uvm_fault.c revision 1.190.2.3 1 /* $NetBSD: uvm_fault.c,v 1.190.2.3 2011/12/26 16:03:10 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 */
29
30 /*
31 * uvm_fault.c: fault handler
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.190.2.3 2011/12/26 16:03:10 yamt Exp $");
36
37 #include "opt_uvmhist.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/mman.h>
43
44 #include <uvm/uvm.h>
45
46 /*
47 *
48 * a word on page faults:
49 *
50 * types of page faults we handle:
51 *
52 * CASE 1: upper layer faults CASE 2: lower layer faults
53 *
54 * CASE 1A CASE 1B CASE 2A CASE 2B
55 * read/write1 write>1 read/write +-cow_write/zero
56 * | | | |
57 * +--|--+ +--|--+ +-----+ + | + | +-----+
58 * amap | V | | ---------> new | | | | ^ |
59 * +-----+ +-----+ +-----+ + | + | +--|--+
60 * | | |
61 * +-----+ +-----+ +--|--+ | +--|--+
62 * uobj | d/c | | d/c | | V | +----+ |
63 * +-----+ +-----+ +-----+ +-----+
64 *
65 * d/c = don't care
66 *
67 * case [0]: layerless fault
68 * no amap or uobj is present. this is an error.
69 *
70 * case [1]: upper layer fault [anon active]
71 * 1A: [read] or [write with anon->an_ref == 1]
72 * I/O takes place in upper level anon and uobj is not touched.
73 * 1B: [write with anon->an_ref > 1]
74 * new anon is alloc'd and data is copied off ["COW"]
75 *
76 * case [2]: lower layer fault [uobj]
77 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78 * I/O takes place directly in object.
79 * 2B: [write to copy_on_write] or [read on NULL uobj]
80 * data is "promoted" from uobj to a new anon.
81 * if uobj is null, then we zero fill.
82 *
83 * we follow the standard UVM locking protocol ordering:
84 *
85 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86 * we hold a PG_BUSY page if we unlock for I/O
87 *
88 *
89 * the code is structured as follows:
90 *
91 * - init the "IN" params in the ufi structure
92 * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
93 * - do lookups [locks maps], check protection, handle needs_copy
94 * - check for case 0 fault (error)
95 * - establish "range" of fault
96 * - if we have an amap lock it and extract the anons
97 * - if sequential advice deactivate pages behind us
98 * - at the same time check pmap for unmapped areas and anon for pages
99 * that we could map in (and do map it if found)
100 * - check object for resident pages that we could map in
101 * - if (case 2) goto Case2
102 * - >>> handle case 1
103 * - ensure source anon is resident in RAM
104 * - if case 1B alloc new anon and copy from source
105 * - map the correct page in
106 * Case2:
107 * - >>> handle case 2
108 * - ensure source page is resident (if uobj)
109 * - if case 2B alloc new anon and copy from source (could be zero
110 * fill if uobj == NULL)
111 * - map the correct page in
112 * - done!
113 *
114 * note on paging:
115 * if we have to do I/O we place a PG_BUSY page in the correct object,
116 * unlock everything, and do the I/O. when I/O is done we must reverify
117 * the state of the world before assuming that our data structures are
118 * valid. [because mappings could change while the map is unlocked]
119 *
120 * alternative 1: unbusy the page in question and restart the page fault
121 * from the top (ReFault). this is easy but does not take advantage
122 * of the information that we already have from our previous lookup,
123 * although it is possible that the "hints" in the vm_map will help here.
124 *
125 * alternative 2: the system already keeps track of a "version" number of
126 * a map. [i.e. every time you write-lock a map (e.g. to change a
127 * mapping) you bump the version number up by one...] so, we can save
128 * the version number of the map before we release the lock and start I/O.
129 * then when I/O is done we can relock and check the version numbers
130 * to see if anything changed. this might save us some over 1 because
131 * we don't have to unbusy the page and may be less compares(?).
132 *
133 * alternative 3: put in backpointers or a way to "hold" part of a map
134 * in place while I/O is in progress. this could be complex to
135 * implement (especially with structures like amap that can be referenced
136 * by multiple map entries, and figuring out what should wait could be
137 * complex as well...).
138 *
139 * we use alternative 2. given that we are multi-threaded now we may want
140 * to reconsider the choice.
141 */
142
143 /*
144 * local data structures
145 */
146
147 struct uvm_advice {
148 int advice;
149 int nback;
150 int nforw;
151 };
152
153 /*
154 * page range array:
155 * note: index in array must match "advice" value
156 * XXX: borrowed numbers from freebsd. do they work well for us?
157 */
158
159 static const struct uvm_advice uvmadvice[] = {
160 { UVM_ADV_NORMAL, 3, 4 },
161 { UVM_ADV_RANDOM, 0, 0 },
162 { UVM_ADV_SEQUENTIAL, 8, 7},
163 };
164
165 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
166
167 /*
168 * private prototypes
169 */
170
171 /*
172 * inline functions
173 */
174
175 /*
176 * uvmfault_anonflush: try and deactivate pages in specified anons
177 *
178 * => does not have to deactivate page if it is busy
179 */
180
181 static inline void
182 uvmfault_anonflush(struct vm_anon **anons, int n)
183 {
184 int lcv;
185 struct vm_page *pg;
186
187 for (lcv = 0; lcv < n; lcv++) {
188 if (anons[lcv] == NULL)
189 continue;
190 KASSERT(mutex_owned(anons[lcv]->an_lock));
191 pg = anons[lcv]->an_page;
192 if (pg && (pg->flags & PG_BUSY) == 0) {
193 mutex_enter(&uvm_pageqlock);
194 if (pg->wire_count == 0) {
195 uvm_pagedeactivate(pg);
196 }
197 mutex_exit(&uvm_pageqlock);
198 }
199 }
200 }
201
202 /*
203 * normal functions
204 */
205
206 /*
207 * uvmfault_amapcopy: clear "needs_copy" in a map.
208 *
209 * => called with VM data structures unlocked (usually, see below)
210 * => we get a write lock on the maps and clear needs_copy for a VA
211 * => if we are out of RAM we sleep (waiting for more)
212 */
213
214 static void
215 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
216 {
217 for (;;) {
218
219 /*
220 * no mapping? give up.
221 */
222
223 if (uvmfault_lookup(ufi, true) == false)
224 return;
225
226 /*
227 * copy if needed.
228 */
229
230 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
231 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
232 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
233
234 /*
235 * didn't work? must be out of RAM. unlock and sleep.
236 */
237
238 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
239 uvmfault_unlockmaps(ufi, true);
240 uvm_wait("fltamapcopy");
241 continue;
242 }
243
244 /*
245 * got it! unlock and return.
246 */
247
248 uvmfault_unlockmaps(ufi, true);
249 return;
250 }
251 /*NOTREACHED*/
252 }
253
254 /*
255 * uvmfault_anonget: get data in an anon into a non-busy, non-released
256 * page in that anon.
257 *
258 * => Map, amap and thus anon should be locked by caller.
259 * => If we fail, we unlock everything and error is returned.
260 * => If we are successful, return with everything still locked.
261 * => We do not move the page on the queues [gets moved later]. If we
262 * allocate a new page [we_own], it gets put on the queues. Either way,
263 * the result is that the page is on the queues at return time
264 * => For pages which are on loan from a uvm_object (and thus are not owned
265 * by the anon): if successful, return with the owning object locked.
266 * The caller must unlock this object when it unlocks everything else.
267 */
268
269 int
270 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
271 struct vm_anon *anon)
272 {
273 struct vm_page *pg;
274 int error;
275
276 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
277 KASSERT(mutex_owned(anon->an_lock));
278 KASSERT(anon->an_lock == amap->am_lock);
279
280 /* Increment the counters.*/
281 uvmexp.fltanget++;
282 if (anon->an_page) {
283 curlwp->l_ru.ru_minflt++;
284 } else {
285 curlwp->l_ru.ru_majflt++;
286 }
287 error = 0;
288
289 /*
290 * Loop until we get the anon data, or fail.
291 */
292
293 for (;;) {
294 bool we_own, locked;
295 /*
296 * Note: 'we_own' will become true if we set PG_BUSY on a page.
297 */
298 we_own = false;
299 pg = anon->an_page;
300
301 /*
302 * If there is a resident page and it is loaned, then anon
303 * may not own it. Call out to uvm_anon_lockloanpg() to
304 * identify and lock the real owner of the page.
305 */
306
307 if (pg && pg->loan_count)
308 pg = uvm_anon_lockloanpg(anon);
309
310 /*
311 * Is page resident? Make sure it is not busy/released.
312 */
313
314 if (pg) {
315
316 /*
317 * at this point, if the page has a uobject [meaning
318 * we have it on loan], then that uobject is locked
319 * by us! if the page is busy, we drop all the
320 * locks (including uobject) and try again.
