uvm_fault.c revision 1.189 1 /* $NetBSD: uvm_fault.c,v 1.189 2011/07/05 13:47:24 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 */
29
30 /*
31 * uvm_fault.c: fault handler
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.189 2011/07/05 13:47:24 yamt Exp $");
36
37 #include "opt_uvmhist.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/mman.h>
43
44 #include <uvm/uvm.h>
45
46 /*
47 *
48 * a word on page faults:
49 *
50 * types of page faults we handle:
51 *
52 * CASE 1: upper layer faults CASE 2: lower layer faults
53 *
54 * CASE 1A CASE 1B CASE 2A CASE 2B
55 * read/write1 write>1 read/write +-cow_write/zero
56 * | | | |
57 * +--|--+ +--|--+ +-----+ + | + | +-----+
58 * amap | V | | ---------> new | | | | ^ |
59 * +-----+ +-----+ +-----+ + | + | +--|--+
60 * | | |
61 * +-----+ +-----+ +--|--+ | +--|--+
62 * uobj | d/c | | d/c | | V | +----+ |
63 * +-----+ +-----+ +-----+ +-----+
64 *
65 * d/c = don't care
66 *
67 * case [0]: layerless fault
68 * no amap or uobj is present. this is an error.
69 *
70 * case [1]: upper layer fault [anon active]
71 * 1A: [read] or [write with anon->an_ref == 1]
72 * I/O takes place in upper level anon and uobj is not touched.
73 * 1B: [write with anon->an_ref > 1]
74 * new anon is alloc'd and data is copied off ["COW"]
75 *
76 * case [2]: lower layer fault [uobj]
77 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78 * I/O takes place directly in object.
79 * 2B: [write to copy_on_write] or [read on NULL uobj]
80 * data is "promoted" from uobj to a new anon.
81 * if uobj is null, then we zero fill.
82 *
83 * we follow the standard UVM locking protocol ordering:
84 *
85 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86 * we hold a PG_BUSY page if we unlock for I/O
87 *
88 *
89 * the code is structured as follows:
90 *
91 * - init the "IN" params in the ufi structure
92 * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
93 * - do lookups [locks maps], check protection, handle needs_copy
94 * - check for case 0 fault (error)
95 * - establish "range" of fault
96 * - if we have an amap lock it and extract the anons
97 * - if sequential advice deactivate pages behind us
98 * - at the same time check pmap for unmapped areas and anon for pages
99 * that we could map in (and do map it if found)
100 * - check object for resident pages that we could map in
101 * - if (case 2) goto Case2
102 * - >>> handle case 1
103 * - ensure source anon is resident in RAM
104 * - if case 1B alloc new anon and copy from source
105 * - map the correct page in
106 * Case2:
107 * - >>> handle case 2
108 * - ensure source page is resident (if uobj)
109 * - if case 2B alloc new anon and copy from source (could be zero
110 * fill if uobj == NULL)
111 * - map the correct page in
112 * - done!
113 *
114 * note on paging:
115 * if we have to do I/O we place a PG_BUSY page in the correct object,
116 * unlock everything, and do the I/O. when I/O is done we must reverify
117 * the state of the world before assuming that our data structures are
118 * valid. [because mappings could change while the map is unlocked]
119 *
120 * alternative 1: unbusy the page in question and restart the page fault
121 * from the top (ReFault). this is easy but does not take advantage
122 * of the information that we already have from our previous lookup,
123 * although it is possible that the "hints" in the vm_map will help here.
124 *
125 * alternative 2: the system already keeps track of a "version" number of
126 * a map. [i.e. every time you write-lock a map (e.g. to change a
127 * mapping) you bump the version number up by one...] so, we can save
128 * the version number of the map before we release the lock and start I/O.
129 * then when I/O is done we can relock and check the version numbers
130 * to see if anything changed. this might save us some over 1 because
131 * we don't have to unbusy the page and may be less compares(?).
132 *
133 * alternative 3: put in backpointers or a way to "hold" part of a map
134 * in place while I/O is in progress. this could be complex to
135 * implement (especially with structures like amap that can be referenced
136 * by multiple map entries, and figuring out what should wait could be
137 * complex as well...).
138 *
139 * we use alternative 2. given that we are multi-threaded now we may want
140 * to reconsider the choice.
141 */
142
143 /*
144 * local data structures
145 */
146
147 struct uvm_advice {
148 int advice;
149 int nback;
150 int nforw;
151 };
152
153 /*
154 * page range array:
155 * note: index in array must match "advice" value
156 * XXX: borrowed numbers from freebsd. do they work well for us?
157 */
158
159 static const struct uvm_advice uvmadvice[] = {
160 { UVM_ADV_NORMAL, 3, 4 },
161 { UVM_ADV_RANDOM, 0, 0 },
162 { UVM_ADV_SEQUENTIAL, 8, 7},
163 };
164
165 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
166
167 /*
168 * private prototypes
169 */
170
171 /*
172 * inline functions
173 */
174
175 /*
176 * uvmfault_anonflush: try and deactivate pages in specified anons
177 *
178 * => does not have to deactivate page if it is busy
179 */
180
181 static inline void
182 uvmfault_anonflush(struct vm_anon **anons, int n)
183 {
184 int lcv;
185 struct vm_page *pg;
186
187 for (lcv = 0; lcv < n; lcv++) {
188 if (anons[lcv] == NULL)
189 continue;
190 KASSERT(mutex_owned(anons[lcv]->an_lock));
191 pg = anons[lcv]->an_page;
192 if (pg && (pg->flags & PG_BUSY) == 0) {
193 mutex_enter(&uvm_pageqlock);
194 if (pg->wire_count == 0) {
195 uvm_pagedeactivate(pg);
196 }
197 mutex_exit(&uvm_pageqlock);
198 }
199 }
200 }
201
202 /*
203 * normal functions
204 */
205
206 /*
207 * uvmfault_amapcopy: clear "needs_copy" in a map.
208 *
209 * => called with VM data structures unlocked (usually, see below)
210 * => we get a write lock on the maps and clear needs_copy for a VA
211 * => if we are out of RAM we sleep (waiting for more)
212 */
213
214 static void
215 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
216 {
217 for (;;) {
218
219 /*
220 * no mapping? give up.
221 */
222
223 if (uvmfault_lookup(ufi, true) == false)
224 return;
225
226 /*
227 * copy if needed.
228 */
229
230 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
231 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
232 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
233
234 /*
235 * didn't work? must be out of RAM. unlock and sleep.
236 */
237
238 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
239 uvmfault_unlockmaps(ufi, true);
240 uvm_wait("fltamapcopy");
241 continue;
242 }
243
244 /*
245 * got it! unlock and return.
246 */
247
248 uvmfault_unlockmaps(ufi, true);
249 return;
250 }
251 /*NOTREACHED*/
252 }
253
254 /*
255 * uvmfault_anonget: get data in an anon into a non-busy, non-released
256 * page in that anon.
257 *
258 * => Map, amap and thus anon should be locked by caller.
259 * => If we fail, we unlock everything and error is returned.
260 * => If we are successful, return with everything still locked.
261 * => We do not move the page on the queues [gets moved later]. If we
262 * allocate a new page [we_own], it gets put on the queues. Either way,
263 * the result is that the page is on the queues at return time
264 * => For pages which are on loan from a uvm_object (and thus are not owned
265 * by the anon): if successful, return with the owning object locked.
266 * The caller must unlock this object when it unlocks everything else.
267 */
268
269 int
270 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
271 struct vm_anon *anon)
272 {
273 struct vm_page *pg;
274 int error;
275
276 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
277 KASSERT(mutex_owned(anon->an_lock));
278 KASSERT(anon->an_lock == amap->am_lock);
279
280 /* Increment the counters.*/
281 uvmexp.fltanget++;
282 if (anon->an_page) {
283 curlwp->l_ru.ru_minflt++;
284 } else {
285 curlwp->l_ru.ru_majflt++;
286 }
287 error = 0;
288
289 /*
290 * Loop until we get the anon data, or fail.
291 */
292
293 for (;;) {
294 bool we_own, locked;
295 /*
296 * Note: 'we_own' will become true if we set PG_BUSY on a page.
297 */
298 we_own = false;
299 pg = anon->an_page;
300
301 /*
302 * If there is a resident page and it is loaned, then anon
303 * may not own it. Call out to uvm_anon_lockloanpg() to
304 * identify and lock the real owner of the page.
305 */
306
307 if (pg && pg->loan_count)
308 pg = uvm_anon_lockloanpg(anon);
309
310 /*
311 * Is page resident? Make sure it is not busy/released.
