uvm_fault.c revision 1.177 1 /* $NetBSD: uvm_fault.c,v 1.177 2010/12/17 22:00:43 yamt Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.177 2010/12/17 22:00:43 yamt Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0; lcv < n; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 struct uvm_faultctx {
696 vm_prot_t access_type;
697 vm_prot_t enter_prot;
698 vaddr_t startva;
699 int npages;
700 int centeridx;
701 struct vm_anon *anon_spare;
702 bool wire_mapping;
703 bool narrow;
704 bool wire_paging;
705 bool cow_now;
706 bool promote;
707 };
708
709 static inline int uvm_fault_check(
710 struct uvm_faultinfo *, struct uvm_faultctx *,
711 struct vm_anon ***, bool);
712
713 static int uvm_fault_upper(
714 struct uvm_faultinfo *, struct uvm_faultctx *,
715 struct vm_anon **);
716 static inline int uvm_fault_upper_lookup(
717 struct uvm_faultinfo *, const struct uvm_faultctx *,
718 struct vm_anon **, struct vm_page **);
719 static inline void uvm_fault_upper_neighbor(
720 struct uvm_faultinfo *, const struct uvm_faultctx *,
721 vaddr_t, struct vm_page *, bool);
722 static inline int uvm_fault_upper_loan(
723 struct uvm_faultinfo *, struct uvm_faultctx *,
724 struct vm_anon *, struct uvm_object **);
725 static inline int uvm_fault_upper_promote(
726 struct uvm_faultinfo *, struct uvm_faultctx *,
727 struct uvm_object *, struct vm_anon *);
728 static inline int uvm_fault_upper_direct(
729 struct uvm_faultinfo *, struct uvm_faultctx *,
730 struct uvm_object *, struct vm_anon *);
731 static int uvm_fault_upper_enter(
732 struct uvm_faultinfo *, const struct uvm_faultctx *,
733 struct uvm_object *, struct vm_anon *,
734 struct vm_page *, struct vm_anon *);
735 static inline void uvm_fault_upper_done(
736 struct uvm_faultinfo *, const struct uvm_faultctx *,
737 struct vm_anon *, struct vm_page *);
738
739 static int uvm_fault_lower(
740 struct uvm_faultinfo *, struct uvm_faultctx *,
741 struct vm_page **);
742 static inline void uvm_fault_lower_lookup(
743 struct uvm_faultinfo *, const struct uvm_faultctx *,
744 struct vm_page **);
745 static inline void uvm_fault_lower_neighbor(
746 struct uvm_faultinfo *, const struct uvm_faultctx *,
747 vaddr_t, struct vm_page *, bool);
748 static inline int uvm_fault_lower_io(
749 struct uvm_faultinfo *, const struct uvm_faultctx *,
750 struct uvm_object **, struct vm_page **);
751 static inline int uvm_fault_lower_direct(
752 struct uvm_faultinfo *, struct uvm_faultctx *,
753 struct uvm_object *, struct vm_page *);
754 static inline int uvm_fault_lower_direct_loan(
755 struct uvm_faultinfo *, struct uvm_faultctx *,
756 struct uvm_object *, struct vm_page **,
757 struct vm_page **);
758 static inline int uvm_fault_lower_promote(
759 struct uvm_faultinfo *, struct uvm_faultctx *,
760 struct uvm_object *, struct vm_page *);
761 static int uvm_fault_lower_enter(
762 struct uvm_faultinfo *, const struct uvm_faultctx *,
763 struct uvm_object *,
764 struct vm_anon *, struct vm_page *,
765 struct vm_page *);
766 static inline void uvm_fault_lower_done(
767 struct uvm_faultinfo *, const struct uvm_faultctx *,
768 struct uvm_object *, struct vm_page *);
769
770 int
771 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
772 vm_prot_t access_type, int fault_flag)
773 {
774 struct uvm_faultinfo ufi;
775 struct uvm_faultctx flt = {
776 .access_type = access_type,
777
778 /* don't look for neighborhood * pages on "wire" fault */
779 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
780
781 /* "wire" fault causes wiring of both mapping and paging */
782 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
783 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
784 };
785 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
786 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
787 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
788 int error;
789 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
790
791 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
792 orig_map, vaddr, access_type, fault_flag);
793
794 uvmexp.faults++; /* XXX: locking? */
795
796 /*
797 * init the IN parameters in the ufi
798 */
799
800 ufi.orig_map = orig_map;
801 ufi.orig_rvaddr = trunc_page(vaddr);
802 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
803
804 error = ERESTART;
805 while (error == ERESTART) {
806 anons = anons_store;
807 pages = pages_store;
808
809 error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
810 if (error != 0)
811 continue;
812
813 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
814 if (error != 0)
815 continue;
816
817 if (pages[flt.centeridx] == PGO_DONTCARE)
818 error = uvm_fault_upper(&ufi, &flt, anons);
819 else {
820 struct uvm_object * const uobj =
821 ufi.entry->object.uvm_obj;
822
823 if (uobj && uobj->pgops->pgo_fault != NULL) {
824 /*
825 * invoke "special" fault routine.
826 */
827 mutex_enter(&uobj->vmobjlock);
828 /* locked: maps(read), amap(if there), uobj */
829 error = uobj->pgops->pgo_fault(&ufi,
830 flt.startva, pages, flt.npages,
831 flt.centeridx, flt.access_type,
832 PGO_LOCKED|PGO_SYNCIO);
833
834 /*
835 * locked: nothing, pgo_fault has unlocked
836 * everything
837 */
838
839 /*
840 * object fault routine responsible for
841 * pmap_update().
842 */
843 } else {
844 error = uvm_fault_lower(&ufi, &flt, pages);
845 }
846 }
847 }
848
849 if (flt.anon_spare != NULL) {
850 flt.anon_spare->an_ref--;
851 uvm_anfree(flt.anon_spare);
852 }
853 return error;
854 }
855
856 /*
857 * uvm_fault_check: check prot, handle needs-copy, etc.
858 *
859 * 1. lookup entry.
860 * 2. check protection.
861 * 3. adjust fault condition (mainly for simulated fault).
862 * 4. handle needs-copy (lazy amap copy).
863 * 5. establish range of interest for neighbor fault (aka pre-fault).
864 * 6. look up anons (if amap exists).
