uvm_fault.c revision 1.173.2.8 1 /* $NetBSD: uvm_fault.c,v 1.173.2.8 2011/05/21 21:26:48 rmind Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 */
29
30 /*
31 * uvm_fault.c: fault handler
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.173.2.8 2011/05/21 21:26:48 rmind Exp $");
36
37 #include "opt_uvmhist.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/proc.h>
43 #include <sys/malloc.h>
44 #include <sys/mman.h>
45
46 #include <uvm/uvm.h>
47
48 /*
49 *
50 * a word on page faults:
51 *
52 * types of page faults we handle:
53 *
54 * CASE 1: upper layer faults CASE 2: lower layer faults
55 *
56 * CASE 1A CASE 1B CASE 2A CASE 2B
57 * read/write1 write>1 read/write +-cow_write/zero
58 * | | | |
59 * +--|--+ +--|--+ +-----+ + | + | +-----+
60 * amap | V | | ---------> new | | | | ^ |
61 * +-----+ +-----+ +-----+ + | + | +--|--+
62 * | | |
63 * +-----+ +-----+ +--|--+ | +--|--+
64 * uobj | d/c | | d/c | | V | +----+ |
65 * +-----+ +-----+ +-----+ +-----+
66 *
67 * d/c = don't care
68 *
69 * case [0]: layerless fault
70 * no amap or uobj is present. this is an error.
71 *
72 * case [1]: upper layer fault [anon active]
73 * 1A: [read] or [write with anon->an_ref == 1]
74 * I/O takes place in upper level anon and uobj is not touched.
75 * 1B: [write with anon->an_ref > 1]
76 * new anon is alloc'd and data is copied off ["COW"]
77 *
78 * case [2]: lower layer fault [uobj]
79 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
80 * I/O takes place directly in object.
81 * 2B: [write to copy_on_write] or [read on NULL uobj]
82 * data is "promoted" from uobj to a new anon.
83 * if uobj is null, then we zero fill.
84 *
85 * we follow the standard UVM locking protocol ordering:
86 *
87 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
88 * we hold a PG_BUSY page if we unlock for I/O
89 *
90 *
91 * the code is structured as follows:
92 *
93 * - init the "IN" params in the ufi structure
94 * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
95 * - do lookups [locks maps], check protection, handle needs_copy
96 * - check for case 0 fault (error)
97 * - establish "range" of fault
98 * - if we have an amap lock it and extract the anons
99 * - if sequential advice deactivate pages behind us
100 * - at the same time check pmap for unmapped areas and anon for pages
101 * that we could map in (and do map it if found)
102 * - check object for resident pages that we could map in
103 * - if (case 2) goto Case2
104 * - >>> handle case 1
105 * - ensure source anon is resident in RAM
106 * - if case 1B alloc new anon and copy from source
107 * - map the correct page in
108 * Case2:
109 * - >>> handle case 2
110 * - ensure source page is resident (if uobj)
111 * - if case 2B alloc new anon and copy from source (could be zero
112 * fill if uobj == NULL)
113 * - map the correct page in
114 * - done!
115 *
116 * note on paging:
117 * if we have to do I/O we place a PG_BUSY page in the correct object,
118 * unlock everything, and do the I/O. when I/O is done we must reverify
119 * the state of the world before assuming that our data structures are
120 * valid. [because mappings could change while the map is unlocked]
121 *
122 * alternative 1: unbusy the page in question and restart the page fault
123 * from the top (ReFault). this is easy but does not take advantage
124 * of the information that we already have from our previous lookup,
125 * although it is possible that the "hints" in the vm_map will help here.
126 *
127 * alternative 2: the system already keeps track of a "version" number of
128 * a map. [i.e. every time you write-lock a map (e.g. to change a
129 * mapping) you bump the version number up by one...] so, we can save
130 * the version number of the map before we release the lock and start I/O.
131 * then when I/O is done we can relock and check the version numbers
132 * to see if anything changed. this might save us some over 1 because
133 * we don't have to unbusy the page and may be less compares(?).
134 *
135 * alternative 3: put in backpointers or a way to "hold" part of a map
136 * in place while I/O is in progress. this could be complex to
137 * implement (especially with structures like amap that can be referenced
138 * by multiple map entries, and figuring out what should wait could be
139 * complex as well...).
140 *
141 * we use alternative 2. given that we are multi-threaded now we may want
142 * to reconsider the choice.
143 */
144
145 /*
146 * local data structures
147 */
148
149 struct uvm_advice {
150 int advice;
151 int nback;
152 int nforw;
153 };
154
155 /*
156 * page range array:
157 * note: index in array must match "advice" value
158 * XXX: borrowed numbers from freebsd. do they work well for us?
159 */
160
161 static const struct uvm_advice uvmadvice[] = {
162 { UVM_ADV_NORMAL, 3, 4 },
163 { UVM_ADV_RANDOM, 0, 0 },
164 { UVM_ADV_SEQUENTIAL, 8, 7},
165 };
166
167 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
168
169 /*
170 * private prototypes
171 */
172
173 /*
174 * inline functions
175 */
176
177 /*
178 * uvmfault_anonflush: try and deactivate pages in specified anons
179 *
180 * => does not have to deactivate page if it is busy
181 */
182
183 static inline void
184 uvmfault_anonflush(struct vm_anon **anons, int n)
185 {
186 int lcv;
187 struct vm_page *pg;
188
189 for (lcv = 0; lcv < n; lcv++) {
190 if (anons[lcv] == NULL)
191 continue;
192 KASSERT(mutex_owned(anons[lcv]->an_lock));
193 pg = anons[lcv]->an_page;
194 if (pg && (pg->flags & PG_BUSY) == 0) {
195 mutex_enter(&uvm_pageqlock);
196 if (pg->wire_count == 0) {
197 uvm_pagedeactivate(pg);
198 }
199 mutex_exit(&uvm_pageqlock);
200 }
201 }
202 }
203
204 /*
205 * normal functions
206 */
207
208 /*
209 * uvmfault_amapcopy: clear "needs_copy" in a map.
210 *
211 * => called with VM data structures unlocked (usually, see below)
212 * => we get a write lock on the maps and clear needs_copy for a VA
213 * => if we are out of RAM we sleep (waiting for more)
214 */
215
216 static void
217 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
218 {
219 for (;;) {
220
221 /*
222 * no mapping? give up.
223 */
224
225 if (uvmfault_lookup(ufi, true) == false)
226 return;
227
228 /*
229 * copy if needed.
230 */
231
232 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
233 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
234 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
235
236 /*
237 * didn't work? must be out of RAM. unlock and sleep.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
241 uvmfault_unlockmaps(ufi, true);
242 uvm_wait("fltamapcopy");
243 continue;
244 }
245
246 /*
247 * got it! unlock and return.
248 */
249
250 uvmfault_unlockmaps(ufi, true);
251 return;
252 }
253 /*NOTREACHED*/
254 }
255
256 /*
257 * uvmfault_anonget: get data in an anon into a non-busy, non-released
258 * page in that anon.
259 *
260 * => maps, amap, and anon locked by caller.
261 * => if we fail (result != 0) we unlock everything.
262 * => if we are successful, we return with everything still locked.
263 * => we don't move the page on the queues [gets moved later]
264 * => if we allocate a new page [we_own], it gets put on the queues.
265 * either way, the result is that the page is on the queues at return time
266 * => for pages which are on loan from a uvm_object (and thus are not
267 * owned by the anon): if successful, we return with the owning object
268 * locked. the caller must unlock this object when it unlocks everything
269 * else.
270 */
271
272 int
273 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
274 struct vm_anon *anon)
275 {
276 bool we_own; /* we own anon's page? */
277 bool locked; /* did we relock? */
278 struct vm_page *pg;
279 int error;
280 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
281
282 KASSERT(mutex_owned(anon->an_lock));
283 KASSERT(amap == NULL || anon->an_lock == amap->am_lock);
284
285 error = 0;
286 uvmexp.fltanget++;
287 /* bump rusage counters */
288 if (anon->an_page)
289 curlwp->l_ru.ru_minflt++;
290 else
291 curlwp->l_ru.ru_majflt++;
292
293 /*
294 * loop until we get it, or fail.
295 */
296
297 for (;;) {
298 we_own = false; /* true if we set PG_BUSY on a page */
299 pg = anon->an_page;
300
301 /*
302 * if there is a resident page and it is loaned, then anon
303 * may not own it. call out to uvm_anon_lockpage() to ensure
304 * the real owner of the page has been identified and locked.
