Home | History | Annotate | Line # | Download | only in uvm
uvm_fault.c revision 1.185
      1 /*	$NetBSD: uvm_fault.c,v 1.185 2011/05/21 11:49:34 tsutsui Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  *
     27  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
     28  */
     29 
     30 /*
     31  * uvm_fault.c: fault handler
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.185 2011/05/21 11:49:34 tsutsui Exp $");
     36 
     37 #include "opt_uvmhist.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/kernel.h>
     42 #include <sys/mman.h>
     43 
     44 #include <uvm/uvm.h>
     45 
     46 /*
     47  *
     48  * a word on page faults:
     49  *
     50  * types of page faults we handle:
     51  *
     52  * CASE 1: upper layer faults                   CASE 2: lower layer faults
     53  *
     54  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
     55  *    read/write1     write>1                  read/write   +-cow_write/zero
     56  *         |             |                         |        |
     57  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
     58  * amap |  V  |       |  ---------> new |          |        | |  ^  |
     59  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
     60  *                                                 |        |    |
     61  *      +-----+       +-----+                   +--|--+     | +--|--+
     62  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
     63  *      +-----+       +-----+                   +-----+       +-----+
     64  *
     65  * d/c = don't care
     66  *
     67  *   case [0]: layerless fault
     68  *	no amap or uobj is present.   this is an error.
     69  *
     70  *   case [1]: upper layer fault [anon active]
     71  *     1A: [read] or [write with anon->an_ref == 1]
     72  *		I/O takes place in upper level anon and uobj is not touched.
     73  *     1B: [write with anon->an_ref > 1]
     74  *		new anon is alloc'd and data is copied off ["COW"]
     75  *
     76  *   case [2]: lower layer fault [uobj]
     77  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
     78  *		I/O takes place directly in object.
     79  *     2B: [write to copy_on_write] or [read on NULL uobj]
     80  *		data is "promoted" from uobj to a new anon.
     81  *		if uobj is null, then we zero fill.
     82  *
     83  * we follow the standard UVM locking protocol ordering:
     84  *
     85  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
     86  * we hold a PG_BUSY page if we unlock for I/O
     87  *
     88  *
     89  * the code is structured as follows:
     90  *
     91  *     - init the "IN" params in the ufi structure
     92  *   ReFault: (ERESTART returned to the loop in uvm_fault_internal)
     93  *     - do lookups [locks maps], check protection, handle needs_copy
     94  *     - check for case 0 fault (error)
     95  *     - establish "range" of fault
     96  *     - if we have an amap lock it and extract the anons
     97  *     - if sequential advice deactivate pages behind us
     98  *     - at the same time check pmap for unmapped areas and anon for pages
     99  *	 that we could map in (and do map it if found)
    100  *     - check object for resident pages that we could map in
    101  *     - if (case 2) goto Case2
    102  *     - >>> handle case 1
    103  *           - ensure source anon is resident in RAM
    104  *           - if case 1B alloc new anon and copy from source
    105  *           - map the correct page in
    106  *   Case2:
    107  *     - >>> handle case 2
    108  *           - ensure source page is resident (if uobj)
    109  *           - if case 2B alloc new anon and copy from source (could be zero
    110  *		fill if uobj == NULL)
    111  *           - map the correct page in
    112  *     - done!
    113  *
    114  * note on paging:
    115  *   if we have to do I/O we place a PG_BUSY page in the correct object,
    116  * unlock everything, and do the I/O.   when I/O is done we must reverify
    117  * the state of the world before assuming that our data structures are
    118  * valid.   [because mappings could change while the map is unlocked]
    119  *
    120  *  alternative 1: unbusy the page in question and restart the page fault
    121  *    from the top (ReFault).   this is easy but does not take advantage
    122  *    of the information that we already have from our previous lookup,
    123  *    although it is possible that the "hints" in the vm_map will help here.
    124  *
    125  * alternative 2: the system already keeps track of a "version" number of
    126  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
    127  *    mapping) you bump the version number up by one...]   so, we can save
    128  *    the version number of the map before we release the lock and start I/O.
    129  *    then when I/O is done we can relock and check the version numbers
    130  *    to see if anything changed.    this might save us some over 1 because
    131  *    we don't have to unbusy the page and may be less compares(?).
    132  *
    133  * alternative 3: put in backpointers or a way to "hold" part of a map
    134  *    in place while I/O is in progress.   this could be complex to
    135  *    implement (especially with structures like amap that can be referenced
    136  *    by multiple map entries, and figuring out what should wait could be
    137  *    complex as well...).
    138  *
    139  * we use alternative 2.  given that we are multi-threaded now we may want
    140  * to reconsider the choice.
    141  */
    142 
    143 /*
    144  * local data structures
    145  */
    146 
    147 struct uvm_advice {
    148 	int advice;
    149 	int nback;
    150 	int nforw;
    151 };
    152 
    153 /*
    154  * page range array:
    155  * note: index in array must match "advice" value
    156  * XXX: borrowed numbers from freebsd.   do they work well for us?
    157  */
    158 
    159 static const struct uvm_advice uvmadvice[] = {
    160 	{ MADV_NORMAL, 3, 4 },
    161 	{ MADV_RANDOM, 0, 0 },
    162 	{ MADV_SEQUENTIAL, 8, 7},
    163 };
    164 
    165 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
    166 
    167 /*
    168  * private prototypes
    169  */
    170 
    171 /*
    172  * inline functions
    173  */
    174 
    175 /*
    176  * uvmfault_anonflush: try and deactivate pages in specified anons
    177  *
    178  * => does not have to deactivate page if it is busy
    179  */
    180 
    181 static inline void
    182 uvmfault_anonflush(struct vm_anon **anons, int n)
    183 {
    184 	int lcv;
    185 	struct vm_page *pg;
    186 
    187 	for (lcv = 0; lcv < n; lcv++) {
    188 		if (anons[lcv] == NULL)
    189 			continue;
    190 		mutex_enter(&anons[lcv]->an_lock);
    191 		pg = anons[lcv]->an_page;
    192 		if (pg && (pg->flags & PG_BUSY) == 0) {
    193 			mutex_enter(&uvm_pageqlock);
    194 			if (pg->wire_count == 0) {
    195 				uvm_pagedeactivate(pg);
    196 			}
    197 			mutex_exit(&uvm_pageqlock);
    198 		}
    199 		mutex_exit(&anons[lcv]->an_lock);
    200 	}
    201 }
    202 
    203 /*
    204  * normal functions
    205  */
    206 
    207 /*
    208  * uvmfault_amapcopy: clear "needs_copy" in a map.
    209  *
    210  * => called with VM data structures unlocked (usually, see below)
    211  * => we get a write lock on the maps and clear needs_copy for a VA
    212  * => if we are out of RAM we sleep (waiting for more)
    213  */
    214 
    215 static void
    216 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
    217 {
    218 	for (;;) {
    219 
    220 		/*
    221 		 * no mapping?  give up.
    222 		 */
    223 
    224 		if (uvmfault_lookup(ufi, true) == false)
    225 			return;
    226 
    227 		/*
    228 		 * copy if needed.
    229 		 */
    230 
    231 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
    232 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
    233 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
    234 
    235 		/*
    236 		 * didn't work?  must be out of RAM.   unlock and sleep.
    237 		 */
    238 
    239 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
    240 			uvmfault_unlockmaps(ufi, true);
    241 			uvm_wait("fltamapcopy");
    242 			continue;
    243 		}
    244 
    245 		/*
    246 		 * got it!   unlock and return.
    247 		 */
    248 
    249 		uvmfault_unlockmaps(ufi, true);
    250 		return;
    251 	}
    252 	/*NOTREACHED*/
    253 }
    254 
    255 /*
    256  * uvmfault_anonget: get data in an anon into a non-busy, non-released
    257  * page in that anon.
    258  *
    259  * => maps, amap, and anon locked by caller.
    260  * => if we fail (result != 0) we unlock everything.
    261  * => if we are successful, we return with everything still locked.
    262  * => we don't move the page on the queues [gets moved later]
    263  * => if we allocate a new page [we_own], it gets put on the queues.
    264  *    either way, the result is that the page is on the queues at return time
    265  * => for pages which are on loan from a uvm_object (and thus are not
    266  *    owned by the anon): if successful, we return with the owning object
    267  *    locked.   the caller must unlock this object when it unlocks everything
    268  *    else.
    269  */
    270 
    271 int
    272 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
    273     struct vm_anon *anon)
    274 {
    275 	bool we_own;	/* we own anon's page? */
    276 	bool locked;	/* did we relock? */
    277 	struct vm_page *pg;
    278 	int error;
    279 	UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
    280 
    281 	KASSERT(mutex_owned(&anon->an_lock));
    282 
    283 	error = 0;
    284 	uvmexp.fltanget++;
    285         /* bump rusage counters */
    286 	if (anon->an_page)
    287 		curlwp->l_ru.ru_minflt++;
    288 	else
    289 		curlwp->l_ru.ru_majflt++;
    290 
    291 	/*
    292 	 * loop until we get it, or fail.
    293 	 */
    294 
    295 	for (;;) {
    296 		we_own = false;		/* true if we set PG_BUSY on a page */
    297 		pg = anon->an_page;
    298 
    299 		/*
    300 		 * if there is a resident page and it is loaned, then anon
    301 		 * may not own it.   call out to uvm_anon_lockpage() to ensure
    302 		 * the real owner of the page has been identified and locked.
    303 		 */
    304 
    305 		if (pg && pg->loan_count)
    306 			pg = uvm_anon_lockloanpg(anon);
    307 
    308 		/*
    309 		 * page there?   make sure it is not busy/released.
    310 		 */
    311 
    312 		if (pg) {
    313 
    314 			/*
    315 			 * at this point, if the page has a uobject [meaning
    316 			 * we have it on loan], then that uobject is locked
    317 			 * by us!   if the page is busy, we drop all the
    318 			 * locks (including uobject) and try again.
