uvm_fault.c revision 1.180.4.1 1 /* $NetBSD: uvm_fault.c,v 1.180.4.1 2011/02/08 16:20:06 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 */
29
30 /*
31 * uvm_fault.c: fault handler
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.180.4.1 2011/02/08 16:20:06 bouyer Exp $");
36
37 #include "opt_uvmhist.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/proc.h>
43 #include <sys/malloc.h>
44 #include <sys/mman.h>
45
46 #include <uvm/uvm.h>
47
48 /*
49 *
50 * a word on page faults:
51 *
52 * types of page faults we handle:
53 *
54 * CASE 1: upper layer faults CASE 2: lower layer faults
55 *
56 * CASE 1A CASE 1B CASE 2A CASE 2B
57 * read/write1 write>1 read/write +-cow_write/zero
58 * | | | |
59 * +--|--+ +--|--+ +-----+ + | + | +-----+
60 * amap | V | | ---------> new | | | | ^ |
61 * +-----+ +-----+ +-----+ + | + | +--|--+
62 * | | |
63 * +-----+ +-----+ +--|--+ | +--|--+
64 * uobj | d/c | | d/c | | V | +----+ |
65 * +-----+ +-----+ +-----+ +-----+
66 *
67 * d/c = don't care
68 *
69 * case [0]: layerless fault
70 * no amap or uobj is present. this is an error.
71 *
72 * case [1]: upper layer fault [anon active]
73 * 1A: [read] or [write with anon->an_ref == 1]
74 * I/O takes place in upper level anon and uobj is not touched.
75 * 1B: [write with anon->an_ref > 1]
76 * new anon is alloc'd and data is copied off ["COW"]
77 *
78 * case [2]: lower layer fault [uobj]
79 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
80 * I/O takes place directly in object.
81 * 2B: [write to copy_on_write] or [read on NULL uobj]
82 * data is "promoted" from uobj to a new anon.
83 * if uobj is null, then we zero fill.
84 *
85 * we follow the standard UVM locking protocol ordering:
86 *
87 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
88 * we hold a PG_BUSY page if we unlock for I/O
89 *
90 *
91 * the code is structured as follows:
92 *
93 * - init the "IN" params in the ufi structure
94 * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
95 * - do lookups [locks maps], check protection, handle needs_copy
96 * - check for case 0 fault (error)
97 * - establish "range" of fault
98 * - if we have an amap lock it and extract the anons
99 * - if sequential advice deactivate pages behind us
100 * - at the same time check pmap for unmapped areas and anon for pages
101 * that we could map in (and do map it if found)
102 * - check object for resident pages that we could map in
103 * - if (case 2) goto Case2
104 * - >>> handle case 1
105 * - ensure source anon is resident in RAM
106 * - if case 1B alloc new anon and copy from source
107 * - map the correct page in
108 * Case2:
109 * - >>> handle case 2
110 * - ensure source page is resident (if uobj)
111 * - if case 2B alloc new anon and copy from source (could be zero
112 * fill if uobj == NULL)
113 * - map the correct page in
114 * - done!
115 *
116 * note on paging:
117 * if we have to do I/O we place a PG_BUSY page in the correct object,
118 * unlock everything, and do the I/O. when I/O is done we must reverify
119 * the state of the world before assuming that our data structures are
120 * valid. [because mappings could change while the map is unlocked]
121 *
122 * alternative 1: unbusy the page in question and restart the page fault
123 * from the top (ReFault). this is easy but does not take advantage
124 * of the information that we already have from our previous lookup,
125 * although it is possible that the "hints" in the vm_map will help here.
126 *
127 * alternative 2: the system already keeps track of a "version" number of
128 * a map. [i.e. every time you write-lock a map (e.g. to change a
129 * mapping) you bump the version number up by one...] so, we can save
130 * the version number of the map before we release the lock and start I/O.
131 * then when I/O is done we can relock and check the version numbers
132 * to see if anything changed. this might save us some over 1 because
133 * we don't have to unbusy the page and may be less compares(?).
134 *
135 * alternative 3: put in backpointers or a way to "hold" part of a map
136 * in place while I/O is in progress. this could be complex to
137 * implement (especially with structures like amap that can be referenced
138 * by multiple map entries, and figuring out what should wait could be
139 * complex as well...).
140 *
141 * we use alternative 2. given that we are multi-threaded now we may want
142 * to reconsider the choice.
143 */
144
145 /*
146 * local data structures
147 */
148
149 struct uvm_advice {
150 int advice;
151 int nback;
152 int nforw;
153 };
154
155 /*
156 * page range array:
157 * note: index in array must match "advice" value
158 * XXX: borrowed numbers from freebsd. do they work well for us?
159 */
160
161 static const struct uvm_advice uvmadvice[] = {
162 { MADV_NORMAL, 3, 4 },
163 { MADV_RANDOM, 0, 0 },
164 { MADV_SEQUENTIAL, 8, 7},
165 };
166
167 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
168
169 /*
170 * private prototypes
171 */
172
173 /*
174 * inline functions
175 */
176
177 /*
178 * uvmfault_anonflush: try and deactivate pages in specified anons
179 *
180 * => does not have to deactivate page if it is busy
181 */
182
183 static inline void
184 uvmfault_anonflush(struct vm_anon **anons, int n)
185 {
186 int lcv;
187 struct vm_page *pg;
188
189 for (lcv = 0; lcv < n; lcv++) {
190 if (anons[lcv] == NULL)
191 continue;
192 mutex_enter(&anons[lcv]->an_lock);
193 pg = anons[lcv]->an_page;
194 if (pg && (pg->flags & PG_BUSY) == 0) {
195 mutex_enter(&uvm_pageqlock);
196 if (pg->wire_count == 0) {
197 uvm_pagedeactivate(pg);
198 }
199 mutex_exit(&uvm_pageqlock);
200 }
201 mutex_exit(&anons[lcv]->an_lock);
202 }
203 }
204
205 /*
206 * normal functions
207 */
208
209 /*
210 * uvmfault_amapcopy: clear "needs_copy" in a map.
211 *
212 * => called with VM data structures unlocked (usually, see below)
213 * => we get a write lock on the maps and clear needs_copy for a VA
214 * => if we are out of RAM we sleep (waiting for more)
215 */
216
217 static void
218 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
219 {
220 for (;;) {
221
222 /*
223 * no mapping? give up.
224 */
225
226 if (uvmfault_lookup(ufi, true) == false)
227 return;
228
229 /*
230 * copy if needed.
231 */
232
233 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
234 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
235 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
236
237 /*
238 * didn't work? must be out of RAM. unlock and sleep.
239 */
240
241 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
242 uvmfault_unlockmaps(ufi, true);
243 uvm_wait("fltamapcopy");
244 continue;
245 }
246
247 /*
248 * got it! unlock and return.
249 */
250
251 uvmfault_unlockmaps(ufi, true);
252 return;
253 }
254 /*NOTREACHED*/
255 }
256
257 /*
258 * uvmfault_anonget: get data in an anon into a non-busy, non-released
259 * page in that anon.
260 *
261 * => maps, amap, and anon locked by caller.
262 * => if we fail (result != 0) we unlock everything.
263 * => if we are successful, we return with everything still locked.
264 * => we don't move the page on the queues [gets moved later]
265 * => if we allocate a new page [we_own], it gets put on the queues.
266 * either way, the result is that the page is on the queues at return time
267 * => for pages which are on loan from a uvm_object (and thus are not
268 * owned by the anon): if successful, we return with the owning object
269 * locked. the caller must unlock this object when it unlocks everything
270 * else.
271 */
272
273 int
274 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
275 struct vm_anon *anon)
276 {
277 bool we_own; /* we own anon's page? */
278 bool locked; /* did we relock? */
279 struct vm_page *pg;
280 int error;
281 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
282
283 KASSERT(mutex_owned(&anon->an_lock));
284
285 error = 0;
286 uvmexp.fltanget++;
287 /* bump rusage counters */
288 if (anon->an_page)
289 curlwp->l_ru.ru_minflt++;
290 else
291 curlwp->l_ru.ru_majflt++;
292
293 /*
294 * loop until we get it, or fail.
295 */
296
297 for (;;) {
298 we_own = false; /* true if we set PG_BUSY on a page */
299 pg = anon->an_page;
300
301 /*
302 * if there is a resident page and it is loaned, then anon
303 * may not own it. call out to uvm_anon_lockpage() to ensure
304 * the real owner of the page has been identified and locked.