305 */
306
307 if (pg && pg->loan_count)
308 pg = uvm_anon_lockloanpg(anon);
309
310 /*
311 * page there? make sure it is not busy/released.
312 */
313
314 if (pg) {
315
316 /*
317 * at this point, if the page has a uobject [meaning
318 * we have it on loan], then that uobject is locked
319 * by us! if the page is busy, we drop all the
320 * locks (including uobject) and try again.
321 */
322
323 if ((pg->flags & PG_BUSY) == 0) {
324 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
325 return (0);
326 }
327 pg->flags |= PG_WANTED;
328 uvmexp.fltpgwait++;
329
330 /*
331 * the last unlock must be an atomic unlock+wait on
332 * the owner of page
333 */
334
335 if (pg->uobject) { /* owner is uobject ? */
336 uvmfault_unlockall(ufi, amap, NULL);
337 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
338 0,0,0);
339 UVM_UNLOCK_AND_WAIT(pg,
340 pg->uobject->vmobjlock,
341 false, "anonget1",0);
342 } else {
343 /* anon owns page */
344 uvmfault_unlockall(ufi, NULL, NULL);
345 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
346 0,0,0);
347 UVM_UNLOCK_AND_WAIT(pg, anon->an_lock, 0,
348 "anonget2",0);
349 }
350 } else {
351 #if defined(VMSWAP)
352
353 /*
354 * no page, we must try and bring it in.
355 */
356
357 pg = uvm_pagealloc(NULL,
358 ufi != NULL ? ufi->orig_rvaddr : 0,
359 anon, UVM_FLAG_COLORMATCH);
360 if (pg == NULL) { /* out of RAM. */
361 uvmfault_unlockall(ufi, amap, NULL);
362 uvmexp.fltnoram++;
363 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
364 0,0,0);
365 if (!uvm_reclaimable()) {
366 return ENOMEM;
367 }
368 uvm_wait("flt_noram1");
369 } else {
370 /* we set the PG_BUSY bit */
371 we_own = true;
372 uvmfault_unlockall(ufi, amap, NULL);
373
374 /*
375 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
376 * page into the uvm_swap_get function with
377 * all data structures unlocked. note that
378 * it is ok to read an_swslot here because
379 * we hold PG_BUSY on the page.
380 */
381 uvmexp.pageins++;
382 error = uvm_swap_get(pg, anon->an_swslot,
383 PGO_SYNCIO);
384
385 /*
386 * we clean up after the i/o below in the
387 * "we_own" case
388 */
389 }
390 #else /* defined(VMSWAP) */
391 panic("%s: no page", __func__);
392 #endif /* defined(VMSWAP) */
393 }
394
395 /*
396 * now relock and try again
397 */
398
399 locked = uvmfault_relock(ufi);
400 if (locked || we_own) {
401 mutex_enter(anon->an_lock);
402 }
403
404 /*
405 * if we own the page (i.e. we set PG_BUSY), then we need
406 * to clean up after the I/O. there are three cases to
407 * consider:
408 * [1] page released during I/O: free anon and ReFault.
409 * [2] I/O not OK. free the page and cause the fault
410 * to fail.
411 * [3] I/O OK! activate the page and sync with the
412 * non-we_own case (i.e. drop anon lock if not locked).
413 */
414
415 if (we_own) {
416 #if defined(VMSWAP)
417 if (pg->flags & PG_WANTED) {
418 wakeup(pg);
419 }
420 if (error) {
421
422 /*
423 * remove the swap slot from the anon
424 * and mark the anon as having no real slot.
425 * don't free the swap slot, thus preventing
426 * it from being used again.
427 */
428
429 if (anon->an_swslot > 0)
430 uvm_swap_markbad(anon->an_swslot, 1);
431 anon->an_swslot = SWSLOT_BAD;
432
433 if ((pg->flags & PG_RELEASED) != 0)
434 goto released;
435
436 /*
437 * note: page was never !PG_BUSY, so it
438 * can't be mapped and thus no need to
439 * pmap_page_protect it...
440 */
441
442 mutex_enter(&uvm_pageqlock);
443 uvm_pagefree(pg);
444 mutex_exit(&uvm_pageqlock);
445
446 if (locked)
447 uvmfault_unlockall(ufi, NULL, NULL);
448 mutex_exit(anon->an_lock);
449 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
450 return error;
451 }
452
453 if ((pg->flags & PG_RELEASED) != 0) {
454 released:
455 KASSERT(anon->an_ref == 0);
456
457 /*
458 * released while we unlocked amap.
459 */
460
461 if (locked)
462 uvmfault_unlockall(ufi, NULL, NULL);
463
464 uvm_anon_release(anon);
465
466 if (error) {
467 UVMHIST_LOG(maphist,
468 "<- ERROR/RELEASED", 0,0,0,0);
469 return error;
470 }
471
472 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
473 return ERESTART;
474 }
475
476 /*
477 * we've successfully read the page, activate it.
478 */
479
480 mutex_enter(&uvm_pageqlock);
481 uvm_pageactivate(pg);
482 mutex_exit(&uvm_pageqlock);
483 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
484 UVM_PAGE_OWN(pg, NULL);
485 #else /* defined(VMSWAP) */
486 panic("%s: we_own", __func__);
487 #endif /* defined(VMSWAP) */
488 }
489
490 /*
491 * we were not able to relock. restart fault.
492 */
493
494 if (!locked) {
495 if (we_own) {
496 mutex_exit(anon->an_lock);
497 }
498 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
499 return (ERESTART);
500 }
501
502 /*
503 * verify no one has touched the amap and moved the anon on us.
504 */
505
506 if (ufi != NULL && amap_lookup(&ufi->entry->aref,
507 ufi->orig_rvaddr - ufi->entry->start) != anon) {
508
509 uvmfault_unlockall(ufi, amap, NULL);
510 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
511 return (ERESTART);
512 }
513
514 /*
515 * try it again!
516 */
517
518 uvmexp.fltanretry++;
519 continue;
520 }
521 /*NOTREACHED*/
522 }
523
524 /*
525 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
526 *
527 * 1. allocate an anon and a page.
528 * 2. fill its contents.
529 * 3. put it into amap.
530 *
531 * => if we fail (result != 0) we unlock everything.
532 * => on success, return a new locked anon via 'nanon'.
533 * (*nanon)->an_page will be a resident, locked, dirty page.
534 * => it's caller's responsibility to put the promoted nanon->an_page to the
535 * page queue.
536 */
537
538 static int
539 uvmfault_promote(struct uvm_faultinfo *ufi,
540 struct vm_anon *oanon,
541 struct vm_page *uobjpage,
542 struct vm_anon **nanon, /* OUT: allocated anon */
543 struct vm_anon **spare)
544 {
545 struct vm_amap *amap = ufi->entry->aref.ar_amap;
546 struct uvm_object *uobj;
547 struct vm_anon *anon;
548 struct vm_page *pg;
549 struct vm_page *opg;
550 int error;
551 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
552
553 if (oanon) {
554 /* anon COW */
555 opg = oanon->an_page;
556 KASSERT(opg != NULL);
557 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
558 } else if (uobjpage != PGO_DONTCARE) {
559 /* object-backed COW */
560 opg = uobjpage;
561 } else {
562 /* ZFOD */
563 opg = NULL;
564 }
565 if (opg != NULL) {
566 uobj = opg->uobject;
567 } else {
568 uobj = NULL;
569 }
570
571 KASSERT(amap != NULL);
572 KASSERT(uobjpage != NULL);
573 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
574 KASSERT(mutex_owned(amap->am_lock));
575 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
576 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
577
578 if (*spare != NULL) {
579 anon = *spare;
580 *spare = NULL;
581 } else if (ufi->map != kernel_map) {
582 anon = uvm_analloc();
583 } else {
584 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
585
586 /*
587 * we can't allocate anons with kernel_map locked.
588 */
589
590 uvm_page_unbusy(&uobjpage, 1);
591 uvmfault_unlockall(ufi, amap, uobj);
592
593 *spare = uvm_analloc();
594 if (*spare == NULL) {
595 goto nomem;
596 }
597 KASSERT((*spare)->an_lock == NULL);
598 error = ERESTART;
599 goto done;
600 }
601 if (anon) {
602
603 /*
604 * The new anon is locked.
605 *
606 * if opg == NULL, we want a zero'd, dirty page,
607 * so have uvm_pagealloc() do that for us.
608 */
609
610 KASSERT(anon->an_lock == NULL);
611 anon->an_lock = amap->am_lock;
612 mutex_obj_hold(anon->an_lock);
613 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
614 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
615 if (pg == NULL) {
616 mutex_obj_free(anon->an_lock);
617 anon->an_lock = NULL;
618 }
619 } else {
620 pg = NULL;
621 }
622
623 /*
624 * out of memory resources?