865 * 7. flush pages (if MADV_SEQUENTIAL)
866 *
867 * => called with nothing locked.
868 * => if we fail (result != 0) we unlock everything.
869 * => initialize/adjust many members of flt.
870 */
871
872 static int
873 uvm_fault_check(
874 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
875 struct vm_anon ***ranons, bool maxprot)
876 {
877 struct vm_amap *amap;
878 struct uvm_object *uobj;
879 vm_prot_t check_prot;
880 int nback, nforw;
881 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
882
883 /*
884 * lookup and lock the maps
885 */
886
887 if (uvmfault_lookup(ufi, false) == false) {
888 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr,
889 0,0,0);
890 return EFAULT;
891 }
892 /* locked: maps(read) */
893
894 #ifdef DIAGNOSTIC
895 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
896 printf("Page fault on non-pageable map:\n");
897 printf("ufi->map = %p\n", ufi->map);
898 printf("ufi->orig_map = %p\n", ufi->orig_map);
899 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
900 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
901 }
902 #endif
903
904 /*
905 * check protection
906 */
907
908 check_prot = maxprot ?
909 ufi->entry->max_protection : ufi->entry->protection;
910 if ((check_prot & flt->access_type) != flt->access_type) {
911 UVMHIST_LOG(maphist,
912 "<- protection failure (prot=0x%x, access=0x%x)",
913 ufi->entry->protection, flt->access_type, 0, 0);
914 uvmfault_unlockmaps(ufi, false);
915 return EACCES;
916 }
917
918 /*
919 * "enter_prot" is the protection we want to enter the page in at.
920 * for certain pages (e.g. copy-on-write pages) this protection can
921 * be more strict than ufi->entry->protection. "wired" means either
922 * the entry is wired or we are fault-wiring the pg.
923 */
924
925 flt->enter_prot = ufi->entry->protection;
926 if (VM_MAPENT_ISWIRED(ufi->entry))
927 flt->wire_mapping = true;
928
929 if (flt->wire_mapping) {
930 flt->access_type = flt->enter_prot; /* full access for wired */
931 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
932 } else {
933 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
934 }
935
936 flt->promote = false;
937
938 /*
939 * handle "needs_copy" case. if we need to copy the amap we will
940 * have to drop our readlock and relock it with a write lock. (we
941 * need a write lock to change anything in a map entry [e.g.
942 * needs_copy]).
943 */
944
945 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
946 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
947 KASSERT(!maxprot);
948 /* need to clear */
949 UVMHIST_LOG(maphist,
950 " need to clear needs_copy and refault",0,0,0,0);
951 uvmfault_unlockmaps(ufi, false);
952 uvmfault_amapcopy(ufi);
953 uvmexp.fltamcopy++;
954 return ERESTART;
955
956 } else {
957
958 /*
959 * ensure that we pmap_enter page R/O since
960 * needs_copy is still true
961 */
962
963 flt->enter_prot &= ~VM_PROT_WRITE;
964 }
965 }
966
967 /*
968 * identify the players
969 */
970
971 amap = ufi->entry->aref.ar_amap; /* upper layer */
972 uobj = ufi->entry->object.uvm_obj; /* lower layer */
973
974 /*
975 * check for a case 0 fault. if nothing backing the entry then
976 * error now.
977 */
978
979 if (amap == NULL && uobj == NULL) {
980 uvmfault_unlockmaps(ufi, false);
981 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
982 return EFAULT;
983 }
984
985 /*
986 * establish range of interest based on advice from mapper
987 * and then clip to fit map entry. note that we only want
988 * to do this the first time through the fault. if we
989 * ReFault we will disable this by setting "narrow" to true.
990 */
991
992 if (flt->narrow == false) {
993
994 /* wide fault (!narrow) */
995 KASSERT(uvmadvice[ufi->entry->advice].advice ==
996 ufi->entry->advice);
997 nback = MIN(uvmadvice[ufi->entry->advice].nback,
998 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
999 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1000 /*
1001 * note: "-1" because we don't want to count the
1002 * faulting page as forw
1003 */
1004 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1005 ((ufi->entry->end - ufi->orig_rvaddr) >>
1006 PAGE_SHIFT) - 1);
1007 flt->npages = nback + nforw + 1;
1008 flt->centeridx = nback;
1009
1010 flt->narrow = true; /* ensure only once per-fault */
1011
1012 } else {
1013
1014 /* narrow fault! */
1015 nback = nforw = 0;
1016 flt->startva = ufi->orig_rvaddr;
1017 flt->npages = 1;
1018 flt->centeridx = 0;
1019
1020 }
1021 /* offset from entry's start to pgs' start */
1022 const voff_t eoff = flt->startva - ufi->entry->start;
1023
1024 /* locked: maps(read) */
1025 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
1026 flt->narrow, nback, nforw, flt->startva);
1027 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1028 amap, uobj, 0);
1029
1030 /*
1031 * if we've got an amap, lock it and extract current anons.
1032 */
1033
1034 if (amap) {
1035 amap_lock(amap);
1036 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1037 } else {
1038 *ranons = NULL; /* to be safe */
1039 }
1040
1041 /* locked: maps(read), amap(if there) */
1042 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1043
1044 /*
1045 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1046 * now and then forget about them (for the rest of the fault).
1047 */
1048
1049 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1050
1051 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1052 0,0,0,0);
1053 /* flush back-page anons? */
1054 if (amap)
1055 uvmfault_anonflush(*ranons, nback);
1056
1057 /* flush object? */
1058 if (uobj) {
1059 voff_t uoff;
1060
1061 uoff = ufi->entry->offset + eoff;
1062 mutex_enter(&uobj->vmobjlock);
1063 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1064 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1065 }
1066
1067 /* now forget about the backpages */
1068 if (amap)
1069 *ranons += nback;
1070 flt->startva += (nback << PAGE_SHIFT);
1071 flt->npages -= nback;
1072 flt->centeridx = 0;
1073 }
1074 /*
1075 * => startva is fixed
1076 * => npages is fixed
1077 */
1078 KASSERT(flt->startva <= ufi->orig_rvaddr);
1079 KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1080 flt->startva + (flt->npages << PAGE_SHIFT));
1081 return 0;
1082 }
1083
1084 /*
1085 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1086 *
1087 * iterate range of interest:
1088 * 1. check if h/w mapping exists. if yes, we don't care
1089 * 2. check if anon exists. if not, page is lower.
