uvm_fault.c revision 1.190.2.4 1 /* $NetBSD: uvm_fault.c,v 1.190.2.4 2011/12/28 13:22:47 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 */
29
30 /*
31 * uvm_fault.c: fault handler
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.190.2.4 2011/12/28 13:22:47 yamt Exp $");
36
37 #include "opt_uvmhist.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/mman.h>
43
44 #include <uvm/uvm.h>
45
46 /*
47 *
48 * a word on page faults:
49 *
50 * types of page faults we handle:
51 *
52 * CASE 1: upper layer faults CASE 2: lower layer faults
53 *
54 * CASE 1A CASE 1B CASE 2A CASE 2B
55 * read/write1 write>1 read/write +-cow_write/zero
56 * | | | |
57 * +--|--+ +--|--+ +-----+ + | + | +-----+
58 * amap | V | | ---------> new | | | | ^ |
59 * +-----+ +-----+ +-----+ + | + | +--|--+
60 * | | |
61 * +-----+ +-----+ +--|--+ | +--|--+
62 * uobj | d/c | | d/c | | V | +----+ |
63 * +-----+ +-----+ +-----+ +-----+
64 *
65 * d/c = don't care
66 *
67 * case [0]: layerless fault
68 * no amap or uobj is present. this is an error.
69 *
70 * case [1]: upper layer fault [anon active]
71 * 1A: [read] or [write with anon->an_ref == 1]
72 * I/O takes place in upper level anon and uobj is not touched.
73 * 1B: [write with anon->an_ref > 1]
74 * new anon is alloc'd and data is copied off ["COW"]
75 *
76 * case [2]: lower layer fault [uobj]
77 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78 * I/O takes place directly in object.
79 * 2B: [write to copy_on_write] or [read on NULL uobj]
80 * data is "promoted" from uobj to a new anon.
81 * if uobj is null, then we zero fill.
82 *
83 * we follow the standard UVM locking protocol ordering:
84 *
85 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86 * we hold a PG_BUSY page if we unlock for I/O
87 *
88 *
89 * the code is structured as follows:
90 *
91 * - init the "IN" params in the ufi structure
92 * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
93 * - do lookups [locks maps], check protection, handle needs_copy
94 * - check for case 0 fault (error)
95 * - establish "range" of fault
96 * - if we have an amap lock it and extract the anons
97 * - if sequential advice deactivate pages behind us
98 * - at the same time check pmap for unmapped areas and anon for pages
99 * that we could map in (and do map it if found)
100 * - check object for resident pages that we could map in
101 * - if (case 2) goto Case2
102 * - >>> handle case 1
103 * - ensure source anon is resident in RAM
104 * - if case 1B alloc new anon and copy from source
105 * - map the correct page in
106 * Case2:
107 * - >>> handle case 2
108 * - ensure source page is resident (if uobj)
109 * - if case 2B alloc new anon and copy from source (could be zero
110 * fill if uobj == NULL)
111 * - map the correct page in
112 * - done!
113 *
114 * note on paging:
115 * if we have to do I/O we place a PG_BUSY page in the correct object,
116 * unlock everything, and do the I/O. when I/O is done we must reverify
117 * the state of the world before assuming that our data structures are
118 * valid. [because mappings could change while the map is unlocked]
119 *
120 * alternative 1: unbusy the page in question and restart the page fault
121 * from the top (ReFault). this is easy but does not take advantage
122 * of the information that we already have from our previous lookup,
123 * although it is possible that the "hints" in the vm_map will help here.
124 *
125 * alternative 2: the system already keeps track of a "version" number of
126 * a map. [i.e. every time you write-lock a map (e.g. to change a
127 * mapping) you bump the version number up by one...] so, we can save
128 * the version number of the map before we release the lock and start I/O.
129 * then when I/O is done we can relock and check the version numbers
130 * to see if anything changed. this might save us some over 1 because
131 * we don't have to unbusy the page and may be less compares(?).
132 *
133 * alternative 3: put in backpointers or a way to "hold" part of a map
134 * in place while I/O is in progress. this could be complex to
135 * implement (especially with structures like amap that can be referenced
136 * by multiple map entries, and figuring out what should wait could be
137 * complex as well...).
138 *
139 * we use alternative 2. given that we are multi-threaded now we may want
140 * to reconsider the choice.
141 */
142
143 /*
144 * local data structures
145 */
146
147 struct uvm_advice {
148 int advice;
149 int nback;
150 int nforw;
151 };
152
153 /*
154 * page range array:
155 * note: index in array must match "advice" value
156 * XXX: borrowed numbers from freebsd. do they work well for us?
157 */
158
159 static const struct uvm_advice uvmadvice[] = {
160 { UVM_ADV_NORMAL, 3, 4 },
161 { UVM_ADV_RANDOM, 0, 0 },
162 { UVM_ADV_SEQUENTIAL, 8, 7},
163 };
164
165 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
166
167 /*
168 * private prototypes
169 */
170
171 /*
172 * inline functions
173 */
174
175 /*
176 * uvmfault_anonflush: try and deactivate pages in specified anons
177 *
178 * => does not have to deactivate page if it is busy
179 */
180
181 static inline void
182 uvmfault_anonflush(struct vm_anon **anons, int n)
183 {
184 int lcv;
185 struct vm_page *pg;
186
187 for (lcv = 0; lcv < n; lcv++) {
188 if (anons[lcv] == NULL)
189 continue;
190 KASSERT(mutex_owned(anons[lcv]->an_lock));
191 pg = anons[lcv]->an_page;
192 if (pg && (pg->flags & PG_BUSY) == 0) {
193 mutex_enter(&uvm_pageqlock);
194 if (pg->wire_count == 0) {
195 uvm_pagedeactivate(pg);
196 }
197 mutex_exit(&uvm_pageqlock);
198 }
199 }
200 }
201
202 /*
203 * normal functions
204 */
205
206 /*
207 * uvmfault_amapcopy: clear "needs_copy" in a map.
208 *
209 * => called with VM data structures unlocked (usually, see below)
210 * => we get a write lock on the maps and clear needs_copy for a VA
211 * => if we are out of RAM we sleep (waiting for more)
212 */
213
214 static void
215 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
216 {
217 for (;;) {
218
219 /*
220 * no mapping? give up.
221 */
222
223 if (uvmfault_lookup(ufi, true) == false)
224 return;
225
226 /*
227 * copy if needed.
228 */
229
230 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
231 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
232 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
233
234 /*
235 * didn't work? must be out of RAM. unlock and sleep.
236 */
237
238 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
239 uvmfault_unlockmaps(ufi, true);
240 uvm_wait("fltamapcopy");
241 continue;
242 }
243
244 /*
245 * got it! unlock and return.
246 */
247
248 uvmfault_unlockmaps(ufi, true);
249 return;
250 }
251 /*NOTREACHED*/
252 }
253
254 /*
255 * uvmfault_anonget: get data in an anon into a non-busy, non-released
256 * page in that anon.
257 *
258 * => Map, amap and thus anon should be locked by caller.
259 * => If we fail, we unlock everything and error is returned.
260 * => If we are successful, return with everything still locked.
261 * => We do not move the page on the queues [gets moved later]. If we
262 * allocate a new page [we_own], it gets put on the queues. Either way,
263 * the result is that the page is on the queues at return time
264 * => For pages which are on loan from a uvm_object (and thus are not owned
265 * by the anon): if successful, return with the owning object locked.
266 * The caller must unlock this object when it unlocks everything else.
267 */
268
269 int
270 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
271 struct vm_anon *anon)
272 {
273 struct vm_page *pg;
274 int error;
275
276 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
277 KASSERT(mutex_owned(anon->an_lock));
278 KASSERT(anon->an_lock == amap->am_lock);
279 KASSERT(amap->am_obj_lock == NULL || mutex_owned(amap->am_obj_lock));
280
281 /* Increment the counters.*/
282 uvmexp.fltanget++;
283 if (anon->an_page) {
284 curlwp->l_ru.ru_minflt++;
285 } else {
286 curlwp->l_ru.ru_majflt++;
287 }
288 error = 0;
289
290 /*
291 * Loop until we get the anon data, or fail.