321 */
322
323 if ((pg->flags & PG_BUSY) == 0) {
324 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
325 return 0;
326 }
327 pg->flags |= PG_WANTED;
328 uvmexp.fltpgwait++;
329
330 /*
331 * The last unlock must be an atomic unlock and wait
332 * on the owner of page.
333 */
334
335 uvmfault_unlockall(ufi, NULL, NULL);
336 if (pg->uobject) {
337 /* Owner of page is UVM object. */
338 KASSERT(amap->am_obj_lock ==
339 pg->uobject->vmobjlock);
340 mutex_exit(amap->am_lock); /* XXX */
341 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
342 0,0,0);
343 UVM_UNLOCK_AND_WAIT(pg,
344 pg->uobject->vmobjlock,
345 false, "anonget1", 0);
346 } else {
347 /* Owner of page is anon. */
348 if (amap->am_obj_lock != NULL) {
349 mutex_exit(amap->am_obj_lock); /* XXX */
350 }
351 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
352 0,0,0);
353 UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
354 false, "anonget2", 0);
355 }
356 } else {
357 #if defined(VMSWAP)
358 /*
359 * No page, therefore allocate one.
360 */
361
362 pg = uvm_pagealloc(NULL,
363 ufi != NULL ? ufi->orig_rvaddr : 0,
364 anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
365 if (pg == NULL) {
366 /* Out of memory. Wait a little. */
367 uvmfault_unlockall(ufi, amap, NULL);
368 uvmexp.fltnoram++;
369 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
370 0,0,0);
371 if (!uvm_reclaimable()) {
372 return ENOMEM;
373 }
374 uvm_wait("flt_noram1");
375 } else {
376 /* PG_BUSY bit is set. */
377 we_own = true;
378 uvmfault_unlockall(ufi, amap, NULL);
379
380 /*
381 * Pass a PG_BUSY+PG_FAKE clean page into
382 * the uvm_swap_get() function with all data
383 * structures unlocked. Note that it is OK
384 * to read an_swslot here, because we hold
385 * PG_BUSY on the page.
386 */
387 uvmexp.pageins++;
388 error = uvm_swap_get(pg, anon->an_swslot,
389 PGO_SYNCIO);
390
391 /*
392 * We clean up after the I/O below in the
393 * 'we_own' case.
394 */
395 }
396 #else
397 panic("%s: no page", __func__);
398 #endif /* defined(VMSWAP) */
399 }
400
401 /*
402 * Re-lock the map and anon.
403 */
404
405 locked = uvmfault_relock(ufi);
406 if (locked) {
407 amap_lock(amap);
408 } else if (we_own) {
409 mutex_enter(anon->an_lock);
410 }
411
412 /*
413 * If we own the page (i.e. we set PG_BUSY), then we need
414 * to clean up after the I/O. There are three cases to
415 * consider:
416 *
417 * 1) Page was released during I/O: free anon and ReFault.
418 * 2) I/O not OK. Free the page and cause the fault to fail.
419 * 3) I/O OK! Activate the page and sync with the non-we_own
420 * case (i.e. drop anon lock if not locked).
421 */
422
423 if (we_own) {
424 #if defined(VMSWAP)
425 if (pg->flags & PG_WANTED) {
426 wakeup(pg);
427 }
428 if (error) {
429
430 /*
431 * Remove the swap slot from the anon and
432 * mark the anon as having no real slot.
433 * Do not free the swap slot, thus preventing
434 * it from being used again.
435 */
436
437 if (anon->an_swslot > 0) {
438 uvm_swap_markbad(anon->an_swslot, 1);
439 }
440 anon->an_swslot = SWSLOT_BAD;
441
442 if ((pg->flags & PG_RELEASED) != 0) {
443 goto released;
444 }
445
446 /*
447 * Note: page was never !PG_BUSY, so it
448 * cannot be mapped and thus no need to
449 * pmap_page_protect() it.
450 */
451
452 mutex_enter(&uvm_pageqlock);
453 uvm_pagefree(pg);
454 mutex_exit(&uvm_pageqlock);
455
456 if (locked) {
457 uvmfault_unlockall(ufi, NULL, NULL);
458 if (amap->am_obj_lock != NULL) {
459 /* XXX */
460 mutex_exit(amap->am_obj_lock);
461 }
462 }
463 mutex_exit(anon->an_lock);
464 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
465 return error;
466 }
467
468 if ((pg->flags & PG_RELEASED) != 0) {
469 released:
470 KASSERT(anon->an_ref == 0);
471
472 /*
473 * Released while we had unlocked amap.
474 */
475
476 if (locked) {
477 uvmfault_unlockall(ufi, NULL, NULL);
478 if (amap->am_obj_lock != NULL) {
479 /* XXX */
480 mutex_exit(amap->am_obj_lock);
481 }
482 }
483 uvm_anon_release(anon);
484
485 if (error) {
486 UVMHIST_LOG(maphist,
487 "<- ERROR/RELEASED", 0,0,0,0);
488 return error;
489 }
490
491 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
492 return ERESTART;
493 }
494
495 /*
496 * We have successfully read the page, activate it.
497 */
498
499 mutex_enter(&uvm_pageqlock);
500 uvm_pageactivate(pg);
501 mutex_exit(&uvm_pageqlock);
502 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
503 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
504 UVM_PAGE_OWN(pg, NULL);
505 #else
506 panic("%s: we_own", __func__);
507 #endif /* defined(VMSWAP) */
508 }
509
510 /*
511 * We were not able to re-lock the map - restart the fault.
512 */
513
514 if (!locked) {
515 if (we_own) {
516 mutex_exit(anon->an_lock);
517 }
518 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
519 return ERESTART;
520 }
521
522 /*
523 * Verify that no one has touched the amap and moved
524 * the anon on us.
525 */
526
527 if (ufi != NULL && amap_lookup(&ufi->entry->aref,
528 ufi->orig_rvaddr - ufi->entry->start) != anon) {
529
530 uvmfault_unlockall(ufi, amap, NULL);
531 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
532 return ERESTART;
533 }
534
535 /*
536 * Retry..
537 */
538
539 uvmexp.fltanretry++;
540 continue;
541 }
542 /*NOTREACHED*/
543 }
544
545 /*
546 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
547 *
548 * 1. allocate an anon and a page.
549 * 2. fill its contents.
550 * 3. put it into amap.
551 *
552 * => if we fail (result != 0) we unlock everything.
553 * => on success, return a new locked anon via 'nanon'.
554 * (*nanon)->an_page will be a resident, locked, dirty page.
555 * => it's caller's responsibility to put the promoted nanon->an_page to the
556 * page queue.
557 */
558
559 static int
560 uvmfault_promote(struct uvm_faultinfo *ufi,
561 struct vm_anon *oanon,
562 struct vm_page *uobjpage,
563 struct vm_anon **nanon, /* OUT: allocated anon */
564 struct vm_anon **spare)
565 {
566 struct vm_amap *amap = ufi->entry->aref.ar_amap;
567 struct uvm_object *uobj;
568 struct vm_anon *anon;
569 struct vm_page *pg;
570 struct vm_page *opg;
571 int error;
572 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
573
574 if (oanon) {
575 /* anon COW */
576 opg = oanon->an_page;
577 KASSERT(opg != NULL);
578 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
579 } else if (uobjpage != PGO_DONTCARE) {
580 /* object-backed COW */
581 opg = uobjpage;
582 } else {
583 /* ZFOD */
584 opg = NULL;
585 }
586 if (opg != NULL) {
587 uobj = opg->uobject;
588 } else {
589 uobj = NULL;
590 }
591
592 KASSERT(amap != NULL);
593 KASSERT(uobjpage != NULL);
594 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
595 KASSERT(mutex_owned(amap->am_lock));
596 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
597 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
598
599 if (*spare != NULL) {
600 anon = *spare;
601 *spare = NULL;
602 } else if (ufi->map != kernel_map) {
603 anon = uvm_analloc();
604 } else {
605 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
606
607 /*
608 * we can't allocate anons with kernel_map locked.
609 */
610
611 uvm_page_unbusy(&uobjpage, 1);
612 uvmfault_unlockall(ufi, amap, uobj);
613
614 *spare = uvm_analloc();
615 if (*spare == NULL) {
616 goto nomem;
617 }
618 KASSERT((*spare)->an_lock == NULL);
619 error = ERESTART;
620 goto done;
621 }
622 if (anon) {
623
624 /*
625 * The new anon is locked.
626 *
627 * if opg == NULL, we want a zero'd, dirty page,
628 * so have uvm_pagealloc() do that for us.
629 */
630
631 KASSERT(anon->an_lock == NULL);
632 anon->an_lock = amap->am_lock;
633 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
634 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
635 if (pg == NULL) {
636 anon->an_lock = NULL;
637 }
638 } else {
639 pg = NULL;
640 }
641
642 /*
643 * out of memory resources?