    319 			 */
    320 
    321 			if ((pg->flags & PG_BUSY) == 0) {
    322 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
    323 				return (0);
    324 			}
    325 			pg->flags |= PG_WANTED;
    326 			uvmexp.fltpgwait++;
    327 
    328 			/*
    329 			 * the last unlock must be an atomic unlock+wait on
    330 			 * the owner of page
    331 			 */
    332 
    333 			if (pg->uobject) {	/* owner is uobject ? */
    334 				uvmfault_unlockall(ufi, amap, NULL, anon);
    335 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
    336 				    0,0,0);
    337 				UVM_UNLOCK_AND_WAIT(pg,
    338 				    &pg->uobject->vmobjlock,
    339 				    false, "anonget1",0);
    340 			} else {
    341 				/* anon owns page */
    342 				uvmfault_unlockall(ufi, amap, NULL, NULL);
    343 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
    344 				    0,0,0);
    345 				UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
    346 				    "anonget2",0);
    347 			}
    348 		} else {
    349 #if defined(VMSWAP)
    350 
    351 			/*
    352 			 * no page, we must try and bring it in.
    353 			 */
    354 
    355 			pg = uvm_pagealloc(NULL,
    356 			    ufi != NULL ? ufi->orig_rvaddr : 0,
    357 			    anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
    358 			if (pg == NULL) {		/* out of RAM.  */
    359 				uvmfault_unlockall(ufi, amap, NULL, anon);
    360 				uvmexp.fltnoram++;
    361 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
    362 				    0,0,0);
    363 				if (!uvm_reclaimable()) {
    364 					return ENOMEM;
    365 				}
    366 				uvm_wait("flt_noram1");
    367 			} else {
    368 				/* we set the PG_BUSY bit */
    369 				we_own = true;
    370 				uvmfault_unlockall(ufi, amap, NULL, anon);
    371 
    372 				/*
    373 				 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
    374 				 * page into the uvm_swap_get function with
    375 				 * all data structures unlocked.  note that
    376 				 * it is ok to read an_swslot here because
    377 				 * we hold PG_BUSY on the page.
    378 				 */
    379 				uvmexp.pageins++;
    380 				error = uvm_swap_get(pg, anon->an_swslot,
    381 				    PGO_SYNCIO);
    382 
    383 				/*
    384 				 * we clean up after the i/o below in the
    385 				 * "we_own" case
    386 				 */
    387 			}
    388 #else /* defined(VMSWAP) */
    389 			panic("%s: no page", __func__);
    390 #endif /* defined(VMSWAP) */
    391 		}
    392 
    393 		/*
    394 		 * now relock and try again
    395 		 */
    396 
    397 		locked = uvmfault_relock(ufi);
    398 		if (locked && amap != NULL) {
    399 			amap_lock(amap);
    400 		}
    401 		if (locked || we_own)
    402 			mutex_enter(&anon->an_lock);
    403 
    404 		/*
    405 		 * if we own the page (i.e. we set PG_BUSY), then we need
    406 		 * to clean up after the I/O. there are three cases to
    407 		 * consider:
    408 		 *   [1] page released during I/O: free anon and ReFault.
    409 		 *   [2] I/O not OK.   free the page and cause the fault
    410 		 *       to fail.
    411 		 *   [3] I/O OK!   activate the page and sync with the
    412 		 *       non-we_own case (i.e. drop anon lock if not locked).
    413 		 */
    414 
    415 		if (we_own) {
    416 #if defined(VMSWAP)
    417 			if (pg->flags & PG_WANTED) {
    418 				wakeup(pg);
    419 			}
    420 			if (error) {
    421 
    422 				/*
    423 				 * remove the swap slot from the anon
    424 				 * and mark the anon as having no real slot.
    425 				 * don't free the swap slot, thus preventing
    426 				 * it from being used again.
    427 				 */
    428 
    429 				if (anon->an_swslot > 0)
    430 					uvm_swap_markbad(anon->an_swslot, 1);
    431 				anon->an_swslot = SWSLOT_BAD;
    432 
    433 				if ((pg->flags & PG_RELEASED) != 0)
    434 					goto released;
    435 
    436 				/*
    437 				 * note: page was never !PG_BUSY, so it
    438 				 * can't be mapped and thus no need to
    439 				 * pmap_page_protect it...
    440 				 */
    441 
    442 				mutex_enter(&uvm_pageqlock);
    443 				uvm_pagefree(pg);
    444 				mutex_exit(&uvm_pageqlock);
    445 
    446 				if (locked)
    447 					uvmfault_unlockall(ufi, amap, NULL,
    448 					    anon);
    449 				else
    450 					mutex_exit(&anon->an_lock);
    451 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
    452 				return error;
    453 			}
    454 
    455 			if ((pg->flags & PG_RELEASED) != 0) {
    456 released:
    457 				KASSERT(anon->an_ref == 0);
    458 
    459 				/*
    460 				 * released while we unlocked amap.
    461 				 */
    462 
    463 				if (locked)
    464 					uvmfault_unlockall(ufi, amap, NULL,
    465 					    NULL);
    466 
    467 				uvm_anon_release(anon);
    468 
    469 				if (error) {
    470 					UVMHIST_LOG(maphist,
    471 					    "<- ERROR/RELEASED", 0,0,0,0);
    472 					return error;
    473 				}
    474 
    475 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
    476 				return ERESTART;
    477 			}
    478 
    479 			/*
    480 			 * we've successfully read the page, activate it.
    481 			 */
    482 
    483 			mutex_enter(&uvm_pageqlock);
    484 			uvm_pageactivate(pg);
    485 			mutex_exit(&uvm_pageqlock);
    486 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    487 			UVM_PAGE_OWN(pg, NULL);
    488 			if (!locked)
    489 				mutex_exit(&anon->an_lock);
    490 #else /* defined(VMSWAP) */
    491 			panic("%s: we_own", __func__);
    492 #endif /* defined(VMSWAP) */
    493 		}
    494 
    495 		/*
    496 		 * we were not able to relock.   restart fault.
    497 		 */
    498 
    499 		if (!locked) {
    500 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    501 			return (ERESTART);
    502 		}
    503 
    504 		/*
    505 		 * verify no one has touched the amap and moved the anon on us.
    506 		 */
    507 
    508 		if (ufi != NULL &&
    509 		    amap_lookup(&ufi->entry->aref,
    510 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
    511 
    512 			uvmfault_unlockall(ufi, amap, NULL, anon);
    513 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    514 			return (ERESTART);
    515 		}
    516 
    517 		/*
    518 		 * try it again!
    519 		 */
    520 
    521 		uvmexp.fltanretry++;
    522 		continue;
    523 	}
    524 	/*NOTREACHED*/
    525 }
    526 
    527 /*
    528  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
    529  *
    530  *	1. allocate an anon and a page.
    531  *	2. fill its contents.
    532  *	3. put it into amap.
    533  *
    534  * => if we fail (result != 0) we unlock everything.
    535  * => on success, return a new locked anon via 'nanon'.
    536  *    (*nanon)->an_page will be a resident, locked, dirty page.
    537  * => it's caller's responsibility to put the promoted nanon->an_page to the
    538  *    page queue.
    539  */
    540 
    541 static int
    542 uvmfault_promote(struct uvm_faultinfo *ufi,
    543     struct vm_anon *oanon,
    544     struct vm_page *uobjpage,
    545     struct vm_anon **nanon, /* OUT: allocated anon */
    546     struct vm_anon **spare)
    547 {
    548 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
    549 	struct uvm_object *uobj;
    550 	struct vm_anon *anon;
    551 	struct vm_page *pg;
    552 	struct vm_page *opg;
    553 	int error;
    554 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    555 
    556 	if (oanon) {
    557 		/* anon COW */
    558 		opg = oanon->an_page;
    559 		KASSERT(opg != NULL);
    560 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
    561 	} else if (uobjpage != PGO_DONTCARE) {
    562 		/* object-backed COW */
    563 		opg = uobjpage;
    564 	} else {
    565 		/* ZFOD */
    566 		opg = NULL;
    567 	}
    568 	if (opg != NULL) {
    569 		uobj = opg->uobject;
    570 	} else {
    571 		uobj = NULL;
    572 	}
    573 
    574 	KASSERT(amap != NULL);
    575 	KASSERT(uobjpage != NULL);
    576 	KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
    577 	KASSERT(mutex_owned(&amap->am_l));
    578 	KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
    579 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
    580 #if 0
    581 	KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
    582 #endif
    583 
    584 	if (*spare != NULL) {
    585 		anon = *spare;
    586 		*spare = NULL;
    587 		mutex_enter(&anon->an_lock);
    588 	} else if (ufi->map != kernel_map) {
    589 		anon = uvm_analloc();
    590 	} else {
    591 		UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
    592 
    593 		/*
    594 		 * we can't allocate anons with kernel_map locked.
    595 		 */
    596 
    597 		uvm_page_unbusy(&uobjpage, 1);
    598 		uvmfault_unlockall(ufi, amap, uobj, oanon);
    599 
    600 		*spare = uvm_analloc();
    601 		if (*spare == NULL) {
    602 			goto nomem;
    603 		}
    604 		mutex_exit(&(*spare)->an_lock);
    605 		error = ERESTART;
    606 		goto done;
    607 	}
    608 	if (anon) {
    609 
    610 		/*
    611 		 * The new anon is locked.
    612 		 *
    613 		 * if opg == NULL, we want a zero'd, dirty page,
    614 		 * so have uvm_pagealloc() do that for us.
    615 		 */
    616 
    617 		pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
    618 		    UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
    619 	} else {
    620 		pg = NULL;
    621 	}
    622 
    623 	/*
    624 	 * out of memory resources?