292 */
293
294 for (;;) {
295 bool we_own, locked;
296 /*
297 * Note: 'we_own' will become true if we set PG_BUSY on a page.
298 */
299 we_own = false;
300 pg = anon->an_page;
301 KASSERT(pg == NULL || pg->uanon == anon);
302 KASSERT(pg == NULL || pg->uobject == NULL ||
303 pg->uobject->vmobjlock == amap->am_obj_lock);
304
305 /*
306 * If there is a resident page and it is loaned, then anon
307 * may not own it. Call out to uvm_anon_lockloanpg() to
308 * identify and lock the real owner of the page.
309 */
310
311 if (pg && pg->loan_count)
312 pg = uvm_anon_lockloanpg(anon);
313
314 /*
315 * Is page resident? Make sure it is not busy/released.
316 */
317
318 if (pg) {
319
320 /*
321 * at this point, if the page has a uobject [meaning
322 * we have it on loan], then that uobject is locked
323 * by us! if the page is busy, we drop all the
324 * locks (including uobject) and try again.
325 */
326
327 if ((pg->flags & PG_BUSY) == 0) {
328 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
329 return 0;
330 }
331 pg->flags |= PG_WANTED;
332 uvmexp.fltpgwait++;
333
334 /*
335 * The last unlock must be an atomic unlock and wait
336 * on the owner of page.
337 */
338
339 uvmfault_unlockall(ufi, NULL, NULL);
340 if (pg->uobject) {
341 /* Owner of page is UVM object. */
342 KASSERT(amap->am_obj_lock ==
343 pg->uobject->vmobjlock);
344 mutex_exit(amap->am_lock); /* XXX */
345 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
346 0,0,0);
347 UVM_UNLOCK_AND_WAIT(pg,
348 pg->uobject->vmobjlock,
349 false, "anonget1", 0);
350 } else {
351 /* Owner of page is anon. */
352 if (amap->am_obj_lock != NULL) {
353 mutex_exit(amap->am_obj_lock); /* XXX */
354 }
355 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
356 0,0,0);
357 UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
358 false, "anonget2", 0);
359 }
360 } else {
361 #if defined(VMSWAP)
362 /*
363 * No page, therefore allocate one.
364 */
365
366 pg = uvm_pagealloc(NULL,
367 ufi != NULL ? ufi->orig_rvaddr : 0,
368 anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
369 if (pg == NULL) {
370 /* Out of memory. Wait a little. */
371 uvmfault_unlockall(ufi, amap, NULL);
372 uvmexp.fltnoram++;
373 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
374 0,0,0);
375 if (!uvm_reclaimable()) {
376 return ENOMEM;
377 }
378 uvm_wait("flt_noram1");
379 } else {
380 /* PG_BUSY bit is set. */
381 we_own = true;
382 uvmfault_unlockall(ufi, amap, NULL);
383
384 /*
385 * Pass a PG_BUSY+PG_FAKE clean page into
386 * the uvm_swap_get() function with all data
387 * structures unlocked. Note that it is OK
388 * to read an_swslot here, because we hold
389 * PG_BUSY on the page.
390 */
391 uvmexp.pageins++;
392 error = uvm_swap_get(pg, anon->an_swslot,
393 PGO_SYNCIO);
394
395 /*
396 * We clean up after the I/O below in the
397 * 'we_own' case.
398 */
399 }
400 #else
401 panic("%s: no page", __func__);
402 #endif /* defined(VMSWAP) */
403 }
404
405 /*
406 * Re-lock the map and anon.
407 */
408
409 locked = uvmfault_relock(ufi);
410 if (locked) {
411 amap_lock(amap);
412 } else if (we_own) {
413 mutex_enter(anon->an_lock);
414 }
415
416 /*
417 * If we own the page (i.e. we set PG_BUSY), then we need
418 * to clean up after the I/O. There are three cases to
419 * consider:
420 *
421 * 1) Page was released during I/O: free anon and ReFault.
422 * 2) I/O not OK. Free the page and cause the fault to fail.
423 * 3) I/O OK! Activate the page and sync with the non-we_own
424 * case (i.e. drop anon lock if not locked).
425 */
426
427 if (we_own) {
428 #if defined(VMSWAP)
429 if (pg->flags & PG_WANTED) {
430 wakeup(pg);
431 }
432 if (error) {
433
434 /*
435 * Remove the swap slot from the anon and
436 * mark the anon as having no real slot.
437 * Do not free the swap slot, thus preventing
438 * it from being used again.
439 */
440
441 if (anon->an_swslot > 0) {
442 uvm_swap_markbad(anon->an_swslot, 1);
443 }
444 anon->an_swslot = SWSLOT_BAD;
445
446 if ((pg->flags & PG_RELEASED) != 0) {
447 goto released;
448 }
449
450 /*
451 * Note: page was never !PG_BUSY, so it
452 * cannot be mapped and thus no need to
453 * pmap_page_protect() it.
454 */
455
456 mutex_enter(&uvm_pageqlock);
457 uvm_pagefree(pg);
458 mutex_exit(&uvm_pageqlock);
459
460 if (locked) {
461 uvmfault_unlockall(ufi, NULL, NULL);
462 if (amap->am_obj_lock != NULL) {
463 /* XXX */
464 mutex_exit(amap->am_obj_lock);
465 }
466 }
467 mutex_exit(anon->an_lock);
468 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
469 return error;
470 }
471
472 if ((pg->flags & PG_RELEASED) != 0) {
473 released:
474 KASSERT(anon->an_ref == 0);
475
476 /*
477 * Released while we had unlocked amap.
478 */
479
480 if (locked) {
481 uvmfault_unlockall(ufi, NULL, NULL);
482 if (amap->am_obj_lock != NULL) {
483 /* XXX */
484 mutex_exit(amap->am_obj_lock);
485 }
486 }
487 uvm_anon_release(anon);
488
489 if (error) {
490 UVMHIST_LOG(maphist,
491 "<- ERROR/RELEASED", 0,0,0,0);
492 return error;
493 }
494
495 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
496 return ERESTART;
497 }
498
499 /*
500 * We have successfully read the page, activate it.
501 */
502
503 mutex_enter(&uvm_pageqlock);
504 uvm_pageactivate(pg);
505 mutex_exit(&uvm_pageqlock);
506 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
507 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
508 UVM_PAGE_OWN(pg, NULL);
509 #else
510 panic("%s: we_own", __func__);
511 #endif /* defined(VMSWAP) */
512 }
513
514 /*
515 * We were not able to re-lock the map - restart the fault.
516 */
517
518 if (!locked) {
519 if (we_own) {
520 mutex_exit(anon->an_lock);
521 }
522 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
523 return ERESTART;
524 }
525
526 /*
527 * Verify that no one has touched the amap and moved
528 * the anon on us.
529 */
530
531 if (ufi != NULL && amap_lookup(&ufi->entry->aref,
532 ufi->orig_rvaddr - ufi->entry->start) != anon) {
533
534 uvmfault_unlockall(ufi, amap, NULL);
535 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
536 return ERESTART;
537 }
538
539 /*
540 * Retry..
541 */
542
543 uvmexp.fltanretry++;
544 continue;
545 }
546 /*NOTREACHED*/
547 }
548
549 /*
550 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
551 *
552 * 1. allocate an anon and a page.
553 * 2. fill its contents.
554 * 3. put it into amap.
555 *
556 * => if we fail (result != 0) we unlock everything.
557 * => on success, return a new locked anon via 'nanon'.
558 * (*nanon)->an_page will be a resident, locked, dirty page.
559 * => it's caller's responsibility to put the promoted nanon->an_page to the
560 * page queue.