644 */
645
646 if (pg == NULL) {
647 /* save anon for the next try. */
648 if (anon != NULL) {
649 *spare = anon;
650 }
651
652 /* unlock and fail ... */
653 uvm_page_unbusy(&uobjpage, 1);
654 uvmfault_unlockall(ufi, amap, uobj);
655 nomem:
656 if (!uvm_reclaimable()) {
657 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
658 uvmexp.fltnoanon++;
659 error = ENOMEM;
660 goto done;
661 }
662
663 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
664 uvmexp.fltnoram++;
665 uvm_wait("flt_noram5");
666 error = ERESTART;
667 goto done;
668 }
669
670 /* copy page [pg now dirty] */
671 if (opg) {
672 uvm_pagecopy(opg, pg);
673 }
674 KASSERT(uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_DIRTY);
675
676 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
677 oanon != NULL);
678
679 *nanon = anon;
680 error = 0;
681 done:
682 return error;
683 }
684
685
686 /*
687 * F A U L T - m a i n e n t r y p o i n t
688 */
689
690 /*
691 * uvm_fault: page fault handler
692 *
693 * => called from MD code to resolve a page fault
694 * => VM data structures usually should be unlocked. however, it is
695 * possible to call here with the main map locked if the caller
696 * gets a write lock, sets it recusive, and then calls us (c.f.
697 * uvm_map_pageable). this should be avoided because it keeps
698 * the map locked off during I/O.
699 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
700 */
701
702 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
703 ~VM_PROT_WRITE : VM_PROT_ALL)
704
705 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
706 #define UVM_FAULT_WIRE (1 << 0)
707 #define UVM_FAULT_MAXPROT (1 << 1)
708
709 struct uvm_faultctx {
710 vm_prot_t access_type;
711 vm_prot_t enter_prot;
712 vaddr_t startva;
713 int npages;
714 int centeridx;
715 struct vm_anon *anon_spare;
716 bool wire_mapping;
717 bool narrow;
718 bool wire_paging;
719 bool cow_now;
720 bool promote;
721 };
722
723 static inline int uvm_fault_check(
724 struct uvm_faultinfo *, struct uvm_faultctx *,
725 struct vm_anon ***, bool);
726
727 static int uvm_fault_upper(
728 struct uvm_faultinfo *, struct uvm_faultctx *,
729 struct vm_anon **);
730 static inline int uvm_fault_upper_lookup(
731 struct uvm_faultinfo *, const struct uvm_faultctx *,
732 struct vm_anon **, struct vm_page **);
733 static inline void uvm_fault_upper_neighbor(
734 struct uvm_faultinfo *, const struct uvm_faultctx *,
735 vaddr_t, struct vm_page *, bool);
736 static inline int uvm_fault_upper_loan(
737 struct uvm_faultinfo *, struct uvm_faultctx *,
738 struct vm_anon *);
739 static inline int uvm_fault_upper_promote(
740 struct uvm_faultinfo *, struct uvm_faultctx *,
741 struct vm_anon *);
742 static inline int uvm_fault_upper_direct(
743 struct uvm_faultinfo *, struct uvm_faultctx *,
744 struct vm_anon *);
745 static int uvm_fault_upper_enter(
746 struct uvm_faultinfo *, const struct uvm_faultctx *,
747 struct vm_anon *, struct vm_page *,
748 struct vm_anon *);
749 static inline void uvm_fault_upper_done(
750 struct uvm_faultinfo *, const struct uvm_faultctx *,
751 struct vm_anon *, struct vm_page *);
752
753 static int uvm_fault_lower(
754 struct uvm_faultinfo *, struct uvm_faultctx *,
755 struct vm_page **);
756 static inline void uvm_fault_lower_lookup(
757 struct uvm_faultinfo *, const struct uvm_faultctx *,
758 struct vm_page **);
759 static inline void uvm_fault_lower_neighbor(
760 struct uvm_faultinfo *, const struct uvm_faultctx *,
761 vaddr_t, struct vm_page *);
762 static inline int uvm_fault_lower_io(
763 struct uvm_faultinfo *, const struct uvm_faultctx *,
764 struct uvm_object **, struct vm_page **);
765 static inline int uvm_fault_lower_direct(
766 struct uvm_faultinfo *, struct uvm_faultctx *,
767 struct uvm_object *, struct vm_page *);
768 static inline int uvm_fault_lower_direct_loan(
769 struct uvm_faultinfo *, struct uvm_faultctx *,
770 struct uvm_object *, struct vm_page **,
771 struct vm_page **);
772 static inline int uvm_fault_lower_promote(
773 struct uvm_faultinfo *, struct uvm_faultctx *,
774 struct uvm_object *, struct vm_page *);
775 static int uvm_fault_lower_enter(
776 struct uvm_faultinfo *, const struct uvm_faultctx *,
777 struct uvm_object *,
778 struct vm_anon *, struct vm_page *);
779 static inline void uvm_fault_lower_done(
780 struct uvm_faultinfo *, const struct uvm_faultctx *,
781 struct uvm_object *, struct vm_page *);
782
783 int
784 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
785 vm_prot_t access_type, int fault_flag)
786 {
787 struct uvm_faultinfo ufi;
788 struct uvm_faultctx flt = {
789 .access_type = access_type,
790
791 /* don't look for neighborhood * pages on "wire" fault */
792 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
793
794 /* "wire" fault causes wiring of both mapping and paging */
795 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
796 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
797 };
798 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
799 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
800 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
801 int error;
802 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
803
804 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
805 orig_map, vaddr, access_type, fault_flag);
806
807 curcpu()->ci_data.cpu_nfault++;
808
809 /*
810 * init the IN parameters in the ufi
811 */
812
813 ufi.orig_map = orig_map;
814 ufi.orig_rvaddr = trunc_page(vaddr);
815 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
816
817 error = ERESTART;
818 while (error == ERESTART) { /* ReFault: */
819 anons = anons_store;
820 pages = pages_store;
821
822 error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
823 if (error != 0)
824 continue;
825
826 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
827 if (error != 0)
828 continue;
829
830 if (pages[flt.centeridx] == PGO_DONTCARE)
831 error = uvm_fault_upper(&ufi, &flt, anons);
832 else {
833 struct uvm_object * const uobj =
834 ufi.entry->object.uvm_obj;
835
836 if (uobj && uobj->pgops->pgo_fault != NULL) {
837 /*
838 * invoke "special" fault routine.
839 */
840 mutex_enter(uobj->vmobjlock);
841 /* locked: maps(read), amap(if there), uobj */
842 error = uobj->pgops->pgo_fault(&ufi,
843 flt.startva, pages, flt.npages,
844 flt.centeridx, flt.access_type,
845 PGO_LOCKED|PGO_SYNCIO);
846
847 /*
848 * locked: nothing, pgo_fault has unlocked
849 * everything
850 */
851
852 /*
853 * object fault routine responsible for
854 * pmap_update().
855 */
856 } else {
857 error = uvm_fault_lower(&ufi, &flt, pages);
858 }
859 }
860 }
861
862 if (flt.anon_spare != NULL) {
863 flt.anon_spare->an_ref--;
864 KASSERT(flt.anon_spare->an_ref == 0);
865 KASSERT(flt.anon_spare->an_lock == NULL);
866 uvm_anon_free(flt.anon_spare);
867 }
868 return error;
869 }
870
871 /*
872 * uvm_fault_check: check prot, handle needs-copy, etc.
873 *
874 * 1. lookup entry.
875 * 2. check protection.
876 * 3. adjust fault condition (mainly for simulated fault).
877 * 4. handle needs-copy (lazy amap copy).
878 * 5. establish range of interest for neighbor fault (aka pre-fault).
879 * 6. look up anons (if amap exists).
880 * 7. flush pages (if MADV_SEQUENTIAL)
881 *
882 * => called with nothing locked.
883 * => if we fail (result != 0) we unlock everything.
884 * => initialize/adjust many members of flt.
885 */
886
887 static int
888 uvm_fault_check(
889 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
890 struct vm_anon ***ranons, bool maxprot)
891 {
892 struct vm_amap *amap;
893 struct uvm_object *uobj;
894 vm_prot_t check_prot;
895 int nback, nforw;
896 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
897
898 /*
899 * lookup and lock the maps
900 */
901
902 if (uvmfault_lookup(ufi, false) == false) {
903 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr,
904 0,0,0);
905 return EFAULT;
906 }
907 /* locked: maps(read) */
908
909 #ifdef DIAGNOSTIC
910 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
911 printf("Page fault on non-pageable map:\n");
912 printf("ufi->map = %p\n", ufi->map);
913 printf("ufi->orig_map = %p\n", ufi->orig_map);
914 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
915 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
916 }
917 #endif
918
919 /*
920 * check protection
921 */
922
923 check_prot = maxprot ?