625 */
626
627 if (pg == NULL) {
628 /* save anon for the next try. */
629 if (anon != NULL) {
630 *spare = anon;
631 }
632
633 /* unlock and fail ... */
634 uvm_page_unbusy(&uobjpage, 1);
635 uvmfault_unlockall(ufi, amap, uobj);
636 nomem:
637 if (!uvm_reclaimable()) {
638 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
639 uvmexp.fltnoanon++;
640 error = ENOMEM;
641 goto done;
642 }
643
644 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
645 uvmexp.fltnoram++;
646 uvm_wait("flt_noram5");
647 error = ERESTART;
648 goto done;
649 }
650
651 /* copy page [pg now dirty] */
652 if (opg) {
653 uvm_pagecopy(opg, pg);
654 }
655
656 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
657 oanon != NULL);
658
659 *nanon = anon;
660 error = 0;
661 done:
662 return error;
663 }
664
665
666 /*
667 * F A U L T - m a i n e n t r y p o i n t
668 */
669
670 /*
671 * uvm_fault: page fault handler
672 *
673 * => called from MD code to resolve a page fault
674 * => VM data structures usually should be unlocked. however, it is
675 * possible to call here with the main map locked if the caller
676 * gets a write lock, sets it recusive, and then calls us (c.f.
677 * uvm_map_pageable). this should be avoided because it keeps
678 * the map locked off during I/O.
679 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
680 */
681
682 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
683 ~VM_PROT_WRITE : VM_PROT_ALL)
684
685 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
686 #define UVM_FAULT_WIRE (1 << 0)
687 #define UVM_FAULT_MAXPROT (1 << 1)
688
689 struct uvm_faultctx {
690 vm_prot_t access_type;
691 vm_prot_t enter_prot;
692 vaddr_t startva;
693 int npages;
694 int centeridx;
695 struct vm_anon *anon_spare;
696 bool wire_mapping;
697 bool narrow;
698 bool wire_paging;
699 bool cow_now;
700 bool promote;
701 };
702
703 static inline int uvm_fault_check(
704 struct uvm_faultinfo *, struct uvm_faultctx *,
705 struct vm_anon ***, bool);
706
707 static int uvm_fault_upper(
708 struct uvm_faultinfo *, struct uvm_faultctx *,
709 struct vm_anon **);
710 static inline int uvm_fault_upper_lookup(
711 struct uvm_faultinfo *, const struct uvm_faultctx *,
712 struct vm_anon **, struct vm_page **);
713 static inline void uvm_fault_upper_neighbor(
714 struct uvm_faultinfo *, const struct uvm_faultctx *,
715 vaddr_t, struct vm_page *, bool);
716 static inline int uvm_fault_upper_loan(
717 struct uvm_faultinfo *, struct uvm_faultctx *,
718 struct vm_anon *, struct uvm_object **);
719 static inline int uvm_fault_upper_promote(
720 struct uvm_faultinfo *, struct uvm_faultctx *,
721 struct uvm_object *, struct vm_anon *);
722 static inline int uvm_fault_upper_direct(
723 struct uvm_faultinfo *, struct uvm_faultctx *,
724 struct uvm_object *, struct vm_anon *);
725 static int uvm_fault_upper_enter(
726 struct uvm_faultinfo *, const struct uvm_faultctx *,
727 struct uvm_object *, struct vm_anon *,
728 struct vm_page *, struct vm_anon *);
729 static inline void uvm_fault_upper_done(
730 struct uvm_faultinfo *, const struct uvm_faultctx *,
731 struct vm_anon *, struct vm_page *);
732
733 static int uvm_fault_lower(
734 struct uvm_faultinfo *, struct uvm_faultctx *,
735 struct vm_page **);
736 static inline void uvm_fault_lower_lookup(
737 struct uvm_faultinfo *, const struct uvm_faultctx *,
738 struct vm_page **);
739 static inline void uvm_fault_lower_neighbor(
740 struct uvm_faultinfo *, const struct uvm_faultctx *,
741 vaddr_t, struct vm_page *, bool);
742 static inline int uvm_fault_lower_io(
743 struct uvm_faultinfo *, const struct uvm_faultctx *,
744 struct uvm_object **, struct vm_page **);
745 static inline int uvm_fault_lower_direct(
746 struct uvm_faultinfo *, struct uvm_faultctx *,
747 struct uvm_object *, struct vm_page *);
748 static inline int uvm_fault_lower_direct_loan(
749 struct uvm_faultinfo *, struct uvm_faultctx *,
750 struct uvm_object *, struct vm_page **,
751 struct vm_page **);
752 static inline int uvm_fault_lower_promote(
753 struct uvm_faultinfo *, struct uvm_faultctx *,
754 struct uvm_object *, struct vm_page *);
755 static int uvm_fault_lower_enter(
756 struct uvm_faultinfo *, const struct uvm_faultctx *,
757 struct uvm_object *,
758 struct vm_anon *, struct vm_page *);
759 static inline void uvm_fault_lower_done(
760 struct uvm_faultinfo *, const struct uvm_faultctx *,
761 struct uvm_object *, struct vm_page *);
762
763 int
764 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
765 vm_prot_t access_type, int fault_flag)
766 {
767 struct uvm_faultinfo ufi;
768 struct uvm_faultctx flt = {
769 .access_type = access_type,
770
771 /* don't look for neighborhood * pages on "wire" fault */
772 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
773
774 /* "wire" fault causes wiring of both mapping and paging */
775 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
776 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
777 };
778 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
779 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
780 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
781 int error;
782 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
783
784 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
785 orig_map, vaddr, access_type, fault_flag);
786
787 curcpu()->ci_data.cpu_nfault++;
788
789 /*
790 * init the IN parameters in the ufi
791 */
792
793 ufi.orig_map = orig_map;
794 ufi.orig_rvaddr = trunc_page(vaddr);
795 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
796
797 error = ERESTART;
798 while (error == ERESTART) { /* ReFault: */
799 anons = anons_store;
800 pages = pages_store;
801
802 error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
803 if (error != 0)
804 continue;
805
806 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
807 if (error != 0)
808 continue;
809
810 if (pages[flt.centeridx] == PGO_DONTCARE)
811 error = uvm_fault_upper(&ufi, &flt, anons);
812 else {
813 struct uvm_object * const uobj =
814 ufi.entry->object.uvm_obj;
815
816 if (uobj && uobj->pgops->pgo_fault != NULL) {
817 /*
818 * invoke "special" fault routine.
819 */
820 mutex_enter(uobj->vmobjlock);
821 /* locked: maps(read), amap(if there), uobj */
822 error = uobj->pgops->pgo_fault(&ufi,
823 flt.startva, pages, flt.npages,
824 flt.centeridx, flt.access_type,
825 PGO_LOCKED|PGO_SYNCIO);
826
827 /*
828 * locked: nothing, pgo_fault has unlocked
829 * everything
830 */
831
832 /*
833 * object fault routine responsible for
834 * pmap_update().
835 */
836 } else {
837 error = uvm_fault_lower(&ufi, &flt, pages);
838 }
839 }
840 }
841
842 if (flt.anon_spare != NULL) {
843 flt.anon_spare->an_ref--;
844 KASSERT(flt.anon_spare->an_ref == 0);
845 KASSERT(flt.anon_spare->an_lock == NULL);
846 uvm_anfree(flt.anon_spare);
847 }
848 return error;
849 }
850
851 /*
852 * uvm_fault_check: check prot, handle needs-copy, etc.
853 *
854 * 1. lookup entry.
855 * 2. check protection.
856 * 3. adjust fault condition (mainly for simulated fault).
857 * 4. handle needs-copy (lazy amap copy).
858 * 5. establish range of interest for neighbor fault (aka pre-fault).
859 * 6. look up anons (if amap exists).
860 * 7. flush pages (if MADV_SEQUENTIAL)
861 *
862 * => called with nothing locked.
863 * => if we fail (result != 0) we unlock everything.
864 * => initialize/adjust many members of flt.