312 */
313
314 if (pg) {
315
316 /*
317 * at this point, if the page has a uobject [meaning
318 * we have it on loan], then that uobject is locked
319 * by us! if the page is busy, we drop all the
320 * locks (including uobject) and try again.
321 */
322
323 if ((pg->flags & PG_BUSY) == 0) {
324 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
325 return 0;
326 }
327 pg->flags |= PG_WANTED;
328 uvmexp.fltpgwait++;
329
330 /*
331 * The last unlock must be an atomic unlock and wait
332 * on the owner of page.
333 */
334
335 if (pg->uobject) {
336 /* Owner of page is UVM object. */
337 uvmfault_unlockall(ufi, amap, NULL);
338 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
339 0,0,0);
340 UVM_UNLOCK_AND_WAIT(pg,
341 pg->uobject->vmobjlock,
342 false, "anonget1", 0);
343 } else {
344 /* Owner of page is anon. */
345 uvmfault_unlockall(ufi, NULL, NULL);
346 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
347 0,0,0);
348 UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
349 false, "anonget2", 0);
350 }
351 } else {
352 #if defined(VMSWAP)
353 /*
354 * No page, therefore allocate one.
355 */
356
357 pg = uvm_pagealloc(NULL,
358 ufi != NULL ? ufi->orig_rvaddr : 0,
359 anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
360 if (pg == NULL) {
361 /* Out of memory. Wait a little. */
362 uvmfault_unlockall(ufi, amap, NULL);
363 uvmexp.fltnoram++;
364 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
365 0,0,0);
366 if (!uvm_reclaimable()) {
367 return ENOMEM;
368 }
369 uvm_wait("flt_noram1");
370 } else {
371 /* PG_BUSY bit is set. */
372 we_own = true;
373 uvmfault_unlockall(ufi, amap, NULL);
374
375 /*
376 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
377 * the uvm_swap_get() function with all data
378 * structures unlocked. Note that it is OK
379 * to read an_swslot here, because we hold
380 * PG_BUSY on the page.
381 */
382 uvmexp.pageins++;
383 error = uvm_swap_get(pg, anon->an_swslot,
384 PGO_SYNCIO);
385
386 /*
387 * We clean up after the I/O below in the
388 * 'we_own' case.
389 */
390 }
391 #else
392 panic("%s: no page", __func__);
393 #endif /* defined(VMSWAP) */
394 }
395
396 /*
397 * Re-lock the map and anon.
398 */
399
400 locked = uvmfault_relock(ufi);
401 if (locked || we_own) {
402 mutex_enter(anon->an_lock);
403 }
404
405 /*
406 * If we own the page (i.e. we set PG_BUSY), then we need
407 * to clean up after the I/O. There are three cases to
408 * consider:
409 *
410 * 1) Page was released during I/O: free anon and ReFault.
411 * 2) I/O not OK. Free the page and cause the fault to fail.
412 * 3) I/O OK! Activate the page and sync with the non-we_own
413 * case (i.e. drop anon lock if not locked).
414 */
415
416 if (we_own) {
417 #if defined(VMSWAP)
418 if (pg->flags & PG_WANTED) {
419 wakeup(pg);
420 }
421 if (error) {
422
423 /*
424 * Remove the swap slot from the anon and
425 * mark the anon as having no real slot.
426 * Do not free the swap slot, thus preventing
427 * it from being used again.
428 */
429
430 if (anon->an_swslot > 0) {
431 uvm_swap_markbad(anon->an_swslot, 1);
432 }
433 anon->an_swslot = SWSLOT_BAD;
434
435 if ((pg->flags & PG_RELEASED) != 0) {
436 goto released;
437 }
438
439 /*
440 * Note: page was never !PG_BUSY, so it
441 * cannot be mapped and thus no need to
442 * pmap_page_protect() it.
443 */
444
445 mutex_enter(&uvm_pageqlock);
446 uvm_pagefree(pg);
447 mutex_exit(&uvm_pageqlock);
448
449 if (locked) {
450 uvmfault_unlockall(ufi, NULL, NULL);
451 }
452 mutex_exit(anon->an_lock);
453 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
454 return error;
455 }
456
457 if ((pg->flags & PG_RELEASED) != 0) {
458 released:
459 KASSERT(anon->an_ref == 0);
460
461 /*
462 * Released while we had unlocked amap.
463 */
464
465 if (locked) {
466 uvmfault_unlockall(ufi, NULL, NULL);
467 }
468 uvm_anon_release(anon);
469
470 if (error) {
471 UVMHIST_LOG(maphist,
472 "<- ERROR/RELEASED", 0,0,0,0);
473 return error;
474 }
475
476 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
477 return ERESTART;
478 }
479
480 /*
481 * We have successfully read the page, activate it.
482 */
483
484 mutex_enter(&uvm_pageqlock);
485 uvm_pageactivate(pg);
486 mutex_exit(&uvm_pageqlock);
487 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
488 UVM_PAGE_OWN(pg, NULL);
489 #else
490 panic("%s: we_own", __func__);
491 #endif /* defined(VMSWAP) */
492 }
493
494 /*
495 * We were not able to re-lock the map - restart the fault.
496 */
497
498 if (!locked) {
499 if (we_own) {
500 mutex_exit(anon->an_lock);
501 }
502 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
503 return ERESTART;
504 }
505
506 /*
507 * Verify that no one has touched the amap and moved
508 * the anon on us.
509 */
510
511 if (ufi != NULL && amap_lookup(&ufi->entry->aref,
512 ufi->orig_rvaddr - ufi->entry->start) != anon) {
513
514 uvmfault_unlockall(ufi, amap, NULL);
515 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
516 return ERESTART;
517 }
518
519 /*
520 * Retry..
521 */
522
523 uvmexp.fltanretry++;
524 continue;
525 }
526 /*NOTREACHED*/
527 }
528
529 /*
530 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
531 *
532 * 1. allocate an anon and a page.
533 * 2. fill its contents.
534 * 3. put it into amap.
535 *
536 * => if we fail (result != 0) we unlock everything.
537 * => on success, return a new locked anon via 'nanon'.
538 * (*nanon)->an_page will be a resident, locked, dirty page.
539 * => it's caller's responsibility to put the promoted nanon->an_page to the
540 * page queue.
541 */
542
543 static int
544 uvmfault_promote(struct uvm_faultinfo *ufi,
545 struct vm_anon *oanon,
546 struct vm_page *uobjpage,
547 struct vm_anon **nanon, /* OUT: allocated anon */
548 struct vm_anon **spare)
549 {
550 struct vm_amap *amap = ufi->entry->aref.ar_amap;
551 struct uvm_object *uobj;
552 struct vm_anon *anon;
553 struct vm_page *pg;
554 struct vm_page *opg;
555 int error;
556 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
557
558 if (oanon) {
559 /* anon COW */
560 opg = oanon->an_page;
561 KASSERT(opg != NULL);
562 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
563 } else if (uobjpage != PGO_DONTCARE) {
564 /* object-backed COW */
565 opg = uobjpage;
566 } else {
567 /* ZFOD */
568 opg = NULL;
569 }
570 if (opg != NULL) {
571 uobj = opg->uobject;
572 } else {
573 uobj = NULL;
574 }
575
576 KASSERT(amap != NULL);
577 KASSERT(uobjpage != NULL);
578 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
579 KASSERT(mutex_owned(amap->am_lock));
580 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
581 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
582
583 if (*spare != NULL) {
584 anon = *spare;
585 *spare = NULL;
586 } else if (ufi->map != kernel_map) {
587 anon = uvm_analloc();
588 } else {
589 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
590
591 /*
592 * we can't allocate anons with kernel_map locked.
593 */
594
595 uvm_page_unbusy(&uobjpage, 1);
596 uvmfault_unlockall(ufi, amap, uobj);
597
598 *spare = uvm_analloc();
599 if (*spare == NULL) {
600 goto nomem;
601 }
602 KASSERT((*spare)->an_lock == NULL);
603 error = ERESTART;
604 goto done;
605 }
606 if (anon) {
607
608 /*
609 * The new anon is locked.
610 *
611 * if opg == NULL, we want a zero'd, dirty page,
612 * so have uvm_pagealloc() do that for us.
613 */
614
615 KASSERT(anon->an_lock == NULL);
616 anon->an_lock = amap->am_lock;
617 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
618 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
619 if (pg == NULL) {
620 anon->an_lock = NULL;
621 }
622 } else {
623 pg = NULL;
624 }
625
626 /*
627 * out of memory resources?