924 ufi->entry->max_protection : ufi->entry->protection;
925 if ((check_prot & flt->access_type) != flt->access_type) {
926 UVMHIST_LOG(maphist,
927 "<- protection failure (prot=0x%x, access=0x%x)",
928 ufi->entry->protection, flt->access_type, 0, 0);
929 uvmfault_unlockmaps(ufi, false);
930 return EACCES;
931 }
932
933 /*
934 * "enter_prot" is the protection we want to enter the page in at.
935 * for certain pages (e.g. copy-on-write pages) this protection can
936 * be more strict than ufi->entry->protection. "wired" means either
937 * the entry is wired or we are fault-wiring the pg.
938 */
939
940 flt->enter_prot = ufi->entry->protection;
941 if (VM_MAPENT_ISWIRED(ufi->entry))
942 flt->wire_mapping = true;
943
944 if (flt->wire_mapping) {
945 flt->access_type = flt->enter_prot; /* full access for wired */
946 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
947 } else {
948 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
949 }
950
951 flt->promote = false;
952
953 /*
954 * handle "needs_copy" case. if we need to copy the amap we will
955 * have to drop our readlock and relock it with a write lock. (we
956 * need a write lock to change anything in a map entry [e.g.
957 * needs_copy]).
958 */
959
960 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
961 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
962 KASSERT(!maxprot);
963 /* need to clear */
964 UVMHIST_LOG(maphist,
965 " need to clear needs_copy and refault",0,0,0,0);
966 uvmfault_unlockmaps(ufi, false);
967 uvmfault_amapcopy(ufi);
968 uvmexp.fltamcopy++;
969 return ERESTART;
970
971 } else {
972
973 /*
974 * ensure that we pmap_enter page R/O since
975 * needs_copy is still true
976 */
977
978 flt->enter_prot &= ~VM_PROT_WRITE;
979 }
980 }
981
982 /*
983 * identify the players
984 */
985
986 amap = ufi->entry->aref.ar_amap; /* upper layer */
987 uobj = ufi->entry->object.uvm_obj; /* lower layer */
988
989 /*
990 * check for a case 0 fault. if nothing backing the entry then
991 * error now.
992 */
993
994 if (amap == NULL && uobj == NULL) {
995 uvmfault_unlockmaps(ufi, false);
996 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
997 return EFAULT;
998 }
999
1000 /*
1001 * establish range of interest based on advice from mapper
1002 * and then clip to fit map entry. note that we only want
1003 * to do this the first time through the fault. if we
1004 * ReFault we will disable this by setting "narrow" to true.
1005 */
1006
1007 if (flt->narrow == false) {
1008
1009 /* wide fault (!narrow) */
1010 KASSERT(uvmadvice[ufi->entry->advice].advice ==
1011 ufi->entry->advice);
1012 nback = MIN(uvmadvice[ufi->entry->advice].nback,
1013 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1014 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1015 /*
1016 * note: "-1" because we don't want to count the
1017 * faulting page as forw
1018 */
1019 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1020 ((ufi->entry->end - ufi->orig_rvaddr) >>
1021 PAGE_SHIFT) - 1);
1022 flt->npages = nback + nforw + 1;
1023 flt->centeridx = nback;
1024
1025 flt->narrow = true; /* ensure only once per-fault */
1026
1027 } else {
1028
1029 /* narrow fault! */
1030 nback = nforw = 0;
1031 flt->startva = ufi->orig_rvaddr;
1032 flt->npages = 1;
1033 flt->centeridx = 0;
1034
1035 }
1036 /* offset from entry's start to pgs' start */
1037 const voff_t eoff = flt->startva - ufi->entry->start;
1038
1039 /* locked: maps(read) */
1040 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
1041 flt->narrow, nback, nforw, flt->startva);
1042 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1043 amap, uobj, 0);
1044
1045 /*
1046 * if we've got an amap, lock it and extract current anons.
1047 */
1048
1049 if (amap) {
1050 amap_lock(amap);
1051 KASSERT(uobj == NULL || amap->am_obj_lock == NULL);
1052 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1053 } else {
1054 *ranons = NULL; /* to be safe */
1055 }
1056
1057 /* locked: maps(read), amap(if there) */
1058 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1059
1060 /*
1061 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1062 * now and then forget about them (for the rest of the fault).
1063 */
1064
1065 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1066
1067 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1068 0,0,0,0);
1069 /* flush back-page anons? */
1070 if (amap)
1071 uvmfault_anonflush(*ranons, nback);
1072
1073 /* flush object? */
1074 if (uobj) {
1075 voff_t uoff;
1076
1077 uoff = ufi->entry->offset + eoff;
1078 mutex_enter(uobj->vmobjlock);
1079 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1080 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1081 }
1082
1083 /* now forget about the backpages */
1084 if (amap)
1085 *ranons += nback;
1086 flt->startva += (nback << PAGE_SHIFT);
1087 flt->npages -= nback;
1088 flt->centeridx = 0;
1089 }
1090 /*
1091 * => startva is fixed
1092 * => npages is fixed
1093 */
1094 KASSERT(flt->startva <= ufi->orig_rvaddr);
1095 KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1096 flt->startva + (flt->npages << PAGE_SHIFT));
1097 return 0;
1098 }
1099
1100 /*
1101 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1102 *
1103 * iterate range of interest:
1104 * 1. check if h/w mapping exists. if yes, we don't care
1105 * 2. check if anon exists. if not, page is lower.
1106 * 3. if anon exists, enter h/w mapping for neighbors.
1107 *
1108 * => called with amap locked (if exists).
1109 */
1110
1111 static int
1112 uvm_fault_upper_lookup(
1113 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1114 struct vm_anon **anons, struct vm_page **pages)
1115 {
1116 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1117 int lcv;
1118 vaddr_t currva;
1119 bool shadowed;
1120 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1121
1122 /* locked: maps(read), amap(if there) */
1123 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1124
1125 /*
1126 * map in the backpages and frontpages we found in the amap in hopes
1127 * of preventing future faults. we also init the pages[] array as
1128 * we go.
1129 */
1130
1131 currva = flt->startva;
1132 shadowed = false;
1133 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1134 /*
1135 * don't play with VAs that are already mapped
1136 * (except for center)
1137 */
1138 if (lcv != flt->centeridx &&
1139 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1140 pages[lcv] = PGO_DONTCARE;
1141 continue;
1142 }
1143
1144 /*
1145 * unmapped or center page. check if any anon at this level.
1146 */
1147 if (amap == NULL || anons[lcv] == NULL) {
1148 pages[lcv] = NULL;
1149 continue;
1150 }
1151
1152 /*
1153 * check for present page and map if possible. re-activate it.
1154 */
1155
1156 pages[lcv] = PGO_DONTCARE;
1157 if (lcv == flt->centeridx) { /* save center for later! */
1158 shadowed = true;
1159 continue;
1160 }
1161
1162 struct vm_anon *anon = anons[lcv];
1163 struct vm_page *pg = anon->an_page;
1164
1165 KASSERT(anon->an_lock == amap->am_lock);
1166
1167 /* Ignore loaned and busy pages. */
1168 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
1169 uvm_fault_upper_neighbor(ufi, flt, currva,
1170 pg, anon->an_ref > 1);
1171 }
1172 }
1173
1174 /* locked: maps(read), amap(if there) */
1175 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1176 /* (shadowed == true) if there is an anon at the faulting address */
1177 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1178 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1179
1180 /*
1181 * note that if we are really short of RAM we could sleep in the above
1182 * call to pmap_enter with everything locked. bad?
1183 *
1184 * XXX Actually, that is bad; pmap_enter() should just fail in that
1185 * XXX case. --thorpej
1186 */
1187
1188 return 0;
1189 }
1190
1191 /*
1192 * uvm_fault_upper_neighbor: enter single lower neighbor page.
1193 *
1194 * => called with amap and anon locked.
1195 */
1196
1197 static void
1198 uvm_fault_upper_neighbor(
1199 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1200 vaddr_t currva, struct vm_page *pg, bool readonly)
1201 {
1202 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1203
1204 /* locked: amap, anon */
1205 KASSERT(pg->uobject == NULL);
1206 KASSERT(pg->uanon != NULL);
1207 KASSERT(mutex_owned(pg->uanon->an_lock));
1208 KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
1209 mutex_enter(&uvm_pageqlock);
1210 uvm_pageenqueue(pg);
1211 mutex_exit(&uvm_pageqlock);
1212 UVMHIST_LOG(maphist,
1213 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1214 ufi->orig_map->pmap, currva, pg, 0);
1215 uvmexp.fltnamap++;
1216
1217 /*
1218 * Since this page isn't the page that's actually faulting,
1219 * ignore pmap_enter() failures; it's not critical that we
1220 * enter these right now.