    625 	 */
    626 
    627 	if (pg == NULL) {
    628 		/* save anon for the next try. */
    629 		if (anon != NULL) {
    630 			mutex_exit(&anon->an_lock);
    631 			*spare = anon;
    632 		}
    633 
    634 		/* unlock and fail ... */
    635 		uvm_page_unbusy(&uobjpage, 1);
    636 		uvmfault_unlockall(ufi, amap, uobj, oanon);
    637 nomem:
    638 		if (!uvm_reclaimable()) {
    639 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
    640 			uvmexp.fltnoanon++;
    641 			error = ENOMEM;
    642 			goto done;
    643 		}
    644 
    645 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
    646 		uvmexp.fltnoram++;
    647 		uvm_wait("flt_noram5");
    648 		error = ERESTART;
    649 		goto done;
    650 	}
    651 
    652 	/* copy page [pg now dirty] */
    653 	if (opg) {
    654 		uvm_pagecopy(opg, pg);
    655 	}
    656 
    657 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
    658 	    oanon != NULL);
    659 
    660 	*nanon = anon;
    661 	error = 0;
    662 done:
    663 	return error;
    664 }
    665 
    666 
    667 /*
    668  *   F A U L T   -   m a i n   e n t r y   p o i n t
    669  */
    670 
    671 /*
    672  * uvm_fault: page fault handler
    673  *
    674  * => called from MD code to resolve a page fault
    675  * => VM data structures usually should be unlocked.   however, it is
    676  *	possible to call here with the main map locked if the caller
    677  *	gets a write lock, sets it recusive, and then calls us (c.f.
    678  *	uvm_map_pageable).   this should be avoided because it keeps
    679  *	the map locked off during I/O.
    680  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
    681  */
    682 
    683 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
    684 			 ~VM_PROT_WRITE : VM_PROT_ALL)
    685 
    686 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
    687 #define UVM_FAULT_WIRE		(1 << 0)
    688 #define UVM_FAULT_MAXPROT	(1 << 1)
    689 
    690 struct uvm_faultctx {
    691 	vm_prot_t access_type;
    692 	vm_prot_t enter_prot;
    693 	vaddr_t startva;
    694 	int npages;
    695 	int centeridx;
    696 	struct vm_anon *anon_spare;
    697 	bool wire_mapping;
    698 	bool narrow;
    699 	bool wire_paging;
    700 	bool cow_now;
    701 	bool promote;
    702 };
    703 
    704 static inline int	uvm_fault_check(
    705 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    706 			    struct vm_anon ***, bool);
    707 
    708 static int		uvm_fault_upper(
    709 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    710 			    struct vm_anon **);
    711 static inline int	uvm_fault_upper_lookup(
    712 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    713 			    struct vm_anon **, struct vm_page **);
    714 static inline void	uvm_fault_upper_neighbor(
    715 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    716 			    vaddr_t, struct vm_page *, bool);
    717 static inline int	uvm_fault_upper_loan(
    718 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    719 			    struct vm_anon *, struct uvm_object **);
    720 static inline int	uvm_fault_upper_promote(
    721 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    722 			    struct uvm_object *, struct vm_anon *);
    723 static inline int	uvm_fault_upper_direct(
    724 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    725 			    struct uvm_object *, struct vm_anon *);
    726 static int		uvm_fault_upper_enter(
    727 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    728 			    struct uvm_object *, struct vm_anon *,
    729 			    struct vm_page *, struct vm_anon *);
    730 static inline void	uvm_fault_upper_done(
    731 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    732 			    struct vm_anon *, struct vm_page *);
    733 
    734 static int		uvm_fault_lower(
    735 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    736 			    struct vm_page **);
    737 static inline void	uvm_fault_lower_lookup(
    738 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    739 			    struct vm_page **);
    740 static inline void	uvm_fault_lower_neighbor(
    741 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    742 			    vaddr_t, struct vm_page *, bool);
    743 static inline int	uvm_fault_lower_io(
    744 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    745 			    struct uvm_object **, struct vm_page **);
    746 static inline int	uvm_fault_lower_direct(
    747 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    748 			    struct uvm_object *, struct vm_page *);
    749 static inline int	uvm_fault_lower_direct_loan(
    750 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    751 			    struct uvm_object *, struct vm_page **,
    752 			    struct vm_page **);
    753 static inline int	uvm_fault_lower_promote(
    754 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    755 			    struct uvm_object *, struct vm_page *);
    756 static int		uvm_fault_lower_enter(
    757 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    758 			    struct uvm_object *,
    759 			    struct vm_anon *, struct vm_page *);
    760 static inline void	uvm_fault_lower_done(
    761 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    762 			    struct uvm_object *, struct vm_page *);
    763 
    764 int
    765 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
    766     vm_prot_t access_type, int fault_flag)
    767 {
    768 	struct uvm_faultinfo ufi;
    769 	struct uvm_faultctx flt = {
    770 		.access_type = access_type,
    771 
    772 		/* don't look for neighborhood * pages on "wire" fault */
    773 		.narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
    774 
    775 		/* "wire" fault causes wiring of both mapping and paging */
    776 		.wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
    777 		.wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
    778 	};
    779 	const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
    780 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
    781 	struct vm_page *pages_store[UVM_MAXRANGE], **pages;
    782 	int error;
    783 	UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
    784 
    785 	UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
    786 	      orig_map, vaddr, access_type, fault_flag);
    787 
    788 	curcpu()->ci_data.cpu_nfault++;
    789 
    790 	/*
    791 	 * init the IN parameters in the ufi
    792 	 */
    793 
    794 	ufi.orig_map = orig_map;
    795 	ufi.orig_rvaddr = trunc_page(vaddr);
    796 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
    797 
    798 	error = ERESTART;
    799 	while (error == ERESTART) { /* ReFault: */
    800 		anons = anons_store;
    801 		pages = pages_store;
    802 
    803 		error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
    804 		if (error != 0)
    805 			continue;
    806 
    807 		error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
    808 		if (error != 0)
    809 			continue;
    810 
    811 		if (pages[flt.centeridx] == PGO_DONTCARE)
    812 			error = uvm_fault_upper(&ufi, &flt, anons);
    813 		else {
    814 			struct uvm_object * const uobj =
    815 			    ufi.entry->object.uvm_obj;
    816 
    817 			if (uobj && uobj->pgops->pgo_fault != NULL) {
    818 				/*
    819 				 * invoke "special" fault routine.
    820 				 */
    821 				mutex_enter(&uobj->vmobjlock);
    822 				/* locked: maps(read), amap(if there), uobj */
    823 				error = uobj->pgops->pgo_fault(&ufi,
    824 				    flt.startva, pages, flt.npages,
    825 				    flt.centeridx, flt.access_type,
    826 				    PGO_LOCKED|PGO_SYNCIO);
    827 
    828 				/*
    829 				 * locked: nothing, pgo_fault has unlocked
    830 				 * everything
    831 				 */
    832 
    833 				/*
    834 				 * object fault routine responsible for
    835 				 * pmap_update().
    836 				 */
    837 			} else {
    838 				error = uvm_fault_lower(&ufi, &flt, pages);
    839 			}
    840 		}
    841 	}
    842 
    843 	if (flt.anon_spare != NULL) {
    844 		flt.anon_spare->an_ref--;
    845 		uvm_anfree(flt.anon_spare);
    846 	}
    847 	return error;
    848 }
    849 
    850 /*
    851  * uvm_fault_check: check prot, handle needs-copy, etc.
    852  *
    853  *	1. lookup entry.
    854  *	2. check protection.
    855  *	3. adjust fault condition (mainly for simulated fault).
    856  *	4. handle needs-copy (lazy amap copy).
    857  *	5. establish range of interest for neighbor fault (aka pre-fault).
    858  *	6. look up anons (if amap exists).
    859  *	7. flush pages (if MADV_SEQUENTIAL)
    860  *
    861  * => called with nothing locked.
    862  * => if we fail (result != 0) we unlock everything.
    863  * => initialize/adjust many members of flt.
    864  */
    865 
    866 static int
    867 uvm_fault_check(
    868 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
    869 	struct vm_anon ***ranons, bool maxprot)
    870 {
    871 	struct vm_amap *amap;
    872 	struct uvm_object *uobj;
    873 	vm_prot_t check_prot;
    874 	int nback, nforw;
    875 	UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
    876 
    877 	/*
    878 	 * lookup and lock the maps
    879 	 */
    880 
    881 	if (uvmfault_lookup(ufi, false) == false) {
    882 		UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr,
    883 		    0,0,0);
    884 		return EFAULT;
    885 	}
    886 	/* locked: maps(read) */
    887 
    888 #ifdef DIAGNOSTIC
    889 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
    890 		printf("Page fault on non-pageable map:\n");
    891 		printf("ufi->map = %p\n", ufi->map);
    892 		printf("ufi->orig_map = %p\n", ufi->orig_map);
    893 		printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
    894 		panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
    895 	}
    896 #endif
    897 
    898 	/*
    899 	 * check protection
    900 	 */
    901 
    902 	check_prot = maxprot ?
    903 	    ufi->entry->max_protection : ufi->entry->protection;
    904 	if ((check_prot & flt->access_type) != flt->access_type) {
    905 		UVMHIST_LOG(maphist,
    906 		    "<- protection failure (prot=0x%x, access=0x%x)",
    907 		    ufi->entry->protection, flt->access_type, 0, 0);
    908 		uvmfault_unlockmaps(ufi, false);
    909 		return EACCES;
    910 	}
    911 
    912 	/*
    913 	 * "enter_prot" is the protection we want to enter the page in at.
    914 	 * for certain pages (e.g. copy-on-write pages) this protection can
    915 	 * be more strict than ufi->entry->protection.  "wired" means either
    916 	 * the entry is wired or we are fault-wiring the pg.
    917 	 */
    918 
    919 	flt->enter_prot = ufi->entry->protection;
    920 	if (VM_MAPENT_ISWIRED(ufi->entry))
    921 		flt->wire_mapping = true;
    922 
    923 	if (flt->wire_mapping) {
    924 		flt->access_type = flt->enter_prot; /* full access for wired */
    925 		flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
    926 	} else {
    927 		flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
    928 	}
    929 
    930 	flt->promote = false;
    931 
    932 	/*
    933 	 * handle "needs_copy" case.   if we need to copy the amap we will
    934 	 * have to drop our readlock and relock it with a write lock.  (we
    935 	 * need a write lock to change anything in a map entry [e.g.