1090 * 3. if anon exists, enter h/w mapping for neighbors.
1091 *
1092 * => called with amap locked (if exists).
1093 */
1094
1095 static int
1096 uvm_fault_upper_lookup(
1097 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1098 struct vm_anon **anons, struct vm_page **pages)
1099 {
1100 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1101 int lcv;
1102 vaddr_t currva;
1103 bool shadowed;
1104 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1105
1106 /* locked: maps(read), amap(if there) */
1107 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1108
1109 /*
1110 * map in the backpages and frontpages we found in the amap in hopes
1111 * of preventing future faults. we also init the pages[] array as
1112 * we go.
1113 */
1114
1115 currva = flt->startva;
1116 shadowed = false;
1117 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1118 /*
1119 * don't play with VAs that are already mapped
1120 * (except for center)
1121 */
1122 if (lcv != flt->centeridx &&
1123 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1124 pages[lcv] = PGO_DONTCARE;
1125 continue;
1126 }
1127
1128 /*
1129 * unmapped or center page. check if any anon at this level.
1130 */
1131 if (amap == NULL || anons[lcv] == NULL) {
1132 pages[lcv] = NULL;
1133 continue;
1134 }
1135
1136 /*
1137 * check for present page and map if possible. re-activate it.
1138 */
1139
1140 pages[lcv] = PGO_DONTCARE;
1141 if (lcv == flt->centeridx) { /* save center for later! */
1142 shadowed = true;
1143 } else {
1144 struct vm_anon *anon = anons[lcv];
1145
1146 mutex_enter(&anon->an_lock);
1147 struct vm_page *pg = anon->an_page;
1148
1149 /* ignore loaned and busy pages */
1150 if (pg != NULL && pg->loan_count == 0 &&
1151 (pg->flags & PG_BUSY) == 0)
1152 uvm_fault_upper_neighbor(ufi, flt, currva,
1153 pg, anon->an_ref > 1);
1154 mutex_exit(&anon->an_lock);
1155 }
1156 }
1157
1158 /* locked: maps(read), amap(if there) */
1159 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1160 /* (shadowed == true) if there is an anon at the faulting address */
1161 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1162 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1163
1164 /*
1165 * note that if we are really short of RAM we could sleep in the above
1166 * call to pmap_enter with everything locked. bad?
1167 *
1168 * XXX Actually, that is bad; pmap_enter() should just fail in that
1169 * XXX case. --thorpej
1170 */
1171
1172 return 0;
1173 }
1174
1175 /*
1176 * uvm_fault_upper_neighbor: enter single lower neighbor page.
1177 *
1178 * => called with amap and anon locked.
1179 */
1180
1181 static void
1182 uvm_fault_upper_neighbor(
1183 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1184 vaddr_t currva, struct vm_page *pg, bool readonly)
1185 {
1186 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1187
1188 /* locked: amap, anon */
1189
1190 mutex_enter(&uvm_pageqlock);
1191 uvm_pageenqueue(pg);
1192 mutex_exit(&uvm_pageqlock);
1193 UVMHIST_LOG(maphist,
1194 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1195 ufi->orig_map->pmap, currva, pg, 0);
1196 uvmexp.fltnamap++;
1197
1198 /*
1199 * Since this page isn't the page that's actually faulting,
1200 * ignore pmap_enter() failures; it's not critical that we
1201 * enter these right now.
1202 */
1203
1204 (void) pmap_enter(ufi->orig_map->pmap, currva,
1205 VM_PAGE_TO_PHYS(pg),
1206 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1207 flt->enter_prot,
1208 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1209
1210 pmap_update(ufi->orig_map->pmap);
1211 }
1212
1213 /*
1214 * uvm_fault_upper: handle upper fault.
1215 *
1216 * 1. acquire anon lock.
1217 * 2. get anon. let uvmfault_anonget do the dirty work.
1218 * 3. handle loan.
1219 * 4. dispatch direct or promote handlers.
1220 */
1221
1222 static int
1223 uvm_fault_upper(
1224 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1225 struct vm_anon **anons)
1226 {
1227 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1228 struct vm_anon * const anon = anons[flt->centeridx];
1229 struct uvm_object *uobj;
1230 int error;
1231 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1232
1233 /* locked: maps(read), amap */
1234 KASSERT(mutex_owned(&amap->am_l));
1235
1236 /*
1237 * handle case 1: fault on an anon in our amap
1238 */
1239
1240 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1241 mutex_enter(&anon->an_lock);
1242
1243 /* locked: maps(read), amap, anon */
1244 KASSERT(mutex_owned(&amap->am_l));
1245 KASSERT(mutex_owned(&anon->an_lock));
1246
1247 /*
1248 * no matter if we have case 1A or case 1B we are going to need to
1249 * have the anon's memory resident. ensure that now.
1250 */
1251
1252 /*
1253 * let uvmfault_anonget do the dirty work.
1254 * if it fails (!OK) it will unlock everything for us.
1255 * if it succeeds, locks are still valid and locked.
1256 * also, if it is OK, then the anon's page is on the queues.
1257 * if the page is on loan from a uvm_object, then anonget will
1258 * lock that object for us if it does not fail.
1259 */
1260
1261 error = uvmfault_anonget(ufi, amap, anon);
1262 switch (error) {
1263 case 0:
1264 break;
1265
1266 case ERESTART:
1267 return ERESTART;
1268
1269 case EAGAIN:
1270 kpause("fltagain1", false, hz/2, NULL);
1271 return ERESTART;
1272
1273 default:
1274 return error;
1275 }
1276
1277 /*
1278 * uobj is non null if the page is on loan from an object (i.e. uobj)
1279 */
1280
1281 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1282
1283 /* locked: maps(read), amap, anon, uobj(if one) */
1284 KASSERT(mutex_owned(&amap->am_l));
1285 KASSERT(mutex_owned(&anon->an_lock));
1286 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1287
1288 /*
1289 * special handling for loaned pages
1290 */
1291
1292 if (anon->an_page->loan_count) {
1293 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1294 if (error != 0)
1295 return error;
1296 }
1297
1298 /*
1299 * if we are case 1B then we will need to allocate a new blank
1300 * anon to transfer the data into. note that we have a lock
1301 * on anon, so no one can busy or release the page until we are done.
