while we're asleep.
1475 */
1476
1477 uvmfault_unlockall(ufi, amap, uobj);
1478 if (!uvm_reclaimable()) {
1479 UVMHIST_LOG(maphist,
1480 "<- failed. out of VM",0,0,0,0);
1481 /* XXX instrumentation */
1482 return ENOMEM;
1483 }
1484 /* XXX instrumentation */
1485 uvm_wait("flt_pmfail1");
1486 return ERESTART;
1487 }
1488
1489 uvm_fault_upper_done(ufi, flt, uobj, anon, pg);
1490
1491 /*
1492 * done case 1! finish up by unlocking everything and returning success
1493 */
1494
1495 pmap_update(ufi->orig_map->pmap);
1496 uvmfault_unlockall(ufi, amap, uobj);
1497 return 0;
1498 }
1499
1500 /*
1501 * uvm_fault_upper_done: queue upper center page.
1502 */
1503
1504 static void
1505 uvm_fault_upper_done(
1506 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1507 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
1508 {
1509 const bool wire_paging = flt->wire_paging;
1510
1511 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1512
1513 /*
1514 * ... update the page queues.
1515 */
1516
1517 mutex_enter(&uvm_pageqlock);
1518 if (wire_paging) {
1519 uvm_pagewire(pg);
1520
1521 /*
1522 * since the now-wired page cannot be paged out,
1523 * release its swap resources for others to use.
1524 * since an anon with no swap cannot be PG_CLEAN,
1525 * clear its clean flag now.
1526 */
1527
1528 pg->flags &= ~(PG_CLEAN);
1529
1530 } else {
1531 uvm_pageactivate(pg);
1532 }
1533 mutex_exit(&uvm_pageqlock);
1534
1535 if (wire_paging) {
1536 uvm_anon_dropswap(anon);
1537 }
1538 }
1539
1540 /*
1541 * uvm_fault_lower: handle lower fault.
1542 *
1543 * 1. check uobj
1544 * 1.1. if null, ZFOD.
1545 * 1.2. if not null, look up unnmapped neighbor pages.
1546 * 2. for center page, check if promote.
1547 * 2.1. ZFOD always needs promotion.
1548 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1549 * 3. if uobj is not ZFOD and page is not found, do i/o.
1550 * 4. dispatch either direct / promote fault.
1551 */
1552
1553 static int
1554 uvm_fault_lower(
1555 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1556 struct vm_page **pages)
1557 {
1558 #ifdef DIAGNOSTIC
1559 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1560 #endif
1561 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1562 struct vm_page *uobjpage;
1563 int error;
1564 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1565
1566 /*
1567 * now, if the desired page is not shadowed by the amap and we have
1568 * a backing object that does not have a special fault routine, then
1569 * we ask (with pgo_get) the object for resident pages that we care
1570 * about and attempt to map them in. we do not let pgo_get block
1571 * (PGO_LOCKED).
1572 */
1573
1574 if (uobj == NULL) {
1575 /* zero fill; don't care neighbor pages */
1576 uobjpage = NULL;
1577 } else {
1578 uvm_fault_lower_lookup(ufi, flt, pages);
1579 uobjpage = pages[flt->centeridx];
1580 }
1581
1582 /*
1583 * note that at this point we are done with any front or back pages.
1584 * we are now going to focus on the center page (i.e. the one we've
1585 * faulted on). if we have faulted on the upper (anon) layer
1586 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1587 * not touched it yet). if we have faulted on the bottom (uobj)
1588 * layer [i.e. case 2] and the page was both present and available,
1589 * then we've got a pointer to it as "uobjpage" and we've already
1590 * made it BUSY.
1591 */
1592
1593 /*
1594 * locked:
1595 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1596 */
1597 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1598 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1599 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1600
1601 /*
1602 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1603 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1604 * have a backing object, check and see if we are going to promote
1605 * the data up to an anon during the fault.
1606 */
1607
1608 if (uobj == NULL) {
1609 uobjpage = PGO_DONTCARE;
1610 flt->promote = true; /* always need anon here */
1611 } else {
1612 KASSERT(uobjpage != PGO_DONTCARE);
1613 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1614 }
1615 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1616 flt->promote, (uobj == NULL), 0,0);
1617
1618 /*
1619 * if uobjpage is not null then we do not need to do I/O to get the
1620 * uobjpage.