    936 	 * needs_copy]).
    937 	 */
    938 
    939 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
    940 		if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
    941 			KASSERT(!maxprot);
    942 			/* need to clear */
    943 			UVMHIST_LOG(maphist,
    944 			    "  need to clear needs_copy and refault",0,0,0,0);
    945 			uvmfault_unlockmaps(ufi, false);
    946 			uvmfault_amapcopy(ufi);
    947 			uvmexp.fltamcopy++;
    948 			return ERESTART;
    949 
    950 		} else {
    951 
    952 			/*
    953 			 * ensure that we pmap_enter page R/O since
    954 			 * needs_copy is still true
    955 			 */
    956 
    957 			flt->enter_prot &= ~VM_PROT_WRITE;
    958 		}
    959 	}
    960 
    961 	/*
    962 	 * identify the players
    963 	 */
    964 
    965 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
    966 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
    967 
    968 	/*
    969 	 * check for a case 0 fault.  if nothing backing the entry then
    970 	 * error now.
    971 	 */
    972 
    973 	if (amap == NULL && uobj == NULL) {
    974 		uvmfault_unlockmaps(ufi, false);
    975 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
    976 		return EFAULT;
    977 	}
    978 
    979 	/*
    980 	 * establish range of interest based on advice from mapper
    981 	 * and then clip to fit map entry.   note that we only want
    982 	 * to do this the first time through the fault.   if we
    983 	 * ReFault we will disable this by setting "narrow" to true.
    984 	 */
    985 
    986 	if (flt->narrow == false) {
    987 
    988 		/* wide fault (!narrow) */
    989 		KASSERT(uvmadvice[ufi->entry->advice].advice ==
    990 			 ufi->entry->advice);
    991 		nback = MIN(uvmadvice[ufi->entry->advice].nback,
    992 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
    993 		flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
    994 		/*
    995 		 * note: "-1" because we don't want to count the
    996 		 * faulting page as forw
    997 		 */
    998 		nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
    999 			    ((ufi->entry->end - ufi->orig_rvaddr) >>
   1000 			     PAGE_SHIFT) - 1);
   1001 		flt->npages = nback + nforw + 1;
   1002 		flt->centeridx = nback;
   1003 
   1004 		flt->narrow = true;	/* ensure only once per-fault */
   1005 
   1006 	} else {
   1007 
   1008 		/* narrow fault! */
   1009 		nback = nforw = 0;
   1010 		flt->startva = ufi->orig_rvaddr;
   1011 		flt->npages = 1;
   1012 		flt->centeridx = 0;
   1013 
   1014 	}
   1015 	/* offset from entry's start to pgs' start */
   1016 	const voff_t eoff = flt->startva - ufi->entry->start;
   1017 
   1018 	/* locked: maps(read) */
   1019 	UVMHIST_LOG(maphist, "  narrow=%d, back=%d, forw=%d, startva=0x%x",
   1020 		    flt->narrow, nback, nforw, flt->startva);
   1021 	UVMHIST_LOG(maphist, "  entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
   1022 		    amap, uobj, 0);
   1023 
   1024 	/*
   1025 	 * if we've got an amap, lock it and extract current anons.
   1026 	 */
   1027 
   1028 	if (amap) {
   1029 		amap_lock(amap);
   1030 		amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
   1031 	} else {
   1032 		*ranons = NULL;	/* to be safe */
   1033 	}
   1034 
   1035 	/* locked: maps(read), amap(if there) */
   1036 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1037 
   1038 	/*
   1039 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
   1040 	 * now and then forget about them (for the rest of the fault).
   1041 	 */
   1042 
   1043 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
   1044 
   1045 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
   1046 		    0,0,0,0);
   1047 		/* flush back-page anons? */
   1048 		if (amap)
   1049 			uvmfault_anonflush(*ranons, nback);
   1050 
   1051 		/* flush object? */
   1052 		if (uobj) {
   1053 			voff_t uoff;
   1054 
   1055 			uoff = ufi->entry->offset + eoff;
   1056 			mutex_enter(&uobj->vmobjlock);
   1057 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
   1058 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
   1059 		}
   1060 
   1061 		/* now forget about the backpages */
   1062 		if (amap)
   1063 			*ranons += nback;
   1064 		flt->startva += (nback << PAGE_SHIFT);
   1065 		flt->npages -= nback;
   1066 		flt->centeridx = 0;
   1067 	}
   1068 	/*
   1069 	 * => startva is fixed
   1070 	 * => npages is fixed
   1071 	 */
   1072 	KASSERT(flt->startva <= ufi->orig_rvaddr);
   1073 	KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
   1074 	    flt->startva + (flt->npages << PAGE_SHIFT));
   1075 	return 0;
   1076 }
   1077 
   1078 /*
   1079  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
   1080  *
   1081  * iterate range of interest:
   1082  *	1. check if h/w mapping exists.  if yes, we don't care
   1083  *	2. check if anon exists.  if not, page is lower.
   1084  *	3. if anon exists, enter h/w mapping for neighbors.
   1085  *
   1086  * => called with amap locked (if exists).
   1087  */
   1088 
   1089 static int
   1090 uvm_fault_upper_lookup(
   1091 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1092 	struct vm_anon **anons, struct vm_page **pages)
   1093 {
   1094 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1095 	int lcv;
   1096 	vaddr_t currva;
   1097 	bool shadowed;
   1098 	UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
   1099 
   1100 	/* locked: maps(read), amap(if there) */
   1101 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1102 
   1103 	/*
   1104 	 * map in the backpages and frontpages we found in the amap in hopes
   1105 	 * of preventing future faults.    we also init the pages[] array as
   1106 	 * we go.
   1107 	 */
   1108 
   1109 	currva = flt->startva;
   1110 	shadowed = false;
   1111 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1112 		/*
   1113 		 * don't play with VAs that are already mapped
   1114 		 * (except for center)
   1115 		 */
   1116 		if (lcv != flt->centeridx &&
   1117 		    pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
   1118 			pages[lcv] = PGO_DONTCARE;
   1119 			continue;
   1120 		}
   1121 
   1122 		/*
   1123 		 * unmapped or center page.   check if any anon at this level.
   1124 		 */
   1125 		if (amap == NULL || anons[lcv] == NULL) {
   1126 			pages[lcv] = NULL;
   1127 			continue;
   1128 		}
   1129 
   1130 		/*
   1131 		 * check for present page and map if possible.   re-activate it.
   1132 		 */
   1133 
   1134 		pages[lcv] = PGO_DONTCARE;
   1135 		if (lcv == flt->centeridx) {	/* save center for later! */
   1136 			shadowed = true;
   1137 		} else {
   1138 			struct vm_anon *anon = anons[lcv];
   1139 
   1140 			mutex_enter(&anon->an_lock);
   1141 			struct vm_page *pg = anon->an_page;
   1142 
   1143 			/* ignore loaned and busy pages */
   1144 			if (pg != NULL && pg->loan_count == 0 &&
   1145 			    (pg->flags & PG_BUSY) == 0)
   1146 				uvm_fault_upper_neighbor(ufi, flt, currva,
   1147 				    pg, anon->an_ref > 1);
   1148 			mutex_exit(&anon->an_lock);
   1149 		}
   1150 	}
   1151 
   1152 	/* locked: maps(read), amap(if there) */
   1153 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1154 	/* (shadowed == true) if there is an anon at the faulting address */
   1155 	UVMHIST_LOG(maphist, "  shadowed=%d, will_get=%d", shadowed,
   1156 	    (ufi->entry->object.uvm_obj && shadowed != false),0,0);
   1157 
   1158 	/*
   1159 	 * note that if we are really short of RAM we could sleep in the above
   1160 	 * call to pmap_enter with everything locked.   bad?
   1161 	 *
   1162 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
   1163 	 * XXX case.  --thorpej
   1164 	 */
   1165 
   1166 	return 0;
   1167 }
   1168 
   1169 /*
   1170  * uvm_fault_upper_neighbor: enter single lower neighbor page.
   1171  *
   1172  * => called with amap and anon locked.
   1173  */
   1174 
   1175 static void
   1176 uvm_fault_upper_neighbor(
   1177 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1178 	vaddr_t currva, struct vm_page *pg, bool readonly)
   1179 {
   1180 	UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
   1181 
   1182 	/* locked: amap, anon */
   1183 
   1184 	mutex_enter(&uvm_pageqlock);
   1185 	uvm_pageenqueue(pg);
   1186 	mutex_exit(&uvm_pageqlock);
   1187 	UVMHIST_LOG(maphist,
   1188 	    "  MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
   1189 	    ufi->orig_map->pmap, currva, pg, 0);
   1190 	uvmexp.fltnamap++;
   1191 
   1192 	/*
   1193 	 * Since this page isn't the page that's actually faulting,
   1194 	 * ignore pmap_enter() failures; it's not critical that we
   1195 	 * enter these right now.
   1196 	 */
   1197 
   1198 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1199 	    VM_PAGE_TO_PHYS(pg),
   1200 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1201 	    flt->enter_prot,
   1202 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
   1203 
   1204 	pmap_update(ufi->orig_map->pmap);
   1205 }
   1206 
   1207 /*
   1208  * uvm_fault_upper: handle upper fault.
   1209  *
   1210  *	1. acquire anon lock.
   1211  *	2. get anon.  let uvmfault_anonget do the dirty work.
   1212  *	3. handle loan.
   1213  *	4. dispatch direct or promote handlers.