628 */
629
630 if (pg == NULL) {
631 /* save anon for the next try. */
632 if (anon != NULL) {
633 *spare = anon;
634 }
635
636 /* unlock and fail ... */
637 uvm_page_unbusy(&uobjpage, 1);
638 uvmfault_unlockall(ufi, amap, uobj);
639 nomem:
640 if (!uvm_reclaimable()) {
641 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
642 uvmexp.fltnoanon++;
643 error = ENOMEM;
644 goto done;
645 }
646
647 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
648 uvmexp.fltnoram++;
649 uvm_wait("flt_noram5");
650 error = ERESTART;
651 goto done;
652 }
653
654 /* copy page [pg now dirty] */
655 if (opg) {
656 uvm_pagecopy(opg, pg);
657 }
658
659 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
660 oanon != NULL);
661
662 *nanon = anon;
663 error = 0;
664 done:
665 return error;
666 }
667
668
669 /*
670 * F A U L T - m a i n e n t r y p o i n t
671 */
672
673 /*
674 * uvm_fault: page fault handler
675 *
676 * => called from MD code to resolve a page fault
677 * => VM data structures usually should be unlocked. however, it is
678 * possible to call here with the main map locked if the caller
679 * gets a write lock, sets it recusive, and then calls us (c.f.
680 * uvm_map_pageable). this should be avoided because it keeps
681 * the map locked off during I/O.
682 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
683 */
684
685 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
686 ~VM_PROT_WRITE : VM_PROT_ALL)
687
688 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
689 #define UVM_FAULT_WIRE (1 << 0)
690 #define UVM_FAULT_MAXPROT (1 << 1)
691
692 struct uvm_faultctx {
693 vm_prot_t access_type;
694 vm_prot_t enter_prot;
695 vaddr_t startva;
696 int npages;
697 int centeridx;
698 struct vm_anon *anon_spare;
699 bool wire_mapping;
700 bool narrow;
701 bool wire_paging;
702 bool cow_now;
703 bool promote;
704 };
705
706 static inline int uvm_fault_check(
707 struct uvm_faultinfo *, struct uvm_faultctx *,
708 struct vm_anon ***, bool);
709
710 static int uvm_fault_upper(
711 struct uvm_faultinfo *, struct uvm_faultctx *,
712 struct vm_anon **);
713 static inline int uvm_fault_upper_lookup(
714 struct uvm_faultinfo *, const struct uvm_faultctx *,
715 struct vm_anon **, struct vm_page **);
716 static inline void uvm_fault_upper_neighbor(
717 struct uvm_faultinfo *, const struct uvm_faultctx *,
718 vaddr_t, struct vm_page *, bool);
719 static inline int uvm_fault_upper_loan(
720 struct uvm_faultinfo *, struct uvm_faultctx *,
721 struct vm_anon *, struct uvm_object **);
722 static inline int uvm_fault_upper_promote(
723 struct uvm_faultinfo *, struct uvm_faultctx *,
724 struct uvm_object *, struct vm_anon *);
725 static inline int uvm_fault_upper_direct(
726 struct uvm_faultinfo *, struct uvm_faultctx *,
727 struct uvm_object *, struct vm_anon *);
728 static int uvm_fault_upper_enter(
729 struct uvm_faultinfo *, const struct uvm_faultctx *,
730 struct uvm_object *, struct vm_anon *,
731 struct vm_page *, struct vm_anon *);
732 static inline void uvm_fault_upper_done(
733 struct uvm_faultinfo *, const struct uvm_faultctx *,
734 struct vm_anon *, struct vm_page *);
735
736 static int uvm_fault_lower(
737 struct uvm_faultinfo *, struct uvm_faultctx *,
738 struct vm_page **);
739 static inline void uvm_fault_lower_lookup(
740 struct uvm_faultinfo *, const struct uvm_faultctx *,
741 struct vm_page **);
742 static inline void uvm_fault_lower_neighbor(
743 struct uvm_faultinfo *, const struct uvm_faultctx *,
744 vaddr_t, struct vm_page *, bool);
745 static inline int uvm_fault_lower_io(
746 struct uvm_faultinfo *, const struct uvm_faultctx *,
747 struct uvm_object **, struct vm_page **);
748 static inline int uvm_fault_lower_direct(
749 struct uvm_faultinfo *, struct uvm_faultctx *,
750 struct uvm_object *, struct vm_page *);
751 static inline int uvm_fault_lower_direct_loan(
752 struct uvm_faultinfo *, struct uvm_faultctx *,
753 struct uvm_object *, struct vm_page **,
754 struct vm_page **);
755 static inline int uvm_fault_lower_promote(
756 struct uvm_faultinfo *, struct uvm_faultctx *,
757 struct uvm_object *, struct vm_page *);
758 static int uvm_fault_lower_enter(
759 struct uvm_faultinfo *, const struct uvm_faultctx *,
760 struct uvm_object *,
761 struct vm_anon *, struct vm_page *);
762 static inline void uvm_fault_lower_done(
763 struct uvm_faultinfo *, const struct uvm_faultctx *,
764 struct uvm_object *, struct vm_page *);
765
766 int
767 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
768 vm_prot_t access_type, int fault_flag)
769 {
770 struct uvm_faultinfo ufi;
771 struct uvm_faultctx flt = {
772 .access_type = access_type,
773
774 /* don't look for neighborhood * pages on "wire" fault */
775 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
776
777 /* "wire" fault causes wiring of both mapping and paging */
778 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
779 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
780 };
781 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
782 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
783 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
784 int error;
785 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
786
787 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
788 orig_map, vaddr, access_type, fault_flag);
789
790 curcpu()->ci_data.cpu_nfault++;
791
792 /*
793 * init the IN parameters in the ufi
794 */
795
796 ufi.orig_map = orig_map;
797 ufi.orig_rvaddr = trunc_page(vaddr);
798 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
799
800 error = ERESTART;
801 while (error == ERESTART) { /* ReFault: */
802 anons = anons_store;
803 pages = pages_store;
804
805 error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
806 if (error != 0)
807 continue;
808
809 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
810 if (error != 0)
811 continue;
812
813 if (pages[flt.centeridx] == PGO_DONTCARE)
814 error = uvm_fault_upper(&ufi, &flt, anons);
815 else {
816 struct uvm_object * const uobj =
817 ufi.entry->object.uvm_obj;
818
819 if (uobj && uobj->pgops->pgo_fault != NULL) {
820 /*
821 * invoke "special" fault routine.
822 */
823 mutex_enter(uobj->vmobjlock);
824 /* locked: maps(read), amap(if there), uobj */
825 error = uobj->pgops->pgo_fault(&ufi,
826 flt.startva, pages, flt.npages,
827 flt.centeridx, flt.access_type,
828 PGO_LOCKED|PGO_SYNCIO);
829
830 /*
831 * locked: nothing, pgo_fault has unlocked
832 * everything
833 */
834
835 /*
836 * object fault routine responsible for
837 * pmap_update().
838 */
839 } else {
840 error = uvm_fault_lower(&ufi, &flt, pages);
841 }
842 }
843 }
844
845 if (flt.anon_spare != NULL) {
846 flt.anon_spare->an_ref--;
847 KASSERT(flt.anon_spare->an_ref == 0);
848 KASSERT(flt.anon_spare->an_lock == NULL);
849 uvm_anfree(flt.anon_spare);
850 }
851 return error;
852 }
853
854 /*
855 * uvm_fault_check: check prot, handle needs-copy, etc.
856 *
857 * 1. lookup entry.
858 * 2. check protection.
859 * 3. adjust fault condition (mainly for simulated fault).
860 * 4. handle needs-copy (lazy amap copy).
861 * 5. establish range of interest for neighbor fault (aka pre-fault).
862 * 6. look up anons (if amap exists).
863 * 7. flush pages (if MADV_SEQUENTIAL)
864 *
865 * => called with nothing locked.
866 * => if we fail (result != 0) we unlock everything.
867 * => initialize/adjust many members of flt.
868 */
869
870 static int
871 uvm_fault_check(
872 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
873 struct vm_anon ***ranons, bool maxprot)
874 {
875 struct vm_amap *amap;
876 struct uvm_object *uobj;
877 vm_prot_t check_prot;
878 int nback, nforw;
879 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
880
881 /*
882 * lookup and lock the maps
883 */
884
885 if (uvmfault_lookup(ufi, false) == false) {
886 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr,
887 0,0,0);
888 return EFAULT;
889 }
890 /* locked: maps(read) */
891
892 #ifdef DIAGNOSTIC
893 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
894 printf("Page fault on non-pageable map:\n");
895 printf("ufi->map = %p\n", ufi->map);
896 printf("ufi->orig_map = %p\n", ufi->orig_map);
897 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
898 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
899 }
900 #endif
901
902 /*
903 * check protection
904 */
905
906 check_prot = maxprot ?