1302 * also note that the ref count can't drop to zero here because
1303 * it is > 1 and we are only dropping one ref.
1304 *
1305 * in the (hopefully very rare) case that we are out of RAM we
1306 * will unlock, wait for more RAM, and refault.
1307 *
1308 * if we are out of anon VM we kill the process (XXX: could wait?).
1309 */
1310
1311 if (flt->cow_now && anon->an_ref > 1) {
1312 flt->promote = true;
1313 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1314 } else {
1315 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1316 }
1317 return error;
1318 }
1319
1320 /*
1321 * uvm_fault_upper_loan: handle loaned upper page.
1322 *
1323 * 1. if not cow'ing now, simply adjust flt->enter_prot.
1324 * 2. if cow'ing now, and if ref count is 1, break loan.
1325 */
1326
1327 static int
1328 uvm_fault_upper_loan(
1329 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1330 struct vm_anon *anon, struct uvm_object **ruobj)
1331 {
1332 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1333 int error = 0;
1334 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1335
1336 if (!flt->cow_now) {
1337
1338 /*
1339 * for read faults on loaned pages we just cap the
1340 * protection at read-only.
1341 */
1342
1343 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1344
1345 } else {
1346 /*
1347 * note that we can't allow writes into a loaned page!
1348 *
1349 * if we have a write fault on a loaned page in an
1350 * anon then we need to look at the anon's ref count.
1351 * if it is greater than one then we are going to do
1352 * a normal copy-on-write fault into a new anon (this
1353 * is not a problem). however, if the reference count
1354 * is one (a case where we would normally allow a
1355 * write directly to the page) then we need to kill
1356 * the loan before we continue.
1357 */
1358
1359 /* >1 case is already ok */
1360 if (anon->an_ref == 1) {
1361 error = uvm_loanbreak_anon(anon, *ruobj);
1362 if (error != 0) {
1363 uvmfault_unlockall(ufi, amap, *ruobj, anon);
1364 uvm_wait("flt_noram2");
1365 return ERESTART;
1366 }
1367 /* if we were a loan reciever uobj is gone */
1368 if (*ruobj)
1369 *ruobj = NULL;
1370 }
1371 }
1372 return error;
1373 }
1374
1375 /*
1376 * uvm_fault_upper_promote: promote upper page.
1377 *
1378 * 1. call uvmfault_promote.
1379 * 2. enqueue page.
1380 * 3. deref.
1381 * 4. pass page to uvm_fault_upper_enter.
1382 */
1383
1384 static int
1385 uvm_fault_upper_promote(
1386 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1387 struct uvm_object *uobj, struct vm_anon *anon)
1388 {
1389 struct vm_anon * const oanon = anon;
1390 struct vm_page *pg;
1391 int error;
1392 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1393
1394 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1395 uvmexp.flt_acow++;
1396
1397 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1398 &flt->anon_spare);
1399 switch (error) {
1400 case 0:
1401 break;
1402 case ERESTART:
1403 return ERESTART;
1404 default:
1405 return error;
1406 }
1407
1408 pg = anon->an_page;
1409 mutex_enter(&uvm_pageqlock);
1410 uvm_pageactivate(pg);
1411 mutex_exit(&uvm_pageqlock);
1412 pg->flags &= ~(PG_BUSY|PG_FAKE);
1413 UVM_PAGE_OWN(pg, NULL);
1414
1415 /* deref: can not drop to zero here by defn! */
1416 oanon->an_ref--;
1417
1418 /*
1419 * note: oanon is still locked, as is the new anon. we
1420 * need to check for this later when we unlock oanon; if
1421 * oanon != anon, we'll have to unlock anon, too.
1422 */
1423
1424 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1425 }
1426
1427 /*
1428 * uvm_fault_upper_direct: handle direct fault.
1429 */
1430
1431 static int
1432 uvm_fault_upper_direct(
1433 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1434 struct uvm_object *uobj, struct vm_anon *anon)
1435 {
1436 struct vm_anon * const oanon = anon;
1437 struct vm_page *pg;
1438 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1439
1440 uvmexp.flt_anon++;
1441 pg = anon->an_page;
1442 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1443 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1444
1445 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1446 }
1447
1448 /*
1449 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1450 */
1451
1452 static int
1453 uvm_fault_upper_enter(
1454 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1455 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1456 struct vm_anon *oanon)
1457 {
1458 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1459 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1460
1461 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1462 KASSERT(mutex_owned(&amap->am_l));
1463 KASSERT(mutex_owned(&anon->an_lock));
1464 KASSERT(mutex_owned(&oanon->an_lock));
1465
1466 /*
1467 * now map the page in.
1468 */
1469
1470 UVMHIST_LOG(maphist,
1471 " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1472 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1473 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1474 VM_PAGE_TO_PHYS(pg),
1475 flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1476 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1477
1478 /*
1479 * No need to undo what we did; we can simply think of
1480 * this as the pmap throwing away the mapping information.
1481 *
1482 * We do, however, have to go through the ReFault path,
1483 * as the map may change while we're asleep.
1484 */
1485
1486 if (anon != oanon)
1487 mutex_exit(&anon->an_lock);
1488 uvmfault_unlockall(ufi, amap, uobj, oanon);
1489 if (!uvm_reclaimable()) {
1490 UVMHIST_LOG(maphist,
1491 "<- failed. out of VM",0,0,0,0);
1492 /* XXX instrumentation */
1493 return ENOMEM;
1494 }
1495 /* XXX instrumentation */
1496 uvm_wait("flt_pmfail1");
1497 return ERESTART;
1498 }
1499
1500 uvm_fault_upper_done(ufi, flt, anon, pg);
1501
1502 /*
1503 * done case 1! finish up by unlocking everything and returning success
1504 */
1505
1506 if (anon != oanon) {
1507 mutex_exit(&anon->an_lock);
1508 }
1509 pmap_update(ufi->orig_map->pmap);
1510 uvmfault_unlockall(ufi, amap, uobj, oanon);
1511 return 0;
1512 }
1513
1514 /*
1515 * uvm_fault_upper_done: queue upper center page.
