Home | History | Annotate | Line # | Download | only in uvm
uvm_fault.c revision 1.179
      1 /*	$NetBSD: uvm_fault.c,v 1.179 2011/01/04 08:26:33 matt Exp $	*/
      2 
      3 /*
      4  *
      5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
     35  */
     36 
     37 /*
     38  * uvm_fault.c: fault handler
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.179 2011/01/04 08:26:33 matt Exp $");
     43 
     44 #include "opt_uvmhist.h"
     45 
     46 #include <sys/param.h>
     47 #include <sys/systm.h>
     48 #include <sys/kernel.h>
     49 #include <sys/proc.h>
     50 #include <sys/malloc.h>
     51 #include <sys/mman.h>
     52 
     53 #include <uvm/uvm.h>
     54 
     55 /*
     56  *
     57  * a word on page faults:
     58  *
     59  * types of page faults we handle:
     60  *
     61  * CASE 1: upper layer faults                   CASE 2: lower layer faults
     62  *
     63  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
     64  *    read/write1     write>1                  read/write   +-cow_write/zero
     65  *         |             |                         |        |
     66  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
     67  * amap |  V  |       |  ---------> new |          |        | |  ^  |
     68  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
     69  *                                                 |        |    |
     70  *      +-----+       +-----+                   +--|--+     | +--|--+
     71  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
     72  *      +-----+       +-----+                   +-----+       +-----+
     73  *
     74  * d/c = don't care
     75  *
     76  *   case [0]: layerless fault
     77  *	no amap or uobj is present.   this is an error.
     78  *
     79  *   case [1]: upper layer fault [anon active]
     80  *     1A: [read] or [write with anon->an_ref == 1]
     81  *		I/O takes place in upper level anon and uobj is not touched.
     82  *     1B: [write with anon->an_ref > 1]
     83  *		new anon is alloc'd and data is copied off ["COW"]
     84  *
     85  *   case [2]: lower layer fault [uobj]
     86  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
     87  *		I/O takes place directly in object.
     88  *     2B: [write to copy_on_write] or [read on NULL uobj]
     89  *		data is "promoted" from uobj to a new anon.
     90  *		if uobj is null, then we zero fill.
     91  *
     92  * we follow the standard UVM locking protocol ordering:
     93  *
     94  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
     95  * we hold a PG_BUSY page if we unlock for I/O
     96  *
     97  *
     98  * the code is structured as follows:
     99  *
    100  *     - init the "IN" params in the ufi structure
    101  *   ReFault: (ERESTART returned to the loop in uvm_fault_internal)
    102  *     - do lookups [locks maps], check protection, handle needs_copy
    103  *     - check for case 0 fault (error)
    104  *     - establish "range" of fault
    105  *     - if we have an amap lock it and extract the anons
    106  *     - if sequential advice deactivate pages behind us
    107  *     - at the same time check pmap for unmapped areas and anon for pages
    108  *	 that we could map in (and do map it if found)
    109  *     - check object for resident pages that we could map in
    110  *     - if (case 2) goto Case2
    111  *     - >>> handle case 1
    112  *           - ensure source anon is resident in RAM
    113  *           - if case 1B alloc new anon and copy from source
    114  *           - map the correct page in
    115  *   Case2:
    116  *     - >>> handle case 2
    117  *           - ensure source page is resident (if uobj)
    118  *           - if case 2B alloc new anon and copy from source (could be zero
    119  *		fill if uobj == NULL)
    120  *           - map the correct page in
    121  *     - done!
    122  *
    123  * note on paging:
    124  *   if we have to do I/O we place a PG_BUSY page in the correct object,
    125  * unlock everything, and do the I/O.   when I/O is done we must reverify
    126  * the state of the world before assuming that our data structures are
    127  * valid.   [because mappings could change while the map is unlocked]
    128  *
    129  *  alternative 1: unbusy the page in question and restart the page fault
    130  *    from the top (ReFault).   this is easy but does not take advantage
    131  *    of the information that we already have from our previous lookup,
    132  *    although it is possible that the "hints" in the vm_map will help here.
    133  *
    134  * alternative 2: the system already keeps track of a "version" number of
    135  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
    136  *    mapping) you bump the version number up by one...]   so, we can save
    137  *    the version number of the map before we release the lock and start I/O.
    138  *    then when I/O is done we can relock and check the version numbers
    139  *    to see if anything changed.    this might save us some over 1 because
    140  *    we don't have to unbusy the page and may be less compares(?).
    141  *
    142  * alternative 3: put in backpointers or a way to "hold" part of a map
    143  *    in place while I/O is in progress.   this could be complex to
    144  *    implement (especially with structures like amap that can be referenced
    145  *    by multiple map entries, and figuring out what should wait could be
    146  *    complex as well...).
    147  *
    148  * we use alternative 2.  given that we are multi-threaded now we may want
    149  * to reconsider the choice.
    150  */
    151 
    152 /*
    153  * local data structures
    154  */
    155 
    156 struct uvm_advice {
    157 	int advice;
    158 	int nback;
    159 	int nforw;
    160 };
    161 
    162 /*
    163  * page range array:
    164  * note: index in array must match "advice" value
    165  * XXX: borrowed numbers from freebsd.   do they work well for us?
    166  */
    167 
    168 static const struct uvm_advice uvmadvice[] = {
    169 	{ MADV_NORMAL, 3, 4 },
    170 	{ MADV_RANDOM, 0, 0 },
    171 	{ MADV_SEQUENTIAL, 8, 7},
    172 };
    173 
    174 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
    175 
    176 /*
    177  * private prototypes
    178  */
    179 
    180 /*
    181  * inline functions
    182  */
    183 
    184 /*
    185  * uvmfault_anonflush: try and deactivate pages in specified anons
    186  *
    187  * => does not have to deactivate page if it is busy
    188  */
    189 
    190 static inline void
    191 uvmfault_anonflush(struct vm_anon **anons, int n)
    192 {
    193 	int lcv;
    194 	struct vm_page *pg;
    195 
    196 	for (lcv = 0; lcv < n; lcv++) {
    197 		if (anons[lcv] == NULL)
    198 			continue;
    199 		mutex_enter(&anons[lcv]->an_lock);
    200 		pg = anons[lcv]->an_page;
    201 		if (pg && (pg->flags & PG_BUSY) == 0) {
    202 			mutex_enter(&uvm_pageqlock);
    203 			if (pg->wire_count == 0) {
    204 				uvm_pagedeactivate(pg);
    205 			}
    206 			mutex_exit(&uvm_pageqlock);
    207 		}
    208 		mutex_exit(&anons[lcv]->an_lock);
    209 	}
    210 }
    211 
    212 /*
    213  * normal functions
    214  */
    215 
    216 /*
    217  * uvmfault_amapcopy: clear "needs_copy" in a map.
    218  *
    219  * => called with VM data structures unlocked (usually, see below)
    220  * => we get a write lock on the maps and clear needs_copy for a VA
    221  * => if we are out of RAM we sleep (waiting for more)
    222  */
    223 
    224 static void
    225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
    226 {
    227 	for (;;) {
    228 
    229 		/*
    230 		 * no mapping?  give up.
    231 		 */
    232 
    233 		if (uvmfault_lookup(ufi, true) == false)
    234 			return;
    235 
    236 		/*
    237 		 * copy if needed.
    238 		 */
    239 
    240 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
    241 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
    242 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
    243 
    244 		/*
    245 		 * didn't work?  must be out of RAM.   unlock and sleep.
    246 		 */
    247 
    248 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
    249 			uvmfault_unlockmaps(ufi, true);
    250 			uvm_wait("fltamapcopy");
    251 			continue;
    252 		}
    253 
    254 		/*
    255 		 * got it!   unlock and return.
    256 		 */
    257 
    258 		uvmfault_unlockmaps(ufi, true);
    259 		return;
    260 	}
    261 	/*NOTREACHED*/
    262 }
    263 
    264 /*
    265  * uvmfault_anonget: get data in an anon into a non-busy, non-released
    266  * page in that anon.
    267  *
    268  * => maps, amap, and anon locked by caller.
    269  * => if we fail (result != 0) we unlock everything.
    270  * => if we are successful, we return with everything still locked.
    271  * => we don't move the page on the queues [gets moved later]
    272  * => if we allocate a new page [we_own], it gets put on the queues.
    273  *    either way, the result is that the page is on the queues at return time
    274  * => for pages which are on loan from a uvm_object (and thus are not
    275  *    owned by the anon): if successful, we return with the owning object
    276  *    locked.   the caller must unlock this object when it unlocks everything
    277  *    else.
    278  */
    279 
    280 int
    281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
    282     struct vm_anon *anon)
    283 {
    284 	bool we_own;	/* we own anon's page? */
    285 	bool locked;	/* did we relock? */
    286 	struct vm_page *pg;
    287 	int error;
    288 	UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
    289 
    290 	KASSERT(mutex_owned(&anon->an_lock));
    291 
    292 	error = 0;
    293 	uvmexp.fltanget++;
    294         /* bump rusage counters */
    295 	if (anon->an_page)
    296 		curlwp->l_ru.ru_minflt++;
    297 	else
    298 		curlwp->l_ru.ru_majflt++;
    299 
    300 	/*
    301 	 * loop until we get it, or fail.
    302 	 */
    303 
    304 	for (;;) {
    305 		we_own = false;		/* true if we set PG_BUSY on a page */
    306 		pg = anon->an_page;
    307 
    308 		/*
    309 		 * if there is a resident page and it is loaned, then anon
    310 		 * may not own it.   call out to uvm_anon_lockpage() to ensure
    311 		 * the real owner of the page has been identified and locked.
    312 		 */
    313 
    314 		if (pg && pg->loan_count)
    315 			pg = uvm_anon_lockloanpg(anon);
    316 
    317 		/*
    318 		 * page there?   make sure it is not busy/released.