305 */
306
307 if (pg && pg->loan_count)
308 pg = uvm_anon_lockloanpg(anon);
309
310 /*
311 * page there? make sure it is not busy/released.
312 */
313
314 if (pg) {
315
316 /*
317 * at this point, if the page has a uobject [meaning
318 * we have it on loan], then that uobject is locked
319 * by us! if the page is busy, we drop all the
320 * locks (including uobject) and try again.
321 */
322
323 if ((pg->flags & PG_BUSY) == 0) {
324 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
325 return (0);
326 }
327 pg->flags |= PG_WANTED;
328 uvmexp.fltpgwait++;
329
330 /*
331 * the last unlock must be an atomic unlock+wait on
332 * the owner of page
333 */
334
335 if (pg->uobject) { /* owner is uobject ? */
336 uvmfault_unlockall(ufi, amap, NULL, anon);
337 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
338 0,0,0);
339 UVM_UNLOCK_AND_WAIT(pg,
340 &pg->uobject->vmobjlock,
341 false, "anonget1",0);
342 } else {
343 /* anon owns page */
344 uvmfault_unlockall(ufi, amap, NULL, NULL);
345 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
346 0,0,0);
347 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
348 "anonget2",0);
349 }
350 } else {
351 #if defined(VMSWAP)
352
353 /*
354 * no page, we must try and bring it in.
355 */
356
357 pg = uvm_pagealloc(NULL,
358 ufi != NULL ? ufi->orig_rvaddr : 0,
359 anon, UVM_FLAG_COLORMATCH);
360 if (pg == NULL) { /* out of RAM. */
361 uvmfault_unlockall(ufi, amap, NULL, anon);
362 uvmexp.fltnoram++;
363 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
364 0,0,0);
365 if (!uvm_reclaimable()) {
366 return ENOMEM;
367 }
368 uvm_wait("flt_noram1");
369 } else {
370 /* we set the PG_BUSY bit */
371 we_own = true;
372 uvmfault_unlockall(ufi, amap, NULL, anon);
373
374 /*
375 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
376 * page into the uvm_swap_get function with
377 * all data structures unlocked. note that
378 * it is ok to read an_swslot here because
379 * we hold PG_BUSY on the page.
380 */
381 uvmexp.pageins++;
382 error = uvm_swap_get(pg, anon->an_swslot,
383 PGO_SYNCIO);
384
385 /*
386 * we clean up after the i/o below in the
387 * "we_own" case
388 */
389 }
390 #else /* defined(VMSWAP) */
391 panic("%s: no page", __func__);
392 #endif /* defined(VMSWAP) */
393 }
394
395 /*
396 * now relock and try again
397 */
398
399 locked = uvmfault_relock(ufi);
400 if (locked && amap != NULL) {
401 amap_lock(amap);
402 }
403 if (locked || we_own)
404 mutex_enter(&anon->an_lock);
405
406 /*
407 * if we own the page (i.e. we set PG_BUSY), then we need
408 * to clean up after the I/O. there are three cases to
409 * consider:
410 * [1] page released during I/O: free anon and ReFault.
411 * [2] I/O not OK. free the page and cause the fault
412 * to fail.
413 * [3] I/O OK! activate the page and sync with the
414 * non-we_own case (i.e. drop anon lock if not locked).
415 */
416
417 if (we_own) {
418 #if defined(VMSWAP)
419 if (pg->flags & PG_WANTED) {
420 wakeup(pg);
421 }
422 if (error) {
423
424 /*
425 * remove the swap slot from the anon
426 * and mark the anon as having no real slot.
427 * don't free the swap slot, thus preventing
428 * it from being used again.
429 */
430
431 if (anon->an_swslot > 0)
432 uvm_swap_markbad(anon->an_swslot, 1);
433 anon->an_swslot = SWSLOT_BAD;
434
435 if ((pg->flags & PG_RELEASED) != 0)
436 goto released;
437
438 /*
439 * note: page was never !PG_BUSY, so it
440 * can't be mapped and thus no need to
441 * pmap_page_protect it...
442 */
443
444 mutex_enter(&uvm_pageqlock);
445 uvm_pagefree(pg);
446 mutex_exit(&uvm_pageqlock);
447
448 if (locked)
449 uvmfault_unlockall(ufi, amap, NULL,
450 anon);
451 else
452 mutex_exit(&anon->an_lock);
453 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
454 return error;
455 }
456
457 if ((pg->flags & PG_RELEASED) != 0) {
458 released:
459 KASSERT(anon->an_ref == 0);
460
461 /*
462 * released while we unlocked amap.
463 */
464
465 if (locked)
466 uvmfault_unlockall(ufi, amap, NULL,
467 NULL);
468
469 uvm_anon_release(anon);
470
471 if (error) {
472 UVMHIST_LOG(maphist,
473 "<- ERROR/RELEASED", 0,0,0,0);
474 return error;
475 }
476
477 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
478 return ERESTART;
479 }
480
481 /*
482 * we've successfully read the page, activate it.
483 */
484
485 mutex_enter(&uvm_pageqlock);
486 uvm_pageactivate(pg);
487 mutex_exit(&uvm_pageqlock);
488 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
489 UVM_PAGE_OWN(pg, NULL);
490 if (!locked)
491 mutex_exit(&anon->an_lock);
492 #else /* defined(VMSWAP) */
493 panic("%s: we_own", __func__);
494 #endif /* defined(VMSWAP) */
495 }
496
497 /*
498 * we were not able to relock. restart fault.
499 */
500
501 if (!locked) {
502 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
503 return (ERESTART);
504 }
505
506 /*
507 * verify no one has touched the amap and moved the anon on us.
508 */
509
510 if (ufi != NULL &&
511 amap_lookup(&ufi->entry->aref,
512 ufi->orig_rvaddr - ufi->entry->start) != anon) {
513
514 uvmfault_unlockall(ufi, amap, NULL, anon);
515 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
516 return (ERESTART);
517 }
518
519 /*
520 * try it again!
521 */
522
523 uvmexp.fltanretry++;
524 continue;
525 }
526 /*NOTREACHED*/
527 }
528
529 /*
530 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
531 *
532 * 1. allocate an anon and a page.
533 * 2. fill its contents.
534 * 3. put it into amap.
535 *
536 * => if we fail (result != 0) we unlock everything.
537 * => on success, return a new locked anon via 'nanon'.
538 * (*nanon)->an_page will be a resident, locked, dirty page.
539 */
540
541 static int
542 uvmfault_promote(struct uvm_faultinfo *ufi,
543 struct vm_anon *oanon,
544 struct vm_page *uobjpage,
545 struct vm_anon **nanon, /* OUT: allocated anon */
546 struct vm_anon **spare)
547 {
548 struct vm_amap *amap = ufi->entry->aref.ar_amap;
549 struct uvm_object *uobj;
550 struct vm_anon *anon;
551 struct vm_page *pg;
552 struct vm_page *opg;
553 int error;
554 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
555
556 if (oanon) {
557 /* anon COW */
558 opg = oanon->an_page;
559 KASSERT(opg != NULL);
560 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
561 } else if (uobjpage != PGO_DONTCARE) {
562 /* object-backed COW */
563 opg = uobjpage;
564 } else {
565 /* ZFOD */
566 opg = NULL;
567 }
568 if (opg != NULL) {
569 uobj = opg->uobject;
570 } else {
571 uobj = NULL;
572 }
573
574 KASSERT(amap != NULL);
575 KASSERT(uobjpage != NULL);
576 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
577 KASSERT(mutex_owned(&amap->am_l));
578 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
579 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
580 #if 0
581 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
582 #endif
583
584 if (*spare != NULL) {
585 anon = *spare;
586 *spare = NULL;
587 mutex_enter(&anon->an_lock);
588 } else if (ufi->map != kernel_map) {
589 anon = uvm_analloc();
590 } else {
591 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
592
593 /*
594 * we can't allocate anons with kernel_map locked.
595 */
596
597 uvm_page_unbusy(&uobjpage, 1);
598 uvmfault_unlockall(ufi, amap, uobj, oanon);
599
600 *spare = uvm_analloc();
601 if (*spare == NULL) {
602 goto nomem;
603 }
604 mutex_exit(&(*spare)->an_lock);
605 error = ERESTART;
606 goto done;
607 }
608 if (anon) {
609
610 /*
611 * The new anon is locked.
612 *
613 * if opg == NULL, we want a zero'd, dirty page,
614 * so have uvm_pagealloc() do that for us.
615 */
616
617 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
618 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
619 } else {
620 pg = NULL;
621 }
622
623 /*
624 * out of memory resources?