1516 */
1517
1518 static void
1519 uvm_fault_upper_done(
1520 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1521 struct vm_anon *anon, struct vm_page *pg)
1522 {
1523 const bool wire_paging = flt->wire_paging;
1524
1525 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1526
1527 /*
1528 * ... update the page queues.
1529 */
1530
1531 mutex_enter(&uvm_pageqlock);
1532 if (wire_paging) {
1533 uvm_pagewire(pg);
1534
1535 /*
1536 * since the now-wired page cannot be paged out,
1537 * release its swap resources for others to use.
1538 * since an anon with no swap cannot be PG_CLEAN,
1539 * clear its clean flag now.
1540 */
1541
1542 pg->flags &= ~(PG_CLEAN);
1543
1544 } else {
1545 uvm_pageactivate(pg);
1546 }
1547 mutex_exit(&uvm_pageqlock);
1548
1549 if (wire_paging) {
1550 uvm_anon_dropswap(anon);
1551 }
1552 }
1553
1554 /*
1555 * uvm_fault_lower: handle lower fault.
1556 *
1557 * 1. check uobj
1558 * 1.1. if null, ZFOD.
1559 * 1.2. if not null, look up unnmapped neighbor pages.
1560 * 2. for center page, check if promote.
1561 * 2.1. ZFOD always needs promotion.
1562 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1563 * 3. if uobj is not ZFOD and page is not found, do i/o.
1564 * 4. dispatch either direct / promote fault.
1565 */
1566
1567 static int
1568 uvm_fault_lower(
1569 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1570 struct vm_page **pages)
1571 {
1572 #ifdef DIAGNOSTIC
1573 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1574 #endif
1575 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1576 struct vm_page *uobjpage;
1577 int error;
1578 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1579
1580 /* locked: maps(read), amap(if there), uobj(if !null) */
1581
1582 /*
1583 * now, if the desired page is not shadowed by the amap and we have
1584 * a backing object that does not have a special fault routine, then
1585 * we ask (with pgo_get) the object for resident pages that we care
1586 * about and attempt to map them in. we do not let pgo_get block
1587 * (PGO_LOCKED).
1588 */
1589
1590 if (uobj == NULL) {
1591 /* zero fill; don't care neighbor pages */
1592 uobjpage = NULL;
1593 } else {
1594 uvm_fault_lower_lookup(ufi, flt, pages);
1595 uobjpage = pages[flt->centeridx];
1596 }
1597
1598 /*
1599 * note that at this point we are done with any front or back pages.
1600 * we are now going to focus on the center page (i.e. the one we've
1601 * faulted on). if we have faulted on the upper (anon) layer
1602 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1603 * not touched it yet). if we have faulted on the bottom (uobj)
1604 * layer [i.e. case 2] and the page was both present and available,
1605 * then we've got a pointer to it as "uobjpage" and we've already
1606 * made it BUSY.
1607 */
1608
1609 /*
1610 * locked:
1611 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1612 */
1613 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1614 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1615 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1616
1617 /*
1618 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1619 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1620 * have a backing object, check and see if we are going to promote
1621 * the data up to an anon during the fault.
1622 */
1623
1624 if (uobj == NULL) {
1625 uobjpage = PGO_DONTCARE;
1626 flt->promote = true; /* always need anon here */
1627 } else {
1628 KASSERT(uobjpage != PGO_DONTCARE);
1629 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1630 }
1631 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1632 flt->promote, (uobj == NULL), 0,0);
1633
1634 /*
1635 * if uobjpage is not null then we do not need to do I/O to get the
1636 * uobjpage.
1637 *
1638 * if uobjpage is null, then we need to unlock and ask the pager to
1639 * get the data for us. once we have the data, we need to reverify
1640 * the state the world. we are currently not holding any resources.
1641 */
1642
1643 if (uobjpage) {
1644 /* update rusage counters */
1645 curlwp->l_ru.ru_minflt++;
1646 } else {
1647 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1648 if (error != 0)
1649 return error;
1650 }
1651
1652 /*
1653 * locked:
1654 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1655 */
1656 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1657 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1658 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1659
1660 /*
1661 * notes:
1662 * - at this point uobjpage can not be NULL
1663 * - at this point uobjpage can not be PG_RELEASED (since we checked
1664 * for it above)
1665 * - at this point uobjpage could be PG_WANTED (handle later)
1666 */
1667
1668 KASSERT(uobjpage != NULL);
1669 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1670 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1671 (uobjpage->flags & PG_CLEAN) != 0);
1672
1673 if (!flt->promote) {
1674 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1675 } else {
1676 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1677 }
1678 return error;
1679 }
1680
1681 /*
1682 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1683 *
1684 * 1. get on-memory pages.
1685 * 2. if failed, give up (get only center page later).
1686 * 3. if succeeded, enter h/w mapping of neighbor pages.
1687 */
1688
1689 static void
1690 uvm_fault_lower_lookup(
1691 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1692 struct vm_page **pages)
1693 {
1694 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1695 int lcv, gotpages;
1696 vaddr_t currva;
1697 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1698
1699 mutex_enter(&uobj->vmobjlock);
1700 /* locked: maps(read), amap(if there), uobj */
1701 /*
1702 * the following call to pgo_get does _not_ change locking state
1703 */
1704
1705 uvmexp.fltlget++;
1706 gotpages = flt->npages;
1707 (void) uobj->pgops->pgo_get(uobj,
1708 ufi->entry->offset + flt->startva - ufi->entry->start,
1709 pages, &gotpages, flt->centeridx,
1710 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1711
1712 /*
1713 * check for pages to map, if we got any
1714 */
1715
1716 if (gotpages == 0) {
1717 pages[flt->centeridx] = NULL;
1718 return;
1719 }
1720
1721 currva = flt->startva;
1722 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1723 struct vm_page *curpg;
1724
1725 curpg = pages[lcv];
1726 if (curpg == NULL || curpg == PGO_DONTCARE) {
1727 continue;
1728 }
1729 KASSERT(curpg->uobject == uobj);
1730
1731 /*
1732 * if center page is resident and not PG_BUSY|PG_RELEASED
1733 * then pgo_get made it PG_BUSY for us and gave us a handle
1734 * to it.