    319 		 */
    320 
    321 		if (pg) {
    322 
    323 			/*
    324 			 * at this point, if the page has a uobject [meaning
    325 			 * we have it on loan], then that uobject is locked
    326 			 * by us!   if the page is busy, we drop all the
    327 			 * locks (including uobject) and try again.
    328 			 */
    329 
    330 			if ((pg->flags & PG_BUSY) == 0) {
    331 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
    332 				return (0);
    333 			}
    334 			pg->flags |= PG_WANTED;
    335 			uvmexp.fltpgwait++;
    336 
    337 			/*
    338 			 * the last unlock must be an atomic unlock+wait on
    339 			 * the owner of page
    340 			 */
    341 
    342 			if (pg->uobject) {	/* owner is uobject ? */
    343 				uvmfault_unlockall(ufi, amap, NULL, anon);
    344 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
    345 				    0,0,0);
    346 				UVM_UNLOCK_AND_WAIT(pg,
    347 				    &pg->uobject->vmobjlock,
    348 				    false, "anonget1",0);
    349 			} else {
    350 				/* anon owns page */
    351 				uvmfault_unlockall(ufi, amap, NULL, NULL);
    352 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
    353 				    0,0,0);
    354 				UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
    355 				    "anonget2",0);
    356 			}
    357 		} else {
    358 #if defined(VMSWAP)
    359 
    360 			/*
    361 			 * no page, we must try and bring it in.
    362 			 */
    363 
    364 			pg = uvm_pagealloc(NULL, ufi->orig_rvaddr,
    365 			    NULL, UVM_FLAG_COLORMATCH);
    366 			if (pg == NULL) {		/* out of RAM.  */
    367 				uvmfault_unlockall(ufi, amap, NULL, anon);
    368 				uvmexp.fltnoram++;
    369 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
    370 				    0,0,0);
    371 				if (!uvm_reclaimable()) {
    372 					return ENOMEM;
    373 				}
    374 				uvm_wait("flt_noram1");
    375 			} else {
    376 				/* we set the PG_BUSY bit */
    377 				we_own = true;
    378 				uvmfault_unlockall(ufi, amap, NULL, anon);
    379 
    380 				/*
    381 				 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
    382 				 * page into the uvm_swap_get function with
    383 				 * all data structures unlocked.  note that
    384 				 * it is ok to read an_swslot here because
    385 				 * we hold PG_BUSY on the page.
    386 				 */
    387 				uvmexp.pageins++;
    388 				error = uvm_swap_get(pg, anon->an_swslot,
    389 				    PGO_SYNCIO);
    390 
    391 				/*
    392 				 * we clean up after the i/o below in the
    393 				 * "we_own" case
    394 				 */
    395 			}
    396 #else /* defined(VMSWAP) */
    397 			panic("%s: no page", __func__);
    398 #endif /* defined(VMSWAP) */
    399 		}
    400 
    401 		/*
    402 		 * now relock and try again
    403 		 */
    404 
    405 		locked = uvmfault_relock(ufi);
    406 		if (locked && amap != NULL) {
    407 			amap_lock(amap);
    408 		}
    409 		if (locked || we_own)
    410 			mutex_enter(&anon->an_lock);
    411 
    412 		/*
    413 		 * if we own the page (i.e. we set PG_BUSY), then we need
    414 		 * to clean up after the I/O. there are three cases to
    415 		 * consider:
    416 		 *   [1] page released during I/O: free anon and ReFault.
    417 		 *   [2] I/O not OK.   free the page and cause the fault
    418 		 *       to fail.
    419 		 *   [3] I/O OK!   activate the page and sync with the
    420 		 *       non-we_own case (i.e. drop anon lock if not locked).
    421 		 */
    422 
    423 		if (we_own) {
    424 #if defined(VMSWAP)
    425 			if (pg->flags & PG_WANTED) {
    426 				wakeup(pg);
    427 			}
    428 			if (error) {
    429 
    430 				/*
    431 				 * remove the swap slot from the anon
    432 				 * and mark the anon as having no real slot.
    433 				 * don't free the swap slot, thus preventing
    434 				 * it from being used again.
    435 				 */
    436 
    437 				if (anon->an_swslot > 0)
    438 					uvm_swap_markbad(anon->an_swslot, 1);
    439 				anon->an_swslot = SWSLOT_BAD;
    440 
    441 				if ((pg->flags & PG_RELEASED) != 0)
    442 					goto released;
    443 
    444 				/*
    445 				 * note: page was never !PG_BUSY, so it
    446 				 * can't be mapped and thus no need to
    447 				 * pmap_page_protect it...
    448 				 */
    449 
    450 				mutex_enter(&uvm_pageqlock);
    451 				uvm_pagefree(pg);
    452 				mutex_exit(&uvm_pageqlock);
    453 
    454 				if (locked)
    455 					uvmfault_unlockall(ufi, amap, NULL,
    456 					    anon);
    457 				else
    458 					mutex_exit(&anon->an_lock);
    459 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
    460 				return error;
    461 			}
    462 
    463 			if ((pg->flags & PG_RELEASED) != 0) {
    464 released:
    465 				KASSERT(anon->an_ref == 0);
    466 
    467 				/*
    468 				 * released while we unlocked amap.
    469 				 */
    470 
    471 				if (locked)
    472 					uvmfault_unlockall(ufi, amap, NULL,
    473 					    NULL);
    474 
    475 				uvm_anon_release(anon);
    476 
    477 				if (error) {
    478 					UVMHIST_LOG(maphist,
    479 					    "<- ERROR/RELEASED", 0,0,0,0);
    480 					return error;
    481 				}
    482 
    483 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
    484 				return ERESTART;
    485 			}
    486 
    487 			/*
    488 			 * we've successfully read the page, activate it.
    489 			 */
    490 
    491 			mutex_enter(&uvm_pageqlock);
    492 			uvm_pageactivate(pg);
    493 			mutex_exit(&uvm_pageqlock);
    494 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    495 			UVM_PAGE_OWN(pg, NULL);
    496 			if (!locked)
    497 				mutex_exit(&anon->an_lock);
    498 #else /* defined(VMSWAP) */
    499 			panic("%s: we_own", __func__);
    500 #endif /* defined(VMSWAP) */
    501 		}
    502 
    503 		/*
    504 		 * we were not able to relock.   restart fault.
    505 		 */
    506 
    507 		if (!locked) {
    508 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    509 			return (ERESTART);
    510 		}
    511 
    512 		/*
    513 		 * verify no one has touched the amap and moved the anon on us.
    514 		 */
    515 
    516 		if (ufi != NULL &&
    517 		    amap_lookup(&ufi->entry->aref,
    518 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
    519 
    520 			uvmfault_unlockall(ufi, amap, NULL, anon);
    521 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    522 			return (ERESTART);
    523 		}
    524 
    525 		/*
    526 		 * try it again!
    527 		 */
    528 
    529 		uvmexp.fltanretry++;
    530 		continue;
    531 	}
    532 	/*NOTREACHED*/
    533 }
    534 
    535 /*
    536  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
    537  *
    538  *	1. allocate an anon and a page.
    539  *	2. fill its contents.
    540  *	3. put it into amap.
    541  *
    542  * => if we fail (result != 0) we unlock everything.
    543  * => on success, return a new locked anon via 'nanon'.
    544  *    (*nanon)->an_page will be a resident, locked, dirty page.
    545  */
    546 
    547 static int
    548 uvmfault_promote(struct uvm_faultinfo *ufi,
    549     struct vm_anon *oanon,
    550     struct vm_page *uobjpage,
    551     struct vm_anon **nanon, /* OUT: allocated anon */
    552     struct vm_anon **spare)
    553 {
    554 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
    555 	struct uvm_object *uobj;
    556 	struct vm_anon *anon;
    557 	struct vm_page *pg;
    558 	struct vm_page *opg;
    559 	int error;
    560 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    561 
    562 	if (oanon) {
    563 		/* anon COW */
    564 		opg = oanon->an_page;
    565 		KASSERT(opg != NULL);
    566 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
    567 	} else if (uobjpage != PGO_DONTCARE) {
    568 		/* object-backed COW */
    569 		opg = uobjpage;
    570 	} else {
    571 		/* ZFOD */
    572 		opg = NULL;
    573 	}
    574 	if (opg != NULL) {
    575 		uobj = opg->uobject;
    576 	} else {
    577 		uobj = NULL;
    578 	}
    579 
    580 	KASSERT(amap != NULL);
    581 	KASSERT(uobjpage != NULL);
    582 	KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
    583 	KASSERT(mutex_owned(&amap->am_l));
    584 	KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
    585 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
    586 #if 0
    587 	KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
    588 #endif
    589 
    590 	if (*spare != NULL) {
    591 		anon = *spare;
    592 		*spare = NULL;
    593 		mutex_enter(&anon->an_lock);
    594 	} else if (ufi->map != kernel_map) {
    595 		anon = uvm_analloc();
    596 	} else {
    597 		UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
    598 
    599 		/*
    600 		 * we can't allocate anons with kernel_map locked.
    601 		 */
    602 
    603 		uvm_page_unbusy(&uobjpage, 1);
    604 		uvmfault_unlockall(ufi, amap, uobj, oanon);
    605 
    606 		*spare = uvm_analloc();
    607 		if (*spare == NULL) {
    608 			goto nomem;
    609 		}
    610 		mutex_exit(&(*spare)->an_lock);
    611 		error = ERESTART;
    612 		goto done;
    613 	}
    614 	if (anon) {
    615 
    616 		/*
    617 		 * The new anon is locked.
    618 		 *
    619 		 * if opg == NULL, we want a zero'd, dirty page,
    620 		 * so have uvm_pagealloc() do that for us.
    621 		 */
    622 
    623 		pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
    624 		    UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
    625 	} else {
    626 		pg = NULL;
    627 	}
    628 
    629 	/*
    630 	 * out of memory resources?