907 ufi->entry->max_protection : ufi->entry->protection;
908 if ((check_prot & flt->access_type) != flt->access_type) {
909 UVMHIST_LOG(maphist,
910 "<- protection failure (prot=0x%x, access=0x%x)",
911 ufi->entry->protection, flt->access_type, 0, 0);
912 uvmfault_unlockmaps(ufi, false);
913 return EACCES;
914 }
915
916 /*
917 * "enter_prot" is the protection we want to enter the page in at.
918 * for certain pages (e.g. copy-on-write pages) this protection can
919 * be more strict than ufi->entry->protection. "wired" means either
920 * the entry is wired or we are fault-wiring the pg.
921 */
922
923 flt->enter_prot = ufi->entry->protection;
924 if (VM_MAPENT_ISWIRED(ufi->entry))
925 flt->wire_mapping = true;
926
927 if (flt->wire_mapping) {
928 flt->access_type = flt->enter_prot; /* full access for wired */
929 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
930 } else {
931 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
932 }
933
934 flt->promote = false;
935
936 /*
937 * handle "needs_copy" case. if we need to copy the amap we will
938 * have to drop our readlock and relock it with a write lock. (we
939 * need a write lock to change anything in a map entry [e.g.
940 * needs_copy]).
941 */
942
943 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
944 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
945 KASSERT(!maxprot);
946 /* need to clear */
947 UVMHIST_LOG(maphist,
948 " need to clear needs_copy and refault",0,0,0,0);
949 uvmfault_unlockmaps(ufi, false);
950 uvmfault_amapcopy(ufi);
951 uvmexp.fltamcopy++;
952 return ERESTART;
953
954 } else {
955
956 /*
957 * ensure that we pmap_enter page R/O since
958 * needs_copy is still true
959 */
960
961 flt->enter_prot &= ~VM_PROT_WRITE;
962 }
963 }
964
965 /*
966 * identify the players
967 */
968
969 amap = ufi->entry->aref.ar_amap; /* upper layer */
970 uobj = ufi->entry->object.uvm_obj; /* lower layer */
971
972 /*
973 * check for a case 0 fault. if nothing backing the entry then
974 * error now.
975 */
976
977 if (amap == NULL && uobj == NULL) {
978 uvmfault_unlockmaps(ufi, false);
979 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
980 return EFAULT;
981 }
982
983 /*
984 * establish range of interest based on advice from mapper
985 * and then clip to fit map entry. note that we only want
986 * to do this the first time through the fault. if we
987 * ReFault we will disable this by setting "narrow" to true.
988 */
989
990 if (flt->narrow == false) {
991
992 /* wide fault (!narrow) */
993 KASSERT(uvmadvice[ufi->entry->advice].advice ==
994 ufi->entry->advice);
995 nback = MIN(uvmadvice[ufi->entry->advice].nback,
996 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
997 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
998 /*
999 * note: "-1" because we don't want to count the
1000 * faulting page as forw
1001 */
1002 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1003 ((ufi->entry->end - ufi->orig_rvaddr) >>
1004 PAGE_SHIFT) - 1);
1005 flt->npages = nback + nforw + 1;
1006 flt->centeridx = nback;
1007
1008 flt->narrow = true; /* ensure only once per-fault */
1009
1010 } else {
1011
1012 /* narrow fault! */
1013 nback = nforw = 0;
1014 flt->startva = ufi->orig_rvaddr;
1015 flt->npages = 1;
1016 flt->centeridx = 0;
1017
1018 }
1019 /* offset from entry's start to pgs' start */
1020 const voff_t eoff = flt->startva - ufi->entry->start;
1021
1022 /* locked: maps(read) */
1023 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
1024 flt->narrow, nback, nforw, flt->startva);
1025 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1026 amap, uobj, 0);
1027
1028 /*
1029 * if we've got an amap, lock it and extract current anons.
1030 */
1031
1032 if (amap) {
1033 amap_lock(amap);
1034 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1035 } else {
1036 *ranons = NULL; /* to be safe */
1037 }
1038
1039 /* locked: maps(read), amap(if there) */
1040 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1041
1042 /*
1043 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1044 * now and then forget about them (for the rest of the fault).
1045 */
1046
1047 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1048
1049 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1050 0,0,0,0);
1051 /* flush back-page anons? */
1052 if (amap)
1053 uvmfault_anonflush(*ranons, nback);
1054
1055 /* flush object? */
1056 if (uobj) {
1057 voff_t uoff;
1058
1059 uoff = ufi->entry->offset + eoff;
1060 mutex_enter(uobj->vmobjlock);
1061 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1062 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1063 }
1064
1065 /* now forget about the backpages */
1066 if (amap)
1067 *ranons += nback;
1068 flt->startva += (nback << PAGE_SHIFT);
1069 flt->npages -= nback;
1070 flt->centeridx = 0;
1071 }
1072 /*
1073 * => startva is fixed
1074 * => npages is fixed
1075 */
1076 KASSERT(flt->startva <= ufi->orig_rvaddr);
1077 KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1078 flt->startva + (flt->npages << PAGE_SHIFT));
1079 return 0;
1080 }
1081
1082 /*
1083 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1084 *
1085 * iterate range of interest:
1086 * 1. check if h/w mapping exists. if yes, we don't care
1087 * 2. check if anon exists. if not, page is lower.
1088 * 3. if anon exists, enter h/w mapping for neighbors.
1089 *
1090 * => called with amap locked (if exists).
1091 */
1092
1093 static int
1094 uvm_fault_upper_lookup(
1095 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1096 struct vm_anon **anons, struct vm_page **pages)
1097 {
1098 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1099 int lcv;
1100 vaddr_t currva;
1101 bool shadowed;
1102 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1103
1104 /* locked: maps(read), amap(if there) */
1105 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1106
1107 /*
1108 * map in the backpages and frontpages we found in the amap in hopes
1109 * of preventing future faults. we also init the pages[] array as
1110 * we go.
1111 */
1112
1113 currva = flt->startva;
1114 shadowed = false;
1115 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1116 /*
1117 * don't play with VAs that are already mapped
1118 * (except for center)
1119 */
1120 if (lcv != flt->centeridx &&
1121 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1122 pages[lcv] = PGO_DONTCARE;
1123 continue;
1124 }
1125
1126 /*
1127 * unmapped or center page. check if any anon at this level.
1128 */
1129 if (amap == NULL || anons[lcv] == NULL) {
1130 pages[lcv] = NULL;
1131 continue;
1132 }
1133
1134 /*
1135 * check for present page and map if possible. re-activate it.
1136 */
1137
1138 pages[lcv] = PGO_DONTCARE;
1139 if (lcv == flt->centeridx) { /* save center for later! */
1140 shadowed = true;
1141 continue;
1142 }
1143
1144 struct vm_anon *anon = anons[lcv];
1145 struct vm_page *pg = anon->an_page;
1146
1147 KASSERT(anon->an_lock == amap->am_lock);
1148
1149 /* Ignore loaned and busy pages. */
1150 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
1151 uvm_fault_upper_neighbor(ufi, flt, currva,
1152 pg, anon->an_ref > 1);
1153 }
1154 }
1155
1156 /* locked: maps(read), amap(if there) */
1157 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1158 /* (shadowed == true) if there is an anon at the faulting address */
1159 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1160 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1161
1162 /*
1163 * note that if we are really short of RAM we could sleep in the above
1164 * call to pmap_enter with everything locked. bad?
1165 *
1166 * XXX Actually, that is bad; pmap_enter() should just fail in that
1167 * XXX case. --thorpej
1168 */
1169
1170 return 0;
1171 }
1172
1173 /*
1174 * uvm_fault_upper_neighbor: enter single lower neighbor page.
1175 *
1176 * => called with amap and anon locked.
1177 */
1178
1179 static void
1180 uvm_fault_upper_neighbor(
1181 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1182 vaddr_t currva, struct vm_page *pg, bool readonly)
1183 {
1184 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1185
1186 /* locked: amap, anon */
1187
1188 mutex_enter(&uvm_pageqlock);
1189 uvm_pageenqueue(pg);
1190 mutex_exit(&uvm_pageqlock);
1191 UVMHIST_LOG(maphist,
1192 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1193 ufi->orig_map->pmap, currva, pg, 0);
1194 uvmexp.fltnamap++;
1195
1196 /*
1197 * Since this page isn't the page that's actually faulting,
1198 * ignore pmap_enter() failures; it's not critical that we
1199 * enter these right now.