1621 *
1622 * if uobjpage is null, then we need to unlock and ask the pager to
1623 * get the data for us. once we have the data, we need to reverify
1624 * the state the world. we are currently not holding any resources.
1625 */
1626
1627 if (uobjpage) {
1628 /* update rusage counters */
1629 curlwp->l_ru.ru_minflt++;
1630 } else {
1631 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1632 if (error != 0)
1633 return error;
1634 }
1635
1636 /*
1637 * locked:
1638 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1639 */
1640 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1641 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1642 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1643
1644 /*
1645 * notes:
1646 * - at this point uobjpage can not be NULL
1647 * - at this point uobjpage can not be PG_RELEASED (since we checked
1648 * for it above)
1649 * - at this point uobjpage could be PG_WANTED (handle later)
1650 */
1651
1652 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1653 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1654 (uobjpage->flags & PG_CLEAN) != 0);
1655
1656 if (flt->promote == false) {
1657 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1658 } else {
1659 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1660 }
1661 return error;
1662 }
1663
1664 /*
1665 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1666 *
1667 * 1. get on-memory pages.
1668 * 2. if failed, give up (get only center page later).
1669 * 3. if succeeded, enter h/w mapping of neighbor pages.
1670 */
1671
1672 static void
1673 uvm_fault_lower_lookup(
1674 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1675 struct vm_page **pages)
1676 {
1677 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1678 int lcv, gotpages;
1679 vaddr_t currva;
1680 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1681
1682 mutex_enter(uobj->vmobjlock);
1683 /* locked: maps(read), amap(if there), uobj */
1684 /*
1685 * the following call to pgo_get does _not_ change locking state
1686 */
1687
1688 uvmexp.fltlget++;
1689 gotpages = flt->npages;
1690 (void) uobj->pgops->pgo_get(uobj,
1691 ufi->entry->offset + flt->startva - ufi->entry->start,
1692 pages, &gotpages, flt->centeridx,
1693 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1694
1695 /*
1696 * check for pages to map, if we got any
1697 */
1698
1699 if (gotpages == 0) {
1700 pages[flt->centeridx] = NULL;
1701 return;
1702 }
1703
1704 currva = flt->startva;
1705 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1706 struct vm_page *curpg;
1707
1708 curpg = pages[lcv];
1709 if (curpg == NULL || curpg == PGO_DONTCARE) {
1710 continue;
1711 }
1712 KASSERT(curpg->uobject == uobj);
1713
1714 /*
1715 * if center page is resident and not PG_BUSY|PG_RELEASED
1716 * then pgo_get made it PG_BUSY for us and gave us a handle
1717 * to it.
1718 */
1719
1720 if (lcv == flt->centeridx) {
1721 UVMHIST_LOG(maphist, " got uobjpage "
1722 "(0x%x) with locked get",
1723 curpg, 0,0,0);
1724 } else {
1725 bool readonly = (curpg->flags & PG_RDONLY)
1726 || (curpg->loan_count > 0)
1727 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1728
1729 uvm_fault_lower_neighbor(ufi, flt,
1730 currva, curpg, readonly);
1731 }
1732 }
1733 pmap_update(ufi->orig_map->pmap);
1734 }
1735
1736 /*
1737 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1738 */
1739
1740 static void
1741 uvm_fault_lower_neighbor(
1742 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1743 vaddr_t currva, struct vm_page *pg, bool readonly)
1744 {
1745 UVMHIST_FUNC("uvm_fault_lower_neighor"); UVMHIST_CALLED(maphist);
1746
1747 /* locked: maps(read), amap(if there), uobj */
1748
1749 /*
1750 * calling pgo_get with PGO_LOCKED returns us pages which
1751 * are neither busy nor released, so we don't need to check
1752 * for this. we can just directly enter the pages.
1753 */
1754
1755 mutex_enter(&uvm_pageqlock);
1756 uvm_pageenqueue(pg);
1757 mutex_exit(&uvm_pageqlock);
1758 UVMHIST_LOG(maphist,
1759 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1760 ufi->orig_map->pmap, currva, pg, 0);
1761 uvmexp.fltnomap++;
1762
1763 /*
1764 * Since this page isn't the page that's actually faulting,
1765 * ignore pmap_enter() failures; it's not critical that we
1766 * enter these right now.
1767 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1768 * held the lock the whole time we've had the handle.