625 */
626
627 if (pg == NULL) {
628 /* save anon for the next try. */
629 if (anon != NULL) {
630 mutex_exit(&anon->an_lock);
631 *spare = anon;
632 }
633
634 /* unlock and fail ... */
635 uvm_page_unbusy(&uobjpage, 1);
636 uvmfault_unlockall(ufi, amap, uobj, oanon);
637 nomem:
638 if (!uvm_reclaimable()) {
639 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
640 uvmexp.fltnoanon++;
641 error = ENOMEM;
642 goto done;
643 }
644
645 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
646 uvmexp.fltnoram++;
647 uvm_wait("flt_noram5");
648 error = ERESTART;
649 goto done;
650 }
651
652 /* copy page [pg now dirty] */
653 if (opg) {
654 uvm_pagecopy(opg, pg);
655 }
656
657 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
658 oanon != NULL);
659
660 *nanon = anon;
661 error = 0;
662 done:
663 return error;
664 }
665
666
667 /*
668 * F A U L T - m a i n e n t r y p o i n t
669 */
670
671 /*
672 * uvm_fault: page fault handler
673 *
674 * => called from MD code to resolve a page fault
675 * => VM data structures usually should be unlocked. however, it is
676 * possible to call here with the main map locked if the caller
677 * gets a write lock, sets it recusive, and then calls us (c.f.
678 * uvm_map_pageable). this should be avoided because it keeps
679 * the map locked off during I/O.
680 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
681 */
682
683 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
684 ~VM_PROT_WRITE : VM_PROT_ALL)
685
686 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
687 #define UVM_FAULT_WIRE (1 << 0)
688 #define UVM_FAULT_MAXPROT (1 << 1)
689
690 struct uvm_faultctx {
691 vm_prot_t access_type;
692 vm_prot_t enter_prot;
693 vaddr_t startva;
694 int npages;
695 int centeridx;
696 struct vm_anon *anon_spare;
697 bool wire_mapping;
698 bool narrow;
699 bool wire_paging;
700 bool cow_now;
701 bool promote;
702 };
703
704 static inline int uvm_fault_check(
705 struct uvm_faultinfo *, struct uvm_faultctx *,
706 struct vm_anon ***, bool);
707
708 static int uvm_fault_upper(
709 struct uvm_faultinfo *, struct uvm_faultctx *,
710 struct vm_anon **);
711 static inline int uvm_fault_upper_lookup(
712 struct uvm_faultinfo *, const struct uvm_faultctx *,
713 struct vm_anon **, struct vm_page **);
714 static inline void uvm_fault_upper_neighbor(
715 struct uvm_faultinfo *, const struct uvm_faultctx *,
716 vaddr_t, struct vm_page *, bool);
717 static inline int uvm_fault_upper_loan(
718 struct uvm_faultinfo *, struct uvm_faultctx *,
719 struct vm_anon *, struct uvm_object **);
720 static inline int uvm_fault_upper_promote(
721 struct uvm_faultinfo *, struct uvm_faultctx *,
722 struct uvm_object *, struct vm_anon *);
723 static inline int uvm_fault_upper_direct(
724 struct uvm_faultinfo *, struct uvm_faultctx *,
725 struct uvm_object *, struct vm_anon *);
726 static int uvm_fault_upper_enter(
727 struct uvm_faultinfo *, const struct uvm_faultctx *,
728 struct uvm_object *, struct vm_anon *,
729 struct vm_page *, struct vm_anon *);
730 static inline void uvm_fault_upper_done(
731 struct uvm_faultinfo *, const struct uvm_faultctx *,
732 struct vm_anon *, struct vm_page *);
733
734 static int uvm_fault_lower(
735 struct uvm_faultinfo *, struct uvm_faultctx *,
736 struct vm_page **);
737 static inline void uvm_fault_lower_lookup(
738 struct uvm_faultinfo *, const struct uvm_faultctx *,
739 struct vm_page **);
740 static inline void uvm_fault_lower_neighbor(
741 struct uvm_faultinfo *, const struct uvm_faultctx *,
742 vaddr_t, struct vm_page *, bool);
743 static inline int uvm_fault_lower_io(
744 struct uvm_faultinfo *, const struct uvm_faultctx *,
745 struct uvm_object **, struct vm_page **);
746 static inline int uvm_fault_lower_direct(
747 struct uvm_faultinfo *, struct uvm_faultctx *,
748 struct uvm_object *, struct vm_page *);
749 static inline int uvm_fault_lower_direct_loan(
750 struct uvm_faultinfo *, struct uvm_faultctx *,
751 struct uvm_object *, struct vm_page **,
752 struct vm_page **);
753 static inline int uvm_fault_lower_promote(
754 struct uvm_faultinfo *, struct uvm_faultctx *,
755 struct uvm_object *, struct vm_page *);
756 static int uvm_fault_lower_enter(
757 struct uvm_faultinfo *, const struct uvm_faultctx *,
758 struct uvm_object *,
759 struct vm_anon *, struct vm_page *,
760 struct vm_page *);
761 static inline void uvm_fault_lower_done(
762 struct uvm_faultinfo *, const struct uvm_faultctx *,
763 struct uvm_object *, struct vm_page *);
764
765 int
766 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
767 vm_prot_t access_type, int fault_flag)
768 {
769 struct uvm_faultinfo ufi;
770 struct uvm_faultctx flt = {
771 .access_type = access_type,
772
773 /* don't look for neighborhood * pages on "wire" fault */
774 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
775
776 /* "wire" fault causes wiring of both mapping and paging */
777 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
778 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
779 };
780 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
781 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
782 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
783 int error;
784 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
785
786 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
787 orig_map, vaddr, access_type, fault_flag);
788
789 curcpu()->ci_data.cpu_nfault++;
790
791 /*
792 * init the IN parameters in the ufi
793 */
794
795 ufi.orig_map = orig_map;
796 ufi.orig_rvaddr = trunc_page(vaddr);
797 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
798
799 error = ERESTART;
800 while (error == ERESTART) {
801 anons = anons_store;
802 pages = pages_store;
803
804 error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
805 if (error != 0)
806 continue;
807
808 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
809 if (error != 0)
810 continue;
811
812 if (pages[flt.centeridx] == PGO_DONTCARE)
813 error = uvm_fault_upper(&ufi, &flt, anons);
814 else {
815 struct uvm_object * const uobj =
816 ufi.entry->object.uvm_obj;
817
818 if (uobj && uobj->pgops->pgo_fault != NULL) {
819 /*
820 * invoke "special" fault routine.
821 */
822 mutex_enter(&uobj->vmobjlock);
823 /* locked: maps(read), amap(if there), uobj */
824 error = uobj->pgops->pgo_fault(&ufi,
825 flt.startva, pages, flt.npages,
826 flt.centeridx, flt.access_type,
827 PGO_LOCKED|PGO_SYNCIO);
828
829 /*
830 * locked: nothing, pgo_fault has unlocked
831 * everything
832 */
833
834 /*
835 * object fault routine responsible for
836 * pmap_update().
837 */
838 } else {
839 error = uvm_fault_lower(&ufi, &flt, pages);
840 }
841 }
842 }
843
844 if (flt.anon_spare != NULL) {
845 flt.anon_spare->an_ref--;
846 uvm_anfree(flt.anon_spare);
847 }
848 return error;
849 }
850
851 /*
852 * uvm_fault_check: check prot, handle needs-copy, etc.
853 *
854 * 1. lookup entry.
855 * 2. check protection.
856 * 3. adjust fault condition (mainly for simulated fault).
857 * 4. handle needs-copy (lazy amap copy).
858 * 5. establish range of interest for neighbor fault (aka pre-fault).
859 * 6. look up anons (if amap exists).
860 * 7. flush pages (if MADV_SEQUENTIAL)
861 *
862 * => called with nothing locked.
863 * => if we fail (result != 0) we unlock everything.
864 * => initialize/adjust many members of flt.
865 */
866
867 static int
868 uvm_fault_check(
869 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
870 struct vm_anon ***ranons, bool maxprot)
871 {
872 struct vm_amap *amap;
873 struct uvm_object *uobj;
874 vm_prot_t check_prot;
875 int nback, nforw;
876 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
877
878 /*
879 * lookup and lock the maps
880 */
881
882 if (uvmfault_lookup(ufi, false) == false) {
883 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr,
884 0,0,0);
885 return EFAULT;
886 }
887 /* locked: maps(read) */
888
889 #ifdef DIAGNOSTIC
890 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
891 printf("Page fault on non-pageable map:\n");
892 printf("ufi->map = %p\n", ufi->map);
893 printf("ufi->orig_map = %p\n", ufi->orig_map);
894 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
895 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
896 }
897 #endif
898
899 /*
900 * check protection
901 */
902
903 check_prot = maxprot ?