561 */
562
563 static int
564 uvmfault_promote(struct uvm_faultinfo *ufi,
565 struct vm_anon *oanon,
566 struct vm_page *uobjpage,
567 struct vm_anon **nanon, /* OUT: allocated anon */
568 struct vm_anon **spare)
569 {
570 struct vm_amap *amap = ufi->entry->aref.ar_amap;
571 struct uvm_object *uobj;
572 struct vm_anon *anon;
573 struct vm_page *pg;
574 struct vm_page *opg;
575 int error;
576 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
577
578 if (oanon) {
579 /* anon COW */
580 opg = oanon->an_page;
581 KASSERT(opg != NULL);
582 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
583 } else if (uobjpage != PGO_DONTCARE) {
584 /* object-backed COW */
585 opg = uobjpage;
586 } else {
587 /* ZFOD */
588 opg = NULL;
589 }
590 if (opg != NULL) {
591 uobj = opg->uobject;
592 } else {
593 uobj = NULL;
594 }
595
596 KASSERT(amap != NULL);
597 KASSERT(uobjpage != NULL);
598 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
599 KASSERT(mutex_owned(amap->am_lock));
600 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
601 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
602
603 if (*spare != NULL) {
604 anon = *spare;
605 *spare = NULL;
606 } else if (ufi->map != kernel_map) {
607 anon = uvm_analloc();
608 } else {
609 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
610
611 /*
612 * we can't allocate anons with kernel_map locked.
613 */
614
615 uvm_page_unbusy(&uobjpage, 1);
616 uvmfault_unlockall(ufi, amap, uobj);
617
618 *spare = uvm_analloc();
619 if (*spare == NULL) {
620 goto nomem;
621 }
622 KASSERT((*spare)->an_lock == NULL);
623 error = ERESTART;
624 goto done;
625 }
626 if (anon) {
627
628 /*
629 * The new anon is locked.
630 *
631 * if opg == NULL, we want a zero'd, dirty page,
632 * so have uvm_pagealloc() do that for us.
633 */
634
635 KASSERT(anon->an_lock == NULL);
636 anon->an_lock = amap->am_lock;
637 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
638 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
639 if (pg == NULL) {
640 anon->an_lock = NULL;
641 }
642 } else {
643 pg = NULL;
644 }
645
646 /*
647 * out of memory resources?
648 */
649
650 if (pg == NULL) {
651 /* save anon for the next try. */
652 if (anon != NULL) {
653 *spare = anon;
654 }
655
656 /* unlock and fail ... */
657 uvm_page_unbusy(&uobjpage, 1);
658 uvmfault_unlockall(ufi, amap, uobj);
659 nomem:
660 if (!uvm_reclaimable()) {
661 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
662 uvmexp.fltnoanon++;
663 error = ENOMEM;
664 goto done;
665 }
666
667 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
668 uvmexp.fltnoram++;
669 uvm_wait("flt_noram5");
670 error = ERESTART;
671 goto done;
672 }
673
674 /* copy page [pg now dirty] */
675 if (opg) {
676 uvm_pagecopy(opg, pg);
677 }
678 KASSERT(uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_DIRTY);
679
680 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
681 oanon != NULL);
682
683 *nanon = anon;
684 error = 0;
685 done:
686 return error;
687 }
688
689
690 /*
691 * F A U L T - m a i n e n t r y p o i n t
692 */
693
694 /*
695 * uvm_fault: page fault handler
696 *
697 * => called from MD code to resolve a page fault
698 * => VM data structures usually should be unlocked. however, it is
699 * possible to call here with the main map locked if the caller
700 * gets a write lock, sets it recusive, and then calls us (c.f.
701 * uvm_map_pageable). this should be avoided because it keeps
702 * the map locked off during I/O.
703 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
704 */
705
706 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
707 ~VM_PROT_WRITE : VM_PROT_ALL)
708
709 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
710 #define UVM_FAULT_WIRE (1 << 0)
711 #define UVM_FAULT_MAXPROT (1 << 1)
712
713 struct uvm_faultctx {
714 vm_prot_t access_type;
715 vm_prot_t enter_prot;
716 vaddr_t startva;
717 int npages;
718 int centeridx;
719 struct vm_anon *anon_spare;
720 bool wire_mapping;
721 bool narrow;
722 bool wire_paging;
723 bool cow_now;
724 bool promote;
725 };
726
727 static inline int uvm_fault_check(
728 struct uvm_faultinfo *, struct uvm_faultctx *,
729 struct vm_anon ***, bool);
730
731 static int uvm_fault_upper(
732 struct uvm_faultinfo *, struct uvm_faultctx *,
733 struct vm_anon **);
734 static inline int uvm_fault_upper_lookup(
735 struct uvm_faultinfo *, const struct uvm_faultctx *,
736 struct vm_anon **, struct vm_page **);
737 static inline void uvm_fault_upper_neighbor(
738 struct uvm_faultinfo *, const struct uvm_faultctx *,
739 vaddr_t, struct vm_page *, bool);
740 static inline int uvm_fault_upper_loan(
741 struct uvm_faultinfo *, struct uvm_faultctx *,
742 struct vm_anon *);
743 static inline int uvm_fault_upper_promote(
744 struct uvm_faultinfo *, struct uvm_faultctx *,
745 struct vm_anon *);
746 static inline int uvm_fault_upper_direct(
747 struct uvm_faultinfo *, struct uvm_faultctx *,
748 struct vm_anon *);
749 static int uvm_fault_upper_enter(
750 struct uvm_faultinfo *, const struct uvm_faultctx *,
751 struct vm_anon *, struct vm_page *,
752 struct vm_anon *);
753 static inline void uvm_fault_upper_done(
754 struct uvm_faultinfo *, const struct uvm_faultctx *,
755 struct vm_anon *, struct vm_page *);
756
757 static int uvm_fault_lower(
758 struct uvm_faultinfo *, struct uvm_faultctx *,
759 struct vm_page **);
760 static inline void uvm_fault_lower_lookup(
761 struct uvm_faultinfo *, const struct uvm_faultctx *,
762 struct vm_page **);
763 static inline void uvm_fault_lower_neighbor(
764 struct uvm_faultinfo *, const struct uvm_faultctx *,
765 vaddr_t, struct vm_page *);
766 static inline int uvm_fault_lower_io(
767 struct uvm_faultinfo *, const struct uvm_faultctx *,
768 struct uvm_object **, struct vm_page **);
769 static inline int uvm_fault_lower_direct(
770 struct uvm_faultinfo *, struct uvm_faultctx *,
771 struct uvm_object *, struct vm_page *);
772 static inline int uvm_fault_lower_direct_loan(
773 struct uvm_faultinfo *, struct uvm_faultctx *,
774 struct uvm_object *, struct vm_page **,
775 struct vm_page **);
776 static inline int uvm_fault_lower_promote(
777 struct uvm_faultinfo *, struct uvm_faultctx *,
778 struct uvm_object *, struct vm_page *);
779 static int uvm_fault_lower_enter(
780 struct uvm_faultinfo *, const struct uvm_faultctx *,
781 struct uvm_object *,
782 struct vm_anon *, struct vm_page *);
783 static inline void uvm_fault_lower_done(
784 struct uvm_faultinfo *, const struct uvm_faultctx *,
785 struct uvm_object *, struct vm_page *);
786
787 int
788 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
789 vm_prot_t access_type, int fault_flag)
790 {
791 struct uvm_faultinfo ufi;
792 struct uvm_faultctx flt = {
793 .access_type = access_type,
794
795 /* don't look for neighborhood * pages on "wire" fault */
796 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
797
798 /* "wire" fault causes wiring of both mapping and paging */
799 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
800 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
801 };
802 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
803 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
804 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
805 int error;
806 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
807
808 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
809 orig_map, vaddr, access_type, fault_flag);
810
811 curcpu()->ci_data.cpu_nfault++;
812
813 /*
814 * init the IN parameters in the ufi
815 */
816
817 ufi.orig_map = orig_map;
818 ufi.orig_rvaddr = trunc_page(vaddr);
819 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
820
821 error = ERESTART;
822 while (error == ERESTART) { /* ReFault: */
823 anons = anons_store;
824 pages = pages_store;
825
826 error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
827 if (error != 0)
828 continue;
829
830 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
831 if (error != 0)
832 continue;
833
834 if (pages[flt.centeridx] == PGO_DONTCARE)
835 error = uvm_fault_upper(&ufi, &flt, anons);
836 else {
837 struct uvm_object * const uobj =
838 ufi.entry->object.uvm_obj;
839
840 if (uobj && uobj->pgops->pgo_fault != NULL) {
841 /*
842 * invoke "special" fault routine.