1200 */
1201
1202 (void) pmap_enter(ufi->orig_map->pmap, currva,
1203 VM_PAGE_TO_PHYS(pg),
1204 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1205 flt->enter_prot,
1206 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1207
1208 pmap_update(ufi->orig_map->pmap);
1209 }
1210
1211 /*
1212 * uvm_fault_upper: handle upper fault.
1213 *
1214 * 1. acquire anon lock.
1215 * 2. get anon. let uvmfault_anonget do the dirty work.
1216 * 3. handle loan.
1217 * 4. dispatch direct or promote handlers.
1218 */
1219
1220 static int
1221 uvm_fault_upper(
1222 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1223 struct vm_anon **anons)
1224 {
1225 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1226 struct vm_anon * const anon = anons[flt->centeridx];
1227 struct uvm_object *uobj;
1228 int error;
1229 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1230
1231 /* locked: maps(read), amap, anon */
1232 KASSERT(mutex_owned(amap->am_lock));
1233 KASSERT(anon->an_lock == amap->am_lock);
1234
1235 /*
1236 * handle case 1: fault on an anon in our amap
1237 */
1238
1239 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1240
1241 /*
1242 * no matter if we have case 1A or case 1B we are going to need to
1243 * have the anon's memory resident. ensure that now.
1244 */
1245
1246 /*
1247 * let uvmfault_anonget do the dirty work.
1248 * if it fails (!OK) it will unlock everything for us.
1249 * if it succeeds, locks are still valid and locked.
1250 * also, if it is OK, then the anon's page is on the queues.
1251 * if the page is on loan from a uvm_object, then anonget will
1252 * lock that object for us if it does not fail.
1253 */
1254
1255 error = uvmfault_anonget(ufi, amap, anon);
1256 switch (error) {
1257 case 0:
1258 break;
1259
1260 case ERESTART:
1261 return ERESTART;
1262
1263 case EAGAIN:
1264 kpause("fltagain1", false, hz/2, NULL);
1265 return ERESTART;
1266
1267 default:
1268 return error;
1269 }
1270
1271 /*
1272 * uobj is non null if the page is on loan from an object (i.e. uobj)
1273 */
1274
1275 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1276
1277 /* locked: maps(read), amap, anon, uobj(if one) */
1278 KASSERT(mutex_owned(amap->am_lock));
1279 KASSERT(anon->an_lock == amap->am_lock);
1280 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1281
1282 /*
1283 * special handling for loaned pages
1284 */
1285
1286 if (anon->an_page->loan_count) {
1287 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1288 if (error != 0)
1289 return error;
1290 }
1291
1292 /*
1293 * if we are case 1B then we will need to allocate a new blank
1294 * anon to transfer the data into. note that we have a lock
1295 * on anon, so no one can busy or release the page until we are done.
1296 * also note that the ref count can't drop to zero here because
1297 * it is > 1 and we are only dropping one ref.
1298 *
1299 * in the (hopefully very rare) case that we are out of RAM we
1300 * will unlock, wait for more RAM, and refault.
1301 *
1302 * if we are out of anon VM we kill the process (XXX: could wait?).
1303 */
1304
1305 if (flt->cow_now && anon->an_ref > 1) {
1306 flt->promote = true;
1307 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1308 } else {
1309 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1310 }
1311 return error;
1312 }
1313
1314 /*
1315 * uvm_fault_upper_loan: handle loaned upper page.
1316 *
1317 * 1. if not cow'ing now, simply adjust flt->enter_prot.
1318 * 2. if cow'ing now, and if ref count is 1, break loan.
1319 */
1320
1321 static int
1322 uvm_fault_upper_loan(
1323 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1324 struct vm_anon *anon, struct uvm_object **ruobj)
1325 {
1326 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1327 int error = 0;
1328 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1329
1330 if (!flt->cow_now) {
1331
1332 /*
1333 * for read faults on loaned pages we just cap the
1334 * protection at read-only.
1335 */
1336
1337 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1338
1339 } else {
1340 /*
1341 * note that we can't allow writes into a loaned page!
1342 *
1343 * if we have a write fault on a loaned page in an
1344 * anon then we need to look at the anon's ref count.
1345 * if it is greater than one then we are going to do
1346 * a normal copy-on-write fault into a new anon (this
1347 * is not a problem). however, if the reference count
1348 * is one (a case where we would normally allow a
1349 * write directly to the page) then we need to kill
1350 * the loan before we continue.
1351 */
1352
1353 /* >1 case is already ok */
1354 if (anon->an_ref == 1) {
1355 error = uvm_loanbreak_anon(anon, *ruobj);
1356 if (error != 0) {
1357 uvmfault_unlockall(ufi, amap, *ruobj);
1358 uvm_wait("flt_noram2");
1359 return ERESTART;
1360 }
1361 /* if we were a loan reciever uobj is gone */
1362 if (*ruobj)
1363 *ruobj = NULL;
1364 }
1365 }
1366 return error;
1367 }
1368
1369 /*
1370 * uvm_fault_upper_promote: promote upper page.
1371 *
1372 * 1. call uvmfault_promote.
1373 * 2. enqueue page.
1374 * 3. deref.
1375 * 4. pass page to uvm_fault_upper_enter.
1376 */
1377
1378 static int
1379 uvm_fault_upper_promote(
1380 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1381 struct uvm_object *uobj, struct vm_anon *anon)
1382 {
1383 struct vm_anon * const oanon = anon;
1384 struct vm_page *pg;
1385 int error;
1386 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1387
1388 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1389 uvmexp.flt_acow++;
1390
1391 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1392 &flt->anon_spare);
1393 switch (error) {
1394 case 0:
1395 break;
1396 case ERESTART:
1397 return ERESTART;
1398 default:
1399 return error;
1400 }
1401
1402 KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
1403
1404 pg = anon->an_page;
1405 mutex_enter(&uvm_pageqlock);
1406 uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
1407 mutex_exit(&uvm_pageqlock);
1408 pg->flags &= ~(PG_BUSY|PG_FAKE);
1409 UVM_PAGE_OWN(pg, NULL);
1410
1411 /* deref: can not drop to zero here by defn! */
1412 KASSERT(oanon->an_ref > 1);
1413 oanon->an_ref--;
1414
1415 /*
1416 * note: oanon is still locked, as is the new anon. we
1417 * need to check for this later when we unlock oanon; if
1418 * oanon != anon, we'll have to unlock anon, too.
1419 */
1420
1421 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1422 }
1423
1424 /*
1425 * uvm_fault_upper_direct: handle direct fault.
1426 */
1427
1428 static int
1429 uvm_fault_upper_direct(
1430 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1431 struct uvm_object *uobj, struct vm_anon *anon)
1432 {
1433 struct vm_anon * const oanon = anon;
1434 struct vm_page *pg;
1435 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1436
1437 uvmexp.flt_anon++;
1438 pg = anon->an_page;
1439 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1440 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1441
1442 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1443 }
1444
1445 /*
1446 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1447 */
1448
1449 static int
1450 uvm_fault_upper_enter(
1451 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1452 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1453 struct vm_anon *oanon)
1454 {
1455 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1456 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1457
1458 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1459 KASSERT(mutex_owned(amap->am_lock));
1460 KASSERT(anon->an_lock == amap->am_lock);
1461 KASSERT(oanon->an_lock == amap->am_lock);
1462 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1463
1464 /*
1465 * now map the page in.
1466 */
1467
1468 UVMHIST_LOG(maphist,
1469 " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1470 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1471 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1472 VM_PAGE_TO_PHYS(pg),
1473 flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1474 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1475
1476 /*
1477 * No need to undo what we did; we can simply think of
1478 * this as the pmap throwing away the mapping information.
1479 *
1480 * We do, however, have to go through the ReFault path,
1481 * as the map may change while we're asleep.
1482 */
1483
1484 uvmfault_unlockall(ufi, amap, uobj);
1485 if (!uvm_reclaimable()) {
1486 UVMHIST_LOG(maphist,
1487 "<- failed. out of VM",0,0,0,0);
1488 /* XXX instrumentation */
1489 return ENOMEM;
1490 }
1491 /* XXX instrumentation */
1492 uvm_wait("flt_pmfail1");
1493 return ERESTART;
1494 }
1495
1496 uvm_fault_upper_done(ufi, flt, anon, pg);
1497
1498 /*
1499 * done case 1! finish up by unlocking everything and returning success
1500 */
1501
1502 pmap_update(ufi->orig_map->pmap);
1503 uvmfault_unlockall(ufi, amap, uobj);
1504 return 0;
1505 }
1506
1507 /*
1508 * uvm_fault_upper_done: queue upper center page.