1735 */
1736
1737 if (lcv == flt->centeridx) {
1738 UVMHIST_LOG(maphist, " got uobjpage "
1739 "(0x%x) with locked get",
1740 curpg, 0,0,0);
1741 } else {
1742 bool readonly = (curpg->flags & PG_RDONLY)
1743 || (curpg->loan_count > 0)
1744 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1745
1746 uvm_fault_lower_neighbor(ufi, flt,
1747 currva, curpg, readonly);
1748 }
1749 }
1750 pmap_update(ufi->orig_map->pmap);
1751 }
1752
1753 /*
1754 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1755 */
1756
1757 static void
1758 uvm_fault_lower_neighbor(
1759 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1760 vaddr_t currva, struct vm_page *pg, bool readonly)
1761 {
1762 UVMHIST_FUNC("uvm_fault_lower_neighor"); UVMHIST_CALLED(maphist);
1763
1764 /* locked: maps(read), amap(if there), uobj */
1765
1766 /*
1767 * calling pgo_get with PGO_LOCKED returns us pages which
1768 * are neither busy nor released, so we don't need to check
1769 * for this. we can just directly enter the pages.
1770 */
1771
1772 mutex_enter(&uvm_pageqlock);
1773 uvm_pageenqueue(pg);
1774 mutex_exit(&uvm_pageqlock);
1775 UVMHIST_LOG(maphist,
1776 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1777 ufi->orig_map->pmap, currva, pg, 0);
1778 uvmexp.fltnomap++;
1779
1780 /*
1781 * Since this page isn't the page that's actually faulting,
1782 * ignore pmap_enter() failures; it's not critical that we
1783 * enter these right now.
1784 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1785 * held the lock the whole time we've had the handle.
1786 */
1787 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1788 KASSERT((pg->flags & PG_RELEASED) == 0);
1789 KASSERT((pg->flags & PG_WANTED) == 0);
1790 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
1791 (pg->flags & PG_CLEAN) != 0);
1792 pg->flags &= ~(PG_BUSY);
1793 UVM_PAGE_OWN(pg, NULL);
1794
1795 (void) pmap_enter(ufi->orig_map->pmap, currva,
1796 VM_PAGE_TO_PHYS(pg),
1797 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1798 flt->enter_prot & MASK(ufi->entry),
1799 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1800 }
1801
1802 /*
1803 * uvm_fault_lower_io: get lower page from backing store.
1804 *
1805 * 1. unlock everything, because i/o will block.
1806 * 2. call pgo_get.
1807 * 3. if failed, recover.
1808 * 4. if succeeded, relock everything and verify things.
1809 */
1810
1811 static int
1812 uvm_fault_lower_io(
1813 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1814 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1815 {
1816 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1817 struct uvm_object *uobj = *ruobj;
1818 struct vm_page *pg;
1819 bool locked;
1820 int gotpages;
1821 int error;
1822 voff_t uoff;
1823 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1824
1825 /* update rusage counters */
1826 curlwp->l_ru.ru_majflt++;
1827
1828 /* locked: maps(read), amap(if there), uobj */
1829 uvmfault_unlockall(ufi, amap, NULL, NULL);
1830 /* locked: uobj */
1831
1832 uvmexp.fltget++;
1833 gotpages = 1;
1834 pg = NULL;
1835 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1836 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1837 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1838 PGO_SYNCIO);
1839 /* locked: pg(if no error) */
1840
1841 /*
1842 * recover from I/O
1843 */
1844
1845 if (error) {
1846 if (error == EAGAIN) {
1847 UVMHIST_LOG(maphist,
1848 " pgo_get says TRY AGAIN!",0,0,0,0);
1849 kpause("fltagain2", false, hz/2, NULL);
1850 return ERESTART;
1851 }
1852
1853 #if 0
1854 KASSERT(error != ERESTART);
1855 #else
1856 /* XXXUEBS don't re-fault? */
1857 if (error == ERESTART)
1858 error = EIO;
1859 #endif
1860
1861 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1862 error, 0,0,0);
1863 return error;
1864 }
1865
1866 /* locked: pg */
1867
1868 KASSERT((pg->flags & PG_BUSY) != 0);
1869
1870 mutex_enter(&uvm_pageqlock);
1871 uvm_pageactivate(pg);
1872 mutex_exit(&uvm_pageqlock);
1873
1874 /*
1875 * re-verify the state of the world by first trying to relock
1876 * the maps. always relock the object.
1877 */
1878
1879 locked = uvmfault_relock(ufi);
1880 if (locked && amap)
1881 amap_lock(amap);
1882
1883 /* might be changed */
1884 uobj = pg->uobject;
1885
1886 mutex_enter(&uobj->vmobjlock);
1887
1888 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1889 /* locked(!locked): uobj, pg */
1890
1891 /*
1892 * verify that the page has not be released and re-verify
1893 * that amap slot is still free. if there is a problem,
1894 * we unlock and clean up.
1895 */
1896
1897 if ((pg->flags & PG_RELEASED) != 0 ||
1898 (locked && amap && amap_lookup(&ufi->entry->aref,
1899 ufi->orig_rvaddr - ufi->entry->start))) {
1900 if (locked)
1901 uvmfault_unlockall(ufi, amap, NULL, NULL);
1902 locked = false;
1903 }
1904
1905 /*
1906 * didn't get the lock? release the page and retry.
1907 */
1908
1909 if (locked == false) {
1910 UVMHIST_LOG(maphist,
1911 " wasn't able to relock after fault: retry",
1912 0,0,0,0);
1913 if (pg->flags & PG_WANTED) {
1914 wakeup(pg);
1915 }
1916 if (pg->flags & PG_RELEASED) {
1917 uvmexp.fltpgrele++;
1918 uvm_pagefree(pg);
1919 mutex_exit(&uobj->vmobjlock);
1920 return ERESTART;
1921 }
1922 pg->flags &= ~(PG_BUSY|PG_WANTED);
1923 UVM_PAGE_OWN(pg, NULL);
1924 mutex_exit(&uobj->vmobjlock);
1925 return ERESTART;
1926 }
1927
1928 /*
1929 * we have the data in pg which is busy and
1930 * not released. we are holding object lock (so the page
1931 * can't be released on us).