    631 	 */
    632 
    633 	if (pg == NULL) {
    634 		/* save anon for the next try. */
    635 		if (anon != NULL) {
    636 			mutex_exit(&anon->an_lock);
    637 			*spare = anon;
    638 		}
    639 
    640 		/* unlock and fail ... */
    641 		uvm_page_unbusy(&uobjpage, 1);
    642 		uvmfault_unlockall(ufi, amap, uobj, oanon);
    643 nomem:
    644 		if (!uvm_reclaimable()) {
    645 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
    646 			uvmexp.fltnoanon++;
    647 			error = ENOMEM;
    648 			goto done;
    649 		}
    650 
    651 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
    652 		uvmexp.fltnoram++;
    653 		uvm_wait("flt_noram5");
    654 		error = ERESTART;
    655 		goto done;
    656 	}
    657 
    658 	/* copy page [pg now dirty] */
    659 	if (opg) {
    660 		uvm_pagecopy(opg, pg);
    661 	}
    662 
    663 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
    664 	    oanon != NULL);
    665 
    666 	*nanon = anon;
    667 	error = 0;
    668 done:
    669 	return error;
    670 }
    671 
    672 
    673 /*
    674  *   F A U L T   -   m a i n   e n t r y   p o i n t
    675  */
    676 
    677 /*
    678  * uvm_fault: page fault handler
    679  *
    680  * => called from MD code to resolve a page fault
    681  * => VM data structures usually should be unlocked.   however, it is
    682  *	possible to call here with the main map locked if the caller
    683  *	gets a write lock, sets it recusive, and then calls us (c.f.
    684  *	uvm_map_pageable).   this should be avoided because it keeps
    685  *	the map locked off during I/O.
    686  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
    687  */
    688 
    689 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
    690 			 ~VM_PROT_WRITE : VM_PROT_ALL)
    691 
    692 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
    693 #define UVM_FAULT_WIRE		(1 << 0)
    694 #define UVM_FAULT_MAXPROT	(1 << 1)
    695 
    696 struct uvm_faultctx {
    697 	vm_prot_t access_type;
    698 	vm_prot_t enter_prot;
    699 	vaddr_t startva;
    700 	int npages;
    701 	int centeridx;
    702 	struct vm_anon *anon_spare;
    703 	bool wire_mapping;
    704 	bool narrow;
    705 	bool wire_paging;
    706 	bool cow_now;
    707 	bool promote;
    708 };
    709 
    710 static inline int	uvm_fault_check(
    711 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    712 			    struct vm_anon ***, bool);
    713 
    714 static int		uvm_fault_upper(
    715 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    716 			    struct vm_anon **);
    717 static inline int	uvm_fault_upper_lookup(
    718 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    719 			    struct vm_anon **, struct vm_page **);
    720 static inline void	uvm_fault_upper_neighbor(
    721 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    722 			    vaddr_t, struct vm_page *, bool);
    723 static inline int	uvm_fault_upper_loan(
    724 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    725 			    struct vm_anon *, struct uvm_object **);
    726 static inline int	uvm_fault_upper_promote(
    727 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    728 			    struct uvm_object *, struct vm_anon *);
    729 static inline int	uvm_fault_upper_direct(
    730 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    731 			    struct uvm_object *, struct vm_anon *);
    732 static int		uvm_fault_upper_enter(
    733 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    734 			    struct uvm_object *, struct vm_anon *,
    735 			    struct vm_page *, struct vm_anon *);
    736 static inline void	uvm_fault_upper_done(
    737 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    738 			    struct vm_anon *, struct vm_page *);
    739 
    740 static int		uvm_fault_lower(
    741 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    742 			    struct vm_page **);
    743 static inline void	uvm_fault_lower_lookup(
    744 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    745 			    struct vm_page **);
    746 static inline void	uvm_fault_lower_neighbor(
    747 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    748 			    vaddr_t, struct vm_page *, bool);
    749 static inline int	uvm_fault_lower_io(
    750 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    751 			    struct uvm_object **, struct vm_page **);
    752 static inline int	uvm_fault_lower_direct(
    753 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    754 			    struct uvm_object *, struct vm_page *);
    755 static inline int	uvm_fault_lower_direct_loan(
    756 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    757 			    struct uvm_object *, struct vm_page **,
    758 			    struct vm_page **);
    759 static inline int	uvm_fault_lower_promote(
    760 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    761 			    struct uvm_object *, struct vm_page *);
    762 static int		uvm_fault_lower_enter(
    763 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    764 			    struct uvm_object *,
    765 			    struct vm_anon *, struct vm_page *,
    766 			    struct vm_page *);
    767 static inline void	uvm_fault_lower_done(
    768 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    769 			    struct uvm_object *, struct vm_page *);
    770 
    771 int
    772 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
    773     vm_prot_t access_type, int fault_flag)
    774 {
    775 	struct uvm_faultinfo ufi;
    776 	struct uvm_faultctx flt = {
    777 		.access_type = access_type,
    778 
    779 		/* don't look for neighborhood * pages on "wire" fault */
    780 		.narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
    781 
    782 		/* "wire" fault causes wiring of both mapping and paging */
    783 		.wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
    784 		.wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
    785 	};
    786 	const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
    787 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
    788 	struct vm_page *pages_store[UVM_MAXRANGE], **pages;
    789 	int error;
    790 	UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
    791 
    792 	UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
    793 	      orig_map, vaddr, access_type, fault_flag);
    794 
    795 	curcpu()->ci_data.cpu_nfault++;
    796 
    797 	/*
    798 	 * init the IN parameters in the ufi
    799 	 */
    800 
    801 	ufi.orig_map = orig_map;
    802 	ufi.orig_rvaddr = trunc_page(vaddr);
    803 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
    804 
    805 	error = ERESTART;
    806 	while (error == ERESTART) {
    807 		anons = anons_store;
    808 		pages = pages_store;
    809 
    810 		error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
    811 		if (error != 0)
    812 			continue;
    813 
    814 		error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
    815 		if (error != 0)
    816 			continue;
    817 
    818 		if (pages[flt.centeridx] == PGO_DONTCARE)
    819 			error = uvm_fault_upper(&ufi, &flt, anons);
    820 		else {
    821 			struct uvm_object * const uobj =
    822 			    ufi.entry->object.uvm_obj;
    823 
    824 			if (uobj && uobj->pgops->pgo_fault != NULL) {
    825 				/*
    826 				 * invoke "special" fault routine.
    827 				 */
    828 				mutex_enter(&uobj->vmobjlock);
    829 				/* locked: maps(read), amap(if there), uobj */
    830 				error = uobj->pgops->pgo_fault(&ufi,
    831 				    flt.startva, pages, flt.npages,
    832 				    flt.centeridx, flt.access_type,
    833 				    PGO_LOCKED|PGO_SYNCIO);
    834 
    835 				/*
    836 				 * locked: nothing, pgo_fault has unlocked
    837 				 * everything
    838 				 */
    839 
    840 				/*
    841 				 * object fault routine responsible for
    842 				 * pmap_update().
    843 				 */
    844 			} else {
    845 				error = uvm_fault_lower(&ufi, &flt, pages);
    846 			}
    847 		}
    848 	}
    849 
    850 	if (flt.anon_spare != NULL) {
    851 		flt.anon_spare->an_ref--;
    852 		uvm_anfree(flt.anon_spare);
    853 	}
    854 	return error;
    855 }
    856 
    857 /*
    858  * uvm_fault_check: check prot, handle needs-copy, etc.
    859  *
    860  *	1. lookup entry.
    861  *	2. check protection.
    862  *	3. adjust fault condition (mainly for simulated fault).
    863  *	4. handle needs-copy (lazy amap copy).
    864  *	5. establish range of interest for neighbor fault (aka pre-fault).
    865  *	6. look up anons (if amap exists).
    866  *	7. flush pages (if MADV_SEQUENTIAL)
    867  *
    868  * => called with nothing locked.
    869  * => if we fail (result != 0) we unlock everything.
    870  * => initialize/adjust many members of flt.
    871  */
    872 
    873 static int
    874 uvm_fault_check(
    875 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
    876 	struct vm_anon ***ranons, bool maxprot)
    877 {
    878 	struct vm_amap *amap;
    879 	struct uvm_object *uobj;
    880 	vm_prot_t check_prot;
    881 	int nback, nforw;
    882 	UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
    883 
    884 	/*
    885 	 * lookup and lock the maps
    886 	 */
    887 
    888 	if (uvmfault_lookup(ufi, false) == false) {
    889 		UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr,
    890 		    0,0,0);
    891 		return EFAULT;
    892 	}
    893 	/* locked: maps(read) */
    894 
    895 #ifdef DIAGNOSTIC
    896 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
    897 		printf("Page fault on non-pageable map:\n");
    898 		printf("ufi->map = %p\n", ufi->map);
    899 		printf("ufi->orig_map = %p\n", ufi->orig_map);
    900 		printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
    901 		panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
    902 	}
    903 #endif
    904 
    905 	/*
    906 	 * check protection
    907 	 */
    908 
    909 	check_prot = maxprot ?
    910 	    ufi->entry->max_protection : ufi->entry->protection;
    911 	if ((check_prot & flt->access_type) != flt->access_type) {
    912 		UVMHIST_LOG(maphist,
    913 		    "<- protection failure (prot=0x%x, access=0x%x)",
    914 		    ufi->entry->protection, flt->access_type, 0, 0);
    915 		uvmfault_unlockmaps(ufi, false);
    916 		return EACCES;
    917 	}
    918 
    919 	/*
    920 	 * "enter_prot" is the protection we want to enter the page in at.
    921 	 * for certain pages (e.g. copy-on-write pages) this protection can
    922 	 * be more strict than ufi->entry->protection.  "wired" means either
    923 	 * the entry is wired or we are fault-wiring the pg.
