uvm_fault.c revision 1.173.2.9 1 /* $NetBSD: uvm_fault.c,v 1.173.2.9 2011/05/31 03:05:14 rmind Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 */
29
30 /*
31 * uvm_fault.c: fault handler
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.173.2.9 2011/05/31 03:05:14 rmind Exp $");
36
37 #include "opt_uvmhist.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/mman.h>
43
44 #include <uvm/uvm.h>
45
46 /*
47 *
48 * a word on page faults:
49 *
50 * types of page faults we handle:
51 *
52 * CASE 1: upper layer faults CASE 2: lower layer faults
53 *
54 * CASE 1A CASE 1B CASE 2A CASE 2B
55 * read/write1 write>1 read/write +-cow_write/zero
56 * | | | |
57 * +--|--+ +--|--+ +-----+ + | + | +-----+
58 * amap | V | | ---------> new | | | | ^ |
59 * +-----+ +-----+ +-----+ + | + | +--|--+
60 * | | |
61 * +-----+ +-----+ +--|--+ | +--|--+
62 * uobj | d/c | | d/c | | V | +----+ |
63 * +-----+ +-----+ +-----+ +-----+
64 *
65 * d/c = don't care
66 *
67 * case [0]: layerless fault
68 * no amap or uobj is present. this is an error.
69 *
70 * case [1]: upper layer fault [anon active]
71 * 1A: [read] or [write with anon->an_ref == 1]
72 * I/O takes place in upper level anon and uobj is not touched.
73 * 1B: [write with anon->an_ref > 1]
74 * new anon is alloc'd and data is copied off ["COW"]
75 *
76 * case [2]: lower layer fault [uobj]
77 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78 * I/O takes place directly in object.
79 * 2B: [write to copy_on_write] or [read on NULL uobj]
80 * data is "promoted" from uobj to a new anon.
81 * if uobj is null, then we zero fill.
82 *
83 * we follow the standard UVM locking protocol ordering:
84 *
85 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86 * we hold a PG_BUSY page if we unlock for I/O
87 *
88 *
89 * the code is structured as follows:
90 *
91 * - init the "IN" params in the ufi structure
92 * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
93 * - do lookups [locks maps], check protection, handle needs_copy
94 * - check for case 0 fault (error)
95 * - establish "range" of fault
96 * - if we have an amap lock it and extract the anons
97 * - if sequential advice deactivate pages behind us
98 * - at the same time check pmap for unmapped areas and anon for pages
99 * that we could map in (and do map it if found)
100 * - check object for resident pages that we could map in
101 * - if (case 2) goto Case2
102 * - >>> handle case 1
103 * - ensure source anon is resident in RAM
104 * - if case 1B alloc new anon and copy from source
105 * - map the correct page in
106 * Case2:
107 * - >>> handle case 2
108 * - ensure source page is resident (if uobj)
109 * - if case 2B alloc new anon and copy from source (could be zero
110 * fill if uobj == NULL)
111 * - map the correct page in
112 * - done!
113 *
114 * note on paging:
115 * if we have to do I/O we place a PG_BUSY page in the correct object,
116 * unlock everything, and do the I/O. when I/O is done we must reverify
117 * the state of the world before assuming that our data structures are
118 * valid. [because mappings could change while the map is unlocked]
119 *
120 * alternative 1: unbusy the page in question and restart the page fault
121 * from the top (ReFault). this is easy but does not take advantage
122 * of the information that we already have from our previous lookup,
123 * although it is possible that the "hints" in the vm_map will help here.
124 *
125 * alternative 2: the system already keeps track of a "version" number of
126 * a map. [i.e. every time you write-lock a map (e.g. to change a
127 * mapping) you bump the version number up by one...] so, we can save
128 * the version number of the map before we release the lock and start I/O.
129 * then when I/O is done we can relock and check the version numbers
130 * to see if anything changed. this might save us some over 1 because
131 * we don't have to unbusy the page and may be less compares(?).
132 *
133 * alternative 3: put in backpointers or a way to "hold" part of a map
134 * in place while I/O is in progress. this could be complex to
135 * implement (especially with structures like amap that can be referenced
136 * by multiple map entries, and figuring out what should wait could be
137 * complex as well...).
138 *
139 * we use alternative 2. given that we are multi-threaded now we may want
140 * to reconsider the choice.
141 */
142
143 /*
144 * local data structures
145 */
146
147 struct uvm_advice {
148 int advice;
149 int nback;
150 int nforw;
151 };
152
153 /*
154 * page range array:
155 * note: index in array must match "advice" value
156 * XXX: borrowed numbers from freebsd. do they work well for us?
157 */
158
159 static const struct uvm_advice uvmadvice[] = {
160 { UVM_ADV_NORMAL, 3, 4 },
161 { UVM_ADV_RANDOM, 0, 0 },
162 { UVM_ADV_SEQUENTIAL, 8, 7},
163 };
164
165 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
166
167 /*
168 * private prototypes
169 */
170
171 /*
172 * inline functions
173 */
174
175 /*
176 * uvmfault_anonflush: try and deactivate pages in specified anons
177 *
178 * => does not have to deactivate page if it is busy
179 */
180
181 static inline void
182 uvmfault_anonflush(struct vm_anon **anons, int n)
183 {
184 int lcv;
185 struct vm_page *pg;
186
187 for (lcv = 0; lcv < n; lcv++) {
188 if (anons[lcv] == NULL)
189 continue;
190 KASSERT(mutex_owned(anons[lcv]->an_lock));
191 pg = anons[lcv]->an_page;
192 if (pg && (pg->flags & PG_BUSY) == 0) {
193 mutex_enter(&uvm_pageqlock);
194 if (pg->wire_count == 0) {
195 uvm_pagedeactivate(pg);
196 }
197 mutex_exit(&uvm_pageqlock);
198 }
199 }
200 }
201
202 /*
203 * normal functions
204 */
205
206 /*
207 * uvmfault_amapcopy: clear "needs_copy" in a map.
208 *
209 * => called with VM data structures unlocked (usually, see below)
210 * => we get a write lock on the maps and clear needs_copy for a VA
211 * => if we are out of RAM we sleep (waiting for more)
212 */
213
214 static void
215 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
216 {
217 for (;;) {
218
219 /*
220 * no mapping? give up.
221 */
222
223 if (uvmfault_lookup(ufi, true) == false)
224 return;
225
226 /*
227 * copy if needed.
228 */
229
230 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
231 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
232 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
233
234 /*
235 * didn't work? must be out of RAM. unlock and sleep.
236 */
237
238 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
239 uvmfault_unlockmaps(ufi, true);
240 uvm_wait("fltamapcopy");
241 continue;
242 }
243
244 /*
245 * got it! unlock and return.
246 */
247
248 uvmfault_unlockmaps(ufi, true);
249 return;
250 }
251 /*NOTREACHED*/
252 }
253
254 /*
255 * uvmfault_anonget: get data in an anon into a non-busy, non-released
256 * page in that anon.
257 *
258 * => maps, amap, and anon locked by caller.
259 * => if we fail (result != 0) we unlock everything.
260 * => if we are successful, we return with everything still locked.
261 * => we don't move the page on the queues [gets moved later]
262 * => if we allocate a new page [we_own], it gets put on the queues.
263 * either way, the result is that the page is on the queues at return time
264 * => for pages which are on loan from a uvm_object (and thus are not
265 * owned by the anon): if successful, we return with the owning object
266 * locked. the caller must unlock this object when it unlocks everything
267 * else.
268 */
269
270 int
271 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
272 struct vm_anon *anon)
273 {
274 bool we_own; /* we own anon's page? */
275 bool locked; /* did we relock? */
276 struct vm_page *pg;
277 int error;
278 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
279
280 KASSERT(mutex_owned(anon->an_lock));
281 KASSERT(amap == NULL || anon->an_lock == amap->am_lock);
282
283 error = 0;
284 uvmexp.fltanget++;
285 /* bump rusage counters */
286 if (anon->an_page)
287 curlwp->l_ru.ru_minflt++;
288 else
289 curlwp->l_ru.ru_majflt++;
290
291 /*
292 * loop until we get it, or fail.
293 */
294
295 for (;;) {
296 we_own = false; /* true if we set PG_BUSY on a page */
297 pg = anon->an_page;
298
299 /*
300 * if there is a resident page and it is loaned, then anon
301 * may not own it. call out to uvm_anon_lockpage() to ensure
302 * the real owner of the page has been identified and locked.
303 */
304
305 if (pg && pg->loan_count)
306 pg = uvm_anon_lockloanpg(anon);
307
308 /*
309 * page there? make sure it is not busy/released.