865 */
866
867 static int
868 uvm_fault_check(
869 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
870 struct vm_anon ***ranons, bool maxprot)
871 {
872 struct vm_amap *amap;
873 struct uvm_object *uobj;
874 vm_prot_t check_prot;
875 int nback, nforw;
876 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
877
878 /*
879 * lookup and lock the maps
880 */
881
882 if (uvmfault_lookup(ufi, false) == false) {
883 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr,
884 0,0,0);
885 return EFAULT;
886 }
887 /* locked: maps(read) */
888
889 #ifdef DIAGNOSTIC
890 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
891 printf("Page fault on non-pageable map:\n");
892 printf("ufi->map = %p\n", ufi->map);
893 printf("ufi->orig_map = %p\n", ufi->orig_map);
894 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
895 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
896 }
897 #endif
898
899 /*
900 * check protection
901 */
902
903 check_prot = maxprot ?
904 ufi->entry->max_protection : ufi->entry->protection;
905 if ((check_prot & flt->access_type) != flt->access_type) {
906 UVMHIST_LOG(maphist,
907 "<- protection failure (prot=0x%x, access=0x%x)",
908 ufi->entry->protection, flt->access_type, 0, 0);
909 uvmfault_unlockmaps(ufi, false);
910 return EACCES;
911 }
912
913 /*
914 * "enter_prot" is the protection we want to enter the page in at.
915 * for certain pages (e.g. copy-on-write pages) this protection can
916 * be more strict than ufi->entry->protection. "wired" means either
917 * the entry is wired or we are fault-wiring the pg.
918 */
919
920 flt->enter_prot = ufi->entry->protection;
921 if (VM_MAPENT_ISWIRED(ufi->entry))
922 flt->wire_mapping = true;
923
924 if (flt->wire_mapping) {
925 flt->access_type = flt->enter_prot; /* full access for wired */
926 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
927 } else {
928 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
929 }
930
931 flt->promote = false;
932
933 /*
934 * handle "needs_copy" case. if we need to copy the amap we will
935 * have to drop our readlock and relock it with a write lock. (we
936 * need a write lock to change anything in a map entry [e.g.
937 * needs_copy]).
938 */
939
940 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
941 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
942 KASSERT(!maxprot);
943 /* need to clear */
944 UVMHIST_LOG(maphist,
945 " need to clear needs_copy and refault",0,0,0,0);
946 uvmfault_unlockmaps(ufi, false);
947 uvmfault_amapcopy(ufi);
948 uvmexp.fltamcopy++;
949 return ERESTART;
950
951 } else {
952
953 /*
954 * ensure that we pmap_enter page R/O since
955 * needs_copy is still true
956 */
957
958 flt->enter_prot &= ~VM_PROT_WRITE;
959 }
960 }
961
962 /*
963 * identify the players
964 */
965
966 amap = ufi->entry->aref.ar_amap; /* upper layer */
967 uobj = ufi->entry->object.uvm_obj; /* lower layer */
968
969 /*
970 * check for a case 0 fault. if nothing backing the entry then
971 * error now.
972 */
973
974 if (amap == NULL && uobj == NULL) {
975 uvmfault_unlockmaps(ufi, false);
976 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
977 return EFAULT;
978 }
979
980 /*
981 * establish range of interest based on advice from mapper
982 * and then clip to fit map entry. note that we only want
983 * to do this the first time through the fault. if we
984 * ReFault we will disable this by setting "narrow" to true.
985 */
986
987 if (flt->narrow == false) {
988
989 /* wide fault (!narrow) */
990 KASSERT(uvmadvice[ufi->entry->advice].advice ==
991 ufi->entry->advice);
992 nback = MIN(uvmadvice[ufi->entry->advice].nback,
993 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
994 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
995 /*
996 * note: "-1" because we don't want to count the
997 * faulting page as forw
998 */
999 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1000 ((ufi->entry->end - ufi->orig_rvaddr) >>
1001 PAGE_SHIFT) - 1);
1002 flt->npages = nback + nforw + 1;
1003 flt->centeridx = nback;
1004
1005 flt->narrow = true; /* ensure only once per-fault */
1006
1007 } else {
1008
1009 /* narrow fault! */
1010 nback = nforw = 0;
1011 flt->startva = ufi->orig_rvaddr;
1012 flt->npages = 1;
1013 flt->centeridx = 0;
1014
1015 }
1016 /* offset from entry's start to pgs' start */
1017 const voff_t eoff = flt->startva - ufi->entry->start;
1018
1019 /* locked: maps(read) */
1020 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
1021 flt->narrow, nback, nforw, flt->startva);
1022 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1023 amap, uobj, 0);
1024
1025 /*
1026 * if we've got an amap, lock it and extract current anons.
1027 */
1028
1029 if (amap) {
1030 amap_lock(amap);
1031 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1032 } else {
1033 *ranons = NULL; /* to be safe */
1034 }
1035
1036 /* locked: maps(read), amap(if there) */
1037 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1038
1039 /*
1040 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1041 * now and then forget about them (for the rest of the fault).
1042 */
1043
1044 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1045
1046 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1047 0,0,0,0);
1048 /* flush back-page anons? */
1049 if (amap)
1050 uvmfault_anonflush(*ranons, nback);
1051
1052 /* flush object? */
1053 if (uobj) {
1054 voff_t uoff;
1055
1056 uoff = ufi->entry->offset + eoff;
1057 mutex_enter(uobj->vmobjlock);
1058 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1059 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1060 }
1061
1062 /* now forget about the backpages */
1063 if (amap)
1064 *ranons += nback;
1065 flt->startva += (nback << PAGE_SHIFT);
1066 flt->npages -= nback;
1067 flt->centeridx = 0;
1068 }
1069 /*
1070 * => startva is fixed
1071 * => npages is fixed
1072 */
1073 KASSERT(flt->startva <= ufi->orig_rvaddr);
1074 KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1075 flt->startva + (flt->npages << PAGE_SHIFT));
1076 return 0;
1077 }
1078
1079 /*
1080 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1081 *
1082 * iterate range of interest:
1083 * 1. check if h/w mapping exists. if yes, we don't care
1084 * 2. check if anon exists. if not, page is lower.
1085 * 3. if anon exists, enter h/w mapping for neighbors.
1086 *
1087 * => called with amap locked (if exists).
1088 */
1089
1090 static int
1091 uvm_fault_upper_lookup(
1092 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1093 struct vm_anon **anons, struct vm_page **pages)
1094 {
1095 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1096 int lcv;
1097 vaddr_t currva;
1098 bool shadowed;
1099 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1100
1101 /* locked: maps(read), amap(if there) */
1102 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1103
1104 /*
1105 * map in the backpages and frontpages we found in the amap in hopes
1106 * of preventing future faults. we also init the pages[] array as
1107 * we go.
1108 */
1109
1110 currva = flt->startva;
1111 shadowed = false;
1112 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1113 /*
1114 * don't play with VAs that are already mapped
1115 * (except for center)
1116 */
1117 if (lcv != flt->centeridx &&
1118 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1119 pages[lcv] = PGO_DONTCARE;
1120 continue;
1121 }
1122
1123 /*
1124 * unmapped or center page. check if any anon at this level.
1125 */
1126 if (amap == NULL || anons[lcv] == NULL) {
1127 pages[lcv] = NULL;
1128 continue;
1129 }
1130
1131 /*
1132 * check for present page and map if possible. re-activate it.
1133 */
1134
1135 pages[lcv] = PGO_DONTCARE;
1136 if (lcv == flt->centeridx) { /* save center for later! */
1137 shadowed = true;
1138 continue;
1139 }
1140
1141 struct vm_anon *anon = anons[lcv];
1142 struct vm_page *pg = anon->an_page;
1143
1144 KASSERT(anon->an_lock == amap->am_lock);
1145
1146 /* Ignore loaned and busy pages. */
1147 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
1148 uvm_fault_upper_neighbor(ufi, flt, currva,
1149 pg, anon->an_ref > 1);
1150 }
1151 }
1152
1153 /* locked: maps(read), amap(if there) */
1154 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1155 /* (shadowed == true) if there is an anon at the faulting address */
1156 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1157 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1158
1159 /*
1160 * note that if we are really short of RAM we could sleep in the above
1161 * call to pmap_enter with everything locked. bad?
1162 *
1163 * XXX Actually, that is bad; pmap_enter() should just fail in that
1164 * XXX case. --thorpej
1165 */
1166
1167 return 0;
1168 }
1169
1170 /*
1171 * uvm_fault_upper_neighbor: enter single lower neighbor page.
1172 *
1173 * => called with amap and anon locked.
1174 */
1175
1176 static void
1177 uvm_fault_upper_neighbor(
1178 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1179 vaddr_t currva, struct vm_page *pg, bool readonly)
1180 {
1181 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1182
1183 /* locked: amap, anon */
1184
1185 mutex_enter(&uvm_pageqlock);
1186 uvm_pageenqueue(pg);
1187 mutex_exit(&uvm_pageqlock);
1188 UVMHIST_LOG(maphist,
1189 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1190 ufi->orig_map->pmap, currva, pg, 0);
1191 uvmexp.fltnamap++;
1192
1193 /*
1194 * Since this page isn't the page that's actually faulting,
1195 * ignore pmap_enter() failures; it's not critical that we
1196 * enter these right now.