904 ufi->entry->max_protection : ufi->entry->protection;
905 if ((check_prot & flt->access_type) != flt->access_type) {
906 UVMHIST_LOG(maphist,
907 "<- protection failure (prot=0x%x, access=0x%x)",
908 ufi->entry->protection, flt->access_type, 0, 0);
909 uvmfault_unlockmaps(ufi, false);
910 return EACCES;
911 }
912
913 /*
914 * "enter_prot" is the protection we want to enter the page in at.
915 * for certain pages (e.g. copy-on-write pages) this protection can
916 * be more strict than ufi->entry->protection. "wired" means either
917 * the entry is wired or we are fault-wiring the pg.
918 */
919
920 flt->enter_prot = ufi->entry->protection;
921 if (VM_MAPENT_ISWIRED(ufi->entry))
922 flt->wire_mapping = true;
923
924 if (flt->wire_mapping) {
925 flt->access_type = flt->enter_prot; /* full access for wired */
926 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
927 } else {
928 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
929 }
930
931 flt->promote = false;
932
933 /*
934 * handle "needs_copy" case. if we need to copy the amap we will
935 * have to drop our readlock and relock it with a write lock. (we
936 * need a write lock to change anything in a map entry [e.g.
937 * needs_copy]).
938 */
939
940 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
941 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
942 KASSERT(!maxprot);
943 /* need to clear */
944 UVMHIST_LOG(maphist,
945 " need to clear needs_copy and refault",0,0,0,0);
946 uvmfault_unlockmaps(ufi, false);
947 uvmfault_amapcopy(ufi);
948 uvmexp.fltamcopy++;
949 return ERESTART;
950
951 } else {
952
953 /*
954 * ensure that we pmap_enter page R/O since
955 * needs_copy is still true
956 */
957
958 flt->enter_prot &= ~VM_PROT_WRITE;
959 }
960 }
961
962 /*
963 * identify the players
964 */
965
966 amap = ufi->entry->aref.ar_amap; /* upper layer */
967 uobj = ufi->entry->object.uvm_obj; /* lower layer */
968
969 /*
970 * check for a case 0 fault. if nothing backing the entry then
971 * error now.
972 */
973
974 if (amap == NULL && uobj == NULL) {
975 uvmfault_unlockmaps(ufi, false);
976 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
977 return EFAULT;
978 }
979
980 /*
981 * establish range of interest based on advice from mapper
982 * and then clip to fit map entry. note that we only want
983 * to do this the first time through the fault. if we
984 * ReFault we will disable this by setting "narrow" to true.
985 */
986
987 if (flt->narrow == false) {
988
989 /* wide fault (!narrow) */
990 KASSERT(uvmadvice[ufi->entry->advice].advice ==
991 ufi->entry->advice);
992 nback = MIN(uvmadvice[ufi->entry->advice].nback,
993 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
994 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
995 /*
996 * note: "-1" because we don't want to count the
997 * faulting page as forw
998 */
999 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1000 ((ufi->entry->end - ufi->orig_rvaddr) >>
1001 PAGE_SHIFT) - 1);
1002 flt->npages = nback + nforw + 1;
1003 flt->centeridx = nback;
1004
1005 flt->narrow = true; /* ensure only once per-fault */
1006
1007 } else {
1008
1009 /* narrow fault! */
1010 nback = nforw = 0;
1011 flt->startva = ufi->orig_rvaddr;
1012 flt->npages = 1;
1013 flt->centeridx = 0;
1014
1015 }
1016 /* offset from entry's start to pgs' start */
1017 const voff_t eoff = flt->startva - ufi->entry->start;
1018
1019 /* locked: maps(read) */
1020 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
1021 flt->narrow, nback, nforw, flt->startva);
1022 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1023 amap, uobj, 0);
1024
1025 /*
1026 * if we've got an amap, lock it and extract current anons.
1027 */
1028
1029 if (amap) {
1030 amap_lock(amap);
1031 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1032 } else {
1033 *ranons = NULL; /* to be safe */
1034 }
1035
1036 /* locked: maps(read), amap(if there) */
1037 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1038
1039 /*
1040 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1041 * now and then forget about them (for the rest of the fault).
1042 */
1043
1044 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1045
1046 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1047 0,0,0,0);
1048 /* flush back-page anons? */
1049 if (amap)
1050 uvmfault_anonflush(*ranons, nback);
1051
1052 /* flush object? */
1053 if (uobj) {
1054 voff_t uoff;
1055
1056 uoff = ufi->entry->offset + eoff;
1057 mutex_enter(&uobj->vmobjlock);
1058 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1059 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1060 }
1061
1062 /* now forget about the backpages */
1063 if (amap)
1064 *ranons += nback;
1065 flt->startva += (nback << PAGE_SHIFT);
1066 flt->npages -= nback;
1067 flt->centeridx = 0;
1068 }
1069 /*
1070 * => startva is fixed
1071 * => npages is fixed
1072 */
1073 KASSERT(flt->startva <= ufi->orig_rvaddr);
1074 KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1075 flt->startva + (flt->npages << PAGE_SHIFT));
1076 return 0;
1077 }
1078
1079 /*
1080 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1081 *
1082 * iterate range of interest:
1083 * 1. check if h/w mapping exists. if yes, we don't care
1084 * 2. check if anon exists. if not, page is lower.
1085 * 3. if anon exists, enter h/w mapping for neighbors.
1086 *
1087 * => called with amap locked (if exists).
1088 */
1089
1090 static int
1091 uvm_fault_upper_lookup(
1092 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1093 struct vm_anon **anons, struct vm_page **pages)
1094 {
1095 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1096 int lcv;
1097 vaddr_t currva;
1098 bool shadowed;
1099 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1100
1101 /* locked: maps(read), amap(if there) */
1102 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1103
1104 /*
1105 * map in the backpages and frontpages we found in the amap in hopes
1106 * of preventing future faults. we also init the pages[] array as
1107 * we go.
1108 */
1109
1110 currva = flt->startva;
1111 shadowed = false;
1112 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1113 /*
1114 * don't play with VAs that are already mapped
1115 * (except for center)
1116 */
1117 if (lcv != flt->centeridx &&
1118 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1119 pages[lcv] = PGO_DONTCARE;
1120 continue;
1121 }
1122
1123 /*
1124 * unmapped or center page. check if any anon at this level.
1125 */
1126 if (amap == NULL || anons[lcv] == NULL) {
1127 pages[lcv] = NULL;
1128 continue;
1129 }
1130
1131 /*
1132 * check for present page and map if possible. re-activate it.
1133 */
1134
1135 pages[lcv] = PGO_DONTCARE;
1136 if (lcv == flt->centeridx) { /* save center for later! */
1137 shadowed = true;
1138 } else {
1139 struct vm_anon *anon = anons[lcv];
1140
1141 mutex_enter(&anon->an_lock);
1142 struct vm_page *pg = anon->an_page;
1143
1144 /* ignore loaned and busy pages */
1145 if (pg != NULL && pg->loan_count == 0 &&
1146 (pg->flags & PG_BUSY) == 0)
1147 uvm_fault_upper_neighbor(ufi, flt, currva,
1148 pg, anon->an_ref > 1);
1149 mutex_exit(&anon->an_lock);
1150 }
1151 }
1152
1153 /* locked: maps(read), amap(if there) */
1154 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1155 /* (shadowed == true) if there is an anon at the faulting address */
1156 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1157 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1158
1159 /*
1160 * note that if we are really short of RAM we could sleep in the above
1161 * call to pmap_enter with everything locked. bad?
1162 *
1163 * XXX Actually, that is bad; pmap_enter() should just fail in that
1164 * XXX case. --thorpej
1165 */
1166
1167 return 0;
1168 }
1169
1170 /*
1171 * uvm_fault_upper_neighbor: enter single lower neighbor page.
1172 *
1173 * => called with amap and anon locked.
1174 */
1175
1176 static void
1177 uvm_fault_upper_neighbor(
1178 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1179 vaddr_t currva, struct vm_page *pg, bool readonly)
1180 {
1181 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1182
1183 /* locked: amap, anon */
1184
1185 mutex_enter(&uvm_pageqlock);
1186 uvm_pageenqueue(pg);
1187 mutex_exit(&uvm_pageqlock);
1188 UVMHIST_LOG(maphist,
1189 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1190 ufi->orig_map->pmap, currva, pg, 0);
1191 uvmexp.fltnamap++;
1192
1193 /*
1194 * Since this page isn't the page that's actually faulting,
1195 * ignore pmap_enter() failures; it's not critical that we
1196 * enter these right now.