    924 	 */
    925 
    926 	flt->enter_prot = ufi->entry->protection;
    927 	if (VM_MAPENT_ISWIRED(ufi->entry))
    928 		flt->wire_mapping = true;
    929 
    930 	if (flt->wire_mapping) {
    931 		flt->access_type = flt->enter_prot; /* full access for wired */
    932 		flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
    933 	} else {
    934 		flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
    935 	}
    936 
    937 	flt->promote = false;
    938 
    939 	/*
    940 	 * handle "needs_copy" case.   if we need to copy the amap we will
    941 	 * have to drop our readlock and relock it with a write lock.  (we
    942 	 * need a write lock to change anything in a map entry [e.g.
    943 	 * needs_copy]).
    944 	 */
    945 
    946 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
    947 		if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
    948 			KASSERT(!maxprot);
    949 			/* need to clear */
    950 			UVMHIST_LOG(maphist,
    951 			    "  need to clear needs_copy and refault",0,0,0,0);
    952 			uvmfault_unlockmaps(ufi, false);
    953 			uvmfault_amapcopy(ufi);
    954 			uvmexp.fltamcopy++;
    955 			return ERESTART;
    956 
    957 		} else {
    958 
    959 			/*
    960 			 * ensure that we pmap_enter page R/O since
    961 			 * needs_copy is still true
    962 			 */
    963 
    964 			flt->enter_prot &= ~VM_PROT_WRITE;
    965 		}
    966 	}
    967 
    968 	/*
    969 	 * identify the players
    970 	 */
    971 
    972 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
    973 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
    974 
    975 	/*
    976 	 * check for a case 0 fault.  if nothing backing the entry then
    977 	 * error now.
    978 	 */
    979 
    980 	if (amap == NULL && uobj == NULL) {
    981 		uvmfault_unlockmaps(ufi, false);
    982 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
    983 		return EFAULT;
    984 	}
    985 
    986 	/*
    987 	 * establish range of interest based on advice from mapper
    988 	 * and then clip to fit map entry.   note that we only want
    989 	 * to do this the first time through the fault.   if we
    990 	 * ReFault we will disable this by setting "narrow" to true.
    991 	 */
    992 
    993 	if (flt->narrow == false) {
    994 
    995 		/* wide fault (!narrow) */
    996 		KASSERT(uvmadvice[ufi->entry->advice].advice ==
    997 			 ufi->entry->advice);
    998 		nback = MIN(uvmadvice[ufi->entry->advice].nback,
    999 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
   1000 		flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
   1001 		/*
   1002 		 * note: "-1" because we don't want to count the
   1003 		 * faulting page as forw
   1004 		 */
   1005 		nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
   1006 			    ((ufi->entry->end - ufi->orig_rvaddr) >>
   1007 			     PAGE_SHIFT) - 1);
   1008 		flt->npages = nback + nforw + 1;
   1009 		flt->centeridx = nback;
   1010 
   1011 		flt->narrow = true;	/* ensure only once per-fault */
   1012 
   1013 	} else {
   1014 
   1015 		/* narrow fault! */
   1016 		nback = nforw = 0;
   1017 		flt->startva = ufi->orig_rvaddr;
   1018 		flt->npages = 1;
   1019 		flt->centeridx = 0;
   1020 
   1021 	}
   1022 	/* offset from entry's start to pgs' start */
   1023 	const voff_t eoff = flt->startva - ufi->entry->start;
   1024 
   1025 	/* locked: maps(read) */
   1026 	UVMHIST_LOG(maphist, "  narrow=%d, back=%d, forw=%d, startva=0x%x",
   1027 		    flt->narrow, nback, nforw, flt->startva);
   1028 	UVMHIST_LOG(maphist, "  entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
   1029 		    amap, uobj, 0);
   1030 
   1031 	/*
   1032 	 * if we've got an amap, lock it and extract current anons.
   1033 	 */
   1034 
   1035 	if (amap) {
   1036 		amap_lock(amap);
   1037 		amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
   1038 	} else {
   1039 		*ranons = NULL;	/* to be safe */
   1040 	}
   1041 
   1042 	/* locked: maps(read), amap(if there) */
   1043 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1044 
   1045 	/*
   1046 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
   1047 	 * now and then forget about them (for the rest of the fault).
   1048 	 */
   1049 
   1050 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
   1051 
   1052 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
   1053 		    0,0,0,0);
   1054 		/* flush back-page anons? */
   1055 		if (amap)
   1056 			uvmfault_anonflush(*ranons, nback);
   1057 
   1058 		/* flush object? */
   1059 		if (uobj) {
   1060 			voff_t uoff;
   1061 
   1062 			uoff = ufi->entry->offset + eoff;
   1063 			mutex_enter(&uobj->vmobjlock);
   1064 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
   1065 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
   1066 		}
   1067 
   1068 		/* now forget about the backpages */
   1069 		if (amap)
   1070 			*ranons += nback;
   1071 		flt->startva += (nback << PAGE_SHIFT);
   1072 		flt->npages -= nback;
   1073 		flt->centeridx = 0;
   1074 	}
   1075 	/*
   1076 	 * => startva is fixed
   1077 	 * => npages is fixed
   1078 	 */
   1079 	KASSERT(flt->startva <= ufi->orig_rvaddr);
   1080 	KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
   1081 	    flt->startva + (flt->npages << PAGE_SHIFT));
   1082 	return 0;
   1083 }
   1084 
   1085 /*
   1086  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
   1087  *
   1088  * iterate range of interest:
   1089  *	1. check if h/w mapping exists.  if yes, we don't care
   1090  *	2. check if anon exists.  if not, page is lower.
   1091  *	3. if anon exists, enter h/w mapping for neighbors.
   1092  *
   1093  * => called with amap locked (if exists).
   1094  */
   1095 
   1096 static int
   1097 uvm_fault_upper_lookup(
   1098 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1099 	struct vm_anon **anons, struct vm_page **pages)
   1100 {
   1101 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1102 	int lcv;
   1103 	vaddr_t currva;
   1104 	bool shadowed;
   1105 	UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
   1106 
   1107 	/* locked: maps(read), amap(if there) */
   1108 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1109 
   1110 	/*
   1111 	 * map in the backpages and frontpages we found in the amap in hopes
   1112 	 * of preventing future faults.    we also init the pages[] array as
   1113 	 * we go.
   1114 	 */
   1115 
   1116 	currva = flt->startva;
   1117 	shadowed = false;
   1118 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1119 		/*
   1120 		 * don't play with VAs that are already mapped
   1121 		 * (except for center)
   1122 		 */
   1123 		if (lcv != flt->centeridx &&
   1124 		    pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
   1125 			pages[lcv] = PGO_DONTCARE;
   1126 			continue;
   1127 		}
   1128 
   1129 		/*
   1130 		 * unmapped or center page.   check if any anon at this level.
   1131 		 */
   1132 		if (amap == NULL || anons[lcv] == NULL) {
   1133 			pages[lcv] = NULL;
   1134 			continue;
   1135 		}
   1136 
   1137 		/*
   1138 		 * check for present page and map if possible.   re-activate it.
   1139 		 */
   1140 
   1141 		pages[lcv] = PGO_DONTCARE;
   1142 		if (lcv == flt->centeridx) {	/* save center for later! */
   1143 			shadowed = true;
   1144 		} else {
   1145 			struct vm_anon *anon = anons[lcv];
   1146 
   1147 			mutex_enter(&anon->an_lock);
   1148 			struct vm_page *pg = anon->an_page;
   1149 
   1150 			/* ignore loaned and busy pages */
   1151 			if (pg != NULL && pg->loan_count == 0 &&
   1152 			    (pg->flags & PG_BUSY) == 0)
   1153 				uvm_fault_upper_neighbor(ufi, flt, currva,
   1154 				    pg, anon->an_ref > 1);
   1155 			mutex_exit(&anon->an_lock);
   1156 		}
   1157 	}
   1158 
   1159 	/* locked: maps(read), amap(if there) */
   1160 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1161 	/* (shadowed == true) if there is an anon at the faulting address */
   1162 	UVMHIST_LOG(maphist, "  shadowed=%d, will_get=%d", shadowed,
   1163 	    (ufi->entry->object.uvm_obj && shadowed != false),0,0);
   1164 
   1165 	/*
   1166 	 * note that if we are really short of RAM we could sleep in the above
   1167 	 * call to pmap_enter with everything locked.   bad?
   1168 	 *
   1169 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
   1170 	 * XXX case.  --thorpej
   1171 	 */
   1172 
   1173 	return 0;
   1174 }
   1175 
   1176 /*
   1177  * uvm_fault_upper_neighbor: enter single lower neighbor page.
   1178  *
   1179  * => called with amap and anon locked.
   1180  */
   1181 
   1182 static void
   1183 uvm_fault_upper_neighbor(
   1184 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1185 	vaddr_t currva, struct vm_page *pg, bool readonly)
   1186 {
   1187 	UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
   1188 
   1189 	/* locked: amap, anon */
   1190 
   1191 	mutex_enter(&uvm_pageqlock);
   1192 	uvm_pageenqueue(pg);
   1193 	mutex_exit(&uvm_pageqlock);
   1194 	UVMHIST_LOG(maphist,
   1195 	    "  MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
   1196 	    ufi->orig_map->pmap, currva, pg, 0);
   1197 	uvmexp.fltnamap++;
   1198 
   1199 	/*
   1200 	 * Since this page isn't the page that's actually faulting,
   1201 	 * ignore pmap_enter() failures; it's not critical that we
   1202 	 * enter these right now.
   1203 	 */
   1204 
   1205 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1206 	    VM_PAGE_TO_PHYS(pg),
   1207 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1208 	    flt->enter_prot,
   1209 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
   1210 
   1211 	pmap_update(ufi->orig_map->pmap);
   1212 }
   1213 
   1214 /*
   1215  * uvm_fault_upper: handle upper fault.
   1216  *
   1217  *	1. acquire anon lock.
   1218  *	2. get anon.  let uvmfault_anonget do the dirty work.
   1219  *	3. handle loan.
   1220  *	4. dispatch direct or promote handlers.