1197 */
1198
1199 (void) pmap_enter(ufi->orig_map->pmap, currva,
1200 VM_PAGE_TO_PHYS(pg),
1201 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1202 flt->enter_prot,
1203 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1204
1205 pmap_update(ufi->orig_map->pmap);
1206 }
1207
1208 /*
1209 * uvm_fault_upper: handle upper fault.
1210 *
1211 * 1. acquire anon lock.
1212 * 2. get anon. let uvmfault_anonget do the dirty work.
1213 * 3. handle loan.
1214 * 4. dispatch direct or promote handlers.
1215 */
1216
1217 static int
1218 uvm_fault_upper(
1219 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1220 struct vm_anon **anons)
1221 {
1222 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1223 struct vm_anon * const anon = anons[flt->centeridx];
1224 struct uvm_object *uobj;
1225 int error;
1226 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1227
1228 /* locked: maps(read), amap, anon */
1229 KASSERT(mutex_owned(amap->am_lock));
1230 KASSERT(anon->an_lock == amap->am_lock);
1231
1232 /*
1233 * handle case 1: fault on an anon in our amap
1234 */
1235
1236 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1237
1238 /*
1239 * no matter if we have case 1A or case 1B we are going to need to
1240 * have the anon's memory resident. ensure that now.
1241 */
1242
1243 /*
1244 * let uvmfault_anonget do the dirty work.
1245 * if it fails (!OK) it will unlock everything for us.
1246 * if it succeeds, locks are still valid and locked.
1247 * also, if it is OK, then the anon's page is on the queues.
1248 * if the page is on loan from a uvm_object, then anonget will
1249 * lock that object for us if it does not fail.
1250 */
1251
1252 error = uvmfault_anonget(ufi, amap, anon);
1253 switch (error) {
1254 case 0:
1255 break;
1256
1257 case ERESTART:
1258 return ERESTART;
1259
1260 case EAGAIN:
1261 kpause("fltagain1", false, hz/2, NULL);
1262 return ERESTART;
1263
1264 default:
1265 return error;
1266 }
1267
1268 /*
1269 * uobj is non null if the page is on loan from an object (i.e. uobj)
1270 */
1271
1272 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1273
1274 /* locked: maps(read), amap, anon, uobj(if one) */
1275 KASSERT(mutex_owned(amap->am_lock));
1276 KASSERT(anon->an_lock == amap->am_lock);
1277 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1278
1279 /*
1280 * special handling for loaned pages
1281 */
1282
1283 if (anon->an_page->loan_count) {
1284 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1285 if (error != 0)
1286 return error;
1287 }
1288
1289 /*
1290 * if we are case 1B then we will need to allocate a new blank
1291 * anon to transfer the data into. note that we have a lock
1292 * on anon, so no one can busy or release the page until we are done.
1293 * also note that the ref count can't drop to zero here because
1294 * it is > 1 and we are only dropping one ref.
1295 *
1296 * in the (hopefully very rare) case that we are out of RAM we
1297 * will unlock, wait for more RAM, and refault.
1298 *
1299 * if we are out of anon VM we kill the process (XXX: could wait?).
1300 */
1301
1302 if (flt->cow_now && anon->an_ref > 1) {
1303 flt->promote = true;
1304 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1305 } else {
1306 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1307 }
1308 return error;
1309 }
1310
1311 /*
1312 * uvm_fault_upper_loan: handle loaned upper page.
1313 *
1314 * 1. if not cow'ing now, simply adjust flt->enter_prot.
1315 * 2. if cow'ing now, and if ref count is 1, break loan.
1316 */
1317
1318 static int
1319 uvm_fault_upper_loan(
1320 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1321 struct vm_anon *anon, struct uvm_object **ruobj)
1322 {
1323 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1324 int error = 0;
1325 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1326
1327 if (!flt->cow_now) {
1328
1329 /*
1330 * for read faults on loaned pages we just cap the
1331 * protection at read-only.
1332 */
1333
1334 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1335
1336 } else {
1337 /*
1338 * note that we can't allow writes into a loaned page!
1339 *
1340 * if we have a write fault on a loaned page in an
1341 * anon then we need to look at the anon's ref count.
1342 * if it is greater than one then we are going to do
1343 * a normal copy-on-write fault into a new anon (this
1344 * is not a problem). however, if the reference count
1345 * is one (a case where we would normally allow a
1346 * write directly to the page) then we need to kill
1347 * the loan before we continue.
1348 */
1349
1350 /* >1 case is already ok */
1351 if (anon->an_ref == 1) {
1352 error = uvm_loanbreak_anon(anon, *ruobj);
1353 if (error != 0) {
1354 uvmfault_unlockall(ufi, amap, *ruobj);
1355 uvm_wait("flt_noram2");
1356 return ERESTART;
1357 }
1358 /* if we were a loan reciever uobj is gone */
1359 if (*ruobj)
1360 *ruobj = NULL;
1361 }
1362 }
1363 return error;
1364 }
1365
1366 /*
1367 * uvm_fault_upper_promote: promote upper page.
1368 *
1369 * 1. call uvmfault_promote.
1370 * 2. enqueue page.
1371 * 3. deref.
1372 * 4. pass page to uvm_fault_upper_enter.
1373 */
1374
1375 static int
1376 uvm_fault_upper_promote(
1377 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1378 struct uvm_object *uobj, struct vm_anon *anon)
1379 {
1380 struct vm_anon * const oanon = anon;
1381 struct vm_page *pg;
1382 int error;
1383 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1384
1385 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1386 uvmexp.flt_acow++;
1387
1388 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1389 &flt->anon_spare);
1390 switch (error) {
1391 case 0:
1392 break;
1393 case ERESTART:
1394 return ERESTART;
1395 default:
1396 return error;
1397 }
1398
1399 KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
1400
1401 pg = anon->an_page;
1402 mutex_enter(&uvm_pageqlock);
1403 uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
1404 mutex_exit(&uvm_pageqlock);
1405 pg->flags &= ~(PG_BUSY|PG_FAKE);
1406 UVM_PAGE_OWN(pg, NULL);
1407
1408 /* deref: can not drop to zero here by defn! */
1409 KASSERT(oanon->an_ref > 1);
1410 oanon->an_ref--;
1411
1412 /*
1413 * note: oanon is still locked, as is the new anon. we
1414 * need to check for this later when we unlock oanon; if
1415 * oanon != anon, we'll have to unlock anon, too.
1416 */
1417
1418 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1419 }
1420
1421 /*
1422 * uvm_fault_upper_direct: handle direct fault.
1423 */
1424
1425 static int
1426 uvm_fault_upper_direct(
1427 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1428 struct uvm_object *uobj, struct vm_anon *anon)
1429 {
1430 struct vm_anon * const oanon = anon;
1431 struct vm_page *pg;
1432 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1433
1434 uvmexp.flt_anon++;
1435 pg = anon->an_page;
1436 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1437 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1438
1439 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1440 }
1441
1442 /*
1443 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1444 */
1445
1446 static int
1447 uvm_fault_upper_enter(
1448 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1449 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1450 struct vm_anon *oanon)
1451 {
1452 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1453 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1454
1455 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1456 KASSERT(mutex_owned(amap->am_lock));
1457 KASSERT(anon->an_lock == amap->am_lock);
1458 KASSERT(oanon->an_lock == amap->am_lock);
1459 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1460
1461 /*
1462 * now map the page in.
1463 */
1464
1465 UVMHIST_LOG(maphist,
1466 " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1467 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1468 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1469 VM_PAGE_TO_PHYS(pg),
1470 flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1471 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1472
1473 /*
1474 * No need to undo what we did; we can simply think of
1475 * this as the pmap throwing away the mapping information.
1476 *
1477 * We do, however, have to go through the ReFault path,
1478 * as the map may change while we're asleep.