1221 */
1222
1223 (void) pmap_enter(ufi->orig_map->pmap, currva,
1224 VM_PAGE_TO_PHYS(pg),
1225 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1226 flt->enter_prot,
1227 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1228
1229 pmap_update(ufi->orig_map->pmap);
1230 }
1231
1232 /*
1233 * uvm_fault_upper: handle upper fault.
1234 *
1235 * 1. acquire anon lock.
1236 * 2. get anon. let uvmfault_anonget do the dirty work.
1237 * 3. handle loan.
1238 * 4. dispatch direct or promote handlers.
1239 */
1240
1241 static int
1242 uvm_fault_upper(
1243 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1244 struct vm_anon **anons)
1245 {
1246 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1247 struct vm_anon * const anon = anons[flt->centeridx];
1248 struct uvm_object *uobj;
1249 int error;
1250 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1251
1252 /* locked: maps(read), amap, anon */
1253 KASSERT(mutex_owned(amap->am_lock));
1254 KASSERT(anon->an_lock == amap->am_lock);
1255
1256 /*
1257 * handle case 1: fault on an anon in our amap
1258 */
1259
1260 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1261
1262 /*
1263 * no matter if we have case 1A or case 1B we are going to need to
1264 * have the anon's memory resident. ensure that now.
1265 */
1266
1267 /*
1268 * let uvmfault_anonget do the dirty work.
1269 * if it fails (!OK) it will unlock everything for us.
1270 * if it succeeds, locks are still valid and locked.
1271 * also, if it is OK, then the anon's page is on the queues.
1272 * if the page is on loan from a uvm_object, then anonget will
1273 * lock that object for us if it does not fail.
1274 */
1275
1276 error = uvmfault_anonget(ufi, amap, anon);
1277 switch (error) {
1278 case 0:
1279 break;
1280
1281 case ERESTART:
1282 return ERESTART;
1283
1284 case EAGAIN:
1285 kpause("fltagain1", false, hz/2, NULL);
1286 return ERESTART;
1287
1288 default:
1289 return error;
1290 }
1291
1292 /*
1293 * uobj is non null if the page is on loan from an object (i.e. uobj)
1294 */
1295
1296 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1297
1298 /* locked: maps(read), amap, anon, uobj(if one) */
1299 KASSERT(mutex_owned(amap->am_lock));
1300 KASSERT(anon->an_lock == amap->am_lock);
1301 KASSERT(uobj == NULL || amap->am_obj_lock == uobj->vmobjlock);
1302 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1303
1304 /*
1305 * special handling for loaned pages
1306 */
1307
1308 if (anon->an_page->loan_count) {
1309 error = uvm_fault_upper_loan(ufi, flt, anon);
1310 if (error != 0)
1311 return error;
1312 }
1313
1314 /*
1315 * if we are case 1B then we will need to allocate a new blank
1316 * anon to transfer the data into. note that we have a lock
1317 * on anon, so no one can busy or release the page until we are done.
1318 * also note that the ref count can't drop to zero here because
1319 * it is > 1 and we are only dropping one ref.
1320 *
1321 * in the (hopefully very rare) case that we are out of RAM we
1322 * will unlock, wait for more RAM, and refault.
1323 *
1324 * if we are out of anon VM we kill the process (XXX: could wait?).
1325 */
1326
1327 if (flt->cow_now && anon->an_ref > 1) {
1328 flt->promote = true;
1329 error = uvm_fault_upper_promote(ufi, flt, anon);
1330 } else {
1331 error = uvm_fault_upper_direct(ufi, flt, anon);
1332 }
1333 return error;
1334 }
1335
1336 /*
1337 * uvm_fault_upper_loan: handle loaned upper page.
1338 *
1339 * 1. if not cow'ing now, simply adjust flt->enter_prot.
1340 * 2. if cow'ing now, and if ref count is 1, break loan.
1341 */
1342
1343 static int
1344 uvm_fault_upper_loan(
1345 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1346 struct vm_anon *anon)
1347 {
1348 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1349 int error = 0;
1350 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1351
1352 if (!flt->cow_now) {
1353
1354 /*
1355 * for read faults on loaned pages we just cap the
1356 * protection at read-only.
1357 */
1358
1359 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1360
1361 } else {
1362 /*
1363 * note that we can't allow writes into a loaned page!
1364 *
1365 * if we have a write fault on a loaned page in an
1366 * anon then we need to look at the anon's ref count.
1367 * if it is greater than one then we are going to do
1368 * a normal copy-on-write fault into a new anon (this
1369 * is not a problem). however, if the reference count
1370 * is one (a case where we would normally allow a
1371 * write directly to the page) then we need to kill
1372 * the loan before we continue.
1373 */
1374
1375 /* >1 case is already ok */
1376 if (anon->an_ref == 1) {
1377 struct uvm_object *uobj = anon->an_page->uobject;
1378
1379 KASSERT(uobj == NULL ||
1380 uobj->vmobjlock == amap->am_obj_lock);
1381 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1382 error = uvm_loanbreak_anon(anon);
1383 if (error != 0) {
1384 uvmfault_unlockall(ufi, amap, NULL);
1385 uvm_wait("flt_noram2");
1386 return ERESTART;
1387 }
1388 /* if we were a loan reciever uobj is gone */
1389 KASSERT(anon->an_page->uobject == NULL);
1390 }
1391 }
1392 return error;
1393 }
1394
1395 /*
1396 * uvm_fault_upper_promote: promote upper page.
1397 *
1398 * 1. call uvmfault_promote.
1399 * 2. enqueue page.
1400 * 3. deref.
1401 * 4. pass page to uvm_fault_upper_enter.
1402 */
1403
1404 static int
1405 uvm_fault_upper_promote(
1406 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1407 struct vm_anon *anon)
1408 {
1409 struct vm_anon * const oanon = anon;
1410 struct vm_page *pg;
1411 int error;
1412 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1413
1414 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1415 uvmexp.flt_acow++;
1416
1417 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1418 &flt->anon_spare);
1419 switch (error) {
1420 case 0:
1421 break;
1422 case ERESTART:
1423 return ERESTART;
1424 default:
1425 return error;
1426 }
1427
1428 KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
1429
1430 pg = anon->an_page;
1431 mutex_enter(&uvm_pageqlock);
1432 uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
1433 mutex_exit(&uvm_pageqlock);
1434 pg->flags &= ~(PG_BUSY|PG_FAKE);
1435 UVM_PAGE_OWN(pg, NULL);
1436
1437 /* deref: can not drop to zero here by defn! */
1438 KASSERT(oanon->an_ref > 1);
1439 oanon->an_ref--;
1440
1441 /*
1442 * note: oanon is still locked, as is the new anon. we
1443 * need to check for this later when we unlock oanon; if
1444 * oanon != anon, we'll have to unlock anon, too.
1445 */
1446
1447 return uvm_fault_upper_enter(ufi, flt, anon, pg, oanon);
1448 }
1449
1450 /*
1451 * uvm_fault_upper_direct: handle direct fault.
1452 */
1453
1454 static int
1455 uvm_fault_upper_direct(
1456 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1457 struct vm_anon *anon)
1458 {
1459 struct vm_anon * const oanon = anon;
1460 struct vm_page *pg;
1461 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1462
1463 uvmexp.flt_anon++;
1464 pg = anon->an_page;
1465 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1466 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1467
1468 return uvm_fault_upper_enter(ufi, flt, anon, pg, oanon);
1469 }
1470
1471 /*
1472 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1473 */
1474
1475 static int
1476 uvm_fault_upper_enter(
1477 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1478 struct vm_anon *anon, struct vm_page *pg, struct vm_anon *oanon)
1479 {
1480 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1481 struct uvm_object *uobj __unused = pg->uobject;
1482 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1483
1484 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1485 KASSERT(mutex_owned(amap->am_lock));
1486 KASSERT(anon->an_lock == amap->am_lock);
1487 KASSERT(oanon->an_lock == amap->am_lock);
1488 KASSERT(uobj == NULL || amap->am_obj_lock == uobj->vmobjlock);
1489 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1490 KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
1491
1492 /*
1493 * now map the page in.
1494 */
1495
1496 UVMHIST_LOG(maphist,
1497 " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1498 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1499 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1500 VM_PAGE_TO_PHYS(pg),
1501 flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1502 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1503
1504 /*
1505 * No need to undo what we did; we can simply think of
1506 * this as the pmap throwing away the mapping information.
1507 *
1508 * We do, however, have to go through the ReFault path,
1509 * as the map may change while we're asleep.