1197 */
1198
1199 (void) pmap_enter(ufi->orig_map->pmap, currva,
1200 VM_PAGE_TO_PHYS(pg),
1201 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1202 flt->enter_prot,
1203 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1204
1205 pmap_update(ufi->orig_map->pmap);
1206 }
1207
1208 /*
1209 * uvm_fault_upper: handle upper fault.
1210 *
1211 * 1. acquire anon lock.
1212 * 2. get anon. let uvmfault_anonget do the dirty work.
1213 * 3. handle loan.
1214 * 4. dispatch direct or promote handlers.
1215 */
1216
1217 static int
1218 uvm_fault_upper(
1219 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1220 struct vm_anon **anons)
1221 {
1222 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1223 struct vm_anon * const anon = anons[flt->centeridx];
1224 struct uvm_object *uobj;
1225 int error;
1226 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1227
1228 /* locked: maps(read), amap */
1229 KASSERT(mutex_owned(&amap->am_l));
1230
1231 /*
1232 * handle case 1: fault on an anon in our amap
1233 */
1234
1235 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1236 mutex_enter(&anon->an_lock);
1237
1238 /* locked: maps(read), amap, anon */
1239 KASSERT(mutex_owned(&amap->am_l));
1240 KASSERT(mutex_owned(&anon->an_lock));
1241
1242 /*
1243 * no matter if we have case 1A or case 1B we are going to need to
1244 * have the anon's memory resident. ensure that now.
1245 */
1246
1247 /*
1248 * let uvmfault_anonget do the dirty work.
1249 * if it fails (!OK) it will unlock everything for us.
1250 * if it succeeds, locks are still valid and locked.
1251 * also, if it is OK, then the anon's page is on the queues.
1252 * if the page is on loan from a uvm_object, then anonget will
1253 * lock that object for us if it does not fail.
1254 */
1255
1256 error = uvmfault_anonget(ufi, amap, anon);
1257 switch (error) {
1258 case 0:
1259 break;
1260
1261 case ERESTART:
1262 return ERESTART;
1263
1264 case EAGAIN:
1265 kpause("fltagain1", false, hz/2, NULL);
1266 return ERESTART;
1267
1268 default:
1269 return error;
1270 }
1271
1272 /*
1273 * uobj is non null if the page is on loan from an object (i.e. uobj)
1274 */
1275
1276 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1277
1278 /* locked: maps(read), amap, anon, uobj(if one) */
1279 KASSERT(mutex_owned(&amap->am_l));
1280 KASSERT(mutex_owned(&anon->an_lock));
1281 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1282
1283 /*
1284 * special handling for loaned pages
1285 */
1286
1287 if (anon->an_page->loan_count) {
1288 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1289 if (error != 0)
1290 return error;
1291 }
1292
1293 /*
1294 * if we are case 1B then we will need to allocate a new blank
1295 * anon to transfer the data into. note that we have a lock
1296 * on anon, so no one can busy or release the page until we are done.
1297 * also note that the ref count can't drop to zero here because
1298 * it is > 1 and we are only dropping one ref.
1299 *
1300 * in the (hopefully very rare) case that we are out of RAM we
1301 * will unlock, wait for more RAM, and refault.
1302 *
1303 * if we are out of anon VM we kill the process (XXX: could wait?).
1304 */
1305
1306 if (flt->cow_now && anon->an_ref > 1) {
1307 flt->promote = true;
1308 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1309 } else {
1310 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1311 }
1312 return error;
1313 }
1314
1315 /*
1316 * uvm_fault_upper_loan: handle loaned upper page.
1317 *
1318 * 1. if not cow'ing now, simply adjust flt->enter_prot.
1319 * 2. if cow'ing now, and if ref count is 1, break loan.
1320 */
1321
1322 static int
1323 uvm_fault_upper_loan(
1324 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1325 struct vm_anon *anon, struct uvm_object **ruobj)
1326 {
1327 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1328 int error = 0;
1329 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1330
1331 if (!flt->cow_now) {
1332
1333 /*
1334 * for read faults on loaned pages we just cap the
1335 * protection at read-only.
1336 */
1337
1338 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1339
1340 } else {
1341 /*
1342 * note that we can't allow writes into a loaned page!
1343 *
1344 * if we have a write fault on a loaned page in an
1345 * anon then we need to look at the anon's ref count.
1346 * if it is greater than one then we are going to do
1347 * a normal copy-on-write fault into a new anon (this
1348 * is not a problem). however, if the reference count
1349 * is one (a case where we would normally allow a
1350 * write directly to the page) then we need to kill
1351 * the loan before we continue.
1352 */
1353
1354 /* >1 case is already ok */
1355 if (anon->an_ref == 1) {
1356 error = uvm_loanbreak_anon(anon, *ruobj);
1357 if (error != 0) {
1358 uvmfault_unlockall(ufi, amap, *ruobj, anon);
1359 uvm_wait("flt_noram2");
1360 return ERESTART;
1361 }
1362 /* if we were a loan reciever uobj is gone */
1363 if (*ruobj)
1364 *ruobj = NULL;
1365 }
1366 }
1367 return error;
1368 }
1369
1370 /*
1371 * uvm_fault_upper_promote: promote upper page.
1372 *
1373 * 1. call uvmfault_promote.
1374 * 2. enqueue page.
1375 * 3. deref.
1376 * 4. pass page to uvm_fault_upper_enter.
1377 */
1378
1379 static int
1380 uvm_fault_upper_promote(
1381 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1382 struct uvm_object *uobj, struct vm_anon *anon)
1383 {
1384 struct vm_anon * const oanon = anon;
1385 struct vm_page *pg;
1386 int error;
1387 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1388
1389 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1390 uvmexp.flt_acow++;
1391
1392 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1393 &flt->anon_spare);
1394 switch (error) {
1395 case 0:
1396 break;
1397 case ERESTART:
1398 return ERESTART;
1399 default:
1400 return error;
1401 }
1402
1403 pg = anon->an_page;
1404 mutex_enter(&uvm_pageqlock);
1405 uvm_pageactivate(pg);
1406 mutex_exit(&uvm_pageqlock);
1407 pg->flags &= ~(PG_BUSY|PG_FAKE);
1408 UVM_PAGE_OWN(pg, NULL);
1409
1410 /* deref: can not drop to zero here by defn! */
1411 oanon->an_ref--;
1412
1413 /*
1414 * note: oanon is still locked, as is the new anon. we
1415 * need to check for this later when we unlock oanon; if
1416 * oanon != anon, we'll have to unlock anon, too.
1417 */
1418
1419 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1420 }
1421
1422 /*
1423 * uvm_fault_upper_direct: handle direct fault.
1424 */
1425
1426 static int
1427 uvm_fault_upper_direct(
1428 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1429 struct uvm_object *uobj, struct vm_anon *anon)
1430 {
1431 struct vm_anon * const oanon = anon;
1432 struct vm_page *pg;
1433 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1434
1435 uvmexp.flt_anon++;
1436 pg = anon->an_page;
1437 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1438 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1439
1440 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1441 }
1442
1443 /*
1444 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1445 */
1446
1447 static int
1448 uvm_fault_upper_enter(
1449 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1450 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1451 struct vm_anon *oanon)
1452 {
1453 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1454 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1455
1456 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1457 KASSERT(mutex_owned(&amap->am_l));
1458 KASSERT(mutex_owned(&anon->an_lock));
1459 KASSERT(mutex_owned(&oanon->an_lock));
1460
1461 /*
1462 * now map the page in.
1463 */
1464
1465 UVMHIST_LOG(maphist,
1466 " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1467 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1468 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1469 VM_PAGE_TO_PHYS(pg),
1470 flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1471 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1472
1473 /*
1474 * No need to undo what we did; we can simply think of
1475 * this as the pmap throwing away the mapping information.
1476 *
1477 * We do, however, have to go through the ReFault path,
1478 * as the map may change while we're asleep.