   1221  */
   1222 
   1223 static int
   1224 uvm_fault_upper(
   1225 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1226 	struct vm_anon **anons)
   1227 {
   1228 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1229 	struct vm_anon * const anon = anons[flt->centeridx];
   1230 	struct uvm_object *uobj;
   1231 	int error;
   1232 	UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
   1233 
   1234 	/* locked: maps(read), amap */
   1235 	KASSERT(mutex_owned(&amap->am_l));
   1236 
   1237 	/*
   1238 	 * handle case 1: fault on an anon in our amap
   1239 	 */
   1240 
   1241 	UVMHIST_LOG(maphist, "  case 1 fault: anon=0x%x", anon, 0,0,0);
   1242 	mutex_enter(&anon->an_lock);
   1243 
   1244 	/* locked: maps(read), amap, anon */
   1245 	KASSERT(mutex_owned(&amap->am_l));
   1246 	KASSERT(mutex_owned(&anon->an_lock));
   1247 
   1248 	/*
   1249 	 * no matter if we have case 1A or case 1B we are going to need to
   1250 	 * have the anon's memory resident.   ensure that now.
   1251 	 */
   1252 
   1253 	/*
   1254 	 * let uvmfault_anonget do the dirty work.
   1255 	 * if it fails (!OK) it will unlock everything for us.
   1256 	 * if it succeeds, locks are still valid and locked.
   1257 	 * also, if it is OK, then the anon's page is on the queues.
   1258 	 * if the page is on loan from a uvm_object, then anonget will
   1259 	 * lock that object for us if it does not fail.
   1260 	 */
   1261 
   1262 	error = uvmfault_anonget(ufi, amap, anon);
   1263 	switch (error) {
   1264 	case 0:
   1265 		break;
   1266 
   1267 	case ERESTART:
   1268 		return ERESTART;
   1269 
   1270 	case EAGAIN:
   1271 		kpause("fltagain1", false, hz/2, NULL);
   1272 		return ERESTART;
   1273 
   1274 	default:
   1275 		return error;
   1276 	}
   1277 
   1278 	/*
   1279 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
   1280 	 */
   1281 
   1282 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
   1283 
   1284 	/* locked: maps(read), amap, anon, uobj(if one) */
   1285 	KASSERT(mutex_owned(&amap->am_l));
   1286 	KASSERT(mutex_owned(&anon->an_lock));
   1287 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   1288 
   1289 	/*
   1290 	 * special handling for loaned pages
   1291 	 */
   1292 
   1293 	if (anon->an_page->loan_count) {
   1294 		error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
   1295 		if (error != 0)
   1296 			return error;
   1297 	}
   1298 
   1299 	/*
   1300 	 * if we are case 1B then we will need to allocate a new blank
   1301 	 * anon to transfer the data into.   note that we have a lock
   1302 	 * on anon, so no one can busy or release the page until we are done.
   1303 	 * also note that the ref count can't drop to zero here because
   1304 	 * it is > 1 and we are only dropping one ref.
   1305 	 *
   1306 	 * in the (hopefully very rare) case that we are out of RAM we
   1307 	 * will unlock, wait for more RAM, and refault.
   1308 	 *
   1309 	 * if we are out of anon VM we kill the process (XXX: could wait?).
   1310 	 */
   1311 
   1312 	if (flt->cow_now && anon->an_ref > 1) {
   1313 		flt->promote = true;
   1314 		error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
   1315 	} else {
   1316 		error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
   1317 	}
   1318 	return error;
   1319 }
   1320 
   1321 /*
   1322  * uvm_fault_upper_loan: handle loaned upper page.
   1323  *
   1324  *	1. if not cow'ing now, simply adjust flt->enter_prot.
   1325  *	2. if cow'ing now, and if ref count is 1, break loan.
   1326  */
   1327 
   1328 static int
   1329 uvm_fault_upper_loan(
   1330 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1331 	struct vm_anon *anon, struct uvm_object **ruobj)
   1332 {
   1333 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1334 	int error = 0;
   1335 	UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
   1336 
   1337 	if (!flt->cow_now) {
   1338 
   1339 		/*
   1340 		 * for read faults on loaned pages we just cap the
   1341 		 * protection at read-only.
   1342 		 */
   1343 
   1344 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1345 
   1346 	} else {
   1347 		/*
   1348 		 * note that we can't allow writes into a loaned page!
   1349 		 *
   1350 		 * if we have a write fault on a loaned page in an
   1351 		 * anon then we need to look at the anon's ref count.
   1352 		 * if it is greater than one then we are going to do
   1353 		 * a normal copy-on-write fault into a new anon (this
   1354 		 * is not a problem).  however, if the reference count
   1355 		 * is one (a case where we would normally allow a
   1356 		 * write directly to the page) then we need to kill
   1357 		 * the loan before we continue.
   1358 		 */
   1359 
   1360 		/* >1 case is already ok */
   1361 		if (anon->an_ref == 1) {
   1362 			error = uvm_loanbreak_anon(anon, *ruobj);
   1363 			if (error != 0) {
   1364 				uvmfault_unlockall(ufi, amap, *ruobj, anon);
   1365 				uvm_wait("flt_noram2");
   1366 				return ERESTART;
   1367 			}
   1368 			/* if we were a loan reciever uobj is gone */
   1369 			if (*ruobj)
   1370 				*ruobj = NULL;
   1371 		}
   1372 	}
   1373 	return error;
   1374 }
   1375 
   1376 /*
   1377  * uvm_fault_upper_promote: promote upper page.
   1378  *
   1379  *	1. call uvmfault_promote.
   1380  *	2. enqueue page.
   1381  *	3. deref.
   1382  *	4. pass page to uvm_fault_upper_enter.
   1383  */
   1384 
   1385 static int
   1386 uvm_fault_upper_promote(
   1387 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1388 	struct uvm_object *uobj, struct vm_anon *anon)
   1389 {
   1390 	struct vm_anon * const oanon = anon;
   1391 	struct vm_page *pg;
   1392 	int error;
   1393 	UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
   1394 
   1395 	UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
   1396 	uvmexp.flt_acow++;
   1397 
   1398 	error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
   1399 	    &flt->anon_spare);
   1400 	switch (error) {
   1401 	case 0:
   1402 		break;
   1403 	case ERESTART:
   1404 		return ERESTART;
   1405 	default:
   1406 		return error;
   1407 	}
   1408 
   1409 	pg = anon->an_page;
   1410 	mutex_enter(&uvm_pageqlock);
   1411 	uvm_pageactivate(pg);
   1412 	mutex_exit(&uvm_pageqlock);
   1413 	pg->flags &= ~(PG_BUSY|PG_FAKE);
   1414 	UVM_PAGE_OWN(pg, NULL);
   1415 
   1416 	/* deref: can not drop to zero here by defn! */
   1417 	oanon->an_ref--;
   1418 
   1419 	/*
   1420 	 * note: oanon is still locked, as is the new anon.  we
   1421 	 * need to check for this later when we unlock oanon; if
   1422 	 * oanon != anon, we'll have to unlock anon, too.
   1423 	 */
   1424 
   1425 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1426 }
   1427 
   1428 /*
   1429  * uvm_fault_upper_direct: handle direct fault.
   1430  */
   1431 
   1432 static int
   1433 uvm_fault_upper_direct(
   1434 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1435 	struct uvm_object *uobj, struct vm_anon *anon)
   1436 {
   1437 	struct vm_anon * const oanon = anon;
   1438 	struct vm_page *pg;
   1439 	UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
   1440 
   1441 	uvmexp.flt_anon++;
   1442 	pg = anon->an_page;
   1443 	if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
   1444 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1445 
   1446 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1447 }
   1448 
   1449 /*
   1450  * uvm_fault_upper_enter: enter h/w mapping of upper page.
   1451  */
   1452 
   1453 static int
   1454 uvm_fault_upper_enter(
   1455 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1456 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
   1457 	struct vm_anon *oanon)
   1458 {
   1459 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1460 	UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
   1461 
   1462 	/* locked: maps(read), amap, oanon, anon(if different from oanon) */
   1463 	KASSERT(mutex_owned(&amap->am_l));
   1464 	KASSERT(mutex_owned(&anon->an_lock));
   1465 	KASSERT(mutex_owned(&oanon->an_lock));
   1466 
   1467 	/*
   1468 	 * now map the page in.
   1469 	 */
   1470 
   1471 	UVMHIST_LOG(maphist,
   1472 	    "  MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
   1473 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
   1474 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
   1475 	    VM_PAGE_TO_PHYS(pg),
   1476 	    flt->enter_prot, flt->access_type | PMAP_CANFAIL |
   1477 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   1478 
   1479 		/*
   1480 		 * No need to undo what we did; we can simply think of
   1481 		 * this as the pmap throwing away the mapping information.
   1482 		 *
   1483 		 * We do, however, have to go through the ReFault path,
   1484 		 * as the map may change while we're asleep.
   1485 		 */
   1486 
   1487 		if (anon != oanon)
   1488 			mutex_exit(&anon->an_lock);
   1489 		uvmfault_unlockall(ufi, amap, uobj, oanon);
   1490 		if (!uvm_reclaimable()) {
   1491 			UVMHIST_LOG(maphist,
   1492 			    "<- failed.  out of VM",0,0,0,0);
   1493 			/* XXX instrumentation */
   1494 			return ENOMEM;
   1495 		}
   1496 		/* XXX instrumentation */
   1497 		uvm_wait("flt_pmfail1");
   1498 		return ERESTART;
   1499 	}
   1500 
   1501 	uvm_fault_upper_done(ufi, flt, anon, pg);
   1502 
   1503 	/*
   1504 	 * done case 1!  finish up by unlocking everything and returning success
   1505 	 */
   1506 
   1507 	if (anon != oanon) {
   1508 		mutex_exit(&anon->an_lock);
   1509 	}
   1510 	pmap_update(ufi->orig_map->pmap);
   1511 	uvmfault_unlockall(ufi, amap, uobj, oanon);
   1512 	return 0;
   1513 }
   1514 
   1515 /*
   1516  * uvm_fault_upper_done: queue upper center page.