843 */
844 mutex_enter(uobj->vmobjlock);
845 /* locked: maps(read), amap(if there), uobj */
846 error = uobj->pgops->pgo_fault(&ufi,
847 flt.startva, pages, flt.npages,
848 flt.centeridx, flt.access_type,
849 PGO_LOCKED|PGO_SYNCIO);
850
851 /*
852 * locked: nothing, pgo_fault has unlocked
853 * everything
854 */
855
856 /*
857 * object fault routine responsible for
858 * pmap_update().
859 */
860 } else {
861 error = uvm_fault_lower(&ufi, &flt, pages);
862 }
863 }
864 }
865
866 if (flt.anon_spare != NULL) {
867 flt.anon_spare->an_ref--;
868 KASSERT(flt.anon_spare->an_ref == 0);
869 KASSERT(flt.anon_spare->an_lock == NULL);
870 uvm_anon_free(flt.anon_spare);
871 }
872 return error;
873 }
874
875 /*
876 * uvm_fault_check: check prot, handle needs-copy, etc.
877 *
878 * 1. lookup entry.
879 * 2. check protection.
880 * 3. adjust fault condition (mainly for simulated fault).
881 * 4. handle needs-copy (lazy amap copy).
882 * 5. establish range of interest for neighbor fault (aka pre-fault).
883 * 6. look up anons (if amap exists).
884 * 7. flush pages (if MADV_SEQUENTIAL)
885 *
886 * => called with nothing locked.
887 * => if we fail (result != 0) we unlock everything.
888 * => initialize/adjust many members of flt.
889 */
890
891 static int
892 uvm_fault_check(
893 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
894 struct vm_anon ***ranons, bool maxprot)
895 {
896 struct vm_amap *amap;
897 struct uvm_object *uobj;
898 vm_prot_t check_prot;
899 int nback, nforw;
900 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
901
902 /*
903 * lookup and lock the maps
904 */
905
906 if (uvmfault_lookup(ufi, false) == false) {
907 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr,
908 0,0,0);
909 return EFAULT;
910 }
911 /* locked: maps(read) */
912
913 #ifdef DIAGNOSTIC
914 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
915 printf("Page fault on non-pageable map:\n");
916 printf("ufi->map = %p\n", ufi->map);
917 printf("ufi->orig_map = %p\n", ufi->orig_map);
918 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
919 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
920 }
921 #endif
922
923 /*
924 * check protection
925 */
926
927 check_prot = maxprot ?
928 ufi->entry->max_protection : ufi->entry->protection;
929 if ((check_prot & flt->access_type) != flt->access_type) {
930 UVMHIST_LOG(maphist,
931 "<- protection failure (prot=0x%x, access=0x%x)",
932 ufi->entry->protection, flt->access_type, 0, 0);
933 uvmfault_unlockmaps(ufi, false);
934 return EACCES;
935 }
936
937 /*
938 * "enter_prot" is the protection we want to enter the page in at.
939 * for certain pages (e.g. copy-on-write pages) this protection can
940 * be more strict than ufi->entry->protection. "wired" means either
941 * the entry is wired or we are fault-wiring the pg.
942 */
943
944 flt->enter_prot = ufi->entry->protection;
945 if (VM_MAPENT_ISWIRED(ufi->entry))
946 flt->wire_mapping = true;
947
948 if (flt->wire_mapping) {
949 flt->access_type = flt->enter_prot; /* full access for wired */
950 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
951 } else {
952 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
953 }
954
955 flt->promote = false;
956
957 /*
958 * handle "needs_copy" case. if we need to copy the amap we will
959 * have to drop our readlock and relock it with a write lock. (we
960 * need a write lock to change anything in a map entry [e.g.
961 * needs_copy]).
962 */
963
964 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
965 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
966 KASSERT(!maxprot);
967 /* need to clear */
968 UVMHIST_LOG(maphist,
969 " need to clear needs_copy and refault",0,0,0,0);
970 uvmfault_unlockmaps(ufi, false);
971 uvmfault_amapcopy(ufi);
972 uvmexp.fltamcopy++;
973 return ERESTART;
974
975 } else {
976
977 /*
978 * ensure that we pmap_enter page R/O since
979 * needs_copy is still true
980 */
981
982 flt->enter_prot &= ~VM_PROT_WRITE;
983 }
984 }
985
986 /*
987 * identify the players
988 */
989
990 amap = ufi->entry->aref.ar_amap; /* upper layer */
991 uobj = ufi->entry->object.uvm_obj; /* lower layer */
992
993 /*
994 * check for a case 0 fault. if nothing backing the entry then
995 * error now.
996 */
997
998 if (amap == NULL && uobj == NULL) {
999 uvmfault_unlockmaps(ufi, false);
1000 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
1001 return EFAULT;
1002 }
1003
1004 /*
1005 * establish range of interest based on advice from mapper
1006 * and then clip to fit map entry. note that we only want
1007 * to do this the first time through the fault. if we
1008 * ReFault we will disable this by setting "narrow" to true.
1009 */
1010
1011 if (flt->narrow == false) {
1012
1013 /* wide fault (!narrow) */
1014 KASSERT(uvmadvice[ufi->entry->advice].advice ==
1015 ufi->entry->advice);
1016 nback = MIN(uvmadvice[ufi->entry->advice].nback,
1017 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1018 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1019 /*
1020 * note: "-1" because we don't want to count the
1021 * faulting page as forw
1022 */
1023 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1024 ((ufi->entry->end - ufi->orig_rvaddr) >>
1025 PAGE_SHIFT) - 1);
1026 flt->npages = nback + nforw + 1;
1027 flt->centeridx = nback;
1028
1029 flt->narrow = true; /* ensure only once per-fault */
1030
1031 } else {
1032
1033 /* narrow fault! */
1034 nback = nforw = 0;
1035 flt->startva = ufi->orig_rvaddr;
1036 flt->npages = 1;
1037 flt->centeridx = 0;
1038
1039 }
1040 /* offset from entry's start to pgs' start */
1041 const voff_t eoff = flt->startva - ufi->entry->start;
1042
1043 /* locked: maps(read) */
1044 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
1045 flt->narrow, nback, nforw, flt->startva);
1046 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1047 amap, uobj, 0);
1048
1049 /*
1050 * if we've got an amap, lock it and extract current anons.
1051 */
1052
1053 if (amap) {
1054 amap_lock(amap);
1055 KASSERT(uobj == NULL || amap->am_obj_lock == NULL);
1056 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1057 } else {
1058 *ranons = NULL; /* to be safe */
1059 }
1060
1061 /* locked: maps(read), amap(if there) */
1062 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1063
1064 /*
1065 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1066 * now and then forget about them (for the rest of the fault).
1067 */
1068
1069 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1070
1071 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1072 0,0,0,0);
1073 /* flush back-page anons? */
1074 if (amap)
1075 uvmfault_anonflush(*ranons, nback);
1076
1077 /* flush object? */
1078 if (uobj) {
1079 voff_t uoff;
1080
1081 uoff = ufi->entry->offset + eoff;
1082 mutex_enter(uobj->vmobjlock);
1083 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1084 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1085 }
1086
1087 /* now forget about the backpages */
1088 if (amap)
1089 *ranons += nback;
1090 flt->startva += (nback << PAGE_SHIFT);
1091 flt->npages -= nback;
1092 flt->centeridx = 0;
1093 }
1094 /*
1095 * => startva is fixed
1096 * => npages is fixed
1097 */
1098 KASSERT(flt->startva <= ufi->orig_rvaddr);
1099 KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1100 flt->startva + (flt->npages << PAGE_SHIFT));
1101 return 0;
1102 }
1103
1104 /*
1105 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1106 *
1107 * iterate range of interest:
1108 * 1. check if h/w mapping exists. if yes, we don't care
1109 * 2. check if anon exists. if not, page is lower.