   1214  */
   1215 
   1216 static int
   1217 uvm_fault_upper(
   1218 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1219 	struct vm_anon **anons)
   1220 {
   1221 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1222 	struct vm_anon * const anon = anons[flt->centeridx];
   1223 	struct uvm_object *uobj;
   1224 	int error;
   1225 	UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
   1226 
   1227 	/* locked: maps(read), amap */
   1228 	KASSERT(mutex_owned(&amap->am_l));
   1229 
   1230 	/*
   1231 	 * handle case 1: fault on an anon in our amap
   1232 	 */
   1233 
   1234 	UVMHIST_LOG(maphist, "  case 1 fault: anon=0x%x", anon, 0,0,0);
   1235 	mutex_enter(&anon->an_lock);
   1236 
   1237 	/* locked: maps(read), amap, anon */
   1238 	KASSERT(mutex_owned(&amap->am_l));
   1239 	KASSERT(mutex_owned(&anon->an_lock));
   1240 
   1241 	/*
   1242 	 * no matter if we have case 1A or case 1B we are going to need to
   1243 	 * have the anon's memory resident.   ensure that now.
   1244 	 */
   1245 
   1246 	/*
   1247 	 * let uvmfault_anonget do the dirty work.
   1248 	 * if it fails (!OK) it will unlock everything for us.
   1249 	 * if it succeeds, locks are still valid and locked.
   1250 	 * also, if it is OK, then the anon's page is on the queues.
   1251 	 * if the page is on loan from a uvm_object, then anonget will
   1252 	 * lock that object for us if it does not fail.
   1253 	 */
   1254 
   1255 	error = uvmfault_anonget(ufi, amap, anon);
   1256 	switch (error) {
   1257 	case 0:
   1258 		break;
   1259 
   1260 	case ERESTART:
   1261 		return ERESTART;
   1262 
   1263 	case EAGAIN:
   1264 		kpause("fltagain1", false, hz/2, NULL);
   1265 		return ERESTART;
   1266 
   1267 	default:
   1268 		return error;
   1269 	}
   1270 
   1271 	/*
   1272 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
   1273 	 */
   1274 
   1275 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
   1276 
   1277 	/* locked: maps(read), amap, anon, uobj(if one) */
   1278 	KASSERT(mutex_owned(&amap->am_l));
   1279 	KASSERT(mutex_owned(&anon->an_lock));
   1280 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   1281 
   1282 	/*
   1283 	 * special handling for loaned pages
   1284 	 */
   1285 
   1286 	if (anon->an_page->loan_count) {
   1287 		error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
   1288 		if (error != 0)
   1289 			return error;
   1290 	}
   1291 
   1292 	/*
   1293 	 * if we are case 1B then we will need to allocate a new blank
   1294 	 * anon to transfer the data into.   note that we have a lock
   1295 	 * on anon, so no one can busy or release the page until we are done.
   1296 	 * also note that the ref count can't drop to zero here because
   1297 	 * it is > 1 and we are only dropping one ref.
   1298 	 *
   1299 	 * in the (hopefully very rare) case that we are out of RAM we
   1300 	 * will unlock, wait for more RAM, and refault.
   1301 	 *
   1302 	 * if we are out of anon VM we kill the process (XXX: could wait?).
   1303 	 */
   1304 
   1305 	if (flt->cow_now && anon->an_ref > 1) {
   1306 		flt->promote = true;
   1307 		error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
   1308 	} else {
   1309 		error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
   1310 	}
   1311 	return error;
   1312 }
   1313 
   1314 /*
   1315  * uvm_fault_upper_loan: handle loaned upper page.
   1316  *
   1317  *	1. if not cow'ing now, simply adjust flt->enter_prot.
   1318  *	2. if cow'ing now, and if ref count is 1, break loan.
   1319  */
   1320 
   1321 static int
   1322 uvm_fault_upper_loan(
   1323 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1324 	struct vm_anon *anon, struct uvm_object **ruobj)
   1325 {
   1326 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1327 	int error = 0;
   1328 	UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
   1329 
   1330 	if (!flt->cow_now) {
   1331 
   1332 		/*
   1333 		 * for read faults on loaned pages we just cap the
   1334 		 * protection at read-only.
   1335 		 */
   1336 
   1337 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1338 
   1339 	} else {
   1340 		/*
   1341 		 * note that we can't allow writes into a loaned page!
   1342 		 *
   1343 		 * if we have a write fault on a loaned page in an
   1344 		 * anon then we need to look at the anon's ref count.
   1345 		 * if it is greater than one then we are going to do
   1346 		 * a normal copy-on-write fault into a new anon (this
   1347 		 * is not a problem).  however, if the reference count
   1348 		 * is one (a case where we would normally allow a
   1349 		 * write directly to the page) then we need to kill
   1350 		 * the loan before we continue.
   1351 		 */
   1352 
   1353 		/* >1 case is already ok */
   1354 		if (anon->an_ref == 1) {
   1355 			error = uvm_loanbreak_anon(anon, *ruobj);
   1356 			if (error != 0) {
   1357 				uvmfault_unlockall(ufi, amap, *ruobj, anon);
   1358 				uvm_wait("flt_noram2");
   1359 				return ERESTART;
   1360 			}
   1361 			/* if we were a loan reciever uobj is gone */
   1362 			if (*ruobj)
   1363 				*ruobj = NULL;
   1364 		}
   1365 	}
   1366 	return error;
   1367 }
   1368 
   1369 /*
   1370  * uvm_fault_upper_promote: promote upper page.
   1371  *
   1372  *	1. call uvmfault_promote.
   1373  *	2. enqueue page.
   1374  *	3. deref.
   1375  *	4. pass page to uvm_fault_upper_enter.
   1376  */
   1377 
   1378 static int
   1379 uvm_fault_upper_promote(
   1380 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1381 	struct uvm_object *uobj, struct vm_anon *anon)
   1382 {
   1383 	struct vm_anon * const oanon = anon;
   1384 	struct vm_page *pg;
   1385 	int error;
   1386 	UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
   1387 
   1388 	UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
   1389 	uvmexp.flt_acow++;
   1390 
   1391 	error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
   1392 	    &flt->anon_spare);
   1393 	switch (error) {
   1394 	case 0:
   1395 		break;
   1396 	case ERESTART:
   1397 		return ERESTART;
   1398 	default:
   1399 		return error;
   1400 	}
   1401 
   1402 	pg = anon->an_page;
   1403 	mutex_enter(&uvm_pageqlock);
   1404 	uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
   1405 	mutex_exit(&uvm_pageqlock);
   1406 	pg->flags &= ~(PG_BUSY|PG_FAKE);
   1407 	UVM_PAGE_OWN(pg, NULL);
   1408 
   1409 	/* deref: can not drop to zero here by defn! */
   1410 	KASSERT(oanon->an_ref > 1);
   1411 	oanon->an_ref--;
   1412 
   1413 	/*
   1414 	 * note: oanon is still locked, as is the new anon.  we
   1415 	 * need to check for this later when we unlock oanon; if
   1416 	 * oanon != anon, we'll have to unlock anon, too.
   1417 	 */
   1418 
   1419 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1420 }
   1421 
   1422 /*
   1423  * uvm_fault_upper_direct: handle direct fault.
   1424  */
   1425 
   1426 static int
   1427 uvm_fault_upper_direct(
   1428 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1429 	struct uvm_object *uobj, struct vm_anon *anon)
   1430 {
   1431 	struct vm_anon * const oanon = anon;
   1432 	struct vm_page *pg;
   1433 	UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
   1434 
   1435 	uvmexp.flt_anon++;
   1436 	pg = anon->an_page;
   1437 	if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
   1438 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1439 
   1440 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1441 }
   1442 
   1443 /*
   1444  * uvm_fault_upper_enter: enter h/w mapping of upper page.
   1445  */
   1446 
   1447 static int
   1448 uvm_fault_upper_enter(
   1449 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1450 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
   1451 	struct vm_anon *oanon)
   1452 {
   1453 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1454 	UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
   1455 
   1456 	/* locked: maps(read), amap, oanon, anon(if different from oanon) */
   1457 	KASSERT(mutex_owned(&amap->am_l));
   1458 	KASSERT(mutex_owned(&anon->an_lock));
   1459 	KASSERT(mutex_owned(&oanon->an_lock));
   1460 
   1461 	/*
   1462 	 * now map the page in.
   1463 	 */
   1464 
   1465 	UVMHIST_LOG(maphist,
   1466 	    "  MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
   1467 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
   1468 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
   1469 	    VM_PAGE_TO_PHYS(pg),
   1470 	    flt->enter_prot, flt->access_type | PMAP_CANFAIL |
   1471 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   1472 
   1473 		/*
   1474 		 * No need to undo what we did; we can simply think of
   1475 		 * this as the pmap throwing away the mapping information.
   1476 		 *
   1477 		 * We do, however, have to go through the ReFault path,
   1478 		 * as the map may change while we're asleep.
   1479 		 */
   1480 
   1481 		if (anon != oanon)
   1482 			mutex_exit(&anon->an_lock);
   1483 		uvmfault_unlockall(ufi, amap, uobj, oanon);
   1484 		if (!uvm_reclaimable()) {
   1485 			UVMHIST_LOG(maphist,
   1486 			    "<- failed.  out of VM",0,0,0,0);
   1487 			/* XXX instrumentation */
   1488 			return ENOMEM;
   1489 		}
   1490 		/* XXX instrumentation */
   1491 		uvm_wait("flt_pmfail1");
   1492 		return ERESTART;
   1493 	}
   1494 
   1495 	uvm_fault_upper_done(ufi, flt, anon, pg);
   1496 
   1497 	/*
   1498 	 * done case 1!  finish up by unlocking everything and returning success
   1499 	 */
   1500 
   1501 	if (anon != oanon) {
   1502 		mutex_exit(&anon->an_lock);
   1503 	}
   1504 	pmap_update(ufi->orig_map->pmap);
   1505 	uvmfault_unlockall(ufi, amap, uobj, oanon);
   1506 	return 0;
   1507 }
   1508 
   1509 /*
   1510  * uvm_fault_upper_done: queue upper center page.