1509 */
1510
1511 static void
1512 uvm_fault_upper_done(
1513 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1514 struct vm_anon *anon, struct vm_page *pg)
1515 {
1516 const bool wire_paging = flt->wire_paging;
1517
1518 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1519
1520 /*
1521 * ... update the page queues.
1522 */
1523
1524 mutex_enter(&uvm_pageqlock);
1525 if (wire_paging) {
1526 uvm_pagewire(pg);
1527
1528 /*
1529 * since the now-wired page cannot be paged out,
1530 * release its swap resources for others to use.
1531 * since an anon with no swap cannot be PG_CLEAN,
1532 * clear its clean flag now.
1533 */
1534
1535 pg->flags &= ~(PG_CLEAN);
1536
1537 } else {
1538 uvm_pageactivate(pg);
1539 }
1540 mutex_exit(&uvm_pageqlock);
1541
1542 if (wire_paging) {
1543 uvm_anon_dropswap(anon);
1544 }
1545 }
1546
1547 /*
1548 * uvm_fault_lower: handle lower fault.
1549 *
1550 * 1. check uobj
1551 * 1.1. if null, ZFOD.
1552 * 1.2. if not null, look up unnmapped neighbor pages.
1553 * 2. for center page, check if promote.
1554 * 2.1. ZFOD always needs promotion.
1555 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1556 * 3. if uobj is not ZFOD and page is not found, do i/o.
1557 * 4. dispatch either direct / promote fault.
1558 */
1559
1560 static int
1561 uvm_fault_lower(
1562 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1563 struct vm_page **pages)
1564 {
1565 #ifdef DIAGNOSTIC
1566 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1567 #endif
1568 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1569 struct vm_page *uobjpage;
1570 int error;
1571 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1572
1573 /*
1574 * now, if the desired page is not shadowed by the amap and we have
1575 * a backing object that does not have a special fault routine, then
1576 * we ask (with pgo_get) the object for resident pages that we care
1577 * about and attempt to map them in. we do not let pgo_get block
1578 * (PGO_LOCKED).
1579 */
1580
1581 if (uobj == NULL) {
1582 /* zero fill; don't care neighbor pages */
1583 uobjpage = NULL;
1584 } else {
1585 uvm_fault_lower_lookup(ufi, flt, pages);
1586 uobjpage = pages[flt->centeridx];
1587 }
1588
1589 /*
1590 * note that at this point we are done with any front or back pages.
1591 * we are now going to focus on the center page (i.e. the one we've
1592 * faulted on). if we have faulted on the upper (anon) layer
1593 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1594 * not touched it yet). if we have faulted on the bottom (uobj)
1595 * layer [i.e. case 2] and the page was both present and available,
1596 * then we've got a pointer to it as "uobjpage" and we've already
1597 * made it BUSY.
1598 */
1599
1600 /*
1601 * locked:
1602 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1603 */
1604 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1605 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1606 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1607
1608 /*
1609 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1610 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1611 * have a backing object, check and see if we are going to promote
1612 * the data up to an anon during the fault.
1613 */
1614
1615 if (uobj == NULL) {
1616 uobjpage = PGO_DONTCARE;
1617 flt->promote = true; /* always need anon here */
1618 } else {
1619 KASSERT(uobjpage != PGO_DONTCARE);
1620 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1621 }
1622 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1623 flt->promote, (uobj == NULL), 0,0);
1624
1625 /*
1626 * if uobjpage is not null then we do not need to do I/O to get the
1627 * uobjpage.
1628 *
1629 * if uobjpage is null, then we need to unlock and ask the pager to
1630 * get the data for us. once we have the data, we need to reverify
1631 * the state the world. we are currently not holding any resources.
1632 */
1633
1634 if (uobjpage) {
1635 /* update rusage counters */
1636 curlwp->l_ru.ru_minflt++;
1637 } else {
1638 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1639 if (error != 0)
1640 return error;
1641 }
1642
1643 /*
1644 * locked:
1645 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1646 */
1647 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1648 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1649 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1650
1651 /*
1652 * notes:
1653 * - at this point uobjpage can not be NULL
1654 * - at this point uobjpage can not be PG_RELEASED (since we checked
1655 * for it above)
1656 * - at this point uobjpage could be PG_WANTED (handle later)
1657 */
1658
1659 KASSERT(uobjpage != NULL);
1660 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1661 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1662 (uobjpage->flags & PG_CLEAN) != 0);
1663
1664 if (!flt->promote) {
1665 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1666 } else {
1667 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1668 }
1669 return error;
1670 }
1671
1672 /*
1673 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1674 *
1675 * 1. get on-memory pages.
1676 * 2. if failed, give up (get only center page later).
1677 * 3. if succeeded, enter h/w mapping of neighbor pages.
1678 */
1679
1680 static void
1681 uvm_fault_lower_lookup(
1682 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1683 struct vm_page **pages)
1684 {
1685 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1686 int lcv, gotpages;
1687 vaddr_t currva;
1688 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1689
1690 mutex_enter(uobj->vmobjlock);
1691 /* Locked: maps(read), amap(if there), uobj */
1692
1693 uvmexp.fltlget++;
1694 gotpages = flt->npages;
1695 (void) uobj->pgops->pgo_get(uobj,
1696 ufi->entry->offset + flt->startva - ufi->entry->start,
1697 pages, &gotpages, flt->centeridx,
1698 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1699
1700 KASSERT(mutex_owned(uobj->vmobjlock));
1701
1702 /*
1703 * check for pages to map, if we got any
1704 */
1705
1706 if (gotpages == 0) {
1707 pages[flt->centeridx] = NULL;
1708 return;
1709 }
1710
1711 currva = flt->startva;
1712 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1713 struct vm_page *curpg;
1714
1715 curpg = pages[lcv];
1716 if (curpg == NULL || curpg == PGO_DONTCARE) {
1717 continue;
1718 }
1719 KASSERT(curpg->uobject == uobj);
1720
1721 /*
1722 * if center page is resident and not PG_BUSY|PG_RELEASED
1723 * then pgo_get made it PG_BUSY for us and gave us a handle
1724 * to it.
1725 */
1726
1727 if (lcv == flt->centeridx) {
1728 UVMHIST_LOG(maphist, " got uobjpage "
1729 "(0x%x) with locked get",
1730 curpg, 0,0,0);
1731 } else {
1732 bool readonly = (curpg->flags & PG_RDONLY)
1733 || (curpg->loan_count > 0)
1734 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1735
1736 uvm_fault_lower_neighbor(ufi, flt,
1737 currva, curpg, readonly);
1738 }
1739 }
1740 pmap_update(ufi->orig_map->pmap);
1741 }
1742
1743 /*
1744 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1745 */
1746
1747 static void
1748 uvm_fault_lower_neighbor(
1749 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1750 vaddr_t currva, struct vm_page *pg, bool readonly)
1751 {
1752 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1753
1754 /* locked: maps(read), amap(if there), uobj */
1755
1756 /*
1757 * calling pgo_get with PGO_LOCKED returns us pages which
1758 * are neither busy nor released, so we don't need to check
1759 * for this. we can just directly enter the pages.
1760 */
1761
1762 mutex_enter(&uvm_pageqlock);
1763 uvm_pageenqueue(pg);
1764 mutex_exit(&uvm_pageqlock);
1765 UVMHIST_LOG(maphist,
1766 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1767 ufi->orig_map->pmap, currva, pg, 0);
1768 uvmexp.fltnomap++;
1769
1770 /*
1771 * Since this page isn't the page that's actually faulting,
1772 * ignore pmap_enter() failures; it's not critical that we
1773 * enter these right now.
1774 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1775 * held the lock the whole time we've had the handle.
1776 */
1777 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1778 KASSERT((pg->flags & PG_RELEASED) == 0);
1779 KASSERT((pg->flags & PG_WANTED) == 0);
1780 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
1781 pg->flags &= ~(PG_BUSY);
1782 UVM_PAGE_OWN(pg, NULL);
1783
1784 KASSERT(mutex_owned(pg->uobject->vmobjlock));
1785 (void) pmap_enter(ufi->orig_map->pmap, currva,
1786 VM_PAGE_TO_PHYS(pg),
1787 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1788 flt->enter_prot & MASK(ufi->entry),
1789 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1790 }
1791
1792 /*
1793 * uvm_fault_lower_io: get lower page from backing store.