310 */
311
312 if (pg) {
313
314 /*
315 * at this point, if the page has a uobject [meaning
316 * we have it on loan], then that uobject is locked
317 * by us! if the page is busy, we drop all the
318 * locks (including uobject) and try again.
319 */
320
321 if ((pg->flags & PG_BUSY) == 0) {
322 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
323 return (0);
324 }
325 pg->flags |= PG_WANTED;
326 uvmexp.fltpgwait++;
327
328 /*
329 * the last unlock must be an atomic unlock+wait on
330 * the owner of page
331 */
332
333 if (pg->uobject) { /* owner is uobject ? */
334 uvmfault_unlockall(ufi, amap, NULL);
335 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
336 0,0,0);
337 UVM_UNLOCK_AND_WAIT(pg,
338 pg->uobject->vmobjlock,
339 false, "anonget1",0);
340 } else {
341 /* anon owns page */
342 uvmfault_unlockall(ufi, NULL, NULL);
343 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
344 0,0,0);
345 UVM_UNLOCK_AND_WAIT(pg, anon->an_lock, 0,
346 "anonget2",0);
347 }
348 } else {
349 #if defined(VMSWAP)
350
351 /*
352 * no page, we must try and bring it in.
353 */
354
355 pg = uvm_pagealloc(NULL,
356 ufi != NULL ? ufi->orig_rvaddr : 0,
357 anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
358 if (pg == NULL) { /* out of RAM. */
359 uvmfault_unlockall(ufi, amap, NULL);
360 uvmexp.fltnoram++;
361 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
362 0,0,0);
363 if (!uvm_reclaimable()) {
364 return ENOMEM;
365 }
366 uvm_wait("flt_noram1");
367 } else {
368 /* we set the PG_BUSY bit */
369 we_own = true;
370 uvmfault_unlockall(ufi, amap, NULL);
371
372 /*
373 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
374 * page into the uvm_swap_get function with
375 * all data structures unlocked. note that
376 * it is ok to read an_swslot here because
377 * we hold PG_BUSY on the page.
378 */
379 uvmexp.pageins++;
380 error = uvm_swap_get(pg, anon->an_swslot,
381 PGO_SYNCIO);
382
383 /*
384 * we clean up after the i/o below in the
385 * "we_own" case
386 */
387 }
388 #else /* defined(VMSWAP) */
389 panic("%s: no page", __func__);
390 #endif /* defined(VMSWAP) */
391 }
392
393 /*
394 * now relock and try again
395 */
396
397 locked = uvmfault_relock(ufi);
398 if (locked || we_own) {
399 mutex_enter(anon->an_lock);
400 }
401
402 /*
403 * if we own the page (i.e. we set PG_BUSY), then we need
404 * to clean up after the I/O. there are three cases to
405 * consider:
406 * [1] page released during I/O: free anon and ReFault.
407 * [2] I/O not OK. free the page and cause the fault
408 * to fail.
409 * [3] I/O OK! activate the page and sync with the
410 * non-we_own case (i.e. drop anon lock if not locked).
411 */
412
413 if (we_own) {
414 #if defined(VMSWAP)
415 if (pg->flags & PG_WANTED) {
416 wakeup(pg);
417 }
418 if (error) {
419
420 /*
421 * remove the swap slot from the anon
422 * and mark the anon as having no real slot.
423 * don't free the swap slot, thus preventing
424 * it from being used again.
425 */
426
427 if (anon->an_swslot > 0)
428 uvm_swap_markbad(anon->an_swslot, 1);
429 anon->an_swslot = SWSLOT_BAD;
430
431 if ((pg->flags & PG_RELEASED) != 0)
432 goto released;
433
434 /*
435 * note: page was never !PG_BUSY, so it
436 * can't be mapped and thus no need to
437 * pmap_page_protect it...
438 */
439
440 mutex_enter(&uvm_pageqlock);
441 uvm_pagefree(pg);
442 mutex_exit(&uvm_pageqlock);
443
444 if (locked)
445 uvmfault_unlockall(ufi, NULL, NULL);
446 mutex_exit(anon->an_lock);
447 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
448 return error;
449 }
450
451 if ((pg->flags & PG_RELEASED) != 0) {
452 released:
453 KASSERT(anon->an_ref == 0);
454
455 /*
456 * released while we unlocked amap.
457 */
458
459 if (locked)
460 uvmfault_unlockall(ufi, NULL, NULL);
461
462 uvm_anon_release(anon);
463
464 if (error) {
465 UVMHIST_LOG(maphist,
466 "<- ERROR/RELEASED", 0,0,0,0);
467 return error;
468 }
469
470 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
471 return ERESTART;
472 }
473
474 /*
475 * we've successfully read the page, activate it.
476 */
477
478 mutex_enter(&uvm_pageqlock);
479 uvm_pageactivate(pg);
480 mutex_exit(&uvm_pageqlock);
481 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
482 UVM_PAGE_OWN(pg, NULL);
483 #else /* defined(VMSWAP) */
484 panic("%s: we_own", __func__);
485 #endif /* defined(VMSWAP) */
486 }
487
488 /*
489 * we were not able to relock. restart fault.
490 */
491
492 if (!locked) {
493 if (we_own) {
494 mutex_exit(anon->an_lock);
495 }
496 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
497 return (ERESTART);
498 }
499
500 /*
501 * verify no one has touched the amap and moved the anon on us.
502 */
503
504 if (ufi != NULL && amap_lookup(&ufi->entry->aref,
505 ufi->orig_rvaddr - ufi->entry->start) != anon) {
506
507 uvmfault_unlockall(ufi, amap, NULL);
508 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
509 return (ERESTART);
510 }
511
512 /*
513 * try it again!
514 */
515
516 uvmexp.fltanretry++;
517 continue;
518 }
519 /*NOTREACHED*/
520 }
521
522 /*
523 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
524 *
525 * 1. allocate an anon and a page.
526 * 2. fill its contents.
527 * 3. put it into amap.
528 *
529 * => if we fail (result != 0) we unlock everything.
530 * => on success, return a new locked anon via 'nanon'.
531 * (*nanon)->an_page will be a resident, locked, dirty page.
532 * => it's caller's responsibility to put the promoted nanon->an_page to the
533 * page queue.
534 */
535
536 static int
537 uvmfault_promote(struct uvm_faultinfo *ufi,
538 struct vm_anon *oanon,
539 struct vm_page *uobjpage,
540 struct vm_anon **nanon, /* OUT: allocated anon */
541 struct vm_anon **spare)
542 {
543 struct vm_amap *amap = ufi->entry->aref.ar_amap;
544 struct uvm_object *uobj;
545 struct vm_anon *anon;
546 struct vm_page *pg;
547 struct vm_page *opg;
548 int error;
549 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
550
551 if (oanon) {
552 /* anon COW */
553 opg = oanon->an_page;
554 KASSERT(opg != NULL);
555 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
556 } else if (uobjpage != PGO_DONTCARE) {
557 /* object-backed COW */
558 opg = uobjpage;
559 } else {
560 /* ZFOD */
561 opg = NULL;
562 }
563 if (opg != NULL) {
564 uobj = opg->uobject;
565 } else {
566 uobj = NULL;
567 }
568
569 KASSERT(amap != NULL);
570 KASSERT(uobjpage != NULL);
571 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
572 KASSERT(mutex_owned(amap->am_lock));
573 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
574 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
575
576 if (*spare != NULL) {
577 anon = *spare;
578 *spare = NULL;
579 } else if (ufi->map != kernel_map) {
580 anon = uvm_analloc();
581 } else {
582 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
583
584 /*
585 * we can't allocate anons with kernel_map locked.
586 */
587
588 uvm_page_unbusy(&uobjpage, 1);
589 uvmfault_unlockall(ufi, amap, uobj);
590
591 *spare = uvm_analloc();
592 if (*spare == NULL) {
593 goto nomem;
594 }
595 KASSERT((*spare)->an_lock == NULL);
596 error = ERESTART;
597 goto done;
598 }
599 if (anon) {
600
601 /*
602 * The new anon is locked.
603 *
604 * if opg == NULL, we want a zero'd, dirty page,
605 * so have uvm_pagealloc() do that for us.
606 */
607
608 KASSERT(anon->an_lock == NULL);
609 anon->an_lock = amap->am_lock;
610 mutex_obj_hold(anon->an_lock);
611 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
612 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
613 if (pg == NULL) {
614 mutex_obj_free(anon->an_lock);
615 anon->an_lock = NULL;
616 }
617 } else {
618 pg = NULL;
619 }
620
621 /*
622 * out of memory resources?