1110 * 3. if anon exists, enter h/w mapping for neighbors.
1111 *
1112 * => called with amap locked (if exists).
1113 */
1114
1115 static int
1116 uvm_fault_upper_lookup(
1117 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1118 struct vm_anon **anons, struct vm_page **pages)
1119 {
1120 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1121 int lcv;
1122 vaddr_t currva;
1123 bool shadowed;
1124 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1125
1126 /* locked: maps(read), amap(if there) */
1127 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1128
1129 /*
1130 * map in the backpages and frontpages we found in the amap in hopes
1131 * of preventing future faults. we also init the pages[] array as
1132 * we go.
1133 */
1134
1135 currva = flt->startva;
1136 shadowed = false;
1137 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1138 /*
1139 * don't play with VAs that are already mapped
1140 * (except for center)
1141 */
1142 if (lcv != flt->centeridx &&
1143 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1144 pages[lcv] = PGO_DONTCARE;
1145 continue;
1146 }
1147
1148 /*
1149 * unmapped or center page. check if any anon at this level.
1150 */
1151 if (amap == NULL || anons[lcv] == NULL) {
1152 pages[lcv] = NULL;
1153 continue;
1154 }
1155
1156 /*
1157 * check for present page and map if possible. re-activate it.
1158 */
1159
1160 pages[lcv] = PGO_DONTCARE;
1161 if (lcv == flt->centeridx) { /* save center for later! */
1162 shadowed = true;
1163 continue;
1164 }
1165
1166 struct vm_anon *anon = anons[lcv];
1167 struct vm_page *pg = anon->an_page;
1168
1169 KASSERT(anon->an_lock == amap->am_lock);
1170
1171 /* Ignore loaned and busy pages. */
1172 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
1173 uvm_fault_upper_neighbor(ufi, flt, currva,
1174 pg, anon->an_ref > 1);
1175 }
1176 }
1177
1178 /* locked: maps(read), amap(if there) */
1179 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1180 /* (shadowed == true) if there is an anon at the faulting address */
1181 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1182 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1183
1184 /*
1185 * note that if we are really short of RAM we could sleep in the above
1186 * call to pmap_enter with everything locked. bad?
1187 *
1188 * XXX Actually, that is bad; pmap_enter() should just fail in that
1189 * XXX case. --thorpej
1190 */
1191
1192 return 0;
1193 }
1194
1195 /*
1196 * uvm_fault_upper_neighbor: enter single lower neighbor page.
1197 *
1198 * => called with amap and anon locked.
1199 */
1200
1201 static void
1202 uvm_fault_upper_neighbor(
1203 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1204 vaddr_t currva, struct vm_page *pg, bool readonly)
1205 {
1206 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1207
1208 /* locked: amap, anon */
1209 KASSERT(pg->uobject == NULL);
1210 KASSERT(pg->uanon != NULL);
1211 KASSERT(mutex_owned(pg->uanon->an_lock));
1212 KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
1213 mutex_enter(&uvm_pageqlock);
1214 uvm_pageenqueue(pg);
1215 mutex_exit(&uvm_pageqlock);
1216 UVMHIST_LOG(maphist,
1217 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1218 ufi->orig_map->pmap, currva, pg, 0);
1219 uvmexp.fltnamap++;
1220
1221 /*
1222 * Since this page isn't the page that's actually faulting,
1223 * ignore pmap_enter() failures; it's not critical that we
1224 * enter these right now.
1225 */
1226
1227 (void) pmap_enter(ufi->orig_map->pmap, currva,
1228 VM_PAGE_TO_PHYS(pg),
1229 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1230 flt->enter_prot,
1231 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1232
1233 pmap_update(ufi->orig_map->pmap);
1234 }
1235
1236 /*
1237 * uvm_fault_upper: handle upper fault.
1238 *
1239 * 1. acquire anon lock.
1240 * 2. get anon. let uvmfault_anonget do the dirty work.
1241 * 3. handle loan.
1242 * 4. dispatch direct or promote handlers.
1243 */
1244
1245 static int
1246 uvm_fault_upper(
1247 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1248 struct vm_anon **anons)
1249 {
1250 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1251 struct vm_anon * const anon = anons[flt->centeridx];
1252 struct uvm_object *uobj;
1253 int error;
1254 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1255
1256 /* locked: maps(read), amap, anon */
1257 KASSERT(mutex_owned(amap->am_lock));
1258 KASSERT(anon->an_lock == amap->am_lock);
1259
1260 /*
1261 * handle case 1: fault on an anon in our amap
1262 */
1263
1264 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1265
1266 /*
1267 * no matter if we have case 1A or case 1B we are going to need to
1268 * have the anon's memory resident. ensure that now.
1269 */
1270
1271 /*
1272 * let uvmfault_anonget do the dirty work.
1273 * if it fails (!OK) it will unlock everything for us.
1274 * if it succeeds, locks are still valid and locked.
1275 * also, if it is OK, then the anon's page is on the queues.
1276 * if the page is on loan from a uvm_object, then anonget will
1277 * lock that object for us if it does not fail.
1278 */
1279
1280 error = uvmfault_anonget(ufi, amap, anon);
1281 switch (error) {
1282 case 0:
1283 break;
1284
1285 case ERESTART:
1286 return ERESTART;
1287
1288 case EAGAIN:
1289 kpause("fltagain1", false, hz/2, NULL);
1290 return ERESTART;
1291
1292 default:
1293 return error;
1294 }
1295
1296 /*
1297 * uobj is non null if the page is on loan from an object (i.e. uobj)
1298 */
1299
1300 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1301
1302 /* locked: maps(read), amap, anon, uobj(if one) */
1303 KASSERT(mutex_owned(amap->am_lock));
1304 KASSERT(anon->an_lock == amap->am_lock);
1305 KASSERT(uobj == NULL || amap->am_obj_lock == uobj->vmobjlock);
1306 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1307
1308 /*
1309 * special handling for loaned pages
1310 */
1311
1312 if (anon->an_page->loan_count) {
1313 error = uvm_fault_upper_loan(ufi, flt, anon);
1314 if (error != 0)
1315 return error;
1316 }
1317
1318 /*
1319 * if we are case 1B then we will need to allocate a new blank
1320 * anon to transfer the data into. note that we have a lock
1321 * on anon, so no one can busy or release the page until we are done.
1322 * also note that the ref count can't drop to zero here because
1323 * it is > 1 and we are only dropping one ref.
1324 *
1325 * in the (hopefully very rare) case that we are out of RAM we
1326 * will unlock, wait for more RAM, and refault.
1327 *
1328 * if we are out of anon VM we kill the process (XXX: could wait?).
1329 */
1330
1331 if (flt->cow_now && anon->an_ref > 1) {
1332 flt->promote = true;
1333 error = uvm_fault_upper_promote(ufi, flt, anon);
1334 } else {
1335 error = uvm_fault_upper_direct(ufi, flt, anon);
1336 }
1337 return error;
1338 }
1339
1340 /*
1341 * uvm_fault_upper_loan: handle loaned upper page.
1342 *
1343 * 1. if not cow'ing now, simply adjust flt->enter_prot.
1344 * 2. if cow'ing now, and if ref count is 1, break loan.
1345 */
1346
1347 static int
1348 uvm_fault_upper_loan(
1349 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1350 struct vm_anon *anon)
1351 {
1352 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1353 int error = 0;
1354 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1355
1356 if (!flt->cow_now) {
1357
1358 /*
1359 * for read faults on loaned pages we just cap the
1360 * protection at read-only.
1361 */
1362
1363 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1364
1365 } else {
1366 /*
1367 * note that we can't allow writes into a loaned page!
1368 *
1369 * if we have a write fault on a loaned page in an
1370 * anon then we need to look at the anon's ref count.