1794 *
1795 * 1. unlock everything, because i/o will block.
1796 * 2. call pgo_get.
1797 * 3. if failed, recover.
1798 * 4. if succeeded, relock everything and verify things.
1799 */
1800
1801 static int
1802 uvm_fault_lower_io(
1803 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1804 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1805 {
1806 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1807 struct uvm_object *uobj = *ruobj;
1808 struct vm_page *pg;
1809 bool locked;
1810 int gotpages;
1811 int error;
1812 voff_t uoff;
1813 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1814
1815 /* update rusage counters */
1816 curlwp->l_ru.ru_majflt++;
1817
1818 /* Locked: maps(read), amap(if there), uobj */
1819 uvmfault_unlockall(ufi, amap, NULL);
1820
1821 /* Locked: uobj */
1822 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1823
1824 uvmexp.fltget++;
1825 gotpages = 1;
1826 pg = NULL;
1827 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1828 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1829 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1830 PGO_SYNCIO);
1831 /* locked: pg(if no error) */
1832
1833 /*
1834 * recover from I/O
1835 */
1836
1837 if (error) {
1838 if (error == EAGAIN) {
1839 UVMHIST_LOG(maphist,
1840 " pgo_get says TRY AGAIN!",0,0,0,0);
1841 kpause("fltagain2", false, hz/2, NULL);
1842 return ERESTART;
1843 }
1844
1845 #if 0
1846 KASSERT(error != ERESTART);
1847 #else
1848 /* XXXUEBS don't re-fault? */
1849 if (error == ERESTART)
1850 error = EIO;
1851 #endif
1852
1853 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1854 error, 0,0,0);
1855 return error;
1856 }
1857
1858 /*
1859 * re-verify the state of the world by first trying to relock
1860 * the maps. always relock the object.
1861 */
1862
1863 locked = uvmfault_relock(ufi);
1864 if (locked && amap)
1865 amap_lock(amap);
1866
1867 /* might be changed */
1868 uobj = pg->uobject;
1869
1870 mutex_enter(uobj->vmobjlock);
1871 KASSERT((pg->flags & PG_BUSY) != 0);
1872
1873 mutex_enter(&uvm_pageqlock);
1874 uvm_pageactivate(pg);
1875 mutex_exit(&uvm_pageqlock);
1876
1877 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1878 /* locked(!locked): uobj, pg */
1879
1880 /*
1881 * verify that the page has not be released and re-verify
1882 * that amap slot is still free. if there is a problem,
1883 * we unlock and clean up.
1884 */
1885
1886 if ((pg->flags & PG_RELEASED) != 0 ||
1887 (locked && amap && amap_lookup(&ufi->entry->aref,
1888 ufi->orig_rvaddr - ufi->entry->start))) {
1889 if (locked)
1890 uvmfault_unlockall(ufi, amap, NULL);
1891 locked = false;
1892 }
1893
1894 /*
1895 * didn't get the lock? release the page and retry.
1896 */
1897
1898 if (locked == false) {
1899 UVMHIST_LOG(maphist,
1900 " wasn't able to relock after fault: retry",
1901 0,0,0,0);
1902 if (pg->flags & PG_WANTED) {
1903 wakeup(pg);
1904 }
1905 if ((pg->flags & PG_RELEASED) == 0) {
1906 pg->flags &= ~(PG_BUSY | PG_WANTED);
1907 UVM_PAGE_OWN(pg, NULL);
1908 } else {
1909 uvmexp.fltpgrele++;
1910 uvm_pagefree(pg);
1911 }
1912 mutex_exit(uobj->vmobjlock);
1913 return ERESTART;
1914 }
1915
1916 /*
1917 * we have the data in pg which is busy and
1918 * not released. we are holding object lock (so the page
1919 * can't be released on us).
1920 */
1921
1922 /* locked: maps(read), amap(if !null), uobj, pg */
1923
1924 *ruobj = uobj;
1925 *ruobjpage = pg;
1926 return 0;
1927 }
1928
1929 /*
1930 * uvm_fault_lower_direct: fault lower center page
1931 *
1932 * 1. adjust flt->enter_prot.
1933 * 2. if page is loaned, resolve.
1934 */
1935
1936 int
1937 uvm_fault_lower_direct(
1938 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1939 struct uvm_object *uobj, struct vm_page *uobjpage)
1940 {
1941 struct vm_page *pg;
1942 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1943
1944 /*
1945 * we are not promoting. if the mapping is COW ensure that we
1946 * don't give more access than we should (e.g. when doing a read
1947 * fault on a COPYONWRITE mapping we want to map the COW page in
1948 * R/O even though the entry protection could be R/W).
1949 *
1950 * set "pg" to the page we want to map in (uobjpage, usually)
1951 */
1952
1953 uvmexp.flt_obj++;
1954 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1955 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1956 flt->enter_prot &= ~VM_PROT_WRITE;
1957 pg = uobjpage; /* map in the actual object */
1958
1959 KASSERT(uobjpage != PGO_DONTCARE);
1960
1961 /*
1962 * we are faulting directly on the page. be careful
1963 * about writing to loaned pages...
1964 */
1965
1966 if (uobjpage->loan_count) {
1967 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1968 }
1969 KASSERT(pg == uobjpage);
1970
1971 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1972 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
1973 }
1974
1975 /*
1976 * uvm_fault_lower_direct_loan: resolve loaned page.
1977 *
1978 * 1. if not cow'ing, adjust flt->enter_prot.
1979 * 2. if cow'ing, break loan.
1980 */
1981
1982 static int
1983 uvm_fault_lower_direct_loan(
1984 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1985 struct uvm_object *uobj, struct vm_page **rpg,
1986 struct vm_page **ruobjpage)
1987 {
1988 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1989 struct vm_page *pg;
1990 struct vm_page *uobjpage = *ruobjpage;
1991 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
1992
1993 if (!flt->cow_now) {
1994 /* read fault: cap the protection at readonly */
1995 /* cap! */
1996 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1997 } else {
1998 /* write fault: must break the loan here */
1999
2000 pg = uvm_loanbreak(uobjpage);
2001 if (pg == NULL) {
2002
2003 /*
2004 * drop ownership of page, it can't be released
2005 */
2006
2007 if (uobjpage->flags & PG_WANTED)
2008 wakeup(uobjpage);
2009 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2010 UVM_PAGE_OWN(uobjpage, NULL);
2011
2012 uvmfault_unlockall(ufi, amap, uobj);
2013 UVMHIST_LOG(maphist,
2014 " out of RAM breaking loan, waiting",
2015 0,0,0,0);
2016 uvmexp.fltnoram++;
2017 uvm_wait("flt_noram4");
2018 return ERESTART;
2019 }
2020 *rpg = pg;
2021 *ruobjpage = pg;
2022 }
2023 return 0;
2024 }
2025
2026 /*
2027 * uvm_fault_lower_promote: promote lower page.
2028 *
2029 * 1. call uvmfault_promote.
2030 * 2. fill in data.
2031 * 3. if not ZFOD, dispose old page.
2032 */
2033
2034 int
2035 uvm_fault_lower_promote(
2036 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2037 struct uvm_object *uobj, struct vm_page *uobjpage)
2038 {
2039 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2040 struct vm_anon *anon;
2041 struct vm_page *pg;
2042 int error;
2043 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2044
2045 KASSERT(amap != NULL);
2046
2047 /*
2048 * If we are going to promote the data to an anon we
2049 * allocate a blank anon here and plug it into our amap.
2050 */
2051 error = uvmfault_promote(ufi, NULL, uobjpage,
2052 &anon, &flt->anon_spare);
2053 switch (error) {
2054 case 0:
2055 break;
2056 case ERESTART:
2057 return ERESTART;
2058 default:
2059 return error;
2060 }
2061
2062 pg = anon->an_page;
2063
2064 /*
2065 * Fill in the data.
2066 */
2067 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2068
2069 if (uobjpage != PGO_DONTCARE) {
2070 uvmexp.flt_prcopy++;
2071
2072 /*
2073 * promote to shared amap? make sure all sharing
2074 * procs see it
2075 */
2076
2077 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2078 pmap_page_protect(uobjpage, VM_PROT_NONE);
2079 /*
2080 * XXX: PAGE MIGHT BE WIRED!
2081 */
2082 }
2083
2084 /*
2085 * dispose of uobjpage. it can't be PG_RELEASED
2086 * since we still hold the object lock.