623 */
624
625 if (pg == NULL) {
626 /* save anon for the next try. */
627 if (anon != NULL) {
628 *spare = anon;
629 }
630
631 /* unlock and fail ... */
632 uvm_page_unbusy(&uobjpage, 1);
633 uvmfault_unlockall(ufi, amap, uobj);
634 nomem:
635 if (!uvm_reclaimable()) {
636 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
637 uvmexp.fltnoanon++;
638 error = ENOMEM;
639 goto done;
640 }
641
642 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
643 uvmexp.fltnoram++;
644 uvm_wait("flt_noram5");
645 error = ERESTART;
646 goto done;
647 }
648
649 /* copy page [pg now dirty] */
650 if (opg) {
651 uvm_pagecopy(opg, pg);
652 }
653
654 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
655 oanon != NULL);
656
657 *nanon = anon;
658 error = 0;
659 done:
660 return error;
661 }
662
663
664 /*
665 * F A U L T - m a i n e n t r y p o i n t
666 */
667
668 /*
669 * uvm_fault: page fault handler
670 *
671 * => called from MD code to resolve a page fault
672 * => VM data structures usually should be unlocked. however, it is
673 * possible to call here with the main map locked if the caller
674 * gets a write lock, sets it recusive, and then calls us (c.f.
675 * uvm_map_pageable). this should be avoided because it keeps
676 * the map locked off during I/O.
677 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
678 */
679
680 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
681 ~VM_PROT_WRITE : VM_PROT_ALL)
682
683 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
684 #define UVM_FAULT_WIRE (1 << 0)
685 #define UVM_FAULT_MAXPROT (1 << 1)
686
687 struct uvm_faultctx {
688 vm_prot_t access_type;
689 vm_prot_t enter_prot;
690 vaddr_t startva;
691 int npages;
692 int centeridx;
693 struct vm_anon *anon_spare;
694 bool wire_mapping;
695 bool narrow;
696 bool wire_paging;
697 bool cow_now;
698 bool promote;
699 };
700
701 static inline int uvm_fault_check(
702 struct uvm_faultinfo *, struct uvm_faultctx *,
703 struct vm_anon ***, bool);
704
705 static int uvm_fault_upper(
706 struct uvm_faultinfo *, struct uvm_faultctx *,
707 struct vm_anon **);
708 static inline int uvm_fault_upper_lookup(
709 struct uvm_faultinfo *, const struct uvm_faultctx *,
710 struct vm_anon **, struct vm_page **);
711 static inline void uvm_fault_upper_neighbor(
712 struct uvm_faultinfo *, const struct uvm_faultctx *,
713 vaddr_t, struct vm_page *, bool);
714 static inline int uvm_fault_upper_loan(
715 struct uvm_faultinfo *, struct uvm_faultctx *,
716 struct vm_anon *, struct uvm_object **);
717 static inline int uvm_fault_upper_promote(
718 struct uvm_faultinfo *, struct uvm_faultctx *,
719 struct uvm_object *, struct vm_anon *);
720 static inline int uvm_fault_upper_direct(
721 struct uvm_faultinfo *, struct uvm_faultctx *,
722 struct uvm_object *, struct vm_anon *);
723 static int uvm_fault_upper_enter(
724 struct uvm_faultinfo *, const struct uvm_faultctx *,
725 struct uvm_object *, struct vm_anon *,
726 struct vm_page *, struct vm_anon *);
727 static inline void uvm_fault_upper_done(
728 struct uvm_faultinfo *, const struct uvm_faultctx *,
729 struct vm_anon *, struct vm_page *);
730
731 static int uvm_fault_lower(
732 struct uvm_faultinfo *, struct uvm_faultctx *,
733 struct vm_page **);
734 static inline void uvm_fault_lower_lookup(
735 struct uvm_faultinfo *, const struct uvm_faultctx *,
736 struct vm_page **);
737 static inline void uvm_fault_lower_neighbor(
738 struct uvm_faultinfo *, const struct uvm_faultctx *,
739 vaddr_t, struct vm_page *, bool);
740 static inline int uvm_fault_lower_io(
741 struct uvm_faultinfo *, const struct uvm_faultctx *,
742 struct uvm_object **, struct vm_page **);
743 static inline int uvm_fault_lower_direct(
744 struct uvm_faultinfo *, struct uvm_faultctx *,
745 struct uvm_object *, struct vm_page *);
746 static inline int uvm_fault_lower_direct_loan(
747 struct uvm_faultinfo *, struct uvm_faultctx *,
748 struct uvm_object *, struct vm_page **,
749 struct vm_page **);
750 static inline int uvm_fault_lower_promote(
751 struct uvm_faultinfo *, struct uvm_faultctx *,
752 struct uvm_object *, struct vm_page *);
753 static int uvm_fault_lower_enter(
754 struct uvm_faultinfo *, const struct uvm_faultctx *,
755 struct uvm_object *,
756 struct vm_anon *, struct vm_page *);
757 static inline void uvm_fault_lower_done(
758 struct uvm_faultinfo *, const struct uvm_faultctx *,
759 struct uvm_object *, struct vm_page *);
760
761 int
762 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
763 vm_prot_t access_type, int fault_flag)
764 {
765 struct uvm_faultinfo ufi;
766 struct uvm_faultctx flt = {
767 .access_type = access_type,
768
769 /* don't look for neighborhood * pages on "wire" fault */
770 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
771
772 /* "wire" fault causes wiring of both mapping and paging */
773 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
774 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
775 };
776 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
777 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
778 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
779 int error;
780 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
781
782 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
783 orig_map, vaddr, access_type, fault_flag);
784
785 curcpu()->ci_data.cpu_nfault++;
786
787 /*
788 * init the IN parameters in the ufi
789 */
790
791 ufi.orig_map = orig_map;
792 ufi.orig_rvaddr = trunc_page(vaddr);
793 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
794
795 error = ERESTART;
796 while (error == ERESTART) { /* ReFault: */
797 anons = anons_store;
798 pages = pages_store;
799
800 error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
801 if (error != 0)
802 continue;
803
804 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
805 if (error != 0)
806 continue;
807
808 if (pages[flt.centeridx] == PGO_DONTCARE)
809 error = uvm_fault_upper(&ufi, &flt, anons);
810 else {
811 struct uvm_object * const uobj =
812 ufi.entry->object.uvm_obj;
813
814 if (uobj && uobj->pgops->pgo_fault != NULL) {
815 /*
816 * invoke "special" fault routine.
817 */
818 mutex_enter(uobj->vmobjlock);
819 /* locked: maps(read), amap(if there), uobj */
820 error = uobj->pgops->pgo_fault(&ufi,
821 flt.startva, pages, flt.npages,
822 flt.centeridx, flt.access_type,
823 PGO_LOCKED|PGO_SYNCIO);
824
825 /*
826 * locked: nothing, pgo_fault has unlocked
827 * everything
828 */
829
830 /*
831 * object fault routine responsible for
832 * pmap_update().
833 */
834 } else {
835 error = uvm_fault_lower(&ufi, &flt, pages);
836 }
837 }
838 }
839
840 if (flt.anon_spare != NULL) {
841 flt.anon_spare->an_ref--;
842 KASSERT(flt.anon_spare->an_ref == 0);
843 KASSERT(flt.anon_spare->an_lock == NULL);
844 uvm_anfree(flt.anon_spare);
845 }
846 return error;
847 }
848
849 /*
850 * uvm_fault_check: check prot, handle needs-copy, etc.
851 *
852 * 1. lookup entry.
853 * 2. check protection.
854 * 3. adjust fault condition (mainly for simulated fault).
855 * 4. handle needs-copy (lazy amap copy).
856 * 5. establish range of interest for neighbor fault (aka pre-fault).
857 * 6. look up anons (if amap exists).
858 * 7. flush pages (if MADV_SEQUENTIAL)
859 *
860 * => called with nothing locked.
861 * => if we fail (result != 0) we unlock everything.
862 * => initialize/adjust many members of flt.
863 */
864
865 static int
866 uvm_fault_check(
867 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
868 struct vm_anon ***ranons, bool maxprot)
869 {
870 struct vm_amap *amap;
871 struct uvm_object *uobj;
872 vm_prot_t check_prot;
873 int nback, nforw;
874 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
875
876 /*
877 * lookup and lock the maps
878 */
879
880 if (uvmfault_lookup(ufi, false) == false) {
881 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr,
882 0,0,0);
883 return EFAULT;
884 }
885 /* locked: maps(read) */
886
887 #ifdef DIAGNOSTIC
888 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
889 printf("Page fault on non-pageable map:\n");
890 printf("ufi->map = %p\n", ufi->map);
891 printf("ufi->orig_map = %p\n", ufi->orig_map);
892 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
893 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
894 }
895 #endif
896
897 /*
898 * check protection
899 */
900
901 check_prot = maxprot ?