1510 */
1511
1512 uvmfault_unlockall(ufi, amap, NULL);
1513 if (!uvm_reclaimable()) {
1514 UVMHIST_LOG(maphist,
1515 "<- failed. out of VM",0,0,0,0);
1516 /* XXX instrumentation */
1517 return ENOMEM;
1518 }
1519 /* XXX instrumentation */
1520 uvm_wait("flt_pmfail1");
1521 return ERESTART;
1522 }
1523
1524 uvm_fault_upper_done(ufi, flt, anon, pg);
1525
1526 /*
1527 * done case 1! finish up by unlocking everything and returning success
1528 */
1529
1530 pmap_update(ufi->orig_map->pmap);
1531 uvmfault_unlockall(ufi, amap, NULL);
1532 return 0;
1533 }
1534
1535 /*
1536 * uvm_fault_upper_done: queue upper center page.
1537 */
1538
1539 static void
1540 uvm_fault_upper_done(
1541 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1542 struct vm_anon *anon, struct vm_page *pg)
1543 {
1544 const bool wire_paging = flt->wire_paging;
1545
1546 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1547
1548 /*
1549 * ... update the page queues.
1550 */
1551
1552 mutex_enter(&uvm_pageqlock);
1553 if (wire_paging) {
1554 uvm_pagewire(pg);
1555
1556 /*
1557 * since the now-wired page cannot be paged out,
1558 * release its swap resources for others to use.
1559 * since an anon with no swap cannot be clean,
1560 * mark it dirty now.
1561 */
1562
1563 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1564 } else {
1565 uvm_pageactivate(pg);
1566 }
1567 mutex_exit(&uvm_pageqlock);
1568
1569 if (wire_paging) {
1570 uvm_anon_dropswap(anon);
1571 }
1572 }
1573
1574 /*
1575 * uvm_fault_lower: handle lower fault.
1576 *
1577 * 1. check uobj
1578 * 1.1. if null, ZFOD.
1579 * 1.2. if not null, look up unnmapped neighbor pages.
1580 * 2. for center page, check if promote.
1581 * 2.1. ZFOD always needs promotion.
1582 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1583 * 3. if uobj is not ZFOD and page is not found, do i/o.
1584 * 4. dispatch either direct / promote fault.
1585 */
1586
1587 static int
1588 uvm_fault_lower(
1589 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1590 struct vm_page **pages)
1591 {
1592 #ifdef DIAGNOSTIC
1593 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1594 #endif
1595 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1596 struct vm_page *uobjpage;
1597 int error;
1598 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1599
1600 /*
1601 * now, if the desired page is not shadowed by the amap and we have
1602 * a backing object that does not have a special fault routine, then
1603 * we ask (with pgo_get) the object for resident pages that we care
1604 * about and attempt to map them in. we do not let pgo_get block
1605 * (PGO_LOCKED).
1606 */
1607
1608 if (uobj == NULL) {
1609 /* zero fill; don't care neighbor pages */
1610 uobjpage = NULL;
1611 } else {
1612 uvm_fault_lower_lookup(ufi, flt, pages);
1613 uobjpage = pages[flt->centeridx];
1614 }
1615
1616 /*
1617 * note that at this point we are done with any front or back pages.
1618 * we are now going to focus on the center page (i.e. the one we've
1619 * faulted on). if we have faulted on the upper (anon) layer
1620 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1621 * not touched it yet). if we have faulted on the bottom (uobj)
1622 * layer [i.e. case 2] and the page was both present and available,
1623 * then we've got a pointer to it as "uobjpage" and we've already
1624 * made it BUSY.
1625 */
1626
1627 /*
1628 * locked:
1629 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1630 */
1631 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1632 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1633 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1634
1635 /*
1636 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1637 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1638 * have a backing object, check and see if we are going to promote
1639 * the data up to an anon during the fault.
1640 */
1641
1642 if (uobj == NULL) {
1643 uobjpage = PGO_DONTCARE;
1644 flt->promote = true; /* always need anon here */
1645 } else {
1646 KASSERT(uobjpage != PGO_DONTCARE);
1647 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1648 }
1649 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1650 flt->promote, (uobj == NULL), 0,0);
1651
1652 /*
1653 * if uobjpage is not null then we do not need to do I/O to get the
1654 * uobjpage.
1655 *
1656 * if uobjpage is null, then we need to unlock and ask the pager to
1657 * get the data for us. once we have the data, we need to reverify
1658 * the state the world. we are currently not holding any resources.
1659 */
1660
1661 if (uobjpage) {
1662 /* update rusage counters */
1663 curlwp->l_ru.ru_minflt++;
1664 } else {
1665 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1666 if (error != 0)
1667 return error;
1668 }
1669
1670 /*
1671 * locked:
1672 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1673 */
1674 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1675 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1676 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1677
1678 /*
1679 * notes:
1680 * - at this point uobjpage can not be NULL
1681 * - at this point uobjpage can not be PG_RELEASED (since we checked
1682 * for it above)
1683 * - at this point uobjpage could be PG_WANTED (handle later)
1684 */
1685
1686 KASSERT(uobjpage != NULL);
1687 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1688 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1689 uvm_pagegetdirty(uobjpage) == UVM_PAGE_STATUS_CLEAN);
1690
1691 if (!flt->promote) {
1692 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1693 } else {
1694 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1695 }
1696 return error;
1697 }
1698
1699 /*
1700 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1701 *
1702 * 1. get on-memory pages.
1703 * 2. if failed, give up (get only center page later).
1704 * 3. if succeeded, enter h/w mapping of neighbor pages.
1705 */
1706
1707 static void
1708 uvm_fault_lower_lookup(
1709 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1710 struct vm_page **pages)
1711 {
1712 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1713 int lcv, gotpages;
1714 vaddr_t currva;
1715 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1716
1717 mutex_enter(uobj->vmobjlock);
1718 /* Locked: maps(read), amap(if there), uobj */
1719
1720 uvmexp.fltlget++;
1721 gotpages = flt->npages;
1722 (void) uobj->pgops->pgo_get(uobj,
1723 ufi->entry->offset + flt->startva - ufi->entry->start,
1724 pages, &gotpages, flt->centeridx,
1725 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1726
1727 KASSERT(mutex_owned(uobj->vmobjlock));
1728
1729 /*
1730 * check for pages to map, if we got any
1731 */
1732
1733 if (gotpages == 0) {
1734 pages[flt->centeridx] = NULL;
1735 return;
1736 }
1737
1738 currva = flt->startva;
1739 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1740 struct vm_page *curpg;
1741
1742 curpg = pages[lcv];
1743 if (curpg == NULL || curpg == PGO_DONTCARE) {
1744 continue;
1745 }
1746 KASSERT(curpg->uobject == uobj);
1747
1748 /*
1749 * if center page is resident and not PG_BUSY|PG_RELEASED
1750 * then pgo_get made it PG_BUSY for us and gave us a handle
1751 * to it.
1752 */
1753
1754 if (lcv == flt->centeridx) {
1755 UVMHIST_LOG(maphist, " got uobjpage "
1756 "(0x%x) with locked get",
1757 curpg, 0,0,0);
1758 } else {
1759 uvm_fault_lower_neighbor(ufi, flt, currva, curpg);
1760 }
1761 }
1762 pmap_update(ufi->orig_map->pmap);
1763 }
1764
1765 /*
1766 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1767 */
1768
1769 static void
1770 uvm_fault_lower_neighbor(
1771 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1772 vaddr_t currva, struct vm_page *pg)
1773 {
1774 const bool readonly = uvm_pagereadonly_p(pg) || pg->loan_count > 0;
1775 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1776
1777 /* locked: maps(read), amap(if there), uobj */
1778
1779 /*
1780 * calling pgo_get with PGO_LOCKED returns us pages which
1781 * are neither busy nor released, so we don't need to check
1782 * for this. we can just directly enter the pages.
1783 */
1784
1785 mutex_enter(&uvm_pageqlock);
1786 uvm_pageenqueue(pg);
1787 mutex_exit(&uvm_pageqlock);
1788 UVMHIST_LOG(maphist,
1789 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1790 ufi->orig_map->pmap, currva, pg, 0);
1791 uvmexp.fltnomap++;
1792
1793 /*
1794 * Since this page isn't the page that's actually faulting,
1795 * ignore pmap_enter() failures; it's not critical that we
1796 * enter these right now.
1797 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1798 * held the lock the whole time we've had the handle.
1799 */
1800 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1801 KASSERT((pg->flags & PG_RELEASED) == 0);
1802 KASSERT((pg->flags & PG_WANTED) == 0);
1803 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
1804 uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN);
1805 pg->flags &= ~(PG_BUSY);
1806 UVM_PAGE_OWN(pg, NULL);
1807
1808 KASSERT(mutex_owned(pg->uobject->vmobjlock));
1809 (void) pmap_enter(ufi->orig_map->pmap, currva,
1810 VM_PAGE_TO_PHYS(pg),
1811 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1812 flt->enter_prot & MASK(ufi->entry),
1813 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1814 }
1815
1816 /*
1817 * uvm_fault_lower_io: get lower page from backing store.