1932 */
1933
1934 /* locked: maps(read), amap(if !null), uobj, pg */
1935
1936 *ruobj = uobj;
1937 *ruobjpage = pg;
1938 return 0;
1939 }
1940
1941 /*
1942 * uvm_fault_lower_direct: fault lower center page
1943 *
1944 * 1. adjust flt->enter_prot.
1945 * 2. if page is loaned, resolve.
1946 */
1947
1948 int
1949 uvm_fault_lower_direct(
1950 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1951 struct uvm_object *uobj, struct vm_page *uobjpage)
1952 {
1953 struct vm_page *pg;
1954 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1955
1956 /*
1957 * we are not promoting. if the mapping is COW ensure that we
1958 * don't give more access than we should (e.g. when doing a read
1959 * fault on a COPYONWRITE mapping we want to map the COW page in
1960 * R/O even though the entry protection could be R/W).
1961 *
1962 * set "pg" to the page we want to map in (uobjpage, usually)
1963 */
1964
1965 uvmexp.flt_obj++;
1966 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1967 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1968 flt->enter_prot &= ~VM_PROT_WRITE;
1969 pg = uobjpage; /* map in the actual object */
1970
1971 KASSERT(uobjpage != PGO_DONTCARE);
1972
1973 /*
1974 * we are faulting directly on the page. be careful
1975 * about writing to loaned pages...
1976 */
1977
1978 if (uobjpage->loan_count) {
1979 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1980 }
1981 KASSERT(pg == uobjpage);
1982
1983 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1984 }
1985
1986 /*
1987 * uvm_fault_lower_direct_loan: resolve loaned page.
1988 *
1989 * 1. if not cow'ing, adjust flt->enter_prot.
1990 * 2. if cow'ing, break loan.
1991 */
1992
1993 static int
1994 uvm_fault_lower_direct_loan(
1995 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1996 struct uvm_object *uobj, struct vm_page **rpg,
1997 struct vm_page **ruobjpage)
1998 {
1999 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2000 struct vm_page *pg;
2001 struct vm_page *uobjpage = *ruobjpage;
2002 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
2003
2004 if (!flt->cow_now) {
2005 /* read fault: cap the protection at readonly */
2006 /* cap! */
2007 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2008 } else {
2009 /* write fault: must break the loan here */
2010
2011 pg = uvm_loanbreak(uobjpage);
2012 if (pg == NULL) {
2013
2014 /*
2015 * drop ownership of page, it can't be released
2016 */
2017
2018 if (uobjpage->flags & PG_WANTED)
2019 wakeup(uobjpage);
2020 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2021 UVM_PAGE_OWN(uobjpage, NULL);
2022
2023 uvmfault_unlockall(ufi, amap, uobj, NULL);
2024 UVMHIST_LOG(maphist,
2025 " out of RAM breaking loan, waiting",
2026 0,0,0,0);
2027 uvmexp.fltnoram++;
2028 uvm_wait("flt_noram4");
2029 return ERESTART;
2030 }
2031 *rpg = pg;
2032 *ruobjpage = pg;
2033 }
2034 return 0;
2035 }
2036
2037 /*
2038 * uvm_fault_lower_promote: promote lower page.
2039 *
2040 * 1. call uvmfault_promote.
2041 * 2. fill in data.
2042 * 3. if not ZFOD, dispose old page.
2043 */
2044
2045 int
2046 uvm_fault_lower_promote(
2047 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2048 struct uvm_object *uobj, struct vm_page *uobjpage)
2049 {
2050 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2051 struct vm_anon *anon;
2052 struct vm_page *pg;
2053 int error;
2054 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2055
2056 /*
2057 * if we are going to promote the data to an anon we
2058 * allocate a blank anon here and plug it into our amap.
2059 */
2060 #if DIAGNOSTIC
2061 if (amap == NULL)
2062 panic("uvm_fault: want to promote data, but no anon");
2063 #endif
2064 error = uvmfault_promote(ufi, NULL, uobjpage,
2065 &anon, &flt->anon_spare);
2066 switch (error) {
2067 case 0:
2068 break;
2069 case ERESTART:
2070 return ERESTART;
2071 default:
2072 return error;
2073 }
2074
2075 pg = anon->an_page;
2076
2077 /*
2078 * fill in the data
2079 */
2080
2081 if (uobjpage != PGO_DONTCARE) {
2082 uvmexp.flt_prcopy++;
2083
2084 /*
2085 * promote to shared amap? make sure all sharing
2086 * procs see it
2087 */
2088
2089 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2090 pmap_page_protect(uobjpage, VM_PROT_NONE);
2091 /*
2092 * XXX: PAGE MIGHT BE WIRED!
2093 */
2094 }
2095
2096 /*
2097 * dispose of uobjpage. it can't be PG_RELEASED
2098 * since we still hold the object lock.
2099 * drop handle to uobj as well.
2100 */
2101
2102 if (uobjpage->flags & PG_WANTED)
2103 /* still have the obj lock */
2104 wakeup(uobjpage);
2105 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2106 UVM_PAGE_OWN(uobjpage, NULL);
2107 mutex_exit(&uobj->vmobjlock);
2108 uobj = NULL;
2109
2110 UVMHIST_LOG(maphist,
2111 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2112 uobjpage, anon, pg, 0);
2113
2114 } else {
2115 uvmexp.flt_przero++;
2116
2117 /*
2118 * Page is zero'd and marked dirty by
2119 * uvmfault_promote().
2120 */
2121
2122 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2123 anon, pg, 0, 0);
2124 }
2125
2126 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage);
2127 }
2128
2129 /*
2130 * uvm_fault_lower_enter: enter h/w mapping of lower page.
2131 */
2132
2133 int
2134 uvm_fault_lower_enter(
2135 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2136 struct uvm_object *uobj,
2137 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2138 {
2139 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2140 int error;
2141 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2142
2143 /*
2144 * locked:
2145 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2146 * anon(if !null), pg(if anon)
2147 *
2148 * note: pg is either the uobjpage or the new page in the new anon
2149 */
2150 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2151 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2152 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2153 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2154 KASSERT((pg->flags & PG_BUSY) != 0);
2155
2156 /*
2157 * all resources are present. we can now map it in and free our
2158 * resources.