   1511  */
   1512 
   1513 static void
   1514 uvm_fault_upper_done(
   1515 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1516 	struct vm_anon *anon, struct vm_page *pg)
   1517 {
   1518 	const bool wire_paging = flt->wire_paging;
   1519 
   1520 	UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
   1521 
   1522 	/*
   1523 	 * ... update the page queues.
   1524 	 */
   1525 
   1526 	mutex_enter(&uvm_pageqlock);
   1527 	if (wire_paging) {
   1528 		uvm_pagewire(pg);
   1529 
   1530 		/*
   1531 		 * since the now-wired page cannot be paged out,
   1532 		 * release its swap resources for others to use.
   1533 		 * since an anon with no swap cannot be PG_CLEAN,
   1534 		 * clear its clean flag now.
   1535 		 */
   1536 
   1537 		pg->flags &= ~(PG_CLEAN);
   1538 
   1539 	} else {
   1540 		uvm_pageactivate(pg);
   1541 	}
   1542 	mutex_exit(&uvm_pageqlock);
   1543 
   1544 	if (wire_paging) {
   1545 		uvm_anon_dropswap(anon);
   1546 	}
   1547 }
   1548 
   1549 /*
   1550  * uvm_fault_lower: handle lower fault.
   1551  *
   1552  *	1. check uobj
   1553  *	1.1. if null, ZFOD.
   1554  *	1.2. if not null, look up unnmapped neighbor pages.
   1555  *	2. for center page, check if promote.
   1556  *	2.1. ZFOD always needs promotion.
   1557  *	2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
   1558  *	3. if uobj is not ZFOD and page is not found, do i/o.
   1559  *	4. dispatch either direct / promote fault.
   1560  */
   1561 
   1562 static int
   1563 uvm_fault_lower(
   1564 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1565 	struct vm_page **pages)
   1566 {
   1567 #ifdef DIAGNOSTIC
   1568 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1569 #endif
   1570 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1571 	struct vm_page *uobjpage;
   1572 	int error;
   1573 	UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
   1574 
   1575 	/* locked: maps(read), amap(if there), uobj(if !null) */
   1576 
   1577 	/*
   1578 	 * now, if the desired page is not shadowed by the amap and we have
   1579 	 * a backing object that does not have a special fault routine, then
   1580 	 * we ask (with pgo_get) the object for resident pages that we care
   1581 	 * about and attempt to map them in.  we do not let pgo_get block
   1582 	 * (PGO_LOCKED).
   1583 	 */
   1584 
   1585 	if (uobj == NULL) {
   1586 		/* zero fill; don't care neighbor pages */
   1587 		uobjpage = NULL;
   1588 	} else {
   1589 		uvm_fault_lower_lookup(ufi, flt, pages);
   1590 		uobjpage = pages[flt->centeridx];
   1591 	}
   1592 
   1593 	/*
   1594 	 * note that at this point we are done with any front or back pages.
   1595 	 * we are now going to focus on the center page (i.e. the one we've
   1596 	 * faulted on).  if we have faulted on the upper (anon) layer
   1597 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
   1598 	 * not touched it yet).  if we have faulted on the bottom (uobj)
   1599 	 * layer [i.e. case 2] and the page was both present and available,
   1600 	 * then we've got a pointer to it as "uobjpage" and we've already
   1601 	 * made it BUSY.
   1602 	 */
   1603 
   1604 	/*
   1605 	 * locked:
   1606 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
   1607 	 */
   1608 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1609 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   1610 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1611 
   1612 	/*
   1613 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
   1614 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
   1615 	 * have a backing object, check and see if we are going to promote
   1616 	 * the data up to an anon during the fault.
   1617 	 */
   1618 
   1619 	if (uobj == NULL) {
   1620 		uobjpage = PGO_DONTCARE;
   1621 		flt->promote = true;		/* always need anon here */
   1622 	} else {
   1623 		KASSERT(uobjpage != PGO_DONTCARE);
   1624 		flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
   1625 	}
   1626 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%d, zfill=%d",
   1627 	    flt->promote, (uobj == NULL), 0,0);
   1628 
   1629 	/*
   1630 	 * if uobjpage is not null then we do not need to do I/O to get the
   1631 	 * uobjpage.
   1632 	 *
   1633 	 * if uobjpage is null, then we need to unlock and ask the pager to
   1634 	 * get the data for us.   once we have the data, we need to reverify
   1635 	 * the state the world.   we are currently not holding any resources.
   1636 	 */
   1637 
   1638 	if (uobjpage) {
   1639 		/* update rusage counters */
   1640 		curlwp->l_ru.ru_minflt++;
   1641 	} else {
   1642 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
   1643 		if (error != 0)
   1644 			return error;
   1645 	}
   1646 
   1647 	/*
   1648 	 * locked:
   1649 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
   1650 	 */
   1651 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   1652 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   1653 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1654 
   1655 	/*
   1656 	 * notes:
   1657 	 *  - at this point uobjpage can not be NULL
   1658 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
   1659 	 *  for it above)
   1660 	 *  - at this point uobjpage could be PG_WANTED (handle later)
   1661 	 */
   1662 
   1663 	KASSERT(uobjpage != NULL);
   1664 	KASSERT(uobj == NULL || uobj == uobjpage->uobject);
   1665 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
   1666 	    (uobjpage->flags & PG_CLEAN) != 0);
   1667 
   1668 	if (!flt->promote) {
   1669 		error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
   1670 	} else {
   1671 		error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
   1672 	}
   1673 	return error;
   1674 }
   1675 
   1676 /*
   1677  * uvm_fault_lower_lookup: look up on-memory uobj pages.
   1678  *
   1679  *	1. get on-memory pages.
   1680  *	2. if failed, give up (get only center page later).
   1681  *	3. if succeeded, enter h/w mapping of neighbor pages.
   1682  */
   1683 
   1684 static void
   1685 uvm_fault_lower_lookup(
   1686 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1687 	struct vm_page **pages)
   1688 {
   1689 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1690 	int lcv, gotpages;
   1691 	vaddr_t currva;
   1692 	UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
   1693 
   1694 	mutex_enter(&uobj->vmobjlock);
   1695 	/* locked: maps(read), amap(if there), uobj */
   1696 	/*
   1697 	 * the following call to pgo_get does _not_ change locking state
   1698 	 */
   1699 
   1700 	uvmexp.fltlget++;
   1701 	gotpages = flt->npages;
   1702 	(void) uobj->pgops->pgo_get(uobj,
   1703 	    ufi->entry->offset + flt->startva - ufi->entry->start,
   1704 	    pages, &gotpages, flt->centeridx,
   1705 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
   1706 
   1707 	/*
   1708 	 * check for pages to map, if we got any
   1709 	 */
   1710 
   1711 	if (gotpages == 0) {
   1712 		pages[flt->centeridx] = NULL;
   1713 		return;
   1714 	}
   1715 
   1716 	currva = flt->startva;
   1717 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1718 		struct vm_page *curpg;
   1719 
   1720 		curpg = pages[lcv];
   1721 		if (curpg == NULL || curpg == PGO_DONTCARE) {
   1722 			continue;
   1723 		}
   1724 		KASSERT(curpg->uobject == uobj);
   1725 
   1726 		/*
   1727 		 * if center page is resident and not PG_BUSY|PG_RELEASED
   1728 		 * then pgo_get made it PG_BUSY for us and gave us a handle
   1729 		 * to it.
   1730 		 */
   1731 
   1732 		if (lcv == flt->centeridx) {
   1733 			UVMHIST_LOG(maphist, "  got uobjpage "
   1734 			    "(0x%x) with locked get",
   1735 			    curpg, 0,0,0);
   1736 		} else {
   1737 			bool readonly = (curpg->flags & PG_RDONLY)
   1738 			    || (curpg->loan_count > 0)
   1739 			    || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
   1740 
   1741 			uvm_fault_lower_neighbor(ufi, flt,
   1742 			    currva, curpg, readonly);
   1743 		}
   1744 	}
   1745 	pmap_update(ufi->orig_map->pmap);
   1746 }
   1747 
   1748 /*
   1749  * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
   1750  */
   1751 
   1752 static void
   1753 uvm_fault_lower_neighbor(
   1754 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1755 	vaddr_t currva, struct vm_page *pg, bool readonly)
   1756 {
   1757 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1758 
   1759 	/* locked: maps(read), amap(if there), uobj */
   1760 
   1761 	/*
   1762 	 * calling pgo_get with PGO_LOCKED returns us pages which
   1763 	 * are neither busy nor released, so we don't need to check
   1764 	 * for this.  we can just directly enter the pages.
   1765 	 */
   1766 
   1767 	mutex_enter(&uvm_pageqlock);
   1768 	uvm_pageenqueue(pg);
   1769 	mutex_exit(&uvm_pageqlock);
   1770 	UVMHIST_LOG(maphist,
   1771 	    "  MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
   1772 	    ufi->orig_map->pmap, currva, pg, 0);
   1773 	uvmexp.fltnomap++;
   1774 
   1775 	/*
   1776 	 * Since this page isn't the page that's actually faulting,
   1777 	 * ignore pmap_enter() failures; it's not critical that we
   1778 	 * enter these right now.
   1779 	 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
   1780 	 * held the lock the whole time we've had the handle.
   1781 	 */
   1782 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1783 	KASSERT((pg->flags & PG_RELEASED) == 0);
   1784 	KASSERT((pg->flags & PG_WANTED) == 0);
   1785 	KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
   1786 	    (pg->flags & PG_CLEAN) != 0);
   1787 	pg->flags &= ~(PG_BUSY);
   1788 	UVM_PAGE_OWN(pg, NULL);
   1789 
   1790 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1791 	    VM_PAGE_TO_PHYS(pg),
   1792 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1793 	    flt->enter_prot & MASK(ufi->entry),
   1794 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
   1795 }
   1796 
   1797 /*
   1798  * uvm_fault_lower_io: get lower page from backing store.
   1799  *
   1800  *	1. unlock everything, because i/o will block.
   1801  *	2. call pgo_get.
   1802  *	3. if failed, recover.