1479 */
1480
1481 uvmfault_unlockall(ufi, amap, uobj);
1482 if (!uvm_reclaimable()) {
1483 UVMHIST_LOG(maphist,
1484 "<- failed. out of VM",0,0,0,0);
1485 /* XXX instrumentation */
1486 return ENOMEM;
1487 }
1488 /* XXX instrumentation */
1489 uvm_wait("flt_pmfail1");
1490 return ERESTART;
1491 }
1492
1493 uvm_fault_upper_done(ufi, flt, anon, pg);
1494
1495 /*
1496 * done case 1! finish up by unlocking everything and returning success
1497 */
1498
1499 pmap_update(ufi->orig_map->pmap);
1500 uvmfault_unlockall(ufi, amap, uobj);
1501 return 0;
1502 }
1503
1504 /*
1505 * uvm_fault_upper_done: queue upper center page.
1506 */
1507
1508 static void
1509 uvm_fault_upper_done(
1510 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1511 struct vm_anon *anon, struct vm_page *pg)
1512 {
1513 const bool wire_paging = flt->wire_paging;
1514
1515 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1516
1517 /*
1518 * ... update the page queues.
1519 */
1520
1521 mutex_enter(&uvm_pageqlock);
1522 if (wire_paging) {
1523 uvm_pagewire(pg);
1524
1525 /*
1526 * since the now-wired page cannot be paged out,
1527 * release its swap resources for others to use.
1528 * since an anon with no swap cannot be PG_CLEAN,
1529 * clear its clean flag now.
1530 */
1531
1532 pg->flags &= ~(PG_CLEAN);
1533
1534 } else {
1535 uvm_pageactivate(pg);
1536 }
1537 mutex_exit(&uvm_pageqlock);
1538
1539 if (wire_paging) {
1540 uvm_anon_dropswap(anon);
1541 }
1542 }
1543
1544 /*
1545 * uvm_fault_lower: handle lower fault.
1546 *
1547 * 1. check uobj
1548 * 1.1. if null, ZFOD.
1549 * 1.2. if not null, look up unnmapped neighbor pages.
1550 * 2. for center page, check if promote.
1551 * 2.1. ZFOD always needs promotion.
1552 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1553 * 3. if uobj is not ZFOD and page is not found, do i/o.
1554 * 4. dispatch either direct / promote fault.
1555 */
1556
1557 static int
1558 uvm_fault_lower(
1559 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1560 struct vm_page **pages)
1561 {
1562 #ifdef DIAGNOSTIC
1563 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1564 #endif
1565 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1566 struct vm_page *uobjpage;
1567 int error;
1568 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1569
1570 /*
1571 * now, if the desired page is not shadowed by the amap and we have
1572 * a backing object that does not have a special fault routine, then
1573 * we ask (with pgo_get) the object for resident pages that we care
1574 * about and attempt to map them in. we do not let pgo_get block
1575 * (PGO_LOCKED).
1576 */
1577
1578 if (uobj == NULL) {
1579 /* zero fill; don't care neighbor pages */
1580 uobjpage = NULL;
1581 } else {
1582 uvm_fault_lower_lookup(ufi, flt, pages);
1583 uobjpage = pages[flt->centeridx];
1584 }
1585
1586 /*
1587 * note that at this point we are done with any front or back pages.
1588 * we are now going to focus on the center page (i.e. the one we've
1589 * faulted on). if we have faulted on the upper (anon) layer
1590 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1591 * not touched it yet). if we have faulted on the bottom (uobj)
1592 * layer [i.e. case 2] and the page was both present and available,
1593 * then we've got a pointer to it as "uobjpage" and we've already
1594 * made it BUSY.
1595 */
1596
1597 /*
1598 * locked:
1599 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1600 */
1601 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1602 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1603 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1604
1605 /*
1606 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1607 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1608 * have a backing object, check and see if we are going to promote
1609 * the data up to an anon during the fault.
1610 */
1611
1612 if (uobj == NULL) {
1613 uobjpage = PGO_DONTCARE;
1614 flt->promote = true; /* always need anon here */
1615 } else {
1616 KASSERT(uobjpage != PGO_DONTCARE);
1617 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1618 }
1619 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1620 flt->promote, (uobj == NULL), 0,0);
1621
1622 /*
1623 * if uobjpage is not null then we do not need to do I/O to get the
1624 * uobjpage.
1625 *
1626 * if uobjpage is null, then we need to unlock and ask the pager to
1627 * get the data for us. once we have the data, we need to reverify
1628 * the state the world. we are currently not holding any resources.
1629 */
1630
1631 if (uobjpage) {
1632 /* update rusage counters */
1633 curlwp->l_ru.ru_minflt++;
1634 } else {
1635 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1636 if (error != 0)
1637 return error;
1638 }
1639
1640 /*
1641 * locked:
1642 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1643 */
1644 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1645 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1646 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1647
1648 /*
1649 * notes:
1650 * - at this point uobjpage can not be NULL
1651 * - at this point uobjpage can not be PG_RELEASED (since we checked
1652 * for it above)
1653 * - at this point uobjpage could be PG_WANTED (handle later)
1654 */
1655
1656 KASSERT(uobjpage != NULL);
1657 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1658 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1659 (uobjpage->flags & PG_CLEAN) != 0);
1660
1661 if (!flt->promote) {
1662 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1663 } else {
1664 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1665 }
1666 return error;
1667 }
1668
1669 /*
1670 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1671 *
1672 * 1. get on-memory pages.
1673 * 2. if failed, give up (get only center page later).
1674 * 3. if succeeded, enter h/w mapping of neighbor pages.
1675 */
1676
1677 static void
1678 uvm_fault_lower_lookup(
1679 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1680 struct vm_page **pages)
1681 {
1682 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1683 int lcv, gotpages;
1684 vaddr_t currva;
1685 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1686
1687 mutex_enter(uobj->vmobjlock);
1688 /* Locked: maps(read), amap(if there), uobj */
1689
1690 uvmexp.fltlget++;
1691 gotpages = flt->npages;
1692 (void) uobj->pgops->pgo_get(uobj,
1693 ufi->entry->offset + flt->startva - ufi->entry->start,
1694 pages, &gotpages, flt->centeridx,
1695 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1696
1697 KASSERT(mutex_owned(uobj->vmobjlock));
1698
1699 /*
1700 * check for pages to map, if we got any
1701 */
1702
1703 if (gotpages == 0) {
1704 pages[flt->centeridx] = NULL;
1705 return;
1706 }
1707
1708 currva = flt->startva;
1709 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1710 struct vm_page *curpg;
1711
1712 curpg = pages[lcv];
1713 if (curpg == NULL || curpg == PGO_DONTCARE) {
1714 continue;
1715 }
1716 KASSERT(curpg->uobject == uobj);
1717
1718 /*
1719 * if center page is resident and not PG_BUSY|PG_RELEASED
1720 * then pgo_get made it PG_BUSY for us and gave us a handle
1721 * to it.
1722 */
1723
1724 if (lcv == flt->centeridx) {
1725 UVMHIST_LOG(maphist, " got uobjpage "
1726 "(0x%x) with locked get",
1727 curpg, 0,0,0);
1728 } else {
1729 bool readonly = (curpg->flags & PG_RDONLY)
1730 || (curpg->loan_count > 0)
1731 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1732
1733 uvm_fault_lower_neighbor(ufi, flt,
1734 currva, curpg, readonly);
1735 }
1736 }
1737 pmap_update(ufi->orig_map->pmap);
1738 }
1739
1740 /*
1741 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1742 */
1743
1744 static void
1745 uvm_fault_lower_neighbor(
1746 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1747 vaddr_t currva, struct vm_page *pg, bool readonly)
1748 {
1749 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1750
1751 /* locked: maps(read), amap(if there), uobj */
1752
1753 /*
1754 * calling pgo_get with PGO_LOCKED returns us pages which
1755 * are neither busy nor released, so we don't need to check
1756 * for this. we can just directly enter the pages.
1757 */
1758
1759 mutex_enter(&uvm_pageqlock);
1760 uvm_pageenqueue(pg);
1761 mutex_exit(&uvm_pageqlock);
1762 UVMHIST_LOG(maphist,
1763 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1764 ufi->orig_map->pmap, currva, pg, 0);
1765 uvmexp.fltnomap++;
1766
1767 /*
1768 * Since this page isn't the page that's actually faulting,
1769 * ignore pmap_enter() failures; it's not critical that we
1770 * enter these right now.
1771 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1772 * held the lock the whole time we've had the handle.
1773 */
1774 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1775 KASSERT((pg->flags & PG_RELEASED) == 0);
1776 KASSERT((pg->flags & PG_WANTED) == 0);
1777 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
1778 pg->flags &= ~(PG_BUSY);
1779 UVM_PAGE_OWN(pg, NULL);
1780
1781 KASSERT(mutex_owned(pg->uobject->vmobjlock));
1782 (void) pmap_enter(ufi->orig_map->pmap, currva,
1783 VM_PAGE_TO_PHYS(pg),
1784 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1785 flt->enter_prot & MASK(ufi->entry),
1786 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1787 }
1788
1789 /*
1790 * uvm_fault_lower_io: get lower page from backing store.