1479 */
1480
1481 if (anon != oanon)
1482 mutex_exit(&anon->an_lock);
1483 uvmfault_unlockall(ufi, amap, uobj, oanon);
1484 if (!uvm_reclaimable()) {
1485 UVMHIST_LOG(maphist,
1486 "<- failed. out of VM",0,0,0,0);
1487 /* XXX instrumentation */
1488 return ENOMEM;
1489 }
1490 /* XXX instrumentation */
1491 uvm_wait("flt_pmfail1");
1492 return ERESTART;
1493 }
1494
1495 uvm_fault_upper_done(ufi, flt, anon, pg);
1496
1497 /*
1498 * done case 1! finish up by unlocking everything and returning success
1499 */
1500
1501 if (anon != oanon) {
1502 mutex_exit(&anon->an_lock);
1503 }
1504 pmap_update(ufi->orig_map->pmap);
1505 uvmfault_unlockall(ufi, amap, uobj, oanon);
1506 return 0;
1507 }
1508
1509 /*
1510 * uvm_fault_upper_done: queue upper center page.
1511 */
1512
1513 static void
1514 uvm_fault_upper_done(
1515 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1516 struct vm_anon *anon, struct vm_page *pg)
1517 {
1518 const bool wire_paging = flt->wire_paging;
1519
1520 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1521
1522 /*
1523 * ... update the page queues.
1524 */
1525
1526 mutex_enter(&uvm_pageqlock);
1527 if (wire_paging) {
1528 uvm_pagewire(pg);
1529
1530 /*
1531 * since the now-wired page cannot be paged out,
1532 * release its swap resources for others to use.
1533 * since an anon with no swap cannot be PG_CLEAN,
1534 * clear its clean flag now.
1535 */
1536
1537 pg->flags &= ~(PG_CLEAN);
1538
1539 } else {
1540 uvm_pageactivate(pg);
1541 }
1542 mutex_exit(&uvm_pageqlock);
1543
1544 if (wire_paging) {
1545 uvm_anon_dropswap(anon);
1546 }
1547 }
1548
1549 /*
1550 * uvm_fault_lower: handle lower fault.
1551 *
1552 * 1. check uobj
1553 * 1.1. if null, ZFOD.
1554 * 1.2. if not null, look up unnmapped neighbor pages.
1555 * 2. for center page, check if promote.
1556 * 2.1. ZFOD always needs promotion.
1557 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1558 * 3. if uobj is not ZFOD and page is not found, do i/o.
1559 * 4. dispatch either direct / promote fault.
1560 */
1561
1562 static int
1563 uvm_fault_lower(
1564 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1565 struct vm_page **pages)
1566 {
1567 #ifdef DIAGNOSTIC
1568 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1569 #endif
1570 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1571 struct vm_page *uobjpage;
1572 int error;
1573 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1574
1575 /* locked: maps(read), amap(if there), uobj(if !null) */
1576
1577 /*
1578 * now, if the desired page is not shadowed by the amap and we have
1579 * a backing object that does not have a special fault routine, then
1580 * we ask (with pgo_get) the object for resident pages that we care
1581 * about and attempt to map them in. we do not let pgo_get block
1582 * (PGO_LOCKED).
1583 */
1584
1585 if (uobj == NULL) {
1586 /* zero fill; don't care neighbor pages */
1587 uobjpage = NULL;
1588 } else {
1589 uvm_fault_lower_lookup(ufi, flt, pages);
1590 uobjpage = pages[flt->centeridx];
1591 }
1592
1593 /*
1594 * note that at this point we are done with any front or back pages.
1595 * we are now going to focus on the center page (i.e. the one we've
1596 * faulted on). if we have faulted on the upper (anon) layer
1597 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1598 * not touched it yet). if we have faulted on the bottom (uobj)
1599 * layer [i.e. case 2] and the page was both present and available,
1600 * then we've got a pointer to it as "uobjpage" and we've already
1601 * made it BUSY.
1602 */
1603
1604 /*
1605 * locked:
1606 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1607 */
1608 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1609 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1610 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1611
1612 /*
1613 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1614 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1615 * have a backing object, check and see if we are going to promote
1616 * the data up to an anon during the fault.
1617 */
1618
1619 if (uobj == NULL) {
1620 uobjpage = PGO_DONTCARE;
1621 flt->promote = true; /* always need anon here */
1622 } else {
1623 KASSERT(uobjpage != PGO_DONTCARE);
1624 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1625 }
1626 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1627 flt->promote, (uobj == NULL), 0,0);
1628
1629 /*
1630 * if uobjpage is not null then we do not need to do I/O to get the
1631 * uobjpage.
1632 *
1633 * if uobjpage is null, then we need to unlock and ask the pager to
1634 * get the data for us. once we have the data, we need to reverify
1635 * the state the world. we are currently not holding any resources.
1636 */
1637
1638 if (uobjpage) {
1639 /* update rusage counters */
1640 curlwp->l_ru.ru_minflt++;
1641 } else {
1642 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1643 if (error != 0)
1644 return error;
1645 }
1646
1647 /*
1648 * locked:
1649 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1650 */
1651 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1652 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1653 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1654
1655 /*
1656 * notes:
1657 * - at this point uobjpage can not be NULL
1658 * - at this point uobjpage can not be PG_RELEASED (since we checked
1659 * for it above)
1660 * - at this point uobjpage could be PG_WANTED (handle later)
1661 */
1662
1663 KASSERT(uobjpage != NULL);
1664 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1665 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1666 (uobjpage->flags & PG_CLEAN) != 0);
1667
1668 if (!flt->promote) {
1669 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1670 } else {
1671 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1672 }
1673 return error;
1674 }
1675
1676 /*
1677 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1678 *
1679 * 1. get on-memory pages.
1680 * 2. if failed, give up (get only center page later).
1681 * 3. if succeeded, enter h/w mapping of neighbor pages.
1682 */
1683
1684 static void
1685 uvm_fault_lower_lookup(
1686 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1687 struct vm_page **pages)
1688 {
1689 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1690 int lcv, gotpages;
1691 vaddr_t currva;
1692 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1693
1694 mutex_enter(&uobj->vmobjlock);
1695 /* locked: maps(read), amap(if there), uobj */
1696 /*
1697 * the following call to pgo_get does _not_ change locking state
1698 */
1699
1700 uvmexp.fltlget++;
1701 gotpages = flt->npages;
1702 (void) uobj->pgops->pgo_get(uobj,
1703 ufi->entry->offset + flt->startva - ufi->entry->start,
1704 pages, &gotpages, flt->centeridx,
1705 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1706
1707 /*
1708 * check for pages to map, if we got any
1709 */
1710
1711 if (gotpages == 0) {
1712 pages[flt->centeridx] = NULL;
1713 return;
1714 }
1715
1716 currva = flt->startva;
1717 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1718 struct vm_page *curpg;
1719
1720 curpg = pages[lcv];
1721 if (curpg == NULL || curpg == PGO_DONTCARE) {
1722 continue;
1723 }
1724 KASSERT(curpg->uobject == uobj);
1725
1726 /*
1727 * if center page is resident and not PG_BUSY|PG_RELEASED
1728 * then pgo_get made it PG_BUSY for us and gave us a handle
1729 * to it.
1730 */
1731
1732 if (lcv == flt->centeridx) {
1733 UVMHIST_LOG(maphist, " got uobjpage "
1734 "(0x%x) with locked get",
1735 curpg, 0,0,0);
1736 } else {
1737 bool readonly = (curpg->flags & PG_RDONLY)
1738 || (curpg->loan_count > 0)
1739 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1740
1741 uvm_fault_lower_neighbor(ufi, flt,
1742 currva, curpg, readonly);
1743 }
1744 }
1745 pmap_update(ufi->orig_map->pmap);
1746 }
1747
1748 /*
1749 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1750 */
1751
1752 static void
1753 uvm_fault_lower_neighbor(
1754 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1755 vaddr_t currva, struct vm_page *pg, bool readonly)
1756 {
1757 UVMHIST_FUNC("uvm_fault_lower_neighor"); UVMHIST_CALLED(maphist);
1758
1759 /* locked: maps(read), amap(if there), uobj */
1760
1761 /*
1762 * calling pgo_get with PGO_LOCKED returns us pages which
1763 * are neither busy nor released, so we don't need to check
1764 * for this. we can just directly enter the pages.
1765 */
1766
1767 mutex_enter(&uvm_pageqlock);
1768 uvm_pageenqueue(pg);
1769 mutex_exit(&uvm_pageqlock);
1770 UVMHIST_LOG(maphist,
1771 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1772 ufi->orig_map->pmap, currva, pg, 0);
1773 uvmexp.fltnomap++;
1774
1775 /*
1776 * Since this page isn't the page that's actually faulting,
1777 * ignore pmap_enter() failures; it's not critical that we
1778 * enter these right now.