902 ufi->entry->max_protection : ufi->entry->protection;
903 if ((check_prot & flt->access_type) != flt->access_type) {
904 UVMHIST_LOG(maphist,
905 "<- protection failure (prot=0x%x, access=0x%x)",
906 ufi->entry->protection, flt->access_type, 0, 0);
907 uvmfault_unlockmaps(ufi, false);
908 return EACCES;
909 }
910
911 /*
912 * "enter_prot" is the protection we want to enter the page in at.
913 * for certain pages (e.g. copy-on-write pages) this protection can
914 * be more strict than ufi->entry->protection. "wired" means either
915 * the entry is wired or we are fault-wiring the pg.
916 */
917
918 flt->enter_prot = ufi->entry->protection;
919 if (VM_MAPENT_ISWIRED(ufi->entry))
920 flt->wire_mapping = true;
921
922 if (flt->wire_mapping) {
923 flt->access_type = flt->enter_prot; /* full access for wired */
924 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
925 } else {
926 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
927 }
928
929 flt->promote = false;
930
931 /*
932 * handle "needs_copy" case. if we need to copy the amap we will
933 * have to drop our readlock and relock it with a write lock. (we
934 * need a write lock to change anything in a map entry [e.g.
935 * needs_copy]).
936 */
937
938 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
939 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
940 KASSERT(!maxprot);
941 /* need to clear */
942 UVMHIST_LOG(maphist,
943 " need to clear needs_copy and refault",0,0,0,0);
944 uvmfault_unlockmaps(ufi, false);
945 uvmfault_amapcopy(ufi);
946 uvmexp.fltamcopy++;
947 return ERESTART;
948
949 } else {
950
951 /*
952 * ensure that we pmap_enter page R/O since
953 * needs_copy is still true
954 */
955
956 flt->enter_prot &= ~VM_PROT_WRITE;
957 }
958 }
959
960 /*
961 * identify the players
962 */
963
964 amap = ufi->entry->aref.ar_amap; /* upper layer */
965 uobj = ufi->entry->object.uvm_obj; /* lower layer */
966
967 /*
968 * check for a case 0 fault. if nothing backing the entry then
969 * error now.
970 */
971
972 if (amap == NULL && uobj == NULL) {
973 uvmfault_unlockmaps(ufi, false);
974 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
975 return EFAULT;
976 }
977
978 /*
979 * establish range of interest based on advice from mapper
980 * and then clip to fit map entry. note that we only want
981 * to do this the first time through the fault. if we
982 * ReFault we will disable this by setting "narrow" to true.
983 */
984
985 if (flt->narrow == false) {
986
987 /* wide fault (!narrow) */
988 KASSERT(uvmadvice[ufi->entry->advice].advice ==
989 ufi->entry->advice);
990 nback = MIN(uvmadvice[ufi->entry->advice].nback,
991 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
992 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
993 /*
994 * note: "-1" because we don't want to count the
995 * faulting page as forw
996 */
997 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
998 ((ufi->entry->end - ufi->orig_rvaddr) >>
999 PAGE_SHIFT) - 1);
1000 flt->npages = nback + nforw + 1;
1001 flt->centeridx = nback;
1002
1003 flt->narrow = true; /* ensure only once per-fault */
1004
1005 } else {
1006
1007 /* narrow fault! */
1008 nback = nforw = 0;
1009 flt->startva = ufi->orig_rvaddr;
1010 flt->npages = 1;
1011 flt->centeridx = 0;
1012
1013 }
1014 /* offset from entry's start to pgs' start */
1015 const voff_t eoff = flt->startva - ufi->entry->start;
1016
1017 /* locked: maps(read) */
1018 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
1019 flt->narrow, nback, nforw, flt->startva);
1020 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1021 amap, uobj, 0);
1022
1023 /*
1024 * if we've got an amap, lock it and extract current anons.
1025 */
1026
1027 if (amap) {
1028 amap_lock(amap);
1029 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1030 } else {
1031 *ranons = NULL; /* to be safe */
1032 }
1033
1034 /* locked: maps(read), amap(if there) */
1035 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1036
1037 /*
1038 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1039 * now and then forget about them (for the rest of the fault).
1040 */
1041
1042 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1043
1044 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1045 0,0,0,0);
1046 /* flush back-page anons? */
1047 if (amap)
1048 uvmfault_anonflush(*ranons, nback);
1049
1050 /* flush object? */
1051 if (uobj) {
1052 voff_t uoff;
1053
1054 uoff = ufi->entry->offset + eoff;
1055 mutex_enter(uobj->vmobjlock);
1056 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1057 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1058 }
1059
1060 /* now forget about the backpages */
1061 if (amap)
1062 *ranons += nback;
1063 flt->startva += (nback << PAGE_SHIFT);
1064 flt->npages -= nback;
1065 flt->centeridx = 0;
1066 }
1067 /*
1068 * => startva is fixed
1069 * => npages is fixed
1070 */
1071 KASSERT(flt->startva <= ufi->orig_rvaddr);
1072 KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1073 flt->startva + (flt->npages << PAGE_SHIFT));
1074 return 0;
1075 }
1076
1077 /*
1078 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1079 *
1080 * iterate range of interest:
1081 * 1. check if h/w mapping exists. if yes, we don't care
1082 * 2. check if anon exists. if not, page is lower.
1083 * 3. if anon exists, enter h/w mapping for neighbors.
1084 *
1085 * => called with amap locked (if exists).
1086 */
1087
1088 static int
1089 uvm_fault_upper_lookup(
1090 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1091 struct vm_anon **anons, struct vm_page **pages)
1092 {
1093 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1094 int lcv;
1095 vaddr_t currva;
1096 bool shadowed;
1097 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1098
1099 /* locked: maps(read), amap(if there) */
1100 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1101
1102 /*
1103 * map in the backpages and frontpages we found in the amap in hopes
1104 * of preventing future faults. we also init the pages[] array as
1105 * we go.
1106 */
1107
1108 currva = flt->startva;
1109 shadowed = false;
1110 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1111 /*
1112 * don't play with VAs that are already mapped
1113 * (except for center)
1114 */
1115 if (lcv != flt->centeridx &&
1116 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1117 pages[lcv] = PGO_DONTCARE;
1118 continue;
1119 }
1120
1121 /*
1122 * unmapped or center page. check if any anon at this level.
1123 */
1124 if (amap == NULL || anons[lcv] == NULL) {
1125 pages[lcv] = NULL;
1126 continue;
1127 }
1128
1129 /*
1130 * check for present page and map if possible. re-activate it.
1131 */
1132
1133 pages[lcv] = PGO_DONTCARE;
1134 if (lcv == flt->centeridx) { /* save center for later! */
1135 shadowed = true;
1136 continue;
1137 }
1138
1139 struct vm_anon *anon = anons[lcv];
1140 struct vm_page *pg = anon->an_page;
1141
1142 KASSERT(anon->an_lock == amap->am_lock);
1143
1144 /* Ignore loaned and busy pages. */
1145 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
1146 uvm_fault_upper_neighbor(ufi, flt, currva,
1147 pg, anon->an_ref > 1);
1148 }
1149 }
1150
1151 /* locked: maps(read), amap(if there) */
1152 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1153 /* (shadowed == true) if there is an anon at the faulting address */
1154 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1155 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1156
1157 /*
1158 * note that if we are really short of RAM we could sleep in the above
1159 * call to pmap_enter with everything locked. bad?
1160 *
1161 * XXX Actually, that is bad; pmap_enter() should just fail in that
1162 * XXX case. --thorpej
1163 */
1164
1165 return 0;
1166 }
1167
1168 /*
1169 * uvm_fault_upper_neighbor: enter single lower neighbor page.
1170 *
1171 * => called with amap and anon locked.
1172 */
1173
1174 static void
1175 uvm_fault_upper_neighbor(
1176 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1177 vaddr_t currva, struct vm_page *pg, bool readonly)
1178 {
1179 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1180
1181 /* locked: amap, anon */
1182
1183 mutex_enter(&uvm_pageqlock);
1184 uvm_pageenqueue(pg);
1185 mutex_exit(&uvm_pageqlock);
1186 UVMHIST_LOG(maphist,
1187 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1188 ufi->orig_map->pmap, currva, pg, 0);
1189 uvmexp.fltnamap++;
1190
1191 /*
1192 * Since this page isn't the page that's actually faulting,
1193 * ignore pmap_enter() failures; it's not critical that we
1194 * enter these right now.