1769 */
1770 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1771 KASSERT((pg->flags & PG_RELEASED) == 0);
1772 KASSERT((pg->flags & PG_WANTED) == 0);
1773 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
1774 pg->flags &= ~(PG_BUSY);
1775 UVM_PAGE_OWN(pg, NULL);
1776
1777 KASSERT(mutex_owned(pg->uobject->vmobjlock));
1778 (void) pmap_enter(ufi->orig_map->pmap, currva,
1779 VM_PAGE_TO_PHYS(pg),
1780 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1781 flt->enter_prot & MASK(ufi->entry),
1782 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1783 }
1784
1785 /*
1786 * uvm_fault_lower_io: get lower page from backing store.
1787 *
1788 * 1. unlock everything, because i/o will block.
1789 * 2. call pgo_get.
1790 * 3. if failed, recover.
1791 * 4. if succeeded, relock everything and verify things.
1792 */
1793
1794 static int
1795 uvm_fault_lower_io(
1796 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1797 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1798 {
1799 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1800 struct uvm_object *uobj = *ruobj;
1801 struct vm_page *pg;
1802 bool locked;
1803 int gotpages;
1804 int error;
1805 voff_t uoff;
1806 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1807
1808 /* update rusage counters */
1809 curlwp->l_ru.ru_majflt++;
1810
1811 /* locked: maps(read), amap(if there), uobj */
1812 uvmfault_unlockall(ufi, amap, NULL);
1813 /* locked: uobj */
1814
1815 uvmexp.fltget++;
1816 gotpages = 1;
1817 pg = NULL;
1818 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1819 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1820 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1821 PGO_SYNCIO);
1822 /* locked: pg(if no error) */
1823
1824 /*
1825 * recover from I/O
1826 */
1827
1828 if (error) {
1829 if (error == EAGAIN) {
1830 UVMHIST_LOG(maphist,
1831 " pgo_get says TRY AGAIN!",0,0,0,0);
1832 kpause("fltagain2", false, hz/2, NULL);
1833 return ERESTART;
1834 }
1835
1836 #if 0
1837 KASSERT(error != ERESTART);
1838 #else
1839 /* XXXUEBS don't re-fault? */
1840 if (error == ERESTART)
1841 error = EIO;
1842 #endif
1843
1844 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1845 error, 0,0,0);
1846 return error;
1847 }
1848
1849 /*
1850 * re-verify the state of the world by first trying to relock
1851 * the maps. always relock the object.
1852 */
1853
1854 locked = uvmfault_relock(ufi);
1855 if (locked && amap)
1856 amap_lock(amap);
1857
1858 /* might be changed */
1859 uobj = pg->uobject;
1860
1861 mutex_enter(uobj->vmobjlock);
1862 KASSERT((pg->flags & PG_BUSY) != 0);
1863
1864 mutex_enter(&uvm_pageqlock);
1865 uvm_pageactivate(pg);
1866 mutex_exit(&uvm_pageqlock);
1867
1868 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1869 /* locked(!locked): uobj, pg */
1870
1871 /*
1872 * verify that the page has not be released and re-verify
1873 * that amap slot is still free. if there is a problem,
1874 * we unlock and clean up.
1875 */
1876
1877 if ((pg->flags & PG_RELEASED) != 0 ||
1878 (locked && amap && amap_lookup(&ufi->entry->aref,
1879 ufi->orig_rvaddr - ufi->entry->start))) {
1880 if (locked)
1881 uvmfault_unlockall(ufi, amap, NULL);
1882 locked = false;
1883 }
1884
1885 /*
1886 * didn't get the lock? release the page and retry.
1887 */
1888
1889 if (locked == false) {
1890 UVMHIST_LOG(maphist,
1891 " wasn't able to relock after fault: retry",
1892 0,0,0,0);
1893 if (pg->flags & PG_WANTED) {
1894 wakeup(pg);
1895 }
1896 if (pg->flags & PG_RELEASED) {
1897 uvmexp.fltpgrele++;
1898 uvm_pagefree(pg);
1899 mutex_exit(uobj->vmobjlock);
1900 return ERESTART;
1901 }
1902 pg->flags &= ~(PG_BUSY|PG_WANTED);
1903 UVM_PAGE_OWN(pg, NULL);
1904 mutex_exit(uobj->vmobjlock);
1905 return ERESTART;
1906 }
1907
1908 /*
1909 * we have the data in pg which is busy and
1910 * not released. we are holding object lock (so the page
1911 * can't be released on us).