1371 * if it is greater than one then we are going to do
1372 * a normal copy-on-write fault into a new anon (this
1373 * is not a problem). however, if the reference count
1374 * is one (a case where we would normally allow a
1375 * write directly to the page) then we need to kill
1376 * the loan before we continue.
1377 */
1378
1379 /* >1 case is already ok */
1380 if (anon->an_ref == 1) {
1381 struct uvm_object * const uobj __unused =
1382 anon->an_page->uobject;
1383
1384 KASSERT(uobj == NULL ||
1385 uobj->vmobjlock == amap->am_obj_lock);
1386 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1387 error = uvm_loanbreak_anon(anon);
1388 if (error != 0) {
1389 uvmfault_unlockall(ufi, amap, NULL);
1390 uvm_wait("flt_noram2");
1391 return ERESTART;
1392 }
1393 /* if we were a loan reciever uobj is gone */
1394 KASSERT(anon->an_page->uobject == NULL);
1395 }
1396 }
1397 return error;
1398 }
1399
1400 /*
1401 * uvm_fault_upper_promote: promote upper page.
1402 *
1403 * 1. call uvmfault_promote.
1404 * 2. enqueue page.
1405 * 3. deref.
1406 * 4. pass page to uvm_fault_upper_enter.
1407 */
1408
1409 static int
1410 uvm_fault_upper_promote(
1411 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1412 struct vm_anon *anon)
1413 {
1414 struct vm_anon * const oanon = anon;
1415 struct vm_page *pg;
1416 int error;
1417 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1418
1419 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1420 uvmexp.flt_acow++;
1421
1422 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1423 &flt->anon_spare);
1424 switch (error) {
1425 case 0:
1426 break;
1427 case ERESTART:
1428 return ERESTART;
1429 default:
1430 return error;
1431 }
1432
1433 KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
1434
1435 pg = anon->an_page;
1436 mutex_enter(&uvm_pageqlock);
1437 uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
1438 mutex_exit(&uvm_pageqlock);
1439 pg->flags &= ~(PG_BUSY|PG_FAKE);
1440 UVM_PAGE_OWN(pg, NULL);
1441
1442 /* deref: can not drop to zero here by defn! */
1443 KASSERT(oanon->an_ref > 1);
1444 oanon->an_ref--;
1445
1446 /*
1447 * note: oanon is still locked, as is the new anon. we
1448 * need to check for this later when we unlock oanon; if
1449 * oanon != anon, we'll have to unlock anon, too.
1450 */
1451
1452 return uvm_fault_upper_enter(ufi, flt, anon, pg, oanon);
1453 }
1454
1455 /*
1456 * uvm_fault_upper_direct: handle direct fault.
1457 */
1458
1459 static int
1460 uvm_fault_upper_direct(
1461 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1462 struct vm_anon *anon)
1463 {
1464 struct vm_anon * const oanon = anon;
1465 struct vm_page *pg;
1466 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1467
1468 uvmexp.flt_anon++;
1469 pg = anon->an_page;
1470 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1471 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1472
1473 return uvm_fault_upper_enter(ufi, flt, anon, pg, oanon);
1474 }
1475
1476 /*
1477 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1478 */
1479
1480 static int
1481 uvm_fault_upper_enter(
1482 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1483 struct vm_anon *anon, struct vm_page *pg, struct vm_anon *oanon)
1484 {
1485 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1486 struct uvm_object *uobj __unused = pg->uobject;
1487 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1488
1489 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1490 KASSERT(mutex_owned(amap->am_lock));
1491 KASSERT(anon->an_lock == amap->am_lock);
1492 KASSERT(oanon->an_lock == amap->am_lock);
1493 KASSERT(uobj == NULL || amap->am_obj_lock == uobj->vmobjlock);
1494 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1495 KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
1496
1497 /*
1498 * now map the page in.
1499 */
1500
1501 UVMHIST_LOG(maphist,
1502 " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1503 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1504 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1505 VM_PAGE_TO_PHYS(pg),
1506 flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1507 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1508
1509 /*
1510 * No need to undo what we did; we can simply think of
1511 * this as the pmap throwing away the mapping information.
1512 *
1513 * We do, however, have to go through the ReFault path,
1514 * as the map may change while we're asleep.
1515 */
1516
1517 uvmfault_unlockall(ufi, amap, NULL);
1518 if (!uvm_reclaimable()) {
1519 UVMHIST_LOG(maphist,
1520 "<- failed. out of VM",0,0,0,0);
1521 /* XXX instrumentation */
1522 return ENOMEM;
1523 }
1524 /* XXX instrumentation */
1525 uvm_wait("flt_pmfail1");
1526 return ERESTART;
1527 }
1528
1529 uvm_fault_upper_done(ufi, flt, anon, pg);
1530
1531 /*
1532 * done case 1! finish up by unlocking everything and returning success
1533 */
1534
1535 pmap_update(ufi->orig_map->pmap);
1536 uvmfault_unlockall(ufi, amap, NULL);
1537 return 0;
1538 }
1539
1540 /*
1541 * uvm_fault_upper_done: queue upper center page.
1542 */
1543
1544 static void
1545 uvm_fault_upper_done(
1546 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1547 struct vm_anon *anon, struct vm_page *pg)
1548 {
1549 const bool wire_paging = flt->wire_paging;
1550
1551 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1552
1553 /*
1554 * ... update the page queues.
1555 */
1556
1557 mutex_enter(&uvm_pageqlock);
1558 if (wire_paging) {
1559 uvm_pagewire(pg);
1560
1561 /*
1562 * since the now-wired page cannot be paged out,
1563 * release its swap resources for others to use.
1564 * since an anon with no swap cannot be clean,
1565 * mark it dirty now.
1566 */
1567
1568 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1569 } else {
1570 uvm_pageactivate(pg);
1571 }
1572 mutex_exit(&uvm_pageqlock);
1573
1574 if (wire_paging) {
1575 uvm_anon_dropswap(anon);
1576 }
1577 }
1578
1579 /*
1580 * uvm_fault_lower: handle lower fault.
1581 *
1582 * 1. check uobj
1583 * 1.1. if null, ZFOD.
1584 * 1.2. if not null, look up unnmapped neighbor pages.
1585 * 2. for center page, check if promote.
1586 * 2.1. ZFOD always needs promotion.
1587 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1588 * 3. if uobj is not ZFOD and page is not found, do i/o.
1589 * 4. dispatch either direct / promote fault.
1590 */
1591
1592 static int
1593 uvm_fault_lower(
1594 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1595 struct vm_page **pages)
1596 {
1597 #ifdef DIAGNOSTIC
1598 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1599 #endif
1600 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1601 struct vm_page *uobjpage;
1602 int error;
1603 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1604
1605 /*
1606 * now, if the desired page is not shadowed by the amap and we have
1607 * a backing object that does not have a special fault routine, then
1608 * we ask (with pgo_get) the object for resident pages that we care
1609 * about and attempt to map them in. we do not let pgo_get block
1610 * (PGO_LOCKED).
1611 */
1612
1613 if (uobj == NULL) {
1614 /* zero fill; don't care neighbor pages */
1615 uobjpage = NULL;
1616 } else {
1617 uvm_fault_lower_lookup(ufi, flt, pages);
1618 uobjpage = pages[flt->centeridx];
1619 }
1620
1621 /*
1622 * note that at this point we are done with any front or back pages.
1623 * we are now going to focus on the center page (i.e. the one we've
1624 * faulted on). if we have faulted on the upper (anon) layer
1625 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1626 * not touched it yet). if we have faulted on the bottom (uobj)
1627 * layer [i.e. case 2] and the page was both present and available,
1628 * then we've got a pointer to it as "uobjpage" and we've already
1629 * made it BUSY.
1630 */
1631
1632 /*
1633 * locked:
1634 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1635 */
1636 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1637 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1638 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1639
1640 /*
1641 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1642 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1643 * have a backing object, check and see if we are going to promote
1644 * the data up to an anon during the fault.