1195 */
1196
1197 (void) pmap_enter(ufi->orig_map->pmap, currva,
1198 VM_PAGE_TO_PHYS(pg),
1199 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1200 flt->enter_prot,
1201 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1202
1203 pmap_update(ufi->orig_map->pmap);
1204 }
1205
1206 /*
1207 * uvm_fault_upper: handle upper fault.
1208 *
1209 * 1. acquire anon lock.
1210 * 2. get anon. let uvmfault_anonget do the dirty work.
1211 * 3. handle loan.
1212 * 4. dispatch direct or promote handlers.
1213 */
1214
1215 static int
1216 uvm_fault_upper(
1217 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1218 struct vm_anon **anons)
1219 {
1220 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1221 struct vm_anon * const anon = anons[flt->centeridx];
1222 struct uvm_object *uobj;
1223 int error;
1224 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1225
1226 /* locked: maps(read), amap, anon */
1227 KASSERT(mutex_owned(amap->am_lock));
1228 KASSERT(anon->an_lock == amap->am_lock);
1229
1230 /*
1231 * handle case 1: fault on an anon in our amap
1232 */
1233
1234 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1235
1236 /*
1237 * no matter if we have case 1A or case 1B we are going to need to
1238 * have the anon's memory resident. ensure that now.
1239 */
1240
1241 /*
1242 * let uvmfault_anonget do the dirty work.
1243 * if it fails (!OK) it will unlock everything for us.
1244 * if it succeeds, locks are still valid and locked.
1245 * also, if it is OK, then the anon's page is on the queues.
1246 * if the page is on loan from a uvm_object, then anonget will
1247 * lock that object for us if it does not fail.
1248 */
1249
1250 error = uvmfault_anonget(ufi, amap, anon);
1251 switch (error) {
1252 case 0:
1253 break;
1254
1255 case ERESTART:
1256 return ERESTART;
1257
1258 case EAGAIN:
1259 kpause("fltagain1", false, hz/2, NULL);
1260 return ERESTART;
1261
1262 default:
1263 return error;
1264 }
1265
1266 /*
1267 * uobj is non null if the page is on loan from an object (i.e. uobj)
1268 */
1269
1270 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1271
1272 /* locked: maps(read), amap, anon, uobj(if one) */
1273 KASSERT(mutex_owned(amap->am_lock));
1274 KASSERT(anon->an_lock == amap->am_lock);
1275 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1276
1277 /*
1278 * special handling for loaned pages
1279 */
1280
1281 if (anon->an_page->loan_count) {
1282 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1283 if (error != 0)
1284 return error;
1285 }
1286
1287 /*
1288 * if we are case 1B then we will need to allocate a new blank
1289 * anon to transfer the data into. note that we have a lock
1290 * on anon, so no one can busy or release the page until we are done.
1291 * also note that the ref count can't drop to zero here because
1292 * it is > 1 and we are only dropping one ref.
1293 *
1294 * in the (hopefully very rare) case that we are out of RAM we
1295 * will unlock, wait for more RAM, and refault.
1296 *
1297 * if we are out of anon VM we kill the process (XXX: could wait?).
1298 */
1299
1300 if (flt->cow_now && anon->an_ref > 1) {
1301 flt->promote = true;
1302 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1303 } else {
1304 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1305 }
1306 return error;
1307 }
1308
1309 /*
1310 * uvm_fault_upper_loan: handle loaned upper page.
1311 *
1312 * 1. if not cow'ing now, simply adjust flt->enter_prot.
1313 * 2. if cow'ing now, and if ref count is 1, break loan.
1314 */
1315
1316 static int
1317 uvm_fault_upper_loan(
1318 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1319 struct vm_anon *anon, struct uvm_object **ruobj)
1320 {
1321 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1322 int error = 0;
1323 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1324
1325 if (!flt->cow_now) {
1326
1327 /*
1328 * for read faults on loaned pages we just cap the
1329 * protection at read-only.
1330 */
1331
1332 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1333
1334 } else {
1335 /*
1336 * note that we can't allow writes into a loaned page!
1337 *
1338 * if we have a write fault on a loaned page in an
1339 * anon then we need to look at the anon's ref count.
1340 * if it is greater than one then we are going to do
1341 * a normal copy-on-write fault into a new anon (this
1342 * is not a problem). however, if the reference count
1343 * is one (a case where we would normally allow a
1344 * write directly to the page) then we need to kill
1345 * the loan before we continue.
1346 */
1347
1348 /* >1 case is already ok */
1349 if (anon->an_ref == 1) {
1350 error = uvm_loanbreak_anon(anon, *ruobj);
1351 if (error != 0) {
1352 uvmfault_unlockall(ufi, amap, *ruobj);
1353 uvm_wait("flt_noram2");
1354 return ERESTART;
1355 }
1356 /* if we were a loan reciever uobj is gone */
1357 if (*ruobj)
1358 *ruobj = NULL;
1359 }
1360 }
1361 return error;
1362 }
1363
1364 /*
1365 * uvm_fault_upper_promote: promote upper page.
1366 *
1367 * 1. call uvmfault_promote.
1368 * 2. enqueue page.
1369 * 3. deref.
1370 * 4. pass page to uvm_fault_upper_enter.
1371 */
1372
1373 static int
1374 uvm_fault_upper_promote(
1375 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1376 struct uvm_object *uobj, struct vm_anon *anon)
1377 {
1378 struct vm_anon * const oanon = anon;
1379 struct vm_page *pg;
1380 int error;
1381 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1382
1383 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1384 uvmexp.flt_acow++;
1385
1386 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1387 &flt->anon_spare);
1388 switch (error) {
1389 case 0:
1390 break;
1391 case ERESTART:
1392 return ERESTART;
1393 default:
1394 return error;
1395 }
1396
1397 KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
1398
1399 pg = anon->an_page;
1400 mutex_enter(&uvm_pageqlock);
1401 uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
1402 mutex_exit(&uvm_pageqlock);
1403 pg->flags &= ~(PG_BUSY|PG_FAKE);
1404 UVM_PAGE_OWN(pg, NULL);
1405
1406 /* deref: can not drop to zero here by defn! */
1407 KASSERT(oanon->an_ref > 1);
1408 oanon->an_ref--;
1409
1410 /*
1411 * note: oanon is still locked, as is the new anon. we
1412 * need to check for this later when we unlock oanon; if
1413 * oanon != anon, we'll have to unlock anon, too.
1414 */
1415
1416 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1417 }
1418
1419 /*
1420 * uvm_fault_upper_direct: handle direct fault.
1421 */
1422
1423 static int
1424 uvm_fault_upper_direct(
1425 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1426 struct uvm_object *uobj, struct vm_anon *anon)
1427 {
1428 struct vm_anon * const oanon = anon;
1429 struct vm_page *pg;
1430 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1431
1432 uvmexp.flt_anon++;
1433 pg = anon->an_page;
1434 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1435 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1436
1437 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1438 }
1439
1440 /*
1441 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1442 */
1443
1444 static int
1445 uvm_fault_upper_enter(
1446 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1447 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1448 struct vm_anon *oanon)
1449 {
1450 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1451 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1452
1453 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1454 KASSERT(mutex_owned(amap->am_lock));
1455 KASSERT(anon->an_lock == amap->am_lock);
1456 KASSERT(oanon->an_lock == amap->am_lock);
1457 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1458
1459 /*
1460 * now map the page in.
1461 */
1462
1463 UVMHIST_LOG(maphist,
1464 " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1465 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1466 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1467 VM_PAGE_TO_PHYS(pg),
1468 flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1469 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1470
1471 /*
1472 * No need to undo what we did; we can simply think of
1473 * this as the pmap throwing away the mapping information.
1474 *
1475 * We do, however, have to go through the ReFault path,
1476 * as the map may change while we're asleep.
1477 */
1478
1479 uvmfault_unlockall(ufi, amap, uobj);
1480 if (!uvm_reclaimable()) {
1481 UVMHIST_LOG(maphist,
1482 "<- failed. out of VM",0,0,0,0);
1483 /* XXX instrumentation */
1484 return ENOMEM;
1485 }
1486 /* XXX instrumentation */
1487 uvm_wait("flt_pmfail1");
1488 return ERESTART;
1489 }
1490
1491 uvm_fault_upper_done(ufi, flt, anon, pg);
1492
1493 /*
1494 * done case 1! finish up by unlocking everything and returning success
1495 */
1496
1497 pmap_update(ufi->orig_map->pmap);
1498 uvmfault_unlockall(ufi, amap, uobj);
1499 return 0;
1500 }
1501
1502 /*
1503 * uvm_fault_upper_done: queue upper center page.