1779 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1780 * held the lock the whole time we've had the handle.
1781 */
1782 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1783 KASSERT((pg->flags & PG_RELEASED) == 0);
1784 KASSERT((pg->flags & PG_WANTED) == 0);
1785 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
1786 (pg->flags & PG_CLEAN) != 0);
1787 pg->flags &= ~(PG_BUSY);
1788 UVM_PAGE_OWN(pg, NULL);
1789
1790 (void) pmap_enter(ufi->orig_map->pmap, currva,
1791 VM_PAGE_TO_PHYS(pg),
1792 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1793 flt->enter_prot & MASK(ufi->entry),
1794 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1795 }
1796
1797 /*
1798 * uvm_fault_lower_io: get lower page from backing store.
1799 *
1800 * 1. unlock everything, because i/o will block.
1801 * 2. call pgo_get.
1802 * 3. if failed, recover.
1803 * 4. if succeeded, relock everything and verify things.
1804 */
1805
1806 static int
1807 uvm_fault_lower_io(
1808 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1809 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1810 {
1811 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1812 struct uvm_object *uobj = *ruobj;
1813 struct vm_page *pg;
1814 bool locked;
1815 int gotpages;
1816 int error;
1817 voff_t uoff;
1818 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1819
1820 /* update rusage counters */
1821 curlwp->l_ru.ru_majflt++;
1822
1823 /* locked: maps(read), amap(if there), uobj */
1824 uvmfault_unlockall(ufi, amap, NULL, NULL);
1825 /* locked: uobj */
1826
1827 uvmexp.fltget++;
1828 gotpages = 1;
1829 pg = NULL;
1830 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1831 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1832 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1833 PGO_SYNCIO);
1834 /* locked: pg(if no error) */
1835
1836 /*
1837 * recover from I/O
1838 */
1839
1840 if (error) {
1841 if (error == EAGAIN) {
1842 UVMHIST_LOG(maphist,
1843 " pgo_get says TRY AGAIN!",0,0,0,0);
1844 kpause("fltagain2", false, hz/2, NULL);
1845 return ERESTART;
1846 }
1847
1848 #if 0
1849 KASSERT(error != ERESTART);
1850 #else
1851 /* XXXUEBS don't re-fault? */
1852 if (error == ERESTART)
1853 error = EIO;
1854 #endif
1855
1856 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1857 error, 0,0,0);
1858 return error;
1859 }
1860
1861 /* locked: pg */
1862
1863 KASSERT((pg->flags & PG_BUSY) != 0);
1864
1865 mutex_enter(&uvm_pageqlock);
1866 uvm_pageactivate(pg);
1867 mutex_exit(&uvm_pageqlock);
1868
1869 /*
1870 * re-verify the state of the world by first trying to relock
1871 * the maps. always relock the object.
1872 */
1873
1874 locked = uvmfault_relock(ufi);
1875 if (locked && amap)
1876 amap_lock(amap);
1877
1878 /* might be changed */
1879 uobj = pg->uobject;
1880
1881 mutex_enter(&uobj->vmobjlock);
1882
1883 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1884 /* locked(!locked): uobj, pg */
1885
1886 /*
1887 * verify that the page has not be released and re-verify
1888 * that amap slot is still free. if there is a problem,
1889 * we unlock and clean up.
1890 */
1891
1892 if ((pg->flags & PG_RELEASED) != 0 ||
1893 (locked && amap && amap_lookup(&ufi->entry->aref,
1894 ufi->orig_rvaddr - ufi->entry->start))) {
1895 if (locked)
1896 uvmfault_unlockall(ufi, amap, NULL, NULL);
1897 locked = false;
1898 }
1899
1900 /*
1901 * didn't get the lock? release the page and retry.
1902 */
1903
1904 if (locked == false) {
1905 UVMHIST_LOG(maphist,
1906 " wasn't able to relock after fault: retry",
1907 0,0,0,0);
1908 if (pg->flags & PG_WANTED) {
1909 wakeup(pg);
1910 }
1911 if (pg->flags & PG_RELEASED) {
1912 uvmexp.fltpgrele++;
1913 uvm_pagefree(pg);
1914 mutex_exit(&uobj->vmobjlock);
1915 return ERESTART;
1916 }
1917 pg->flags &= ~(PG_BUSY|PG_WANTED);
1918 UVM_PAGE_OWN(pg, NULL);
1919 mutex_exit(&uobj->vmobjlock);
1920 return ERESTART;
1921 }
1922
1923 /*
1924 * we have the data in pg which is busy and
1925 * not released. we are holding object lock (so the page
1926 * can't be released on us).
1927 */
1928
1929 /* locked: maps(read), amap(if !null), uobj, pg */
1930
1931 *ruobj = uobj;
1932 *ruobjpage = pg;
1933 return 0;
1934 }
1935
1936 /*
1937 * uvm_fault_lower_direct: fault lower center page
1938 *
1939 * 1. adjust flt->enter_prot.
1940 * 2. if page is loaned, resolve.
1941 */
1942
1943 int
1944 uvm_fault_lower_direct(
1945 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1946 struct uvm_object *uobj, struct vm_page *uobjpage)
1947 {
1948 struct vm_page *pg;
1949 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1950
1951 /*
1952 * we are not promoting. if the mapping is COW ensure that we
1953 * don't give more access than we should (e.g. when doing a read
1954 * fault on a COPYONWRITE mapping we want to map the COW page in
1955 * R/O even though the entry protection could be R/W).
1956 *
1957 * set "pg" to the page we want to map in (uobjpage, usually)
1958 */
1959
1960 uvmexp.flt_obj++;
1961 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1962 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1963 flt->enter_prot &= ~VM_PROT_WRITE;
1964 pg = uobjpage; /* map in the actual object */
1965
1966 KASSERT(uobjpage != PGO_DONTCARE);
1967
1968 /*
1969 * we are faulting directly on the page. be careful
1970 * about writing to loaned pages...
1971 */
1972
1973 if (uobjpage->loan_count) {
1974 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1975 }
1976 KASSERT(pg == uobjpage);
1977
1978 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1979 }
1980
1981 /*
1982 * uvm_fault_lower_direct_loan: resolve loaned page.
1983 *
1984 * 1. if not cow'ing, adjust flt->enter_prot.
1985 * 2. if cow'ing, break loan.
1986 */
1987
1988 static int
1989 uvm_fault_lower_direct_loan(
1990 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1991 struct uvm_object *uobj, struct vm_page **rpg,
1992 struct vm_page **ruobjpage)
1993 {
1994 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1995 struct vm_page *pg;
1996 struct vm_page *uobjpage = *ruobjpage;
1997 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
1998
1999 if (!flt->cow_now) {
2000 /* read fault: cap the protection at readonly */
2001 /* cap! */
2002 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2003 } else {
2004 /* write fault: must break the loan here */
2005
2006 pg = uvm_loanbreak(uobjpage);
2007 if (pg == NULL) {
2008
2009 /*
2010 * drop ownership of page, it can't be released
2011 */
2012
2013 if (uobjpage->flags & PG_WANTED)
2014 wakeup(uobjpage);
2015 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2016 UVM_PAGE_OWN(uobjpage, NULL);
2017
2018 uvmfault_unlockall(ufi, amap, uobj, NULL);
2019 UVMHIST_LOG(maphist,
2020 " out of RAM breaking loan, waiting",
2021 0,0,0,0);
2022 uvmexp.fltnoram++;
2023 uvm_wait("flt_noram4");
2024 return ERESTART;
2025 }
2026 *rpg = pg;
2027 *ruobjpage = pg;
2028 }
2029 return 0;
2030 }
2031
2032 /*
2033 * uvm_fault_lower_promote: promote lower page.
2034 *
2035 * 1. call uvmfault_promote.
2036 * 2. fill in data.
2037 * 3. if not ZFOD, dispose old page.
2038 */
2039
2040 int
2041 uvm_fault_lower_promote(
2042 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2043 struct uvm_object *uobj, struct vm_page *uobjpage)
2044 {
2045 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2046 struct vm_anon *anon;
2047 struct vm_page *pg;
2048 int error;
2049 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2050
2051 /*
2052 * if we are going to promote the data to an anon we
2053 * allocate a blank anon here and plug it into our amap.