1818 *
1819 * 1. unlock everything, because i/o will block.
1820 * 2. call pgo_get.
1821 * 3. if failed, recover.
1822 * 4. if succeeded, relock everything and verify things.
1823 */
1824
1825 static int
1826 uvm_fault_lower_io(
1827 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1828 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1829 {
1830 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1831 struct uvm_object *uobj = *ruobj;
1832 struct vm_page *pg;
1833 bool locked;
1834 int gotpages;
1835 int error;
1836 voff_t uoff;
1837 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1838
1839 /* update rusage counters */
1840 curlwp->l_ru.ru_majflt++;
1841
1842 /* Locked: maps(read), amap(if there), uobj */
1843 uvmfault_unlockall(ufi, amap, NULL);
1844
1845 /* Locked: uobj */
1846 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1847
1848 uvmexp.fltget++;
1849 gotpages = 1;
1850 pg = NULL;
1851 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1852 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1853 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1854 PGO_SYNCIO);
1855 /* locked: pg(if no error) */
1856
1857 /*
1858 * recover from I/O
1859 */
1860
1861 if (error) {
1862 if (error == EAGAIN) {
1863 UVMHIST_LOG(maphist,
1864 " pgo_get says TRY AGAIN!",0,0,0,0);
1865 kpause("fltagain2", false, hz/2, NULL);
1866 return ERESTART;
1867 }
1868
1869 #if 0
1870 KASSERT(error != ERESTART);
1871 #else
1872 /* XXXUEBS don't re-fault? */
1873 if (error == ERESTART)
1874 error = EIO;
1875 #endif
1876
1877 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1878 error, 0,0,0);
1879 return error;
1880 }
1881
1882 /*
1883 * re-verify the state of the world by first trying to relock
1884 * the maps. always relock the object.
1885 */
1886
1887 locked = uvmfault_relock(ufi);
1888 if (locked && amap)
1889 amap_lock(amap);
1890
1891 /* might be changed */
1892 uobj = pg->uobject;
1893
1894 mutex_enter(uobj->vmobjlock);
1895 KASSERT((pg->flags & PG_BUSY) != 0);
1896
1897 mutex_enter(&uvm_pageqlock);
1898 uvm_pageactivate(pg);
1899 mutex_exit(&uvm_pageqlock);
1900
1901 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1902 /* locked(!locked): uobj, pg */
1903
1904 /*
1905 * verify that the page has not be released and re-verify
1906 * that amap slot is still free. if there is a problem,
1907 * we unlock and clean up.
1908 */
1909
1910 if ((pg->flags & PG_RELEASED) != 0 ||
1911 (locked && amap && amap_lookup(&ufi->entry->aref,
1912 ufi->orig_rvaddr - ufi->entry->start))) {
1913 if (locked)
1914 uvmfault_unlockall(ufi, amap, NULL);
1915 locked = false;
1916 }
1917
1918 /*
1919 * didn't get the lock? release the page and retry.
1920 */
1921
1922 if (locked == false) {
1923 UVMHIST_LOG(maphist,
1924 " wasn't able to relock after fault: retry",
1925 0,0,0,0);
1926 if (pg->flags & PG_WANTED) {
1927 wakeup(pg);
1928 }
1929 if ((pg->flags & PG_RELEASED) == 0) {
1930 pg->flags &= ~(PG_BUSY | PG_WANTED);
1931 UVM_PAGE_OWN(pg, NULL);
1932 } else {
1933 uvmexp.fltpgrele++;
1934 uvm_pagefree(pg);
1935 }
1936 mutex_exit(uobj->vmobjlock);
1937 return ERESTART;
1938 }
1939
1940 /*
1941 * we have the data in pg which is busy and
1942 * not released. we are holding object lock (so the page
1943 * can't be released on us).
1944 */
1945
1946 /* locked: maps(read), amap(if !null), uobj, pg */
1947
1948 *ruobj = uobj;
1949 *ruobjpage = pg;
1950 return 0;
1951 }
1952
1953 /*
1954 * uvm_fault_lower_direct: fault lower center page
1955 *
1956 * 1. adjust flt->enter_prot.
1957 * 2. if page is loaned, resolve.
1958 */
1959
1960 int
1961 uvm_fault_lower_direct(
1962 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1963 struct uvm_object *uobj, struct vm_page *uobjpage)
1964 {
1965 struct vm_page *pg;
1966 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1967
1968 /*
1969 * we are not promoting. if the mapping is COW ensure that we
1970 * don't give more access than we should (e.g. when doing a read
1971 * fault on a COPYONWRITE mapping we want to map the COW page in
1972 * R/O even though the entry protection could be R/W).
1973 *
1974 * set "pg" to the page we want to map in (uobjpage, usually)
1975 */
1976
1977 uvmexp.flt_obj++;
1978 if (UVM_ET_ISCOPYONWRITE(ufi->entry))
1979 flt->enter_prot &= ~VM_PROT_WRITE;
1980 pg = uobjpage; /* map in the actual object */
1981
1982 KASSERT(uobjpage != PGO_DONTCARE);
1983
1984 /*
1985 * we are faulting directly on the page. be careful
1986 * about writing to loaned pages...
1987 */
1988
1989 if (uobjpage->loan_count) {
1990 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1991 }
1992 KASSERT(pg == uobjpage);
1993
1994 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1995 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
1996 }
1997
1998 /*
1999 * uvm_fault_lower_direct_loan: resolve loaned page.
2000 *
2001 * 1. if not cow'ing, adjust flt->enter_prot.
2002 * 2. if cow'ing, break loan.
2003 */
2004
2005 static int
2006 uvm_fault_lower_direct_loan(
2007 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2008 struct uvm_object *uobj, struct vm_page **rpg,
2009 struct vm_page **ruobjpage)
2010 {
2011 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2012 struct vm_page *pg;
2013 struct vm_page *uobjpage = *ruobjpage;
2014 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
2015
2016 if (!flt->cow_now) {
2017 /* read fault: cap the protection at readonly */
2018 /* cap! */
2019 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2020 } else {
2021 /* write fault: must break the loan here */
2022
2023 pg = uvm_loanbreak(uobjpage);
2024 if (pg == NULL) {
2025
2026 /*
2027 * drop ownership of page, it can't be released
2028 */
2029
2030 if (uobjpage->flags & PG_WANTED)
2031 wakeup(uobjpage);
2032 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2033 UVM_PAGE_OWN(uobjpage, NULL);
2034
2035 uvmfault_unlockall(ufi, amap, uobj);
2036 UVMHIST_LOG(maphist,
2037 " out of RAM breaking loan, waiting",
2038 0,0,0,0);
2039 uvmexp.fltnoram++;
2040 uvm_wait("flt_noram4");
2041 return ERESTART;
2042 }
2043 *rpg = pg;
2044 *ruobjpage = pg;
2045 }
2046 return 0;
2047 }
2048
2049 /*
2050 * uvm_fault_lower_promote: promote lower page.
2051 *
2052 * 1. call uvmfault_promote.
2053 * 2. fill in data.
2054 * 3. if not ZFOD, dispose old page.
2055 */
2056
2057 int
2058 uvm_fault_lower_promote(
2059 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2060 struct uvm_object *uobj, struct vm_page *uobjpage)
2061 {
2062 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2063 struct vm_anon *anon;
2064 struct vm_page *pg;
2065 int error;
2066 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2067
2068 KASSERT(amap != NULL);
2069
2070 /*
2071 * If we are going to promote the data to an anon we
2072 * allocate a blank anon here and plug it into our amap.
2073 */
2074 error = uvmfault_promote(ufi, NULL, uobjpage,
2075 &anon, &flt->anon_spare);
2076 switch (error) {
2077 case 0:
2078 break;
2079 case ERESTART:
2080 return ERESTART;
2081 default:
2082 return error;
2083 }
2084
2085 pg = anon->an_page;
2086
2087 /*
2088 * Fill in the data.
2089 */
2090 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2091
2092 if (uobjpage != PGO_DONTCARE) {
2093 uvmexp.flt_prcopy++;
2094
2095 /*
2096 * promote to shared amap? make sure all sharing
2097 * procs see it
2098 */
2099
2100 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2101 pmap_page_protect(uobjpage, VM_PROT_NONE);
2102 /*
2103 * XXX: PAGE MIGHT BE WIRED!
2104 */
2105 }
2106
2107 /*
2108 * dispose of uobjpage. it can't be PG_RELEASED
2109 * since we still hold the object lock.