   1517  */
   1518 
   1519 static void
   1520 uvm_fault_upper_done(
   1521 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1522 	struct vm_anon *anon, struct vm_page *pg)
   1523 {
   1524 	const bool wire_paging = flt->wire_paging;
   1525 
   1526 	UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
   1527 
   1528 	/*
   1529 	 * ... update the page queues.
   1530 	 */
   1531 
   1532 	mutex_enter(&uvm_pageqlock);
   1533 	if (wire_paging) {
   1534 		uvm_pagewire(pg);
   1535 
   1536 		/*
   1537 		 * since the now-wired page cannot be paged out,
   1538 		 * release its swap resources for others to use.
   1539 		 * since an anon with no swap cannot be PG_CLEAN,
   1540 		 * clear its clean flag now.
   1541 		 */
   1542 
   1543 		pg->flags &= ~(PG_CLEAN);
   1544 
   1545 	} else {
   1546 		uvm_pageactivate(pg);
   1547 	}
   1548 	mutex_exit(&uvm_pageqlock);
   1549 
   1550 	if (wire_paging) {
   1551 		uvm_anon_dropswap(anon);
   1552 	}
   1553 }
   1554 
   1555 /*
   1556  * uvm_fault_lower: handle lower fault.
   1557  *
   1558  *	1. check uobj
   1559  *	1.1. if null, ZFOD.
   1560  *	1.2. if not null, look up unnmapped neighbor pages.
   1561  *	2. for center page, check if promote.
   1562  *	2.1. ZFOD always needs promotion.
   1563  *	2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
   1564  *	3. if uobj is not ZFOD and page is not found, do i/o.
   1565  *	4. dispatch either direct / promote fault.
   1566  */
   1567 
   1568 static int
   1569 uvm_fault_lower(
   1570 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1571 	struct vm_page **pages)
   1572 {
   1573 #ifdef DIAGNOSTIC
   1574 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1575 #endif
   1576 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1577 	struct vm_page *uobjpage;
   1578 	int error;
   1579 	UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
   1580 
   1581 	/* locked: maps(read), amap(if there), uobj(if !null) */
   1582 
   1583 	/*
   1584 	 * now, if the desired page is not shadowed by the amap and we have
   1585 	 * a backing object that does not have a special fault routine, then
   1586 	 * we ask (with pgo_get) the object for resident pages that we care
   1587 	 * about and attempt to map them in.  we do not let pgo_get block
   1588 	 * (PGO_LOCKED).
   1589 	 */
   1590 
   1591 	if (uobj == NULL) {
   1592 		/* zero fill; don't care neighbor pages */
   1593 		uobjpage = NULL;
   1594 	} else {
   1595 		uvm_fault_lower_lookup(ufi, flt, pages);
   1596 		uobjpage = pages[flt->centeridx];
   1597 	}
   1598 
   1599 	/*
   1600 	 * note that at this point we are done with any front or back pages.
   1601 	 * we are now going to focus on the center page (i.e. the one we've
   1602 	 * faulted on).  if we have faulted on the upper (anon) layer
   1603 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
   1604 	 * not touched it yet).  if we have faulted on the bottom (uobj)
   1605 	 * layer [i.e. case 2] and the page was both present and available,
   1606 	 * then we've got a pointer to it as "uobjpage" and we've already
   1607 	 * made it BUSY.
   1608 	 */
   1609 
   1610 	/*
   1611 	 * locked:
   1612 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
   1613 	 */
   1614 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1615 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   1616 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1617 
   1618 	/*
   1619 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
   1620 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
   1621 	 * have a backing object, check and see if we are going to promote
   1622 	 * the data up to an anon during the fault.
   1623 	 */
   1624 
   1625 	if (uobj == NULL) {
   1626 		uobjpage = PGO_DONTCARE;
   1627 		flt->promote = true;		/* always need anon here */
   1628 	} else {
   1629 		KASSERT(uobjpage != PGO_DONTCARE);
   1630 		flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
   1631 	}
   1632 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%d, zfill=%d",
   1633 	    flt->promote, (uobj == NULL), 0,0);
   1634 
   1635 	/*
   1636 	 * if uobjpage is not null then we do not need to do I/O to get the
   1637 	 * uobjpage.
   1638 	 *
   1639 	 * if uobjpage is null, then we need to unlock and ask the pager to
   1640 	 * get the data for us.   once we have the data, we need to reverify
   1641 	 * the state the world.   we are currently not holding any resources.
   1642 	 */
   1643 
   1644 	if (uobjpage) {
   1645 		/* update rusage counters */
   1646 		curlwp->l_ru.ru_minflt++;
   1647 	} else {
   1648 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
   1649 		if (error != 0)
   1650 			return error;
   1651 	}
   1652 
   1653 	/*
   1654 	 * locked:
   1655 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
   1656 	 */
   1657 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1658 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   1659 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1660 
   1661 	/*
   1662 	 * notes:
   1663 	 *  - at this point uobjpage can not be NULL
   1664 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
   1665 	 *  for it above)
   1666 	 *  - at this point uobjpage could be PG_WANTED (handle later)
   1667 	 */
   1668 
   1669 	KASSERT(uobjpage != NULL);
   1670 	KASSERT(uobj == NULL || uobj == uobjpage->uobject);
   1671 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
   1672 	    (uobjpage->flags & PG_CLEAN) != 0);
   1673 
   1674 	if (!flt->promote) {
   1675 		error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
   1676 	} else {
   1677 		error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
   1678 	}
   1679 	return error;
   1680 }
   1681 
   1682 /*
   1683  * uvm_fault_lower_lookup: look up on-memory uobj pages.
   1684  *
   1685  *	1. get on-memory pages.
   1686  *	2. if failed, give up (get only center page later).
   1687  *	3. if succeeded, enter h/w mapping of neighbor pages.
   1688  */
   1689 
   1690 static void
   1691 uvm_fault_lower_lookup(
   1692 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1693 	struct vm_page **pages)
   1694 {
   1695 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1696 	int lcv, gotpages;
   1697 	vaddr_t currva;
   1698 	UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
   1699 
   1700 	mutex_enter(&uobj->vmobjlock);
   1701 	/* locked: maps(read), amap(if there), uobj */
   1702 	/*
   1703 	 * the following call to pgo_get does _not_ change locking state
   1704 	 */
   1705 
   1706 	uvmexp.fltlget++;
   1707 	gotpages = flt->npages;
   1708 	(void) uobj->pgops->pgo_get(uobj,
   1709 	    ufi->entry->offset + flt->startva - ufi->entry->start,
   1710 	    pages, &gotpages, flt->centeridx,
   1711 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
   1712 
   1713 	/*
   1714 	 * check for pages to map, if we got any
   1715 	 */
   1716 
   1717 	if (gotpages == 0) {
   1718 		pages[flt->centeridx] = NULL;
   1719 		return;
   1720 	}
   1721 
   1722 	currva = flt->startva;
   1723 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1724 		struct vm_page *curpg;
   1725 
   1726 		curpg = pages[lcv];
   1727 		if (curpg == NULL || curpg == PGO_DONTCARE) {
   1728 			continue;
   1729 		}
   1730 		KASSERT(curpg->uobject == uobj);
   1731 
   1732 		/*
   1733 		 * if center page is resident and not PG_BUSY|PG_RELEASED
   1734 		 * then pgo_get made it PG_BUSY for us and gave us a handle
   1735 		 * to it.
   1736 		 */
   1737 
   1738 		if (lcv == flt->centeridx) {
   1739 			UVMHIST_LOG(maphist, "  got uobjpage "
   1740 			    "(0x%x) with locked get",
   1741 			    curpg, 0,0,0);
   1742 		} else {
   1743 			bool readonly = (curpg->flags & PG_RDONLY)
   1744 			    || (curpg->loan_count > 0)
   1745 			    || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
   1746 
   1747 			uvm_fault_lower_neighbor(ufi, flt,
   1748 			    currva, curpg, readonly);
   1749 		}
   1750 	}
   1751 	pmap_update(ufi->orig_map->pmap);
   1752 }
   1753 
   1754 /*
   1755  * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
   1756  */
   1757 
   1758 static void
   1759 uvm_fault_lower_neighbor(
   1760 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1761 	vaddr_t currva, struct vm_page *pg, bool readonly)
   1762 {
   1763 	UVMHIST_FUNC("uvm_fault_lower_neighor"); UVMHIST_CALLED(maphist);
   1764 
   1765 	/* locked: maps(read), amap(if there), uobj */
   1766 
   1767 	/*
   1768 	 * calling pgo_get with PGO_LOCKED returns us pages which
   1769 	 * are neither busy nor released, so we don't need to check
   1770 	 * for this.  we can just directly enter the pages.
   1771 	 */
   1772 
   1773 	mutex_enter(&uvm_pageqlock);
   1774 	uvm_pageenqueue(pg);
   1775 	mutex_exit(&uvm_pageqlock);
   1776 	UVMHIST_LOG(maphist,
   1777 	    "  MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
   1778 	    ufi->orig_map->pmap, currva, pg, 0);
   1779 	uvmexp.fltnomap++;
   1780 
   1781 	/*
   1782 	 * Since this page isn't the page that's actually faulting,
   1783 	 * ignore pmap_enter() failures; it's not critical that we
   1784 	 * enter these right now.
   1785 	 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
   1786 	 * held the lock the whole time we've had the handle.
   1787 	 */
   1788 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1789 	KASSERT((pg->flags & PG_RELEASED) == 0);
   1790 	KASSERT((pg->flags & PG_WANTED) == 0);
   1791 	KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
   1792 	    (pg->flags & PG_CLEAN) != 0);
   1793 	pg->flags &= ~(PG_BUSY);
   1794 	UVM_PAGE_OWN(pg, NULL);
   1795 
   1796 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1797 	    VM_PAGE_TO_PHYS(pg),
   1798 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1799 	    flt->enter_prot & MASK(ufi->entry),
   1800 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
   1801 }
   1802 
   1803 /*
   1804  * uvm_fault_lower_io: get lower page from backing store.