   1803  *	4. if succeeded, relock everything and verify things.
   1804  */
   1805 
   1806 static int
   1807 uvm_fault_lower_io(
   1808 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1809 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
   1810 {
   1811 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1812 	struct uvm_object *uobj = *ruobj;
   1813 	struct vm_page *pg;
   1814 	bool locked;
   1815 	int gotpages;
   1816 	int error;
   1817 	voff_t uoff;
   1818 	UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
   1819 
   1820 	/* update rusage counters */
   1821 	curlwp->l_ru.ru_majflt++;
   1822 
   1823 	/* locked: maps(read), amap(if there), uobj */
   1824 	uvmfault_unlockall(ufi, amap, NULL, NULL);
   1825 	/* locked: uobj */
   1826 
   1827 	uvmexp.fltget++;
   1828 	gotpages = 1;
   1829 	pg = NULL;
   1830 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
   1831 	error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
   1832 	    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
   1833 	    PGO_SYNCIO);
   1834 	/* locked: pg(if no error) */
   1835 
   1836 	/*
   1837 	 * recover from I/O
   1838 	 */
   1839 
   1840 	if (error) {
   1841 		if (error == EAGAIN) {
   1842 			UVMHIST_LOG(maphist,
   1843 			    "  pgo_get says TRY AGAIN!",0,0,0,0);
   1844 			kpause("fltagain2", false, hz/2, NULL);
   1845 			return ERESTART;
   1846 		}
   1847 
   1848 #if 0
   1849 		KASSERT(error != ERESTART);
   1850 #else
   1851 		/* XXXUEBS don't re-fault? */
   1852 		if (error == ERESTART)
   1853 			error = EIO;
   1854 #endif
   1855 
   1856 		UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
   1857 		    error, 0,0,0);
   1858 		return error;
   1859 	}
   1860 
   1861 	/* locked: pg */
   1862 
   1863 	KASSERT((pg->flags & PG_BUSY) != 0);
   1864 
   1865 	mutex_enter(&uvm_pageqlock);
   1866 	uvm_pageactivate(pg);
   1867 	mutex_exit(&uvm_pageqlock);
   1868 
   1869 	/*
   1870 	 * re-verify the state of the world by first trying to relock
   1871 	 * the maps.  always relock the object.
   1872 	 */
   1873 
   1874 	locked = uvmfault_relock(ufi);
   1875 	if (locked && amap)
   1876 		amap_lock(amap);
   1877 
   1878 	/* might be changed */
   1879 	uobj = pg->uobject;
   1880 
   1881 	mutex_enter(&uobj->vmobjlock);
   1882 
   1883 	/* locked(locked): maps(read), amap(if !null), uobj, pg */
   1884 	/* locked(!locked): uobj, pg */
   1885 
   1886 	/*
   1887 	 * verify that the page has not be released and re-verify
   1888 	 * that amap slot is still free.   if there is a problem,
   1889 	 * we unlock and clean up.
   1890 	 */
   1891 
   1892 	if ((pg->flags & PG_RELEASED) != 0 ||
   1893 	    (locked && amap && amap_lookup(&ufi->entry->aref,
   1894 	      ufi->orig_rvaddr - ufi->entry->start))) {
   1895 		if (locked)
   1896 			uvmfault_unlockall(ufi, amap, NULL, NULL);
   1897 		locked = false;
   1898 	}
   1899 
   1900 	/*
   1901 	 * didn't get the lock?   release the page and retry.
   1902 	 */
   1903 
   1904 	if (locked == false) {
   1905 		UVMHIST_LOG(maphist,
   1906 		    "  wasn't able to relock after fault: retry",
   1907 		    0,0,0,0);
   1908 		if (pg->flags & PG_WANTED) {
   1909 			wakeup(pg);
   1910 		}
   1911 		if (pg->flags & PG_RELEASED) {
   1912 			uvmexp.fltpgrele++;
   1913 			uvm_pagefree(pg);
   1914 			mutex_exit(&uobj->vmobjlock);
   1915 			return ERESTART;
   1916 		}
   1917 		pg->flags &= ~(PG_BUSY|PG_WANTED);
   1918 		UVM_PAGE_OWN(pg, NULL);
   1919 		mutex_exit(&uobj->vmobjlock);
   1920 		return ERESTART;
   1921 	}
   1922 
   1923 	/*
   1924 	 * we have the data in pg which is busy and
   1925 	 * not released.  we are holding object lock (so the page
   1926 	 * can't be released on us).
   1927 	 */
   1928 
   1929 	/* locked: maps(read), amap(if !null), uobj, pg */
   1930 
   1931 	*ruobj = uobj;
   1932 	*ruobjpage = pg;
   1933 	return 0;
   1934 }
   1935 
   1936 /*
   1937  * uvm_fault_lower_direct: fault lower center page
   1938  *
   1939  *	1. adjust flt->enter_prot.
   1940  *	2. if page is loaned, resolve.
   1941  */
   1942 
   1943 int
   1944 uvm_fault_lower_direct(
   1945 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1946 	struct uvm_object *uobj, struct vm_page *uobjpage)
   1947 {
   1948 	struct vm_page *pg;
   1949 	UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
   1950 
   1951 	/*
   1952 	 * we are not promoting.   if the mapping is COW ensure that we
   1953 	 * don't give more access than we should (e.g. when doing a read
   1954 	 * fault on a COPYONWRITE mapping we want to map the COW page in
   1955 	 * R/O even though the entry protection could be R/W).
   1956 	 *
   1957 	 * set "pg" to the page we want to map in (uobjpage, usually)
   1958 	 */
   1959 
   1960 	uvmexp.flt_obj++;
   1961 	if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
   1962 	    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
   1963 		flt->enter_prot &= ~VM_PROT_WRITE;
   1964 	pg = uobjpage;		/* map in the actual object */
   1965 
   1966 	KASSERT(uobjpage != PGO_DONTCARE);
   1967 
   1968 	/*
   1969 	 * we are faulting directly on the page.   be careful
   1970 	 * about writing to loaned pages...
   1971 	 */
   1972 
   1973 	if (uobjpage->loan_count) {
   1974 		uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
   1975 	}
   1976 	KASSERT(pg == uobjpage);
   1977 
   1978 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1979 	return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
   1980 }
   1981 
   1982 /*
   1983  * uvm_fault_lower_direct_loan: resolve loaned page.
   1984  *
   1985  *	1. if not cow'ing, adjust flt->enter_prot.
   1986  *	2. if cow'ing, break loan.
   1987  */
   1988 
   1989 static int
   1990 uvm_fault_lower_direct_loan(
   1991 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1992 	struct uvm_object *uobj, struct vm_page **rpg,
   1993 	struct vm_page **ruobjpage)
   1994 {
   1995 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1996 	struct vm_page *pg;
   1997 	struct vm_page *uobjpage = *ruobjpage;
   1998 	UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
   1999 
   2000 	if (!flt->cow_now) {
   2001 		/* read fault: cap the protection at readonly */
   2002 		/* cap! */
   2003 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   2004 	} else {
   2005 		/* write fault: must break the loan here */
   2006 
   2007 		pg = uvm_loanbreak(uobjpage);
   2008 		if (pg == NULL) {
   2009 
   2010 			/*
   2011 			 * drop ownership of page, it can't be released
   2012 			 */
   2013 
   2014 			if (uobjpage->flags & PG_WANTED)
   2015 				wakeup(uobjpage);
   2016 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   2017 			UVM_PAGE_OWN(uobjpage, NULL);
   2018 
   2019 			uvmfault_unlockall(ufi, amap, uobj, NULL);
   2020 			UVMHIST_LOG(maphist,
   2021 			  "  out of RAM breaking loan, waiting",
   2022 			  0,0,0,0);
   2023 			uvmexp.fltnoram++;
   2024 			uvm_wait("flt_noram4");
   2025 			return ERESTART;
   2026 		}
   2027 		*rpg = pg;
   2028 		*ruobjpage = pg;
   2029 	}
   2030 	return 0;
   2031 }
   2032 
   2033 /*
   2034  * uvm_fault_lower_promote: promote lower page.
   2035  *
   2036  *	1. call uvmfault_promote.
   2037  *	2. fill in data.
   2038  *	3. if not ZFOD, dispose old page.
   2039  */
   2040 
   2041 int
   2042 uvm_fault_lower_promote(
   2043 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2044 	struct uvm_object *uobj, struct vm_page *uobjpage)
   2045 {
   2046 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2047 	struct vm_anon *anon;
   2048 	struct vm_page *pg;
   2049 	int error;
   2050 	UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
   2051 
   2052 	/*
   2053 	 * if we are going to promote the data to an anon we
   2054 	 * allocate a blank anon here and plug it into our amap.
   2055 	 */
   2056 #if DIAGNOSTIC
   2057 	if (amap == NULL)
   2058 		panic("uvm_fault: want to promote data, but no anon");
   2059 #endif
   2060 	error = uvmfault_promote(ufi, NULL, uobjpage,
   2061 	    &anon, &flt->anon_spare);
   2062 	switch (error) {
   2063 	case 0:
   2064 		break;
   2065 	case ERESTART:
   2066 		return ERESTART;
   2067 	default:
   2068 		return error;
   2069 	}
   2070 
   2071 	pg = anon->an_page;
   2072 
   2073 	/*
   2074 	 * fill in the data
   2075 	 */
   2076 
   2077 	if (uobjpage != PGO_DONTCARE) {
   2078 		uvmexp.flt_prcopy++;
   2079 
   2080 		/*
   2081 		 * promote to shared amap?  make sure all sharing
   2082 		 * procs see it
   2083 		 */
   2084 
   2085 		if ((amap_flags(amap) & AMAP_SHARED) != 0) {
   2086 			pmap_page_protect(uobjpage, VM_PROT_NONE);
   2087 			/*
   2088 			 * XXX: PAGE MIGHT BE WIRED!
   2089 			 */
   2090 		}
   2091 
   2092 		/*
   2093 		 * dispose of uobjpage.  it can't be PG_RELEASED
   2094 		 * since we still hold the object lock.