2087 */
2088
2089 if (uobjpage->flags & PG_WANTED) {
2090 /* still have the obj lock */
2091 wakeup(uobjpage);
2092 }
2093 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2094 UVM_PAGE_OWN(uobjpage, NULL);
2095
2096 UVMHIST_LOG(maphist,
2097 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2098 uobjpage, anon, pg, 0);
2099
2100 } else {
2101 uvmexp.flt_przero++;
2102
2103 /*
2104 * Page is zero'd and marked dirty by
2105 * uvmfault_promote().
2106 */
2107
2108 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2109 anon, pg, 0, 0);
2110 }
2111
2112 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2113 }
2114
2115 /*
2116 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2117 * from the lower page.
2118 */
2119
2120 int
2121 uvm_fault_lower_enter(
2122 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2123 struct uvm_object *uobj,
2124 struct vm_anon *anon, struct vm_page *pg)
2125 {
2126 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2127 int error;
2128 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2129
2130 /*
2131 * Locked:
2132 *
2133 * maps(read), amap(if !null), uobj(if !null),
2134 * anon(if !null), pg(if anon), unlock_uobj(if !null)
2135 *
2136 * Note: pg is either the uobjpage or the new page in the new anon.
2137 */
2138 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
2139 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
2140 KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2141 KASSERT((pg->flags & PG_BUSY) != 0);
2142
2143 /*
2144 * all resources are present. we can now map it in and free our
2145 * resources.
2146 */
2147
2148 UVMHIST_LOG(maphist,
2149 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2150 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2151 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2152 (pg->flags & PG_RDONLY) == 0);
2153 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2154 VM_PAGE_TO_PHYS(pg),
2155 (pg->flags & PG_RDONLY) != 0 ?
2156 flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2157 flt->access_type | PMAP_CANFAIL |
2158 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2159
2160 /*
2161 * No need to undo what we did; we can simply think of
2162 * this as the pmap throwing away the mapping information.
2163 *
2164 * We do, however, have to go through the ReFault path,
2165 * as the map may change while we're asleep.
2166 */
2167
2168 /*
2169 * ensure that the page is queued in the case that
2170 * we just promoted the page.
2171 */
2172
2173 mutex_enter(&uvm_pageqlock);
2174 uvm_pageenqueue(pg);
2175 mutex_exit(&uvm_pageqlock);
2176
2177 if (pg->flags & PG_WANTED)
2178 wakeup(pg);
2179
2180 /*
2181 * note that pg can't be PG_RELEASED since we did not drop
2182 * the object lock since the last time we checked.
2183 */
2184 KASSERT((pg->flags & PG_RELEASED) == 0);
2185
2186 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2187 UVM_PAGE_OWN(pg, NULL);
2188
2189 uvmfault_unlockall(ufi, amap, uobj);
2190 if (!uvm_reclaimable()) {
2191 UVMHIST_LOG(maphist,
2192 "<- failed. out of VM",0,0,0,0);
2193 /* XXX instrumentation */
2194 error = ENOMEM;
2195 return error;
2196 }
2197 /* XXX instrumentation */
2198 uvm_wait("flt_pmfail2");
2199 return ERESTART;
2200 }
2201
2202 uvm_fault_lower_done(ufi, flt, uobj, pg);
2203
2204 /*
2205 * note that pg can't be PG_RELEASED since we did not drop the object
2206 * lock since the last time we checked.
2207 */
2208 KASSERT((pg->flags & PG_RELEASED) == 0);
2209 if (pg->flags & PG_WANTED)
2210 wakeup(pg);
2211 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2212 UVM_PAGE_OWN(pg, NULL);
2213
2214 pmap_update(ufi->orig_map->pmap);
2215 uvmfault_unlockall(ufi, amap, uobj);
2216
2217 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2218 return 0;
2219 }
2220
2221 /*
2222 * uvm_fault_lower_done: queue lower center page.
2223 */
2224
2225 void
2226 uvm_fault_lower_done(
2227 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2228 struct uvm_object *uobj, struct vm_page *pg)
2229 {
2230 bool dropswap = false;
2231
2232 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2233
2234 mutex_enter(&uvm_pageqlock);
2235 if (flt->wire_paging) {
2236 uvm_pagewire(pg);
2237 if (pg->pqflags & PQ_AOBJ) {
2238
2239 /*
2240 * since the now-wired page cannot be paged out,
2241 * release its swap resources for others to use.
2242 * since an aobj page with no swap cannot be PG_CLEAN,
2243 * clear its clean flag now.
2244 */
2245
2246 KASSERT(uobj != NULL);
2247 pg->flags &= ~(PG_CLEAN);
2248 dropswap = true;
2249 }
2250 } else {
2251 uvm_pageactivate(pg);
2252 }
2253 mutex_exit(&uvm_pageqlock);
2254
2255 if (dropswap) {
2256 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2257 }
2258 }
2259
2260
2261 /*
2262 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2263 *
2264 * => map may be read-locked by caller, but MUST NOT be write-locked.
2265 * => if map is read-locked, any operations which may cause map to
2266 * be write-locked in uvm_fault() must be taken care of by
2267 * the caller. See uvm_map_pageable().
2268 */
2269
2270 int
2271 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2272 vm_prot_t access_type, int maxprot)
2273 {
2274 vaddr_t va;
2275 int error;
2276
2277 /*
2278 * now fault it in a page at a time. if the fault fails then we have
2279 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2280 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2281 */
2282
2283 /*
2284 * XXX work around overflowing a vaddr_t. this prevents us from
2285 * wiring the last page in the address space, though.
2286 */
2287 if (start > end) {
2288 return EFAULT;
2289 }
2290
2291 for (va = start; va < end; va += PAGE_SIZE) {
2292 error = uvm_fault_internal(map, va, access_type,
2293 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2294 if (error) {
2295 if (va != start) {
2296 uvm_fault_unwire(map, start, va);
2297 }
2298 return error;
2299 }
2300 }
2301 return 0;
2302 }
2303
2304 /*
2305 * uvm_fault_unwire(): unwire range of virtual space.
2306 */
2307
2308 void
2309 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2310 {
2311 vm_map_lock_read(map);
2312 uvm_fault_unwire_locked(map, start, end);
2313 vm_map_unlock_read(map);
2314 }
2315
2316 /*
2317 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2318 *
2319 * => map must be at least read-locked.
2320 */
2321
2322 void
2323 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2324 {
2325 struct vm_map_entry *entry, *oentry;
2326 pmap_t pmap = vm_map_pmap(map);
2327 vaddr_t va;
2328 paddr_t pa;
2329 struct vm_page *pg;
2330
2331 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2332
2333 /*
2334 * we assume that the area we are unwiring has actually been wired
2335 * in the first place. this means that we should be able to extract
2336 * the PAs from the pmap. we also lock out the page daemon so that
2337 * we can call uvm_pageunwire.
2338 */
2339
2340 /*
2341 * find the beginning map entry for the region.
2342 */
2343
2344 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2345 if (uvm_map_lookup_entry(map, start, &entry) == false)
2346 panic("uvm_fault_unwire_locked: address not in map");
2347
2348 oentry = NULL;
2349 for (va = start; va < end; va += PAGE_SIZE) {
2350 if (pmap_extract(pmap, va, &pa) == false)
2351 continue;
2352
2353 /*
2354 * find the map entry for the current address.
2355 */
2356
2357 KASSERT(va >= entry->start);
2358 while (va >= entry->end) {
2359 KASSERT(entry->next != &map->header &&
2360 entry->next->start <= entry->end);
2361 entry = entry->next;
2362 }
2363
2364 /*
2365 * lock it.
2366 */
2367
2368 if (entry != oentry) {
2369 if (oentry != NULL) {
2370 mutex_exit(&uvm_pageqlock);
2371 uvm_map_unlock_entry(oentry);
2372 }
2373 uvm_map_lock_entry(entry);
2374 mutex_enter(&uvm_pageqlock);
2375 oentry = entry;
2376 }
2377
2378 /*
2379 * if the entry is no longer wired, tell the pmap.
2380 */
2381
2382 if (VM_MAPENT_ISWIRED(entry) == 0)
2383 pmap_unwire(pmap, va);
2384
2385 pg = PHYS_TO_VM_PAGE(pa);
2386 if (pg)
2387 uvm_pageunwire(pg);
2388 }
2389
2390 if (oentry != NULL) {
2391 mutex_exit(&uvm_pageqlock);
2392 uvm_map_unlock_entry(entry);
2393 }
2394 }
2395