1504 */
1505
1506 static void
1507 uvm_fault_upper_done(
1508 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1509 struct vm_anon *anon, struct vm_page *pg)
1510 {
1511 const bool wire_paging = flt->wire_paging;
1512
1513 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1514
1515 /*
1516 * ... update the page queues.
1517 */
1518
1519 mutex_enter(&uvm_pageqlock);
1520 if (wire_paging) {
1521 uvm_pagewire(pg);
1522
1523 /*
1524 * since the now-wired page cannot be paged out,
1525 * release its swap resources for others to use.
1526 * since an anon with no swap cannot be PG_CLEAN,
1527 * clear its clean flag now.
1528 */
1529
1530 pg->flags &= ~(PG_CLEAN);
1531
1532 } else {
1533 uvm_pageactivate(pg);
1534 }
1535 mutex_exit(&uvm_pageqlock);
1536
1537 if (wire_paging) {
1538 uvm_anon_dropswap(anon);
1539 }
1540 }
1541
1542 /*
1543 * uvm_fault_lower: handle lower fault.
1544 *
1545 * 1. check uobj
1546 * 1.1. if null, ZFOD.
1547 * 1.2. if not null, look up unnmapped neighbor pages.
1548 * 2. for center page, check if promote.
1549 * 2.1. ZFOD always needs promotion.
1550 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1551 * 3. if uobj is not ZFOD and page is not found, do i/o.
1552 * 4. dispatch either direct / promote fault.
1553 */
1554
1555 static int
1556 uvm_fault_lower(
1557 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1558 struct vm_page **pages)
1559 {
1560 #ifdef DIAGNOSTIC
1561 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1562 #endif
1563 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1564 struct vm_page *uobjpage;
1565 int error;
1566 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1567
1568 /*
1569 * now, if the desired page is not shadowed by the amap and we have
1570 * a backing object that does not have a special fault routine, then
1571 * we ask (with pgo_get) the object for resident pages that we care
1572 * about and attempt to map them in. we do not let pgo_get block
1573 * (PGO_LOCKED).
1574 */
1575
1576 if (uobj == NULL) {
1577 /* zero fill; don't care neighbor pages */
1578 uobjpage = NULL;
1579 } else {
1580 uvm_fault_lower_lookup(ufi, flt, pages);
1581 uobjpage = pages[flt->centeridx];
1582 }
1583
1584 /*
1585 * note that at this point we are done with any front or back pages.
1586 * we are now going to focus on the center page (i.e. the one we've
1587 * faulted on). if we have faulted on the upper (anon) layer
1588 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1589 * not touched it yet). if we have faulted on the bottom (uobj)
1590 * layer [i.e. case 2] and the page was both present and available,
1591 * then we've got a pointer to it as "uobjpage" and we've already
1592 * made it BUSY.
1593 */
1594
1595 /*
1596 * locked:
1597 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1598 */
1599 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1600 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1601 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1602
1603 /*
1604 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1605 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1606 * have a backing object, check and see if we are going to promote
1607 * the data up to an anon during the fault.
1608 */
1609
1610 if (uobj == NULL) {
1611 uobjpage = PGO_DONTCARE;
1612 flt->promote = true; /* always need anon here */
1613 } else {
1614 KASSERT(uobjpage != PGO_DONTCARE);
1615 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1616 }
1617 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1618 flt->promote, (uobj == NULL), 0,0);
1619
1620 /*
1621 * if uobjpage is not null then we do not need to do I/O to get the
1622 * uobjpage.
1623 *
1624 * if uobjpage is null, then we need to unlock and ask the pager to
1625 * get the data for us. once we have the data, we need to reverify
1626 * the state the world. we are currently not holding any resources.
1627 */
1628
1629 if (uobjpage) {
1630 /* update rusage counters */
1631 curlwp->l_ru.ru_minflt++;
1632 } else {
1633 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1634 if (error != 0)
1635 return error;
1636 }
1637
1638 /*
1639 * locked:
1640 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1641 */
1642 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1643 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1644 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1645
1646 /*
1647 * notes:
1648 * - at this point uobjpage can not be NULL
1649 * - at this point uobjpage can not be PG_RELEASED (since we checked
1650 * for it above)
1651 * - at this point uobjpage could be PG_WANTED (handle later)
1652 */
1653
1654 KASSERT(uobjpage != NULL);
1655 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1656 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1657 (uobjpage->flags & PG_CLEAN) != 0);
1658
1659 if (!flt->promote) {
1660 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1661 } else {
1662 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1663 }
1664 return error;
1665 }
1666
1667 /*
1668 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1669 *
1670 * 1. get on-memory pages.
1671 * 2. if failed, give up (get only center page later).
1672 * 3. if succeeded, enter h/w mapping of neighbor pages.
1673 */
1674
1675 static void
1676 uvm_fault_lower_lookup(
1677 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1678 struct vm_page **pages)
1679 {
1680 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1681 int lcv, gotpages;
1682 vaddr_t currva;
1683 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1684
1685 mutex_enter(uobj->vmobjlock);
1686 /* Locked: maps(read), amap(if there), uobj */
1687
1688 uvmexp.fltlget++;
1689 gotpages = flt->npages;
1690 (void) uobj->pgops->pgo_get(uobj,
1691 ufi->entry->offset + flt->startva - ufi->entry->start,
1692 pages, &gotpages, flt->centeridx,
1693 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1694
1695 KASSERT(mutex_owned(uobj->vmobjlock));
1696
1697 /*
1698 * check for pages to map, if we got any
1699 */
1700
1701 if (gotpages == 0) {
1702 pages[flt->centeridx] = NULL;
1703 return;
1704 }
1705
1706 currva = flt->startva;
1707 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1708 struct vm_page *curpg;
1709
1710 curpg = pages[lcv];
1711 if (curpg == NULL || curpg == PGO_DONTCARE) {
1712 continue;
1713 }
1714 KASSERT(curpg->uobject == uobj);
1715
1716 /*
1717 * if center page is resident and not PG_BUSY|PG_RELEASED
1718 * then pgo_get made it PG_BUSY for us and gave us a handle
1719 * to it.
1720 */
1721
1722 if (lcv == flt->centeridx) {
1723 UVMHIST_LOG(maphist, " got uobjpage "
1724 "(0x%x) with locked get",
1725 curpg, 0,0,0);
1726 } else {
1727 bool readonly = (curpg->flags & PG_RDONLY)
1728 || (curpg->loan_count > 0)
1729 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1730
1731 uvm_fault_lower_neighbor(ufi, flt,
1732 currva, curpg, readonly);
1733 }
1734 }
1735 pmap_update(ufi->orig_map->pmap);
1736 }
1737
1738 /*
1739 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1740 */
1741
1742 static void
1743 uvm_fault_lower_neighbor(
1744 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1745 vaddr_t currva, struct vm_page *pg, bool readonly)
1746 {
1747 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1748
1749 /* locked: maps(read), amap(if there), uobj */
1750
1751 /*
1752 * calling pgo_get with PGO_LOCKED returns us pages which
1753 * are neither busy nor released, so we don't need to check
1754 * for this. we can just directly enter the pages.
1755 */
1756
1757 mutex_enter(&uvm_pageqlock);
1758 uvm_pageenqueue(pg);
1759 mutex_exit(&uvm_pageqlock);
1760 UVMHIST_LOG(maphist,
1761 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1762 ufi->orig_map->pmap, currva, pg, 0);
1763 uvmexp.fltnomap++;
1764
1765 /*
1766 * Since this page isn't the page that's actually faulting,
1767 * ignore pmap_enter() failures; it's not critical that we
1768 * enter these right now.
1769 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1770 * held the lock the whole time we've had the handle.
1771 */
1772 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1773 KASSERT((pg->flags & PG_RELEASED) == 0);
1774 KASSERT((pg->flags & PG_WANTED) == 0);
1775 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
1776 pg->flags &= ~(PG_BUSY);
1777 UVM_PAGE_OWN(pg, NULL);
1778
1779 KASSERT(mutex_owned(pg->uobject->vmobjlock));
1780 (void) pmap_enter(ufi->orig_map->pmap, currva,
1781 VM_PAGE_TO_PHYS(pg),
1782 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1783 flt->enter_prot & MASK(ufi->entry),
1784 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1785 }
1786
1787 /*
1788 * uvm_fault_lower_io: get lower page from backing store.