1912 */
1913
1914 /* locked: maps(read), amap(if !null), uobj, pg */
1915
1916 *ruobj = uobj;
1917 *ruobjpage = pg;
1918 return 0;
1919 }
1920
1921 /*
1922 * uvm_fault_lower_direct: fault lower center page
1923 *
1924 * 1. adjust h/w mapping protection.
1925 * 2. if page is loaned, resolve.
1926 */
1927
1928 int
1929 uvm_fault_lower_direct(
1930 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1931 struct uvm_object *uobj, struct vm_page *uobjpage)
1932 {
1933 struct vm_page *pg;
1934 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1935
1936 /*
1937 * we are not promoting. if the mapping is COW ensure that we
1938 * don't give more access than we should (e.g. when doing a read
1939 * fault on a COPYONWRITE mapping we want to map the COW page in
1940 * R/O even though the entry protection could be R/W).
1941 *
1942 * set "pg" to the page we want to map in (uobjpage, usually)
1943 */
1944
1945 uvmexp.flt_obj++;
1946 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1947 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1948 flt->enter_prot &= ~VM_PROT_WRITE;
1949 pg = uobjpage; /* map in the actual object */
1950
1951 KASSERT(uobjpage != PGO_DONTCARE);
1952
1953 /*
1954 * we are faulting directly on the page. be careful
1955 * about writing to loaned pages...
1956 */
1957
1958 if (uobjpage->loan_count) {
1959 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1960 }
1961 KASSERT(pg == uobjpage);
1962
1963 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1964 }
1965
1966 /*
1967 * uvm_fault_lower_direct_loan: resolve loaned page.
1968 *
1969 * 1. if not cow'ing, adjust h/w mapping protection.
1970 * 2. if cow'ing, break loan.
1971 */
1972
1973 static int
1974 uvm_fault_lower_direct_loan(
1975 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1976 struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage)
1977 {
1978 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1979 struct vm_page *pg;
1980 struct vm_page *uobjpage = *ruobjpage;
1981 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
1982
1983 if (!flt->cow_now) {
1984 /* read fault: cap the protection at readonly */
1985 /* cap! */
1986 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1987 } else {
1988 /* write fault: must break the loan here */
1989
1990 pg = uvm_loanbreak(uobjpage);
1991 if (pg == NULL) {
1992
1993 /*
1994 * drop ownership of page, it can't be released
1995 */
1996
1997 if (uobjpage->flags & PG_WANTED)
1998 wakeup(uobjpage);
1999 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2000 UVM_PAGE_OWN(uobjpage, NULL);
2001
2002 uvmfault_unlockall(ufi, amap, uobj);
2003 UVMHIST_LOG(maphist,
2004 " out of RAM breaking loan, waiting",
2005 0,0,0,0);
2006 uvmexp.fltnoram++;
2007 uvm_wait("flt_noram4");
2008 return ERESTART;
2009 }
2010 *rpg = pg;
2011 *ruobjpage = pg;
2012 }
2013 return 0;
2014 }
2015
2016 /*
2017 * uvm_fault_lower_promote: promote lower page.
2018 *
2019 * 1. call uvmfault_promote.
2020 * 2. fill in data.
2021 * 3. if not ZFOD, dispose old page.
2022 */
2023
2024 int
2025 uvm_fault_lower_promote(
2026 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2027 struct uvm_object *uobj, struct vm_page *uobjpage)
2028 {
2029 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2030 struct vm_anon *anon;
2031 struct vm_page *pg;
2032 int error;
2033 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2034
2035 /*
2036 * if we are going to promote the data to an anon we
2037 * allocate a blank anon here and plug it into our amap.
2038 */
2039 #if DIAGNOSTIC
2040 if (amap == NULL)
2041 panic("uvm_fault: want to promote data, but no anon");
2042 #endif
2043 error = uvmfault_promote(ufi, NULL, uobjpage,
2044 &anon, &flt->anon_spare);
2045 switch (error) {
2046 case 0:
2047 break;
2048 case ERESTART:
2049 return ERESTART;
2050 default:
2051 return error;
2052 }
2053
2054 pg = anon->an_page;
2055
2056 /*
2057 * fill in the data
2058 */
2059
2060 if (uobjpage != PGO_DONTCARE) {
2061 uvmexp.flt_prcopy++;
2062
2063 /*
2064 * promote to shared amap? make sure all sharing
2065 * procs see it
2066 */
2067
2068 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2069 pmap_page_protect(uobjpage, VM_PROT_NONE);
2070 /*
2071 * XXX: PAGE MIGHT BE WIRED!