1791 *
1792 * 1. unlock everything, because i/o will block.
1793 * 2. call pgo_get.
1794 * 3. if failed, recover.
1795 * 4. if succeeded, relock everything and verify things.
1796 */
1797
1798 static int
1799 uvm_fault_lower_io(
1800 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1801 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1802 {
1803 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1804 struct uvm_object *uobj = *ruobj;
1805 struct vm_page *pg;
1806 bool locked;
1807 int gotpages;
1808 int error;
1809 voff_t uoff;
1810 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1811
1812 /* update rusage counters */
1813 curlwp->l_ru.ru_majflt++;
1814
1815 /* Locked: maps(read), amap(if there), uobj */
1816 uvmfault_unlockall(ufi, amap, NULL);
1817
1818 /* Locked: uobj */
1819 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1820
1821 uvmexp.fltget++;
1822 gotpages = 1;
1823 pg = NULL;
1824 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1825 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1826 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1827 PGO_SYNCIO);
1828 /* locked: pg(if no error) */
1829
1830 /*
1831 * recover from I/O
1832 */
1833
1834 if (error) {
1835 if (error == EAGAIN) {
1836 UVMHIST_LOG(maphist,
1837 " pgo_get says TRY AGAIN!",0,0,0,0);
1838 kpause("fltagain2", false, hz/2, NULL);
1839 return ERESTART;
1840 }
1841
1842 #if 0
1843 KASSERT(error != ERESTART);
1844 #else
1845 /* XXXUEBS don't re-fault? */
1846 if (error == ERESTART)
1847 error = EIO;
1848 #endif
1849
1850 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1851 error, 0,0,0);
1852 return error;
1853 }
1854
1855 /*
1856 * re-verify the state of the world by first trying to relock
1857 * the maps. always relock the object.
1858 */
1859
1860 locked = uvmfault_relock(ufi);
1861 if (locked && amap)
1862 amap_lock(amap);
1863
1864 /* might be changed */
1865 uobj = pg->uobject;
1866
1867 mutex_enter(uobj->vmobjlock);
1868 KASSERT((pg->flags & PG_BUSY) != 0);
1869
1870 mutex_enter(&uvm_pageqlock);
1871 uvm_pageactivate(pg);
1872 mutex_exit(&uvm_pageqlock);
1873
1874 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1875 /* locked(!locked): uobj, pg */
1876
1877 /*
1878 * verify that the page has not be released and re-verify
1879 * that amap slot is still free. if there is a problem,
1880 * we unlock and clean up.
1881 */
1882
1883 if ((pg->flags & PG_RELEASED) != 0 ||
1884 (locked && amap && amap_lookup(&ufi->entry->aref,
1885 ufi->orig_rvaddr - ufi->entry->start))) {
1886 if (locked)
1887 uvmfault_unlockall(ufi, amap, NULL);
1888 locked = false;
1889 }
1890
1891 /*
1892 * didn't get the lock? release the page and retry.
1893 */
1894
1895 if (locked == false) {
1896 UVMHIST_LOG(maphist,
1897 " wasn't able to relock after fault: retry",
1898 0,0,0,0);
1899 if (pg->flags & PG_WANTED) {
1900 wakeup(pg);
1901 }
1902 if ((pg->flags & PG_RELEASED) == 0) {
1903 pg->flags &= ~(PG_BUSY | PG_WANTED);
1904 UVM_PAGE_OWN(pg, NULL);
1905 } else {
1906 uvmexp.fltpgrele++;
1907 uvm_pagefree(pg);
1908 }
1909 mutex_exit(uobj->vmobjlock);
1910 return ERESTART;
1911 }
1912
1913 /*
1914 * we have the data in pg which is busy and
1915 * not released. we are holding object lock (so the page
1916 * can't be released on us).
1917 */
1918
1919 /* locked: maps(read), amap(if !null), uobj, pg */
1920
1921 *ruobj = uobj;
1922 *ruobjpage = pg;
1923 return 0;
1924 }
1925
1926 /*
1927 * uvm_fault_lower_direct: fault lower center page
1928 *
1929 * 1. adjust flt->enter_prot.
1930 * 2. if page is loaned, resolve.
1931 */
1932
1933 int
1934 uvm_fault_lower_direct(
1935 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1936 struct uvm_object *uobj, struct vm_page *uobjpage)
1937 {
1938 struct vm_page *pg;
1939 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1940
1941 /*
1942 * we are not promoting. if the mapping is COW ensure that we
1943 * don't give more access than we should (e.g. when doing a read
1944 * fault on a COPYONWRITE mapping we want to map the COW page in
1945 * R/O even though the entry protection could be R/W).
1946 *
1947 * set "pg" to the page we want to map in (uobjpage, usually)
1948 */
1949
1950 uvmexp.flt_obj++;
1951 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1952 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1953 flt->enter_prot &= ~VM_PROT_WRITE;
1954 pg = uobjpage; /* map in the actual object */
1955
1956 KASSERT(uobjpage != PGO_DONTCARE);
1957
1958 /*
1959 * we are faulting directly on the page. be careful
1960 * about writing to loaned pages...
1961 */
1962
1963 if (uobjpage->loan_count) {
1964 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1965 }
1966 KASSERT(pg == uobjpage);
1967
1968 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1969 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
1970 }
1971
1972 /*
1973 * uvm_fault_lower_direct_loan: resolve loaned page.
1974 *
1975 * 1. if not cow'ing, adjust flt->enter_prot.
1976 * 2. if cow'ing, break loan.
1977 */
1978
1979 static int
1980 uvm_fault_lower_direct_loan(
1981 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1982 struct uvm_object *uobj, struct vm_page **rpg,
1983 struct vm_page **ruobjpage)
1984 {
1985 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1986 struct vm_page *pg;
1987 struct vm_page *uobjpage = *ruobjpage;
1988 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
1989
1990 if (!flt->cow_now) {
1991 /* read fault: cap the protection at readonly */
1992 /* cap! */
1993 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1994 } else {
1995 /* write fault: must break the loan here */
1996
1997 pg = uvm_loanbreak(uobjpage);
1998 if (pg == NULL) {
1999
2000 /*
2001 * drop ownership of page, it can't be released
2002 */
2003
2004 if (uobjpage->flags & PG_WANTED)
2005 wakeup(uobjpage);
2006 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2007 UVM_PAGE_OWN(uobjpage, NULL);
2008
2009 uvmfault_unlockall(ufi, amap, uobj);
2010 UVMHIST_LOG(maphist,
2011 " out of RAM breaking loan, waiting",
2012 0,0,0,0);
2013 uvmexp.fltnoram++;
2014 uvm_wait("flt_noram4");
2015 return ERESTART;
2016 }
2017 *rpg = pg;
2018 *ruobjpage = pg;
2019 }
2020 return 0;
2021 }
2022
2023 /*
2024 * uvm_fault_lower_promote: promote lower page.
2025 *
2026 * 1. call uvmfault_promote.
2027 * 2. fill in data.
2028 * 3. if not ZFOD, dispose old page.
2029 */
2030
2031 int
2032 uvm_fault_lower_promote(
2033 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2034 struct uvm_object *uobj, struct vm_page *uobjpage)
2035 {
2036 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2037 struct vm_anon *anon;
2038 struct vm_page *pg;
2039 int error;
2040 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2041
2042 KASSERT(amap != NULL);
2043
2044 /*
2045 * If we are going to promote the data to an anon we
2046 * allocate a blank anon here and plug it into our amap.
2047 */
2048 error = uvmfault_promote(ufi, NULL, uobjpage,
2049 &anon, &flt->anon_spare);
2050 switch (error) {
2051 case 0:
2052 break;
2053 case ERESTART:
2054 return ERESTART;
2055 default:
2056 return error;
2057 }
2058
2059 pg = anon->an_page;
2060
2061 /*
2062 * Fill in the data.
2063 */
2064 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2065
2066 if (uobjpage != PGO_DONTCARE) {
2067 uvmexp.flt_prcopy++;
2068
2069 /*
2070 * promote to shared amap? make sure all sharing
2071 * procs see it
2072 */
2073
2074 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2075 pmap_page_protect(uobjpage, VM_PROT_NONE);
2076 /*
2077 * XXX: PAGE MIGHT BE WIRED!
2078 */
2079 }
2080
2081 /*
2082 * dispose of uobjpage. it can't be PG_RELEASED
2083 * since we still hold the object lock.