   2095 		 * drop handle to uobj as well.
   2096 		 */
   2097 
   2098 		if (uobjpage->flags & PG_WANTED)
   2099 			/* still have the obj lock */
   2100 			wakeup(uobjpage);
   2101 		uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   2102 		UVM_PAGE_OWN(uobjpage, NULL);
   2103 		mutex_exit(&uobj->vmobjlock);
   2104 		uobj = NULL;
   2105 
   2106 		UVMHIST_LOG(maphist,
   2107 		    "  promote uobjpage 0x%x to anon/page 0x%x/0x%x",
   2108 		    uobjpage, anon, pg, 0);
   2109 
   2110 	} else {
   2111 		uvmexp.flt_przero++;
   2112 
   2113 		/*
   2114 		 * Page is zero'd and marked dirty by
   2115 		 * uvmfault_promote().
   2116 		 */
   2117 
   2118 		UVMHIST_LOG(maphist,"  zero fill anon/page 0x%x/0%x",
   2119 		    anon, pg, 0, 0);
   2120 	}
   2121 
   2122 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   2123 	return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
   2124 }
   2125 
   2126 /*
   2127  * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
   2128  * from the lower page.
   2129  */
   2130 
   2131 int
   2132 uvm_fault_lower_enter(
   2133 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2134 	struct uvm_object *uobj,
   2135 	struct vm_anon *anon, struct vm_page *pg)
   2136 {
   2137 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2138 	int error;
   2139 	UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
   2140 
   2141 	/*
   2142 	 * locked:
   2143 	 * maps(read), amap(if !null), uobj(if !null),
   2144 	 *   anon(if !null), pg(if anon)
   2145 	 *
   2146 	 * note: pg is either the uobjpage or the new page in the new anon
   2147 	 */
   2148 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
   2149 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
   2150 	KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
   2151 	KASSERT((pg->flags & PG_BUSY) != 0);
   2152 
   2153 	/*
   2154 	 * all resources are present.   we can now map it in and free our
   2155 	 * resources.
   2156 	 */
   2157 
   2158 	UVMHIST_LOG(maphist,
   2159 	    "  MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
   2160 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
   2161 	KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
   2162 		(pg->flags & PG_RDONLY) == 0);
   2163 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
   2164 	    VM_PAGE_TO_PHYS(pg),
   2165 	    (pg->flags & PG_RDONLY) != 0 ?
   2166 	    flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
   2167 	    flt->access_type | PMAP_CANFAIL |
   2168 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   2169 
   2170 		/*
   2171 		 * No need to undo what we did; we can simply think of
   2172 		 * this as the pmap throwing away the mapping information.
   2173 		 *
   2174 		 * We do, however, have to go through the ReFault path,
   2175 		 * as the map may change while we're asleep.
   2176 		 */
   2177 
   2178 		/*
   2179 		 * ensure that the page is queued in the case that
   2180 		 * we just promoted the page.
   2181 		 */
   2182 
   2183 		mutex_enter(&uvm_pageqlock);
   2184 		uvm_pageenqueue(pg);
   2185 		mutex_exit(&uvm_pageqlock);
   2186 
   2187 		if (pg->flags & PG_WANTED)
   2188 			wakeup(pg);
   2189 
   2190 		/*
   2191 		 * note that pg can't be PG_RELEASED since we did not drop
   2192 		 * the object lock since the last time we checked.
   2193 		 */
   2194 		KASSERT((pg->flags & PG_RELEASED) == 0);
   2195 
   2196 		pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2197 		UVM_PAGE_OWN(pg, NULL);
   2198 
   2199 		uvmfault_unlockall(ufi, amap, uobj, anon);
   2200 		if (!uvm_reclaimable()) {
   2201 			UVMHIST_LOG(maphist,
   2202 			    "<- failed.  out of VM",0,0,0,0);
   2203 			/* XXX instrumentation */
   2204 			error = ENOMEM;
   2205 			return error;
   2206 		}
   2207 		/* XXX instrumentation */
   2208 		uvm_wait("flt_pmfail2");
   2209 		return ERESTART;
   2210 	}
   2211 
   2212 	uvm_fault_lower_done(ufi, flt, uobj, pg);
   2213 
   2214 	/*
   2215 	 * note that pg can't be PG_RELEASED since we did not drop the object
   2216 	 * lock since the last time we checked.
   2217 	 */
   2218 	KASSERT((pg->flags & PG_RELEASED) == 0);
   2219 	if (pg->flags & PG_WANTED)
   2220 		wakeup(pg);
   2221 	pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2222 	UVM_PAGE_OWN(pg, NULL);
   2223 
   2224 	pmap_update(ufi->orig_map->pmap);
   2225 	uvmfault_unlockall(ufi, amap, uobj, anon);
   2226 
   2227 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
   2228 	return 0;
   2229 }
   2230 
   2231 /*
   2232  * uvm_fault_lower_done: queue lower center page.
   2233  */
   2234 
   2235 void
   2236 uvm_fault_lower_done(
   2237 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2238 	struct uvm_object *uobj, struct vm_page *pg)
   2239 {
   2240 	bool dropswap = false;
   2241 
   2242 	UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
   2243 
   2244 	mutex_enter(&uvm_pageqlock);
   2245 	if (flt->wire_paging) {
   2246 		uvm_pagewire(pg);
   2247 		if (pg->pqflags & PQ_AOBJ) {
   2248 
   2249 			/*
   2250 			 * since the now-wired page cannot be paged out,
   2251 			 * release its swap resources for others to use.
   2252 			 * since an aobj page with no swap cannot be PG_CLEAN,
   2253 			 * clear its clean flag now.
   2254 			 */
   2255 
   2256 			KASSERT(uobj != NULL);
   2257 			pg->flags &= ~(PG_CLEAN);
   2258 			dropswap = true;
   2259 		}
   2260 	} else {
   2261 		uvm_pageactivate(pg);
   2262 	}
   2263 	mutex_exit(&uvm_pageqlock);
   2264 
   2265 	if (dropswap) {
   2266 		uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
   2267 	}
   2268 }
   2269 
   2270 
   2271 /*
   2272  * uvm_fault_wire: wire down a range of virtual addresses in a map.
   2273  *
   2274  * => map may be read-locked by caller, but MUST NOT be write-locked.
   2275  * => if map is read-locked, any operations which may cause map to
   2276  *	be write-locked in uvm_fault() must be taken care of by
   2277  *	the caller.  See uvm_map_pageable().
   2278  */
   2279 
   2280 int
   2281 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
   2282     vm_prot_t access_type, int maxprot)
   2283 {
   2284 	vaddr_t va;
   2285 	int error;
   2286 
   2287 	/*
   2288 	 * now fault it in a page at a time.   if the fault fails then we have
   2289 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
   2290 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
   2291 	 */
   2292 
   2293 	/*
   2294 	 * XXX work around overflowing a vaddr_t.  this prevents us from
   2295 	 * wiring the last page in the address space, though.
   2296 	 */
   2297 	if (start > end) {
   2298 		return EFAULT;
   2299 	}
   2300 
   2301 	for (va = start; va < end; va += PAGE_SIZE) {
   2302 		error = uvm_fault_internal(map, va, access_type,
   2303 		    (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
   2304 		if (error) {
   2305 			if (va != start) {
   2306 				uvm_fault_unwire(map, start, va);
   2307 			}
   2308 			return error;
   2309 		}
   2310 	}
   2311 	return 0;
   2312 }
   2313 
   2314 /*
   2315  * uvm_fault_unwire(): unwire range of virtual space.
   2316  */
   2317 
   2318 void
   2319 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
   2320 {
   2321 	vm_map_lock_read(map);
   2322 	uvm_fault_unwire_locked(map, start, end);
   2323 	vm_map_unlock_read(map);
   2324 }
   2325 
   2326 /*
   2327  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
   2328  *
   2329  * => map must be at least read-locked.
   2330  */
   2331 
   2332 void
   2333 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
   2334 {
   2335 	struct vm_map_entry *entry;
   2336 	pmap_t pmap = vm_map_pmap(map);
   2337 	vaddr_t va;
   2338 	paddr_t pa;
   2339 	struct vm_page *pg;
   2340 
   2341 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
   2342 
   2343 	/*
   2344 	 * we assume that the area we are unwiring has actually been wired
   2345 	 * in the first place.   this means that we should be able to extract
   2346 	 * the PAs from the pmap.   we also lock out the page daemon so that
   2347 	 * we can call uvm_pageunwire.
   2348 	 */
   2349 
   2350 	mutex_enter(&uvm_pageqlock);
   2351 
   2352 	/*
   2353 	 * find the beginning map entry for the region.
   2354 	 */
   2355 
   2356 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
   2357 	if (uvm_map_lookup_entry(map, start, &entry) == false)
   2358 		panic("uvm_fault_unwire_locked: address not in map");
   2359 
   2360 	for (va = start; va < end; va += PAGE_SIZE) {
   2361 		if (pmap_extract(pmap, va, &pa) == false)
   2362 			continue;
   2363 
   2364 		/*
   2365 		 * find the map entry for the current address.
   2366 		 */
   2367 
   2368 		KASSERT(va >= entry->start);
   2369 		while (va >= entry->end) {
   2370 			KASSERT(entry->next != &map->header &&
   2371 				entry->next->start <= entry->end);
   2372 			entry = entry->next;
   2373 		}
   2374 
   2375 		/*
   2376 		 * if the entry is no longer wired, tell the pmap.
   2377 		 */
   2378 
   2379 		if (VM_MAPENT_ISWIRED(entry) == 0)
   2380 			pmap_unwire(pmap, va);
   2381 
   2382 		pg = PHYS_TO_VM_PAGE(pa);
   2383 		if (pg)
   2384 			uvm_pageunwire(pg);
   2385 	}
   2386 
   2387 	mutex_exit(&uvm_pageqlock);
   2388 }
   2389