1645 */
1646
1647 if (uobj == NULL) {
1648 uobjpage = PGO_DONTCARE;
1649 flt->promote = true; /* always need anon here */
1650 } else {
1651 KASSERT(uobjpage != PGO_DONTCARE);
1652 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1653 }
1654 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1655 flt->promote, (uobj == NULL), 0,0);
1656
1657 /*
1658 * if uobjpage is not null then we do not need to do I/O to get the
1659 * uobjpage.
1660 *
1661 * if uobjpage is null, then we need to unlock and ask the pager to
1662 * get the data for us. once we have the data, we need to reverify
1663 * the state the world. we are currently not holding any resources.
1664 */
1665
1666 if (uobjpage) {
1667 /* update rusage counters */
1668 curlwp->l_ru.ru_minflt++;
1669 } else {
1670 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1671 if (error != 0)
1672 return error;
1673 }
1674
1675 /*
1676 * locked:
1677 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1678 */
1679 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1680 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1681 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1682
1683 /*
1684 * notes:
1685 * - at this point uobjpage can not be NULL
1686 * - at this point uobjpage can not be PG_RELEASED (since we checked
1687 * for it above)
1688 * - at this point uobjpage could be PG_WANTED (handle later)
1689 */
1690
1691 KASSERT(uobjpage != NULL);
1692 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1693 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1694 uvm_pagegetdirty(uobjpage) == UVM_PAGE_STATUS_CLEAN);
1695
1696 if (!flt->promote) {
1697 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1698 } else {
1699 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1700 }
1701 return error;
1702 }
1703
1704 /*
1705 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1706 *
1707 * 1. get on-memory pages.
1708 * 2. if failed, give up (get only center page later).
1709 * 3. if succeeded, enter h/w mapping of neighbor pages.
1710 */
1711
1712 static void
1713 uvm_fault_lower_lookup(
1714 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1715 struct vm_page **pages)
1716 {
1717 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1718 int lcv, gotpages;
1719 vaddr_t currva;
1720 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1721
1722 mutex_enter(uobj->vmobjlock);
1723 /* Locked: maps(read), amap(if there), uobj */
1724
1725 uvmexp.fltlget++;
1726 gotpages = flt->npages;
1727 (void) uobj->pgops->pgo_get(uobj,
1728 ufi->entry->offset + flt->startva - ufi->entry->start,
1729 pages, &gotpages, flt->centeridx,
1730 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1731
1732 KASSERT(mutex_owned(uobj->vmobjlock));
1733
1734 /*
1735 * check for pages to map, if we got any
1736 */
1737
1738 if (gotpages == 0) {
1739 pages[flt->centeridx] = NULL;
1740 return;
1741 }
1742
1743 currva = flt->startva;
1744 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1745 struct vm_page *curpg;
1746
1747 curpg = pages[lcv];
1748 if (curpg == NULL || curpg == PGO_DONTCARE) {
1749 continue;
1750 }
1751 KASSERT(curpg->uobject == uobj);
1752
1753 /*
1754 * if center page is resident and not PG_BUSY|PG_RELEASED
1755 * then pgo_get made it PG_BUSY for us and gave us a handle
1756 * to it.
1757 */
1758
1759 if (lcv == flt->centeridx) {
1760 UVMHIST_LOG(maphist, " got uobjpage "
1761 "(0x%x) with locked get",
1762 curpg, 0,0,0);
1763 } else {
1764 uvm_fault_lower_neighbor(ufi, flt, currva, curpg);
1765 }
1766 }
1767 pmap_update(ufi->orig_map->pmap);
1768 }
1769
1770 /*
1771 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1772 */
1773
1774 static void
1775 uvm_fault_lower_neighbor(
1776 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1777 vaddr_t currva, struct vm_page *pg)
1778 {
1779 const bool readonly = uvm_pagereadonly_p(pg) || pg->loan_count > 0;
1780 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1781
1782 /* locked: maps(read), amap(if there), uobj */
1783
1784 /*
1785 * calling pgo_get with PGO_LOCKED returns us pages which
1786 * are neither busy nor released, so we don't need to check
1787 * for this. we can just directly enter the pages.
1788 */
1789
1790 mutex_enter(&uvm_pageqlock);
1791 uvm_pageenqueue(pg);
1792 mutex_exit(&uvm_pageqlock);
1793 UVMHIST_LOG(maphist,
1794 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1795 ufi->orig_map->pmap, currva, pg, 0);
1796 uvmexp.fltnomap++;
1797
1798 /*
1799 * Since this page isn't the page that's actually faulting,
1800 * ignore pmap_enter() failures; it's not critical that we
1801 * enter these right now.
1802 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1803 * held the lock the whole time we've had the handle.
1804 */
1805 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1806 KASSERT((pg->flags & PG_RELEASED) == 0);
1807 KASSERT((pg->flags & PG_WANTED) == 0);
1808 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
1809 uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN);
1810 pg->flags &= ~(PG_BUSY);
1811 UVM_PAGE_OWN(pg, NULL);
1812
1813 KASSERT(mutex_owned(pg->uobject->vmobjlock));
1814 (void) pmap_enter(ufi->orig_map->pmap, currva,
1815 VM_PAGE_TO_PHYS(pg),
1816 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1817 flt->enter_prot & MASK(ufi->entry),
1818 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1819 }
1820
1821 /*
1822 * uvm_fault_lower_io: get lower page from backing store.
1823 *
1824 * 1. unlock everything, because i/o will block.
1825 * 2. call pgo_get.
1826 * 3. if failed, recover.
1827 * 4. if succeeded, relock everything and verify things.
1828 */
1829
1830 static int
1831 uvm_fault_lower_io(
1832 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1833 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1834 {
1835 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1836 struct uvm_object *uobj = *ruobj;
1837 struct vm_page *pg;
1838 bool locked;
1839 int gotpages;
1840 int error;
1841 voff_t uoff;
1842 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1843
1844 /* update rusage counters */
1845 curlwp->l_ru.ru_majflt++;
1846
1847 /* Locked: maps(read), amap(if there), uobj */
1848 uvmfault_unlockall(ufi, amap, NULL);
1849
1850 /* Locked: uobj */
1851 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1852
1853 uvmexp.fltget++;
1854 gotpages = 1;
1855 pg = NULL;
1856 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1857 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1858 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1859 PGO_SYNCIO);
1860 /* locked: pg(if no error) */
1861
1862 /*
1863 * recover from I/O
1864 */
1865
1866 if (error) {
1867 if (error == EAGAIN) {
1868 UVMHIST_LOG(maphist,
1869 " pgo_get says TRY AGAIN!",0,0,0,0);
1870 kpause("fltagain2", false, hz/2, NULL);
1871 return ERESTART;
1872 }
1873
1874 #if 0
1875 KASSERT(error != ERESTART);
1876 #else
1877 /* XXXUEBS don't re-fault? */
1878 if (error == ERESTART)
1879 error = EIO;
1880 #endif
1881
1882 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1883 error, 0,0,0);
1884 return error;
1885 }
1886
1887 /*
1888 * re-verify the state of the world by first trying to relock
1889 * the maps. always relock the object.
1890 */
1891
1892 locked = uvmfault_relock(ufi);
1893 if (locked && amap)
1894 amap_lock(amap);
1895
1896 /* might be changed */
1897 uobj = pg->uobject;
1898
1899 mutex_enter(uobj->vmobjlock);
1900 KASSERT((pg->flags & PG_BUSY) != 0);
1901
1902 mutex_enter(&uvm_pageqlock);
1903 uvm_pageactivate(pg);
1904 mutex_exit(&uvm_pageqlock);
1905
1906 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1907 /* locked(!locked): uobj, pg */
1908
1909 /*
1910 * verify that the page has not be released and re-verify
1911 * that amap slot is still free. if there is a problem,
1912 * we unlock and clean up.
1913 */
1914
1915 if ((pg->flags & PG_RELEASED) != 0 ||
1916 (locked && amap && amap_lookup(&ufi->entry->aref,
1917 ufi->orig_rvaddr - ufi->entry->start))) {
1918 if (locked)
1919 uvmfault_unlockall(ufi, amap, NULL);
1920 locked = false;
1921 }
1922
1923 /*
1924 * didn't get the lock? release the page and retry.