2084 */
2085
2086 if (uobjpage->flags & PG_WANTED) {
2087 /* still have the obj lock */
2088 wakeup(uobjpage);
2089 }
2090 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2091 UVM_PAGE_OWN(uobjpage, NULL);
2092
2093 UVMHIST_LOG(maphist,
2094 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2095 uobjpage, anon, pg, 0);
2096
2097 } else {
2098 uvmexp.flt_przero++;
2099
2100 /*
2101 * Page is zero'd and marked dirty by
2102 * uvmfault_promote().
2103 */
2104
2105 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2106 anon, pg, 0, 0);
2107 }
2108
2109 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2110 }
2111
2112 /*
2113 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2114 * from the lower page.
2115 */
2116
2117 int
2118 uvm_fault_lower_enter(
2119 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2120 struct uvm_object *uobj,
2121 struct vm_anon *anon, struct vm_page *pg)
2122 {
2123 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2124 int error;
2125 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2126
2127 /*
2128 * Locked:
2129 *
2130 * maps(read), amap(if !null), uobj(if !null),
2131 * anon(if !null), pg(if anon), unlock_uobj(if !null)
2132 *
2133 * Note: pg is either the uobjpage or the new page in the new anon.
2134 */
2135 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
2136 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
2137 KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2138 KASSERT((pg->flags & PG_BUSY) != 0);
2139
2140 /*
2141 * all resources are present. we can now map it in and free our
2142 * resources.
2143 */
2144
2145 UVMHIST_LOG(maphist,
2146 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2147 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2148 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2149 (pg->flags & PG_RDONLY) == 0);
2150 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2151 VM_PAGE_TO_PHYS(pg),
2152 (pg->flags & PG_RDONLY) != 0 ?
2153 flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2154 flt->access_type | PMAP_CANFAIL |
2155 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2156
2157 /*
2158 * No need to undo what we did; we can simply think of
2159 * this as the pmap throwing away the mapping information.
2160 *
2161 * We do, however, have to go through the ReFault path,
2162 * as the map may change while we're asleep.
2163 */
2164
2165 /*
2166 * ensure that the page is queued in the case that
2167 * we just promoted the page.
2168 */
2169
2170 mutex_enter(&uvm_pageqlock);
2171 uvm_pageenqueue(pg);
2172 mutex_exit(&uvm_pageqlock);
2173
2174 if (pg->flags & PG_WANTED)
2175 wakeup(pg);
2176
2177 /*
2178 * note that pg can't be PG_RELEASED since we did not drop
2179 * the object lock since the last time we checked.
2180 */
2181 KASSERT((pg->flags & PG_RELEASED) == 0);
2182
2183 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2184 UVM_PAGE_OWN(pg, NULL);
2185
2186 uvmfault_unlockall(ufi, amap, uobj);
2187 if (!uvm_reclaimable()) {
2188 UVMHIST_LOG(maphist,
2189 "<- failed. out of VM",0,0,0,0);
2190 /* XXX instrumentation */
2191 error = ENOMEM;
2192 return error;
2193 }
2194 /* XXX instrumentation */
2195 uvm_wait("flt_pmfail2");
2196 return ERESTART;
2197 }
2198
2199 uvm_fault_lower_done(ufi, flt, uobj, pg);
2200
2201 /*
2202 * note that pg can't be PG_RELEASED since we did not drop the object
2203 * lock since the last time we checked.
2204 */
2205 KASSERT((pg->flags & PG_RELEASED) == 0);
2206 if (pg->flags & PG_WANTED)
2207 wakeup(pg);
2208 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2209 UVM_PAGE_OWN(pg, NULL);
2210
2211 pmap_update(ufi->orig_map->pmap);
2212 uvmfault_unlockall(ufi, amap, uobj);
2213
2214 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2215 return 0;
2216 }
2217
2218 /*
2219 * uvm_fault_lower_done: queue lower center page.
2220 */
2221
2222 void
2223 uvm_fault_lower_done(
2224 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2225 struct uvm_object *uobj, struct vm_page *pg)
2226 {
2227 bool dropswap = false;
2228
2229 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2230
2231 mutex_enter(&uvm_pageqlock);
2232 if (flt->wire_paging) {
2233 uvm_pagewire(pg);
2234 if (pg->pqflags & PQ_AOBJ) {
2235
2236 /*
2237 * since the now-wired page cannot be paged out,
2238 * release its swap resources for others to use.
2239 * since an aobj page with no swap cannot be PG_CLEAN,
2240 * clear its clean flag now.
2241 */
2242
2243 KASSERT(uobj != NULL);
2244 pg->flags &= ~(PG_CLEAN);
2245 dropswap = true;
2246 }
2247 } else {
2248 uvm_pageactivate(pg);
2249 }
2250 mutex_exit(&uvm_pageqlock);
2251
2252 if (dropswap) {
2253 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2254 }
2255 }
2256
2257
2258 /*
2259 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2260 *
2261 * => map may be read-locked by caller, but MUST NOT be write-locked.
2262 * => if map is read-locked, any operations which may cause map to
2263 * be write-locked in uvm_fault() must be taken care of by
2264 * the caller. See uvm_map_pageable().
2265 */
2266
2267 int
2268 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2269 vm_prot_t access_type, int maxprot)
2270 {
2271 vaddr_t va;
2272 int error;
2273
2274 /*
2275 * now fault it in a page at a time. if the fault fails then we have
2276 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2277 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2278 */
2279
2280 /*
2281 * XXX work around overflowing a vaddr_t. this prevents us from
2282 * wiring the last page in the address space, though.
2283 */
2284 if (start > end) {
2285 return EFAULT;
2286 }
2287
2288 for (va = start; va < end; va += PAGE_SIZE) {
2289 error = uvm_fault_internal(map, va, access_type,
2290 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2291 if (error) {
2292 if (va != start) {
2293 uvm_fault_unwire(map, start, va);
2294 }
2295 return error;
2296 }
2297 }
2298 return 0;
2299 }
2300
2301 /*
2302 * uvm_fault_unwire(): unwire range of virtual space.
2303 */
2304
2305 void
2306 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2307 {
2308 vm_map_lock_read(map);
2309 uvm_fault_unwire_locked(map, start, end);
2310 vm_map_unlock_read(map);
2311 }
2312
2313 /*
2314 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2315 *
2316 * => map must be at least read-locked.
2317 */
2318
2319 void
2320 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2321 {
2322 struct vm_map_entry *entry, *oentry;
2323 pmap_t pmap = vm_map_pmap(map);
2324 vaddr_t va;
2325 paddr_t pa;
2326 struct vm_page *pg;
2327
2328 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2329
2330 /*
2331 * we assume that the area we are unwiring has actually been wired
2332 * in the first place. this means that we should be able to extract
2333 * the PAs from the pmap. we also lock out the page daemon so that
2334 * we can call uvm_pageunwire.
2335 */
2336
2337 /*
2338 * find the beginning map entry for the region.
2339 */
2340
2341 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2342 if (uvm_map_lookup_entry(map, start, &entry) == false)
2343 panic("uvm_fault_unwire_locked: address not in map");
2344
2345 oentry = NULL;
2346 for (va = start; va < end; va += PAGE_SIZE) {
2347 if (pmap_extract(pmap, va, &pa) == false)
2348 continue;
2349
2350 /*
2351 * find the map entry for the current address.
2352 */
2353
2354 KASSERT(va >= entry->start);
2355 while (va >= entry->end) {
2356 KASSERT(entry->next != &map->header &&
2357 entry->next->start <= entry->end);
2358 entry = entry->next;
2359 }
2360
2361 /*
2362 * lock it.
2363 */
2364
2365 if (entry != oentry) {
2366 if (oentry != NULL) {
2367 mutex_exit(&uvm_pageqlock);
2368 uvm_map_unlock_entry(oentry);
2369 }
2370 uvm_map_lock_entry(entry);
2371 mutex_enter(&uvm_pageqlock);
2372 oentry = entry;
2373 }
2374
2375 /*
2376 * if the entry is no longer wired, tell the pmap.
2377 */
2378
2379 if (VM_MAPENT_ISWIRED(entry) == 0)
2380 pmap_unwire(pmap, va);
2381
2382 pg = PHYS_TO_VM_PAGE(pa);
2383 if (pg)
2384 uvm_pageunwire(pg);
2385 }
2386
2387 if (oentry != NULL) {
2388 mutex_exit(&uvm_pageqlock);
2389 uvm_map_unlock_entry(entry);
2390 }
2391 }
2392