   1805  *
   1806  *	1. unlock everything, because i/o will block.
   1807  *	2. call pgo_get.
   1808  *	3. if failed, recover.
   1809  *	4. if succeeded, relock everything and verify things.
   1810  */
   1811 
   1812 static int
   1813 uvm_fault_lower_io(
   1814 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1815 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
   1816 {
   1817 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1818 	struct uvm_object *uobj = *ruobj;
   1819 	struct vm_page *pg;
   1820 	bool locked;
   1821 	int gotpages;
   1822 	int error;
   1823 	voff_t uoff;
   1824 	UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
   1825 
   1826 	/* update rusage counters */
   1827 	curlwp->l_ru.ru_majflt++;
   1828 
   1829 	/* locked: maps(read), amap(if there), uobj */
   1830 	uvmfault_unlockall(ufi, amap, NULL, NULL);
   1831 	/* locked: uobj */
   1832 
   1833 	uvmexp.fltget++;
   1834 	gotpages = 1;
   1835 	pg = NULL;
   1836 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
   1837 	error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
   1838 	    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
   1839 	    PGO_SYNCIO);
   1840 	/* locked: pg(if no error) */
   1841 
   1842 	/*
   1843 	 * recover from I/O
   1844 	 */
   1845 
   1846 	if (error) {
   1847 		if (error == EAGAIN) {
   1848 			UVMHIST_LOG(maphist,
   1849 			    "  pgo_get says TRY AGAIN!",0,0,0,0);
   1850 			kpause("fltagain2", false, hz/2, NULL);
   1851 			return ERESTART;
   1852 		}
   1853 
   1854 #if 0
   1855 		KASSERT(error != ERESTART);
   1856 #else
   1857 		/* XXXUEBS don't re-fault? */
   1858 		if (error == ERESTART)
   1859 			error = EIO;
   1860 #endif
   1861 
   1862 		UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
   1863 		    error, 0,0,0);
   1864 		return error;
   1865 	}
   1866 
   1867 	/* locked: pg */
   1868 
   1869 	KASSERT((pg->flags & PG_BUSY) != 0);
   1870 
   1871 	mutex_enter(&uvm_pageqlock);
   1872 	uvm_pageactivate(pg);
   1873 	mutex_exit(&uvm_pageqlock);
   1874 
   1875 	/*
   1876 	 * re-verify the state of the world by first trying to relock
   1877 	 * the maps.  always relock the object.
   1878 	 */
   1879 
   1880 	locked = uvmfault_relock(ufi);
   1881 	if (locked && amap)
   1882 		amap_lock(amap);
   1883 
   1884 	/* might be changed */
   1885 	uobj = pg->uobject;
   1886 
   1887 	mutex_enter(&uobj->vmobjlock);
   1888 
   1889 	/* locked(locked): maps(read), amap(if !null), uobj, pg */
   1890 	/* locked(!locked): uobj, pg */
   1891 
   1892 	/*
   1893 	 * verify that the page has not be released and re-verify
   1894 	 * that amap slot is still free.   if there is a problem,
   1895 	 * we unlock and clean up.
   1896 	 */
   1897 
   1898 	if ((pg->flags & PG_RELEASED) != 0 ||
   1899 	    (locked && amap && amap_lookup(&ufi->entry->aref,
   1900 	      ufi->orig_rvaddr - ufi->entry->start))) {
   1901 		if (locked)
   1902 			uvmfault_unlockall(ufi, amap, NULL, NULL);
   1903 		locked = false;
   1904 	}
   1905 
   1906 	/*
   1907 	 * didn't get the lock?   release the page and retry.
   1908 	 */
   1909 
   1910 	if (locked == false) {
   1911 		UVMHIST_LOG(maphist,
   1912 		    "  wasn't able to relock after fault: retry",
   1913 		    0,0,0,0);
   1914 		if (pg->flags & PG_WANTED) {
   1915 			wakeup(pg);
   1916 		}
   1917 		if (pg->flags & PG_RELEASED) {
   1918 			uvmexp.fltpgrele++;
   1919 			uvm_pagefree(pg);
   1920 			mutex_exit(&uobj->vmobjlock);
   1921 			return ERESTART;
   1922 		}
   1923 		pg->flags &= ~(PG_BUSY|PG_WANTED);
   1924 		UVM_PAGE_OWN(pg, NULL);
   1925 		mutex_exit(&uobj->vmobjlock);
   1926 		return ERESTART;
   1927 	}
   1928 
   1929 	/*
   1930 	 * we have the data in pg which is busy and
   1931 	 * not released.  we are holding object lock (so the page
   1932 	 * can't be released on us).
   1933 	 */
   1934 
   1935 	/* locked: maps(read), amap(if !null), uobj, pg */
   1936 
   1937 	*ruobj = uobj;
   1938 	*ruobjpage = pg;
   1939 	return 0;
   1940 }
   1941 
   1942 /*
   1943  * uvm_fault_lower_direct: fault lower center page
   1944  *
   1945  *	1. adjust flt->enter_prot.
   1946  *	2. if page is loaned, resolve.
   1947  */
   1948 
   1949 int
   1950 uvm_fault_lower_direct(
   1951 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1952 	struct uvm_object *uobj, struct vm_page *uobjpage)
   1953 {
   1954 	struct vm_page *pg;
   1955 	UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
   1956 
   1957 	/*
   1958 	 * we are not promoting.   if the mapping is COW ensure that we
   1959 	 * don't give more access than we should (e.g. when doing a read
   1960 	 * fault on a COPYONWRITE mapping we want to map the COW page in
   1961 	 * R/O even though the entry protection could be R/W).
   1962 	 *
   1963 	 * set "pg" to the page we want to map in (uobjpage, usually)
   1964 	 */
   1965 
   1966 	uvmexp.flt_obj++;
   1967 	if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
   1968 	    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
   1969 		flt->enter_prot &= ~VM_PROT_WRITE;
   1970 	pg = uobjpage;		/* map in the actual object */
   1971 
   1972 	KASSERT(uobjpage != PGO_DONTCARE);
   1973 
   1974 	/*
   1975 	 * we are faulting directly on the page.   be careful
   1976 	 * about writing to loaned pages...
   1977 	 */
   1978 
   1979 	if (uobjpage->loan_count) {
   1980 		uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
   1981 	}
   1982 	KASSERT(pg == uobjpage);
   1983 
   1984 	return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage);
   1985 }
   1986 
   1987 /*
   1988  * uvm_fault_lower_direct_loan: resolve loaned page.
   1989  *
   1990  *	1. if not cow'ing, adjust flt->enter_prot.
   1991  *	2. if cow'ing, break loan.
   1992  */
   1993 
   1994 static int
   1995 uvm_fault_lower_direct_loan(
   1996 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1997 	struct uvm_object *uobj, struct vm_page **rpg,
   1998 	struct vm_page **ruobjpage)
   1999 {
   2000 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2001 	struct vm_page *pg;
   2002 	struct vm_page *uobjpage = *ruobjpage;
   2003 	UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
   2004 
   2005 	if (!flt->cow_now) {
   2006 		/* read fault: cap the protection at readonly */
   2007 		/* cap! */
   2008 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   2009 	} else {
   2010 		/* write fault: must break the loan here */
   2011 
   2012 		pg = uvm_loanbreak(uobjpage);
   2013 		if (pg == NULL) {
   2014 
   2015 			/*
   2016 			 * drop ownership of page, it can't be released
   2017 			 */
   2018 
   2019 			if (uobjpage->flags & PG_WANTED)
   2020 				wakeup(uobjpage);
   2021 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   2022 			UVM_PAGE_OWN(uobjpage, NULL);
   2023 
   2024 			uvmfault_unlockall(ufi, amap, uobj, NULL);
   2025 			UVMHIST_LOG(maphist,
   2026 			  "  out of RAM breaking loan, waiting",
   2027 			  0,0,0,0);
   2028 			uvmexp.fltnoram++;
   2029 			uvm_wait("flt_noram4");
   2030 			return ERESTART;
   2031 		}
   2032 		*rpg = pg;
   2033 		*ruobjpage = pg;
   2034 	}
   2035 	return 0;
   2036 }
   2037 
   2038 /*
   2039  * uvm_fault_lower_promote: promote lower page.
   2040  *
   2041  *	1. call uvmfault_promote.
   2042  *	2. fill in data.
   2043  *	3. if not ZFOD, dispose old page.
   2044  */
   2045 
   2046 int
   2047 uvm_fault_lower_promote(
   2048 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2049 	struct uvm_object *uobj, struct vm_page *uobjpage)
   2050 {
   2051 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2052 	struct vm_anon *anon;
   2053 	struct vm_page *pg;
   2054 	int error;
   2055 	UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
   2056 
   2057 	/*
   2058 	 * if we are going to promote the data to an anon we
   2059 	 * allocate a blank anon here and plug it into our amap.
   2060 	 */
   2061 #if DIAGNOSTIC
   2062 	if (amap == NULL)
   2063 		panic("uvm_fault: want to promote data, but no anon");
   2064 #endif
   2065 	error = uvmfault_promote(ufi, NULL, uobjpage,
   2066 	    &anon, &flt->anon_spare);
   2067 	switch (error) {
   2068 	case 0:
   2069 		break;
   2070 	case ERESTART:
   2071 		return ERESTART;
   2072 	default:
   2073 		return error;
   2074 	}
   2075 
   2076 	pg = anon->an_page;
   2077 
   2078 	/*
   2079 	 * fill in the data
   2080 	 */
   2081 
   2082 	if (uobjpage != PGO_DONTCARE) {
   2083 		uvmexp.flt_prcopy++;
   2084 
   2085 		/*
   2086 		 * promote to shared amap?  make sure all sharing
   2087 		 * procs see it
   2088 		 */
   2089 
   2090 		if ((amap_flags(amap) & AMAP_SHARED) != 0) {
   2091 			pmap_page_protect(uobjpage, VM_PROT_NONE);
   2092 			/*
   2093 			 * XXX: PAGE MIGHT BE WIRED!