2072 */
2073 }
2074
2075 /*
2076 * dispose of uobjpage. it can't be PG_RELEASED
2077 * since we still hold the object lock.
2078 */
2079
2080 if (uobjpage->flags & PG_WANTED) {
2081 /* still have the obj lock */
2082 wakeup(uobjpage);
2083 }
2084 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2085 UVM_PAGE_OWN(uobjpage, NULL);
2086
2087 UVMHIST_LOG(maphist,
2088 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2089 uobjpage, anon, pg, 0);
2090
2091 } else {
2092 uvmexp.flt_przero++;
2093
2094 /*
2095 * Page is zero'd and marked dirty by
2096 * uvmfault_promote().
2097 */
2098
2099 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2100 anon, pg, 0, 0);
2101 }
2102
2103 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage);
2104 }
2105
2106 /*
2107 * uvm_fault_lower_enter: enter h/w mapping of lower page.
2108 */
2109
2110 int
2111 uvm_fault_lower_enter(
2112 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2113 struct uvm_object *uobj,
2114 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2115 {
2116 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2117 int error;
2118 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2119
2120 /*
2121 * Locked:
2122 *
2123 * maps(read), amap(if !null), uobj(if !null),
2124 * anon(if !null), pg(if anon), unlock_uobj(if !null)
2125 *
2126 * Note: pg is either the uobjpage or the new page in the new anon.
2127 */
2128 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
2129 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
2130 KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2131 KASSERT((pg->flags & PG_BUSY) != 0);
2132
2133 /*
2134 * all resources are present. we can now map it in and free our
2135 * resources.
2136 */
2137
2138 UVMHIST_LOG(maphist,
2139 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2140 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2141 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2142 (pg->flags & PG_RDONLY) == 0);
2143 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
2144 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2145 flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2146
2147 /*
2148 * No need to undo what we did; we can simply think of
2149 * this as the pmap throwing away the mapping information.
2150 *
2151 * We do, however, have to go through the ReFault path,
2152 * as the map may change while we're asleep.
2153 */
2154
2155 if (pg->flags & PG_WANTED)
2156 wakeup(pg);
2157
2158 /*
2159 * note that pg can't be PG_RELEASED since we did not drop
2160 * the object lock since the last time we checked.
2161 */
2162 KASSERT((pg->flags & PG_RELEASED) == 0);
2163
2164 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2165 UVM_PAGE_OWN(pg, NULL);
2166
2167 uvmfault_unlockall(ufi, amap, uobj);
2168 if (!uvm_reclaimable()) {
2169 UVMHIST_LOG(maphist,
2170 "<- failed. out of VM",0,0,0,0);
2171 /* XXX instrumentation */
2172 error = ENOMEM;
2173 return error;
2174 }
2175 /* XXX instrumentation */
2176 uvm_wait("flt_pmfail2");
2177 return ERESTART;
2178 }
2179
2180 uvm_fault_lower_done(ufi, flt, uobj, anon, pg);
2181
2182 pmap_update(ufi->orig_map->pmap);
2183 uvmfault_unlockall(ufi, amap, uobj);
2184
2185 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2186 return 0;
2187 }
2188
2189 /*
2190 * uvm_fault_lower_done: queue lower center page.
2191 */
2192
2193 void
2194 uvm_fault_lower_done(
2195 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2196 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2197 {
2198 bool dropswap = false;
2199
2200 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2201
2202 mutex_enter(&uvm_pageqlock);
2203 if (flt->wire_paging) {
2204 uvm_pagewire(pg);
2205 if (pg->pqflags & PQ_AOBJ) {
2206
2207 /*
2208 * since the now-wired page cannot be paged out,
2209 * release its swap resources for others to use.
2210 * since an aobj page with no swap cannot be PG_CLEAN,
2211 * clear its clean flag now.