2054 */
2055 #if DIAGNOSTIC
2056 if (amap == NULL)
2057 panic("uvm_fault: want to promote data, but no anon");
2058 #endif
2059 error = uvmfault_promote(ufi, NULL, uobjpage,
2060 &anon, &flt->anon_spare);
2061 switch (error) {
2062 case 0:
2063 break;
2064 case ERESTART:
2065 return ERESTART;
2066 default:
2067 return error;
2068 }
2069
2070 pg = anon->an_page;
2071
2072 /*
2073 * fill in the data
2074 */
2075
2076 if (uobjpage != PGO_DONTCARE) {
2077 uvmexp.flt_prcopy++;
2078
2079 /*
2080 * promote to shared amap? make sure all sharing
2081 * procs see it
2082 */
2083
2084 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2085 pmap_page_protect(uobjpage, VM_PROT_NONE);
2086 /*
2087 * XXX: PAGE MIGHT BE WIRED!
2088 */
2089 }
2090
2091 /*
2092 * dispose of uobjpage. it can't be PG_RELEASED
2093 * since we still hold the object lock.
2094 * drop handle to uobj as well.
2095 */
2096
2097 if (uobjpage->flags & PG_WANTED)
2098 /* still have the obj lock */
2099 wakeup(uobjpage);
2100 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2101 UVM_PAGE_OWN(uobjpage, NULL);
2102 mutex_exit(&uobj->vmobjlock);
2103 uobj = NULL;
2104
2105 UVMHIST_LOG(maphist,
2106 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2107 uobjpage, anon, pg, 0);
2108
2109 } else {
2110 uvmexp.flt_przero++;
2111
2112 /*
2113 * Page is zero'd and marked dirty by
2114 * uvmfault_promote().
2115 */
2116
2117 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2118 anon, pg, 0, 0);
2119 }
2120
2121 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage);
2122 }
2123
2124 /*
2125 * uvm_fault_lower_enter: enter h/w mapping of lower page.
2126 */
2127
2128 int
2129 uvm_fault_lower_enter(
2130 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2131 struct uvm_object *uobj,
2132 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2133 {
2134 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2135 int error;
2136 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2137
2138 /*
2139 * locked:
2140 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2141 * anon(if !null), pg(if anon)
2142 *
2143 * note: pg is either the uobjpage or the new page in the new anon
2144 */
2145 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2146 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2147 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2148 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2149 KASSERT((pg->flags & PG_BUSY) != 0);
2150
2151 /*
2152 * all resources are present. we can now map it in and free our
2153 * resources.
2154 */
2155
2156 UVMHIST_LOG(maphist,
2157 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2158 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2159 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2160 (pg->flags & PG_RDONLY) == 0);
2161 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2162 VM_PAGE_TO_PHYS(pg),
2163 (pg->flags & PG_RDONLY) != 0 ?
2164 flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2165 flt->access_type | PMAP_CANFAIL |
2166 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2167
2168 /*
2169 * No need to undo what we did; we can simply think of
2170 * this as the pmap throwing away the mapping information.
2171 *
2172 * We do, however, have to go through the ReFault path,
2173 * as the map may change while we're asleep.
2174 */
2175
2176 if (pg->flags & PG_WANTED)
2177 wakeup(pg);
2178
2179 /*
2180 * note that pg can't be PG_RELEASED since we did not drop
2181 * the object lock since the last time we checked.
2182 */
2183 KASSERT((pg->flags & PG_RELEASED) == 0);
2184
2185 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2186 UVM_PAGE_OWN(pg, NULL);
2187
2188 uvmfault_unlockall(ufi, amap, uobj, anon);
2189 if (!uvm_reclaimable()) {
2190 UVMHIST_LOG(maphist,
2191 "<- failed. out of VM",0,0,0,0);
2192 /* XXX instrumentation */
2193 error = ENOMEM;
2194 return error;
2195 }
2196 /* XXX instrumentation */
2197 uvm_wait("flt_pmfail2");
2198 return ERESTART;
2199 }
2200
2201 uvm_fault_lower_done(ufi, flt, uobj, pg);
2202
2203 /*
2204 * note that pg can't be PG_RELEASED since we did not drop the object
2205 * lock since the last time we checked.
2206 */
2207 KASSERT((pg->flags & PG_RELEASED) == 0);
2208 if (pg->flags & PG_WANTED)
2209 wakeup(pg);
2210 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2211 UVM_PAGE_OWN(pg, NULL);
2212
2213 pmap_update(ufi->orig_map->pmap);
2214 uvmfault_unlockall(ufi, amap, uobj, anon);
2215
2216 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2217 return 0;
2218 }
2219
2220 /*
2221 * uvm_fault_lower_done: queue lower center page.
2222 */
2223
2224 void
2225 uvm_fault_lower_done(
2226 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2227 struct uvm_object *uobj, struct vm_page *pg)
2228 {
2229 bool dropswap = false;
2230
2231 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2232
2233 mutex_enter(&uvm_pageqlock);
2234 if (flt->wire_paging) {
2235 uvm_pagewire(pg);
2236 if (pg->pqflags & PQ_AOBJ) {
2237
2238 /*
2239 * since the now-wired page cannot be paged out,
2240 * release its swap resources for others to use.
2241 * since an aobj page with no swap cannot be PG_CLEAN,
2242 * clear its clean flag now.
2243 */
2244
2245 KASSERT(uobj != NULL);
2246 pg->flags &= ~(PG_CLEAN);
2247 dropswap = true;
2248 }
2249 } else {
2250 uvm_pageactivate(pg);
2251 }
2252 mutex_exit(&uvm_pageqlock);
2253
2254 if (dropswap) {
2255 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2256 }
2257 }
2258
2259
2260 /*
2261 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2262 *
2263 * => map may be read-locked by caller, but MUST NOT be write-locked.
2264 * => if map is read-locked, any operations which may cause map to
2265 * be write-locked in uvm_fault() must be taken care of by
2266 * the caller. See uvm_map_pageable().
2267 */
2268
2269 int
2270 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2271 vm_prot_t access_type, int maxprot)
2272 {
2273 vaddr_t va;
2274 int error;
2275
2276 /*
2277 * now fault it in a page at a time. if the fault fails then we have
2278 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2279 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2280 */
2281
2282 /*
2283 * XXX work around overflowing a vaddr_t. this prevents us from
2284 * wiring the last page in the address space, though.
2285 */
2286 if (start > end) {
2287 return EFAULT;
2288 }
2289
2290 for (va = start; va < end; va += PAGE_SIZE) {
2291 error = uvm_fault_internal(map, va, access_type,
2292 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2293 if (error) {
2294 if (va != start) {
2295 uvm_fault_unwire(map, start, va);
2296 }
2297 return error;
2298 }
2299 }
2300 return 0;
2301 }
2302
2303 /*
2304 * uvm_fault_unwire(): unwire range of virtual space.
2305 */
2306
2307 void
2308 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2309 {
2310 vm_map_lock_read(map);
2311 uvm_fault_unwire_locked(map, start, end);
2312 vm_map_unlock_read(map);
2313 }
2314
2315 /*
2316 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2317 *
2318 * => map must be at least read-locked.
2319 */
2320
2321 void
2322 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2323 {
2324 struct vm_map_entry *entry;
2325 pmap_t pmap = vm_map_pmap(map);
2326 vaddr_t va;
2327 paddr_t pa;
2328 struct vm_page *pg;
2329
2330 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2331
2332 /*
2333 * we assume that the area we are unwiring has actually been wired
2334 * in the first place. this means that we should be able to extract
2335 * the PAs from the pmap. we also lock out the page daemon so that
2336 * we can call uvm_pageunwire.
2337 */
2338
2339 mutex_enter(&uvm_pageqlock);
2340
2341 /*
2342 * find the beginning map entry for the region.
2343 */
2344
2345 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2346 if (uvm_map_lookup_entry(map, start, &entry) == false)
2347 panic("uvm_fault_unwire_locked: address not in map");
2348
2349 for (va = start; va < end; va += PAGE_SIZE) {
2350 if (pmap_extract(pmap, va, &pa) == false)
2351 continue;
2352
2353 /*
2354 * find the map entry for the current address.
2355 */
2356
2357 KASSERT(va >= entry->start);
2358 while (va >= entry->end) {
2359 KASSERT(entry->next != &map->header &&
2360 entry->next->start <= entry->end);
2361 entry = entry->next;
2362 }
2363
2364 /*
2365 * if the entry is no longer wired, tell the pmap.
2366 */
2367
2368 if (VM_MAPENT_ISWIRED(entry) == 0)
2369 pmap_unwire(pmap, va);
2370
2371 pg = PHYS_TO_VM_PAGE(pa);
2372 if (pg)
2373 uvm_pageunwire(pg);
2374 }
2375
2376 mutex_exit(&uvm_pageqlock);
2377 }
2378