   2094 			 */
   2095 		}
   2096 
   2097 		/*
   2098 		 * dispose of uobjpage.  it can't be PG_RELEASED
   2099 		 * since we still hold the object lock.
   2100 		 * drop handle to uobj as well.
   2101 		 */
   2102 
   2103 		if (uobjpage->flags & PG_WANTED)
   2104 			/* still have the obj lock */
   2105 			wakeup(uobjpage);
   2106 		uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   2107 		UVM_PAGE_OWN(uobjpage, NULL);
   2108 		mutex_exit(&uobj->vmobjlock);
   2109 		uobj = NULL;
   2110 
   2111 		UVMHIST_LOG(maphist,
   2112 		    "  promote uobjpage 0x%x to anon/page 0x%x/0x%x",
   2113 		    uobjpage, anon, pg, 0);
   2114 
   2115 	} else {
   2116 		uvmexp.flt_przero++;
   2117 
   2118 		/*
   2119 		 * Page is zero'd and marked dirty by
   2120 		 * uvmfault_promote().
   2121 		 */
   2122 
   2123 		UVMHIST_LOG(maphist,"  zero fill anon/page 0x%x/0%x",
   2124 		    anon, pg, 0, 0);
   2125 	}
   2126 
   2127 	return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage);
   2128 }
   2129 
   2130 /*
   2131  * uvm_fault_lower_enter: enter h/w mapping of lower page.
   2132  */
   2133 
   2134 int
   2135 uvm_fault_lower_enter(
   2136 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2137 	struct uvm_object *uobj,
   2138 	struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
   2139 {
   2140 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2141 	int error;
   2142 	UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
   2143 
   2144 	/*
   2145 	 * locked:
   2146 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
   2147 	 *   anon(if !null), pg(if anon)
   2148 	 *
   2149 	 * note: pg is either the uobjpage or the new page in the new anon
   2150 	 */
   2151 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   2152 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   2153 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   2154 	KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
   2155 	KASSERT((pg->flags & PG_BUSY) != 0);
   2156 
   2157 	/*
   2158 	 * all resources are present.   we can now map it in and free our
   2159 	 * resources.
   2160 	 */
   2161 
   2162 	UVMHIST_LOG(maphist,
   2163 	    "  MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
   2164 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
   2165 	KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
   2166 		(pg->flags & PG_RDONLY) == 0);
   2167 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
   2168 	    VM_PAGE_TO_PHYS(pg),
   2169 	    (pg->flags & PG_RDONLY) != 0 ?
   2170 	    flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
   2171 	    flt->access_type | PMAP_CANFAIL |
   2172 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   2173 
   2174 		/*
   2175 		 * No need to undo what we did; we can simply think of
   2176 		 * this as the pmap throwing away the mapping information.
   2177 		 *
   2178 		 * We do, however, have to go through the ReFault path,
   2179 		 * as the map may change while we're asleep.
   2180 		 */
   2181 
   2182 		if (pg->flags & PG_WANTED)
   2183 			wakeup(pg);
   2184 
   2185 		/*
   2186 		 * note that pg can't be PG_RELEASED since we did not drop
   2187 		 * the object lock since the last time we checked.
   2188 		 */
   2189 		KASSERT((pg->flags & PG_RELEASED) == 0);
   2190 
   2191 		pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2192 		UVM_PAGE_OWN(pg, NULL);
   2193 
   2194 		uvmfault_unlockall(ufi, amap, uobj, anon);
   2195 		if (!uvm_reclaimable()) {
   2196 			UVMHIST_LOG(maphist,
   2197 			    "<- failed.  out of VM",0,0,0,0);
   2198 			/* XXX instrumentation */
   2199 			error = ENOMEM;
   2200 			return error;
   2201 		}
   2202 		/* XXX instrumentation */
   2203 		uvm_wait("flt_pmfail2");
   2204 		return ERESTART;
   2205 	}
   2206 
   2207 	uvm_fault_lower_done(ufi, flt, uobj, pg);
   2208 
   2209 	/*
   2210 	 * note that pg can't be PG_RELEASED since we did not drop the object
   2211 	 * lock since the last time we checked.
   2212 	 */
   2213 	KASSERT((pg->flags & PG_RELEASED) == 0);
   2214 	if (pg->flags & PG_WANTED)
   2215 		wakeup(pg);
   2216 	pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2217 	UVM_PAGE_OWN(pg, NULL);
   2218 
   2219 	pmap_update(ufi->orig_map->pmap);
   2220 	uvmfault_unlockall(ufi, amap, uobj, anon);
   2221 
   2222 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
   2223 	return 0;
   2224 }
   2225 
   2226 /*
   2227  * uvm_fault_lower_done: queue lower center page.
   2228  */
   2229 
   2230 void
   2231 uvm_fault_lower_done(
   2232 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2233 	struct uvm_object *uobj, struct vm_page *pg)
   2234 {
   2235 	bool dropswap = false;
   2236 
   2237 	UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
   2238 
   2239 	mutex_enter(&uvm_pageqlock);
   2240 	if (flt->wire_paging) {
   2241 		uvm_pagewire(pg);
   2242 		if (pg->pqflags & PQ_AOBJ) {
   2243 
   2244 			/*
   2245 			 * since the now-wired page cannot be paged out,
   2246 			 * release its swap resources for others to use.
   2247 			 * since an aobj page with no swap cannot be PG_CLEAN,
   2248 			 * clear its clean flag now.
   2249 			 */
   2250 
   2251 			KASSERT(uobj != NULL);
   2252 			pg->flags &= ~(PG_CLEAN);
   2253 			dropswap = true;
   2254 		}
   2255 	} else {
   2256 		uvm_pageactivate(pg);
   2257 	}
   2258 	mutex_exit(&uvm_pageqlock);
   2259 
   2260 	if (dropswap) {
   2261 		uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
   2262 	}
   2263 }
   2264 
   2265 
   2266 /*
   2267  * uvm_fault_wire: wire down a range of virtual addresses in a map.
   2268  *
   2269  * => map may be read-locked by caller, but MUST NOT be write-locked.
   2270  * => if map is read-locked, any operations which may cause map to
   2271  *	be write-locked in uvm_fault() must be taken care of by
   2272  *	the caller.  See uvm_map_pageable().
   2273  */
   2274 
   2275 int
   2276 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
   2277     vm_prot_t access_type, int maxprot)
   2278 {
   2279 	vaddr_t va;
   2280 	int error;
   2281 
   2282 	/*
   2283 	 * now fault it in a page at a time.   if the fault fails then we have
   2284 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
   2285 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
   2286 	 */
   2287 
   2288 	/*
   2289 	 * XXX work around overflowing a vaddr_t.  this prevents us from
   2290 	 * wiring the last page in the address space, though.
   2291 	 */
   2292 	if (start > end) {
   2293 		return EFAULT;
   2294 	}
   2295 
   2296 	for (va = start; va < end; va += PAGE_SIZE) {
   2297 		error = uvm_fault_internal(map, va, access_type,
   2298 		    (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
   2299 		if (error) {
   2300 			if (va != start) {
   2301 				uvm_fault_unwire(map, start, va);
   2302 			}
   2303 			return error;
   2304 		}
   2305 	}
   2306 	return 0;
   2307 }
   2308 
   2309 /*
   2310  * uvm_fault_unwire(): unwire range of virtual space.
   2311  */
   2312 
   2313 void
   2314 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
   2315 {
   2316 	vm_map_lock_read(map);
   2317 	uvm_fault_unwire_locked(map, start, end);
   2318 	vm_map_unlock_read(map);
   2319 }
   2320 
   2321 /*
   2322  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
   2323  *
   2324  * => map must be at least read-locked.
   2325  */
   2326 
   2327 void
   2328 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
   2329 {
   2330 	struct vm_map_entry *entry;
   2331 	pmap_t pmap = vm_map_pmap(map);
   2332 	vaddr_t va;
   2333 	paddr_t pa;
   2334 	struct vm_page *pg;
   2335 
   2336 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
   2337 
   2338 	/*
   2339 	 * we assume that the area we are unwiring has actually been wired
   2340 	 * in the first place.   this means that we should be able to extract
   2341 	 * the PAs from the pmap.   we also lock out the page daemon so that
   2342 	 * we can call uvm_pageunwire.
   2343 	 */
   2344 
   2345 	mutex_enter(&uvm_pageqlock);
   2346 
   2347 	/*
   2348 	 * find the beginning map entry for the region.
   2349 	 */
   2350 
   2351 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
   2352 	if (uvm_map_lookup_entry(map, start, &entry) == false)
   2353 		panic("uvm_fault_unwire_locked: address not in map");
   2354 
   2355 	for (va = start; va < end; va += PAGE_SIZE) {
   2356 		if (pmap_extract(pmap, va, &pa) == false)
   2357 			continue;
   2358 
   2359 		/*
   2360 		 * find the map entry for the current address.
   2361 		 */
   2362 
   2363 		KASSERT(va >= entry->start);
   2364 		while (va >= entry->end) {
   2365 			KASSERT(entry->next != &map->header &&
   2366 				entry->next->start <= entry->end);
   2367 			entry = entry->next;
   2368 		}
   2369 
   2370 		/*
   2371 		 * if the entry is no longer wired, tell the pmap.
   2372 		 */
   2373 
   2374 		if (VM_MAPENT_ISWIRED(entry) == 0)
   2375 			pmap_unwire(pmap, va);
   2376 
   2377 		pg = PHYS_TO_VM_PAGE(pa);
   2378 		if (pg)
   2379 			uvm_pageunwire(pg);
   2380 	}
   2381 
   2382 	mutex_exit(&uvm_pageqlock);
   2383 }
   2384