2159 */
2160
2161 UVMHIST_LOG(maphist,
2162 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2163 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2164 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2165 (pg->flags & PG_RDONLY) == 0);
2166 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2167 VM_PAGE_TO_PHYS(pg),
2168 (pg->flags & PG_RDONLY) != 0 ?
2169 flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2170 flt->access_type | PMAP_CANFAIL |
2171 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2172
2173 /*
2174 * No need to undo what we did; we can simply think of
2175 * this as the pmap throwing away the mapping information.
2176 *
2177 * We do, however, have to go through the ReFault path,
2178 * as the map may change while we're asleep.
2179 */
2180
2181 if (pg->flags & PG_WANTED)
2182 wakeup(pg);
2183
2184 /*
2185 * note that pg can't be PG_RELEASED since we did not drop
2186 * the object lock since the last time we checked.
2187 */
2188 KASSERT((pg->flags & PG_RELEASED) == 0);
2189
2190 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2191 UVM_PAGE_OWN(pg, NULL);
2192
2193 uvmfault_unlockall(ufi, amap, uobj, anon);
2194 if (!uvm_reclaimable()) {
2195 UVMHIST_LOG(maphist,
2196 "<- failed. out of VM",0,0,0,0);
2197 /* XXX instrumentation */
2198 error = ENOMEM;
2199 return error;
2200 }
2201 /* XXX instrumentation */
2202 uvm_wait("flt_pmfail2");
2203 return ERESTART;
2204 }
2205
2206 uvm_fault_lower_done(ufi, flt, uobj, pg);
2207
2208 /*
2209 * note that pg can't be PG_RELEASED since we did not drop the object
2210 * lock since the last time we checked.
2211 */
2212 KASSERT((pg->flags & PG_RELEASED) == 0);
2213 if (pg->flags & PG_WANTED)
2214 wakeup(pg);
2215 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2216 UVM_PAGE_OWN(pg, NULL);
2217
2218 pmap_update(ufi->orig_map->pmap);
2219 uvmfault_unlockall(ufi, amap, uobj, anon);
2220
2221 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2222 return 0;
2223 }
2224
2225 /*
2226 * uvm_fault_lower_done: queue lower center page.
2227 */
2228
2229 void
2230 uvm_fault_lower_done(
2231 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2232 struct uvm_object *uobj, struct vm_page *pg)
2233 {
2234 bool dropswap = false;
2235
2236 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2237
2238 mutex_enter(&uvm_pageqlock);
2239 if (flt->wire_paging) {
2240 uvm_pagewire(pg);
2241 if (pg->pqflags & PQ_AOBJ) {
2242
2243 /*
2244 * since the now-wired page cannot be paged out,
2245 * release its swap resources for others to use.
2246 * since an aobj page with no swap cannot be PG_CLEAN,
2247 * clear its clean flag now.
2248 */
2249
2250 KASSERT(uobj != NULL);
2251 pg->flags &= ~(PG_CLEAN);
2252 dropswap = true;
2253 }
2254 } else {
2255 uvm_pageactivate(pg);
2256 }
2257 mutex_exit(&uvm_pageqlock);
2258
2259 if (dropswap) {
2260 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2261 }
2262 }
2263
2264
2265 /*
2266 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2267 *
2268 * => map may be read-locked by caller, but MUST NOT be write-locked.
2269 * => if map is read-locked, any operations which may cause map to
2270 * be write-locked in uvm_fault() must be taken care of by
2271 * the caller. See uvm_map_pageable().
2272 */
2273
2274 int
2275 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2276 vm_prot_t access_type, int maxprot)
2277 {
2278 vaddr_t va;
2279 int error;
2280
2281 /*
2282 * now fault it in a page at a time. if the fault fails then we have
2283 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2284 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2285 */
2286
2287 /*
2288 * XXX work around overflowing a vaddr_t. this prevents us from
2289 * wiring the last page in the address space, though.
2290 */
2291 if (start > end) {
2292 return EFAULT;
2293 }
2294
2295 for (va = start; va < end; va += PAGE_SIZE) {
2296 error = uvm_fault_internal(map, va, access_type,
2297 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2298 if (error) {
2299 if (va != start) {
2300 uvm_fault_unwire(map, start, va);
2301 }
2302 return error;
2303 }
2304 }
2305 return 0;
2306 }
2307
2308 /*
2309 * uvm_fault_unwire(): unwire range of virtual space.
2310 */
2311
2312 void
2313 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2314 {
2315 vm_map_lock_read(map);
2316 uvm_fault_unwire_locked(map, start, end);
2317 vm_map_unlock_read(map);
2318 }
2319
2320 /*
2321 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2322 *
2323 * => map must be at least read-locked.
2324 */
2325
2326 void
2327 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2328 {
2329 struct vm_map_entry *entry;
2330 pmap_t pmap = vm_map_pmap(map);
2331 vaddr_t va;
2332 paddr_t pa;
2333 struct vm_page *pg;
2334
2335 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2336
2337 /*
2338 * we assume that the area we are unwiring has actually been wired
2339 * in the first place. this means that we should be able to extract
2340 * the PAs from the pmap. we also lock out the page daemon so that
2341 * we can call uvm_pageunwire.
2342 */
2343
2344 mutex_enter(&uvm_pageqlock);
2345
2346 /*
2347 * find the beginning map entry for the region.
2348 */
2349
2350 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2351 if (uvm_map_lookup_entry(map, start, &entry) == false)
2352 panic("uvm_fault_unwire_locked: address not in map");
2353
2354 for (va = start; va < end; va += PAGE_SIZE) {
2355 if (pmap_extract(pmap, va, &pa) == false)
2356 continue;
2357
2358 /*
2359 * find the map entry for the current address.
2360 */
2361
2362 KASSERT(va >= entry->start);
2363 while (va >= entry->end) {
2364 KASSERT(entry->next != &map->header &&
2365 entry->next->start <= entry->end);
2366 entry = entry->next;
2367 }
2368
2369 /*
2370 * if the entry is no longer wired, tell the pmap.
2371 */
2372
2373 if (VM_MAPENT_ISWIRED(entry) == 0)
2374 pmap_unwire(pmap, va);
2375
2376 pg = PHYS_TO_VM_PAGE(pa);
2377 if (pg)
2378 uvm_pageunwire(pg);
2379 }
2380
2381 mutex_exit(&uvm_pageqlock);
2382 }
2383