1789 *
1790 * 1. unlock everything, because i/o will block.
1791 * 2. call pgo_get.
1792 * 3. if failed, recover.
1793 * 4. if succeeded, relock everything and verify things.
1794 */
1795
1796 static int
1797 uvm_fault_lower_io(
1798 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1799 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1800 {
1801 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1802 struct uvm_object *uobj = *ruobj;
1803 struct vm_page *pg;
1804 bool locked;
1805 int gotpages;
1806 int error;
1807 voff_t uoff;
1808 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1809
1810 /* update rusage counters */
1811 curlwp->l_ru.ru_majflt++;
1812
1813 /* Locked: maps(read), amap(if there), uobj */
1814 uvmfault_unlockall(ufi, amap, NULL);
1815
1816 /* Locked: uobj */
1817 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1818
1819 uvmexp.fltget++;
1820 gotpages = 1;
1821 pg = NULL;
1822 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1823 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1824 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1825 PGO_SYNCIO);
1826 /* locked: pg(if no error) */
1827
1828 /*
1829 * recover from I/O
1830 */
1831
1832 if (error) {
1833 if (error == EAGAIN) {
1834 UVMHIST_LOG(maphist,
1835 " pgo_get says TRY AGAIN!",0,0,0,0);
1836 kpause("fltagain2", false, hz/2, NULL);
1837 return ERESTART;
1838 }
1839
1840 #if 0
1841 KASSERT(error != ERESTART);
1842 #else
1843 /* XXXUEBS don't re-fault? */
1844 if (error == ERESTART)
1845 error = EIO;
1846 #endif
1847
1848 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1849 error, 0,0,0);
1850 return error;
1851 }
1852
1853 /*
1854 * re-verify the state of the world by first trying to relock
1855 * the maps. always relock the object.
1856 */
1857
1858 locked = uvmfault_relock(ufi);
1859 if (locked && amap)
1860 amap_lock(amap);
1861
1862 /* might be changed */
1863 uobj = pg->uobject;
1864
1865 mutex_enter(uobj->vmobjlock);
1866 KASSERT((pg->flags & PG_BUSY) != 0);
1867
1868 mutex_enter(&uvm_pageqlock);
1869 uvm_pageactivate(pg);
1870 mutex_exit(&uvm_pageqlock);
1871
1872 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1873 /* locked(!locked): uobj, pg */
1874
1875 /*
1876 * verify that the page has not be released and re-verify
1877 * that amap slot is still free. if there is a problem,
1878 * we unlock and clean up.
1879 */
1880
1881 if ((pg->flags & PG_RELEASED) != 0 ||
1882 (locked && amap && amap_lookup(&ufi->entry->aref,
1883 ufi->orig_rvaddr - ufi->entry->start))) {
1884 if (locked)
1885 uvmfault_unlockall(ufi, amap, NULL);
1886 locked = false;
1887 }
1888
1889 /*
1890 * didn't get the lock? release the page and retry.
1891 */
1892
1893 if (locked == false) {
1894 UVMHIST_LOG(maphist,
1895 " wasn't able to relock after fault: retry",
1896 0,0,0,0);
1897 if (pg->flags & PG_WANTED) {
1898 wakeup(pg);
1899 }
1900 if ((pg->flags & PG_RELEASED) == 0) {
1901 pg->flags &= ~(PG_BUSY | PG_WANTED);
1902 UVM_PAGE_OWN(pg, NULL);
1903 } else {
1904 uvmexp.fltpgrele++;
1905 uvm_pagefree(pg);
1906 }
1907 mutex_exit(uobj->vmobjlock);
1908 return ERESTART;
1909 }
1910
1911 /*
1912 * we have the data in pg which is busy and
1913 * not released. we are holding object lock (so the page
1914 * can't be released on us).
1915 */
1916
1917 /* locked: maps(read), amap(if !null), uobj, pg */
1918
1919 *ruobj = uobj;
1920 *ruobjpage = pg;
1921 return 0;
1922 }
1923
1924 /*
1925 * uvm_fault_lower_direct: fault lower center page
1926 *
1927 * 1. adjust flt->enter_prot.
1928 * 2. if page is loaned, resolve.
1929 */
1930
1931 int
1932 uvm_fault_lower_direct(
1933 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1934 struct uvm_object *uobj, struct vm_page *uobjpage)
1935 {
1936 struct vm_page *pg;
1937 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1938
1939 /*
1940 * we are not promoting. if the mapping is COW ensure that we
1941 * don't give more access than we should (e.g. when doing a read
1942 * fault on a COPYONWRITE mapping we want to map the COW page in
1943 * R/O even though the entry protection could be R/W).
1944 *
1945 * set "pg" to the page we want to map in (uobjpage, usually)
1946 */
1947
1948 uvmexp.flt_obj++;
1949 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1950 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1951 flt->enter_prot &= ~VM_PROT_WRITE;
1952 pg = uobjpage; /* map in the actual object */
1953
1954 KASSERT(uobjpage != PGO_DONTCARE);
1955
1956 /*
1957 * we are faulting directly on the page. be careful
1958 * about writing to loaned pages...
1959 */
1960
1961 if (uobjpage->loan_count) {
1962 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1963 }
1964 KASSERT(pg == uobjpage);
1965
1966 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1967 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
1968 }
1969
1970 /*
1971 * uvm_fault_lower_direct_loan: resolve loaned page.
1972 *
1973 * 1. if not cow'ing, adjust flt->enter_prot.
1974 * 2. if cow'ing, break loan.
1975 */
1976
1977 static int
1978 uvm_fault_lower_direct_loan(
1979 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1980 struct uvm_object *uobj, struct vm_page **rpg,
1981 struct vm_page **ruobjpage)
1982 {
1983 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1984 struct vm_page *pg;
1985 struct vm_page *uobjpage = *ruobjpage;
1986 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
1987
1988 if (!flt->cow_now) {
1989 /* read fault: cap the protection at readonly */
1990 /* cap! */
1991 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1992 } else {
1993 /* write fault: must break the loan here */
1994
1995 pg = uvm_loanbreak(uobjpage);
1996 if (pg == NULL) {
1997
1998 /*
1999 * drop ownership of page, it can't be released
2000 */
2001
2002 if (uobjpage->flags & PG_WANTED)
2003 wakeup(uobjpage);
2004 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2005 UVM_PAGE_OWN(uobjpage, NULL);
2006
2007 uvmfault_unlockall(ufi, amap, uobj);
2008 UVMHIST_LOG(maphist,
2009 " out of RAM breaking loan, waiting",
2010 0,0,0,0);
2011 uvmexp.fltnoram++;
2012 uvm_wait("flt_noram4");
2013 return ERESTART;
2014 }
2015 *rpg = pg;
2016 *ruobjpage = pg;
2017 }
2018 return 0;
2019 }
2020
2021 /*
2022 * uvm_fault_lower_promote: promote lower page.
2023 *
2024 * 1. call uvmfault_promote.
2025 * 2. fill in data.
2026 * 3. if not ZFOD, dispose old page.
2027 */
2028
2029 int
2030 uvm_fault_lower_promote(
2031 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2032 struct uvm_object *uobj, struct vm_page *uobjpage)
2033 {
2034 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2035 struct vm_anon *anon;
2036 struct vm_page *pg;
2037 int error;
2038 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2039
2040 KASSERT(amap != NULL);
2041
2042 /*
2043 * If we are going to promote the data to an anon we
2044 * allocate a blank anon here and plug it into our amap.
2045 */
2046 error = uvmfault_promote(ufi, NULL, uobjpage,
2047 &anon, &flt->anon_spare);
2048 switch (error) {
2049 case 0:
2050 break;
2051 case ERESTART:
2052 return ERESTART;
2053 default:
2054 return error;
2055 }
2056
2057 pg = anon->an_page;
2058
2059 /*
2060 * Fill in the data.
2061 */
2062 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2063
2064 if (uobjpage != PGO_DONTCARE) {
2065 uvmexp.flt_prcopy++;
2066
2067 /*
2068 * promote to shared amap? make sure all sharing
2069 * procs see it
2070 */
2071
2072 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2073 pmap_page_protect(uobjpage, VM_PROT_NONE);
2074 /*
2075 * XXX: PAGE MIGHT BE WIRED!
2076 */
2077 }
2078
2079 /*
2080 * dispose of uobjpage. it can't be PG_RELEASED
2081 * since we still hold the object lock.