2212 */
2213
2214 KASSERT(uobj != NULL);
2215 pg->flags &= ~(PG_CLEAN);
2216 dropswap = true;
2217 }
2218 } else {
2219 uvm_pageactivate(pg);
2220 }
2221 mutex_exit(&uvm_pageqlock);
2222
2223 if (dropswap) {
2224 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2225 }
2226 if (pg->flags & PG_WANTED)
2227 wakeup(pg);
2228
2229 /*
2230 * note that pg can't be PG_RELEASED since we did not drop the object
2231 * lock since the last time we checked.
2232 */
2233 KASSERT((pg->flags & PG_RELEASED) == 0);
2234
2235 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2236 UVM_PAGE_OWN(pg, NULL);
2237 }
2238
2239
2240 /*
2241 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2242 *
2243 * => map may be read-locked by caller, but MUST NOT be write-locked.
2244 * => if map is read-locked, any operations which may cause map to
2245 * be write-locked in uvm_fault() must be taken care of by
2246 * the caller. See uvm_map_pageable().
2247 */
2248
2249 int
2250 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2251 vm_prot_t access_type, int maxprot)
2252 {
2253 vaddr_t va;
2254 int error;
2255
2256 /*
2257 * now fault it in a page at a time. if the fault fails then we have
2258 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2259 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2260 */
2261
2262 /*
2263 * XXX work around overflowing a vaddr_t. this prevents us from
2264 * wiring the last page in the address space, though.
2265 */
2266 if (start > end) {
2267 return EFAULT;
2268 }
2269
2270 for (va = start; va < end; va += PAGE_SIZE) {
2271 error = uvm_fault_internal(map, va, access_type,
2272 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2273 if (error) {
2274 if (va != start) {
2275 uvm_fault_unwire(map, start, va);
2276 }
2277 return error;
2278 }
2279 }
2280 return 0;
2281 }
2282
2283 /*
2284 * uvm_fault_unwire(): unwire range of virtual space.
2285 */
2286
2287 void
2288 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2289 {
2290 vm_map_lock_read(map);
2291 uvm_fault_unwire_locked(map, start, end);
2292 vm_map_unlock_read(map);
2293 }
2294
2295 /*
2296 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2297 *
2298 * => map must be at least read-locked.
2299 */
2300
2301 void
2302 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2303 {
2304 struct vm_map_entry *entry, *oentry;
2305 pmap_t pmap = vm_map_pmap(map);
2306 vaddr_t va;
2307 paddr_t pa;
2308 struct vm_page *pg;
2309
2310 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2311
2312 /*
2313 * we assume that the area we are unwiring has actually been wired
2314 * in the first place. this means that we should be able to extract
2315 * the PAs from the pmap. we also lock out the page daemon so that
2316 * we can call uvm_pageunwire.
2317 */
2318
2319 /*
2320 * find the beginning map entry for the region.
2321 */
2322
2323 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2324 if (uvm_map_lookup_entry(map, start, &entry) == false)
2325 panic("uvm_fault_unwire_locked: address not in map");
2326
2327 oentry = NULL;
2328 for (va = start; va < end; va += PAGE_SIZE) {
2329 if (pmap_extract(pmap, va, &pa) == false)
2330 continue;
2331
2332 /*
2333 * find the map entry for the current address.
2334 */
2335
2336 KASSERT(va >= entry->start);
2337 while (va >= entry->end) {
2338 KASSERT(entry->next != &map->header &&
2339 entry->next->start <= entry->end);
2340 entry = entry->next;
2341 }
2342
2343 /*
2344 * lock it.
2345 */
2346
2347 if (entry != oentry) {
2348 if (oentry != NULL) {
2349 mutex_exit(&uvm_pageqlock);
2350 uvm_map_unlock_entry(oentry);
2351 }
2352 uvm_map_lock_entry(entry);
2353 mutex_enter(&uvm_pageqlock);
2354 oentry = entry;
2355 }
2356
2357 /*
2358 * if the entry is no longer wired, tell the pmap.
2359 */
2360
2361 if (VM_MAPENT_ISWIRED(entry) == 0)
2362 pmap_unwire(pmap, va);
2363
2364 pg = PHYS_TO_VM_PAGE(pa);
2365 if (pg)
2366 uvm_pageunwire(pg);
2367 }
2368
2369 if (oentry != NULL) {
2370 mutex_exit(&uvm_pageqlock);
2371 uvm_map_unlock_entry(entry);
2372 }
2373 }
2374