2110 */
2111
2112 if (uobjpage->flags & PG_WANTED) {
2113 /* still have the obj lock */
2114 wakeup(uobjpage);
2115 }
2116 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2117 UVM_PAGE_OWN(uobjpage, NULL);
2118
2119 UVMHIST_LOG(maphist,
2120 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2121 uobjpage, anon, pg, 0);
2122
2123 } else {
2124 uvmexp.flt_przero++;
2125
2126 /*
2127 * Page is zero'd and marked dirty by
2128 * uvmfault_promote().
2129 */
2130
2131 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2132 anon, pg, 0, 0);
2133 }
2134
2135 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2136 }
2137
2138 /*
2139 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2140 * from the lower page.
2141 */
2142
2143 int
2144 uvm_fault_lower_enter(
2145 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2146 struct uvm_object *uobj,
2147 struct vm_anon *anon, struct vm_page *pg)
2148 {
2149 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2150 const bool readonly = uvm_pagereadonly_p(pg);
2151 int error;
2152 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2153
2154 /*
2155 * Locked:
2156 *
2157 * maps(read), amap(if !null), uobj(if !null),
2158 * anon(if !null), pg(if anon), unlock_uobj(if !null)
2159 *
2160 * Note: pg is either the uobjpage or the new page in the new anon.
2161 */
2162 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
2163 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
2164 KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2165 KASSERT((pg->flags & PG_BUSY) != 0);
2166
2167 /*
2168 * all resources are present. we can now map it in and free our
2169 * resources.
2170 */
2171
2172 UVMHIST_LOG(maphist,
2173 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2174 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2175 KASSERTMSG((flt->access_type & VM_PROT_WRITE) == 0 || !readonly,
2176 "promote=%u cow_now=%u access_type=%x enter_prot=%x cow=%u "
2177 "entry=%p map=%p orig_rvaddr=%p pg=%p",
2178 flt->promote, flt->cow_now, flt->access_type, flt->enter_prot,
2179 UVM_ET_ISCOPYONWRITE(ufi->entry), ufi->entry, ufi->orig_map,
2180 (void *)ufi->orig_rvaddr, pg);
2181 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 || !readonly);
2182 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2183 VM_PAGE_TO_PHYS(pg),
2184 readonly ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2185 flt->access_type | PMAP_CANFAIL |
2186 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2187
2188 /*
2189 * No need to undo what we did; we can simply think of
2190 * this as the pmap throwing away the mapping information.
2191 *
2192 * We do, however, have to go through the ReFault path,
2193 * as the map may change while we're asleep.
2194 */
2195
2196 /*
2197 * ensure that the page is queued in the case that
2198 * we just promoted the page.
2199 */
2200
2201 mutex_enter(&uvm_pageqlock);
2202 uvm_pageenqueue(pg);
2203 mutex_exit(&uvm_pageqlock);
2204
2205 if (pg->flags & PG_WANTED)
2206 wakeup(pg);
2207
2208 /*
2209 * note that pg can't be PG_RELEASED since we did not drop
2210 * the object lock since the last time we checked.
2211 */
2212 KASSERT((pg->flags & PG_RELEASED) == 0);
2213
2214 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2215 UVM_PAGE_OWN(pg, NULL);
2216
2217 uvmfault_unlockall(ufi, amap, uobj);
2218 if (!uvm_reclaimable()) {
2219 UVMHIST_LOG(maphist,
2220 "<- failed. out of VM",0,0,0,0);
2221 /* XXX instrumentation */
2222 error = ENOMEM;
2223 return error;
2224 }
2225 /* XXX instrumentation */
2226 uvm_wait("flt_pmfail2");
2227 return ERESTART;
2228 }
2229
2230 uvm_fault_lower_done(ufi, flt, uobj, pg);
2231
2232 /*
2233 * note that pg can't be PG_RELEASED since we did not drop the object
2234 * lock since the last time we checked.
2235 */
2236 KASSERT((pg->flags & PG_RELEASED) == 0);
2237 if (pg->flags & PG_WANTED)
2238 wakeup(pg);
2239 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2240 UVM_PAGE_OWN(pg, NULL);
2241
2242 pmap_update(ufi->orig_map->pmap);
2243 uvmfault_unlockall(ufi, amap, uobj);
2244
2245 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2246 return 0;
2247 }
2248
2249 /*
2250 * uvm_fault_lower_done: queue lower center page.
2251 */
2252
2253 void
2254 uvm_fault_lower_done(
2255 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2256 struct uvm_object *uobj, struct vm_page *pg)
2257 {
2258 bool dropswap = false;
2259
2260 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2261
2262 mutex_enter(&uvm_pageqlock);
2263 if (flt->wire_paging) {
2264 uvm_pagewire(pg);
2265 if (pg->pqflags & PQ_AOBJ) {
2266
2267 /*
2268 * since the now-wired page cannot be paged out,
2269 * release its swap resources for others to use.
2270 * since an aobj page with no swap cannot be clean,
2271 * mark it dirty now.
2272 */
2273
2274 KASSERT(uobj != NULL);
2275 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
2276 dropswap = true;
2277 }
2278 } else {
2279 uvm_pageactivate(pg);
2280 }
2281 mutex_exit(&uvm_pageqlock);
2282
2283 if (dropswap) {
2284 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2285 }
2286 }
2287
2288
2289 /*
2290 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2291 *
2292 * => map may be read-locked by caller, but MUST NOT be write-locked.
2293 * => if map is read-locked, any operations which may cause map to
2294 * be write-locked in uvm_fault() must be taken care of by
2295 * the caller. See uvm_map_pageable().
2296 */
2297
2298 int
2299 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2300 vm_prot_t access_type, int maxprot)
2301 {
2302 vaddr_t va;
2303 int error;
2304
2305 /*
2306 * now fault it in a page at a time. if the fault fails then we have
2307 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2308 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2309 */
2310
2311 /*
2312 * XXX work around overflowing a vaddr_t. this prevents us from
2313 * wiring the last page in the address space, though.
2314 */
2315 if (start > end) {
2316 return EFAULT;
2317 }
2318
2319 for (va = start; va < end; va += PAGE_SIZE) {
2320 error = uvm_fault_internal(map, va, access_type,
2321 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2322 if (error) {
2323 if (va != start) {
2324 uvm_fault_unwire(map, start, va);
2325 }
2326 return error;
2327 }
2328 }
2329 return 0;
2330 }
2331
2332 /*
2333 * uvm_fault_unwire(): unwire range of virtual space.
2334 */
2335
2336 void
2337 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2338 {
2339 vm_map_lock_read(map);
2340 uvm_fault_unwire_locked(map, start, end);
2341 vm_map_unlock_read(map);
2342 }
2343
2344 /*
2345 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2346 *
2347 * => map must be at least read-locked.
2348 */
2349
2350 void
2351 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2352 {
2353 struct vm_map_entry *entry, *oentry;
2354 pmap_t pmap = vm_map_pmap(map);
2355 vaddr_t va;
2356 paddr_t pa;
2357 struct vm_page *pg;
2358
2359 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2360
2361 /*
2362 * we assume that the area we are unwiring has actually been wired
2363 * in the first place. this means that we should be able to extract
2364 * the PAs from the pmap. we also lock out the page daemon so that
2365 * we can call uvm_pageunwire.
2366 */
2367
2368 /*
2369 * find the beginning map entry for the region.
2370 */
2371
2372 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2373 if (uvm_map_lookup_entry(map, start, &entry) == false)
2374 panic("uvm_fault_unwire_locked: address not in map");
2375
2376 oentry = NULL;
2377 for (va = start; va < end; va += PAGE_SIZE) {
2378 if (pmap_extract(pmap, va, &pa) == false)
2379 continue;
2380
2381 /*
2382 * find the map entry for the current address.
2383 */
2384
2385 KASSERT(va >= entry->start);
2386 while (va >= entry->end) {
2387 KASSERT(entry->next != &map->header &&
2388 entry->next->start <= entry->end);
2389 entry = entry->next;
2390 }
2391
2392 /*
2393 * lock it.
2394 */
2395
2396 if (entry != oentry) {
2397 if (oentry != NULL) {
2398 mutex_exit(&uvm_pageqlock);
2399 uvm_map_unlock_entry(oentry);
2400 }
2401 uvm_map_lock_entry(entry);
2402 mutex_enter(&uvm_pageqlock);
2403 oentry = entry;
2404 }
2405
2406 /*
2407 * if the entry is no longer wired, tell the pmap.
2408 */
2409
2410 if (VM_MAPENT_ISWIRED(entry) == 0)
2411 pmap_unwire(pmap, va);
2412
2413 pg = PHYS_TO_VM_PAGE(pa);
2414 if (pg)
2415 uvm_pageunwire(pg);
2416 }
2417
2418 if (oentry != NULL) {
2419 mutex_exit(&uvm_pageqlock);
2420 uvm_map_unlock_entry(entry);
2421 }
2422 }
2423