2082 */
2083
2084 if (uobjpage->flags & PG_WANTED) {
2085 /* still have the obj lock */
2086 wakeup(uobjpage);
2087 }
2088 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2089 UVM_PAGE_OWN(uobjpage, NULL);
2090
2091 UVMHIST_LOG(maphist,
2092 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2093 uobjpage, anon, pg, 0);
2094
2095 } else {
2096 uvmexp.flt_przero++;
2097
2098 /*
2099 * Page is zero'd and marked dirty by
2100 * uvmfault_promote().
2101 */
2102
2103 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2104 anon, pg, 0, 0);
2105 }
2106
2107 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2108 }
2109
2110 /*
2111 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2112 * from the lower page.
2113 */
2114
2115 int
2116 uvm_fault_lower_enter(
2117 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2118 struct uvm_object *uobj,
2119 struct vm_anon *anon, struct vm_page *pg)
2120 {
2121 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2122 int error;
2123 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2124
2125 /*
2126 * Locked:
2127 *
2128 * maps(read), amap(if !null), uobj(if !null),
2129 * anon(if !null), pg(if anon), unlock_uobj(if !null)
2130 *
2131 * Note: pg is either the uobjpage or the new page in the new anon.
2132 */
2133 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
2134 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
2135 KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2136 KASSERT((pg->flags & PG_BUSY) != 0);
2137
2138 /*
2139 * all resources are present. we can now map it in and free our
2140 * resources.
2141 */
2142
2143 UVMHIST_LOG(maphist,
2144 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2145 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2146 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2147 (pg->flags & PG_RDONLY) == 0);
2148 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2149 VM_PAGE_TO_PHYS(pg),
2150 (pg->flags & PG_RDONLY) != 0 ?
2151 flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2152 flt->access_type | PMAP_CANFAIL |
2153 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2154
2155 /*
2156 * No need to undo what we did; we can simply think of
2157 * this as the pmap throwing away the mapping information.
2158 *
2159 * We do, however, have to go through the ReFault path,
2160 * as the map may change while we're asleep.
2161 */
2162
2163 /*
2164 * ensure that the page is queued in the case that
2165 * we just promoted the page.
2166 */
2167
2168 mutex_enter(&uvm_pageqlock);
2169 uvm_pageenqueue(pg);
2170 mutex_exit(&uvm_pageqlock);
2171
2172 if (pg->flags & PG_WANTED)
2173 wakeup(pg);
2174
2175 /*
2176 * note that pg can't be PG_RELEASED since we did not drop
2177 * the object lock since the last time we checked.
2178 */
2179 KASSERT((pg->flags & PG_RELEASED) == 0);
2180
2181 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2182 UVM_PAGE_OWN(pg, NULL);
2183
2184 uvmfault_unlockall(ufi, amap, uobj);
2185 if (!uvm_reclaimable()) {
2186 UVMHIST_LOG(maphist,
2187 "<- failed. out of VM",0,0,0,0);
2188 /* XXX instrumentation */
2189 error = ENOMEM;
2190 return error;
2191 }
2192 /* XXX instrumentation */
2193 uvm_wait("flt_pmfail2");
2194 return ERESTART;
2195 }
2196
2197 uvm_fault_lower_done(ufi, flt, uobj, pg);
2198
2199 /*
2200 * note that pg can't be PG_RELEASED since we did not drop the object
2201 * lock since the last time we checked.
2202 */
2203 KASSERT((pg->flags & PG_RELEASED) == 0);
2204 if (pg->flags & PG_WANTED)
2205 wakeup(pg);
2206 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2207 UVM_PAGE_OWN(pg, NULL);
2208
2209 pmap_update(ufi->orig_map->pmap);
2210 uvmfault_unlockall(ufi, amap, uobj);
2211
2212 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2213 return 0;
2214 }
2215
2216 /*
2217 * uvm_fault_lower_done: queue lower center page.
2218 */
2219
2220 void
2221 uvm_fault_lower_done(
2222 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2223 struct uvm_object *uobj, struct vm_page *pg)
2224 {
2225 bool dropswap = false;
2226
2227 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2228
2229 mutex_enter(&uvm_pageqlock);
2230 if (flt->wire_paging) {
2231 uvm_pagewire(pg);
2232 if (pg->pqflags & PQ_AOBJ) {
2233
2234 /*
2235 * since the now-wired page cannot be paged out,
2236 * release its swap resources for others to use.
2237 * since an aobj page with no swap cannot be PG_CLEAN,
2238 * clear its clean flag now.
2239 */
2240
2241 KASSERT(uobj != NULL);
2242 pg->flags &= ~(PG_CLEAN);
2243 dropswap = true;
2244 }
2245 } else {
2246 uvm_pageactivate(pg);
2247 }
2248 mutex_exit(&uvm_pageqlock);
2249
2250 if (dropswap) {
2251 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2252 }
2253 }
2254
2255
2256 /*
2257 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2258 *
2259 * => map may be read-locked by caller, but MUST NOT be write-locked.
2260 * => if map is read-locked, any operations which may cause map to
2261 * be write-locked in uvm_fault() must be taken care of by
2262 * the caller. See uvm_map_pageable().
2263 */
2264
2265 int
2266 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2267 vm_prot_t access_type, int maxprot)
2268 {
2269 vaddr_t va;
2270 int error;
2271
2272 /*
2273 * now fault it in a page at a time. if the fault fails then we have
2274 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2275 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2276 */
2277
2278 /*
2279 * XXX work around overflowing a vaddr_t. this prevents us from
2280 * wiring the last page in the address space, though.
2281 */
2282 if (start > end) {
2283 return EFAULT;
2284 }
2285
2286 for (va = start; va < end; va += PAGE_SIZE) {
2287 error = uvm_fault_internal(map, va, access_type,
2288 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2289 if (error) {
2290 if (va != start) {
2291 uvm_fault_unwire(map, start, va);
2292 }
2293 return error;
2294 }
2295 }
2296 return 0;
2297 }
2298
2299 /*
2300 * uvm_fault_unwire(): unwire range of virtual space.
2301 */
2302
2303 void
2304 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2305 {
2306 vm_map_lock_read(map);
2307 uvm_fault_unwire_locked(map, start, end);
2308 vm_map_unlock_read(map);
2309 }
2310
2311 /*
2312 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2313 *
2314 * => map must be at least read-locked.
2315 */
2316
2317 void
2318 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2319 {
2320 struct vm_map_entry *entry, *oentry;
2321 pmap_t pmap = vm_map_pmap(map);
2322 vaddr_t va;
2323 paddr_t pa;
2324 struct vm_page *pg;
2325
2326 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2327
2328 /*
2329 * we assume that the area we are unwiring has actually been wired
2330 * in the first place. this means that we should be able to extract
2331 * the PAs from the pmap. we also lock out the page daemon so that
2332 * we can call uvm_pageunwire.
2333 */
2334
2335 /*
2336 * find the beginning map entry for the region.
2337 */
2338
2339 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2340 if (uvm_map_lookup_entry(map, start, &entry) == false)
2341 panic("uvm_fault_unwire_locked: address not in map");
2342
2343 oentry = NULL;
2344 for (va = start; va < end; va += PAGE_SIZE) {
2345 if (pmap_extract(pmap, va, &pa) == false)
2346 continue;
2347
2348 /*
2349 * find the map entry for the current address.
2350 */
2351
2352 KASSERT(va >= entry->start);
2353 while (va >= entry->end) {
2354 KASSERT(entry->next != &map->header &&
2355 entry->next->start <= entry->end);
2356 entry = entry->next;
2357 }
2358
2359 /*
2360 * lock it.
2361 */
2362
2363 if (entry != oentry) {
2364 if (oentry != NULL) {
2365 mutex_exit(&uvm_pageqlock);
2366 uvm_map_unlock_entry(oentry);
2367 }
2368 uvm_map_lock_entry(entry);
2369 mutex_enter(&uvm_pageqlock);
2370 oentry = entry;
2371 }
2372
2373 /*
2374 * if the entry is no longer wired, tell the pmap.
2375 */
2376
2377 if (VM_MAPENT_ISWIRED(entry) == 0)
2378 pmap_unwire(pmap, va);
2379
2380 pg = PHYS_TO_VM_PAGE(pa);
2381 if (pg)
2382 uvm_pageunwire(pg);
2383 }
2384
2385 if (oentry != NULL) {
2386 mutex_exit(&uvm_pageqlock);
2387 uvm_map_unlock_entry(entry);
2388 }
2389 }
2390