1925 */
1926
1927 if (locked == false) {
1928 UVMHIST_LOG(maphist,
1929 " wasn't able to relock after fault: retry",
1930 0,0,0,0);
1931 if (pg->flags & PG_WANTED) {
1932 wakeup(pg);
1933 }
1934 if ((pg->flags & PG_RELEASED) == 0) {
1935 pg->flags &= ~(PG_BUSY | PG_WANTED);
1936 UVM_PAGE_OWN(pg, NULL);
1937 } else {
1938 uvmexp.fltpgrele++;
1939 uvm_pagefree(pg);
1940 }
1941 mutex_exit(uobj->vmobjlock);
1942 return ERESTART;
1943 }
1944
1945 /*
1946 * we have the data in pg which is busy and
1947 * not released. we are holding object lock (so the page
1948 * can't be released on us).
1949 */
1950
1951 /* locked: maps(read), amap(if !null), uobj, pg */
1952
1953 *ruobj = uobj;
1954 *ruobjpage = pg;
1955 return 0;
1956 }
1957
1958 /*
1959 * uvm_fault_lower_direct: fault lower center page
1960 *
1961 * 1. adjust flt->enter_prot.
1962 * 2. if page is loaned, resolve.
1963 */
1964
1965 int
1966 uvm_fault_lower_direct(
1967 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1968 struct uvm_object *uobj, struct vm_page *uobjpage)
1969 {
1970 struct vm_page *pg;
1971 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1972
1973 /*
1974 * we are not promoting. if the mapping is COW ensure that we
1975 * don't give more access than we should (e.g. when doing a read
1976 * fault on a COPYONWRITE mapping we want to map the COW page in
1977 * R/O even though the entry protection could be R/W).
1978 *
1979 * set "pg" to the page we want to map in (uobjpage, usually)
1980 */
1981
1982 uvmexp.flt_obj++;
1983 if (UVM_ET_ISCOPYONWRITE(ufi->entry))
1984 flt->enter_prot &= ~VM_PROT_WRITE;
1985 pg = uobjpage; /* map in the actual object */
1986
1987 KASSERT(uobjpage != PGO_DONTCARE);
1988
1989 /*
1990 * we are faulting directly on the page. be careful
1991 * about writing to loaned pages...
1992 */
1993
1994 if (uobjpage->loan_count) {
1995 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1996 }
1997 KASSERT(pg == uobjpage);
1998
1999 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2000 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
2001 }
2002
2003 /*
2004 * uvm_fault_lower_direct_loan: resolve loaned page.
2005 *
2006 * 1. if not cow'ing, adjust flt->enter_prot.
2007 * 2. if cow'ing, break loan.
2008 */
2009
2010 static int
2011 uvm_fault_lower_direct_loan(
2012 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2013 struct uvm_object *uobj, struct vm_page **rpg,
2014 struct vm_page **ruobjpage)
2015 {
2016 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2017 struct vm_page *pg;
2018 struct vm_page *uobjpage = *ruobjpage;
2019 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
2020
2021 if (!flt->cow_now) {
2022 /* read fault: cap the protection at readonly */
2023 /* cap! */
2024 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2025 } else {
2026 /* write fault: must break the loan here */
2027
2028 pg = uvm_loanbreak(uobjpage);
2029 if (pg == NULL) {
2030
2031 /*
2032 * drop ownership of page, it can't be released
2033 */
2034
2035 if (uobjpage->flags & PG_WANTED)
2036 wakeup(uobjpage);
2037 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2038 UVM_PAGE_OWN(uobjpage, NULL);
2039
2040 uvmfault_unlockall(ufi, amap, uobj);
2041 UVMHIST_LOG(maphist,
2042 " out of RAM breaking loan, waiting",
2043 0,0,0,0);
2044 uvmexp.fltnoram++;
2045 uvm_wait("flt_noram4");
2046 return ERESTART;
2047 }
2048 *rpg = pg;
2049 *ruobjpage = pg;
2050 }
2051 return 0;
2052 }
2053
2054 /*
2055 * uvm_fault_lower_promote: promote lower page.
2056 *
2057 * 1. call uvmfault_promote.
2058 * 2. fill in data.
2059 * 3. if not ZFOD, dispose old page.
2060 */
2061
2062 int
2063 uvm_fault_lower_promote(
2064 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2065 struct uvm_object *uobj, struct vm_page *uobjpage)
2066 {
2067 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2068 struct vm_anon *anon;
2069 struct vm_page *pg;
2070 int error;
2071 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2072
2073 KASSERT(amap != NULL);
2074
2075 /*
2076 * If we are going to promote the data to an anon we
2077 * allocate a blank anon here and plug it into our amap.
2078 */
2079 error = uvmfault_promote(ufi, NULL, uobjpage,
2080 &anon, &flt->anon_spare);
2081 switch (error) {
2082 case 0:
2083 break;
2084 case ERESTART:
2085 return ERESTART;
2086 default:
2087 return error;
2088 }
2089
2090 pg = anon->an_page;
2091
2092 /*
2093 * Fill in the data.
2094 */
2095 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2096
2097 if (uobjpage != PGO_DONTCARE) {
2098 uvmexp.flt_prcopy++;
2099
2100 /*
2101 * promote to shared amap? make sure all sharing
2102 * procs see it
2103 */
2104
2105 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2106 pmap_page_protect(uobjpage, VM_PROT_NONE);
2107 /*
2108 * XXX: PAGE MIGHT BE WIRED!
2109 */
2110 }
2111
2112 /*
2113 * dispose of uobjpage. it can't be PG_RELEASED
2114 * since we still hold the object lock.
2115 */
2116
2117 if (uobjpage->flags & PG_WANTED) {
2118 /* still have the obj lock */
2119 wakeup(uobjpage);
2120 }
2121 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2122 UVM_PAGE_OWN(uobjpage, NULL);
2123
2124 UVMHIST_LOG(maphist,
2125 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2126 uobjpage, anon, pg, 0);
2127
2128 } else {
2129 uvmexp.flt_przero++;
2130
2131 /*
2132 * Page is zero'd and marked dirty by
2133 * uvmfault_promote().
2134 */
2135
2136 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2137 anon, pg, 0, 0);
2138 }
2139
2140 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2141 }
2142
2143 /*
2144 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2145 * from the lower page.
2146 */
2147
2148 int
2149 uvm_fault_lower_enter(
2150 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2151 struct uvm_object *uobj,
2152 struct vm_anon *anon, struct vm_page *pg)
2153 {
2154 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2155 const bool readonly = uvm_pagereadonly_p(pg);
2156 int error;
2157 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2158
2159 /*
2160 * Locked:
2161 *
2162 * maps(read), amap(if !null), uobj(if !null),
2163 * anon(if !null), pg(if anon), unlock_uobj(if !null)
2164 *
2165 * Note: pg is either the uobjpage or the new page in the new anon.
2166 */
2167 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
2168 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
2169 KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2170 KASSERT((pg->flags & PG_BUSY) != 0);
2171
2172 /*
2173 * all resources are present. we can now map it in and free our
2174 * resources.
2175 */
2176
2177 UVMHIST_LOG(maphist,
2178 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2179 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2180 KASSERTMSG((flt->access_type & VM_PROT_WRITE) == 0 || !readonly,
2181 "promote=%u cow_now=%u access_type=%x enter_prot=%x cow=%u "
2182 "entry=%p map=%p orig_rvaddr=%p pg=%p",
2183 flt->promote, flt->cow_now, flt->access_type, flt->enter_prot,
2184 UVM_ET_ISCOPYONWRITE(ufi->entry), ufi->entry, ufi->orig_map,
2185 (void *)ufi->orig_rvaddr, pg);
2186 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 || !readonly);
2187 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2188 VM_PAGE_TO_PHYS(pg),
2189 readonly ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2190 flt->access_type | PMAP_CANFAIL |
2191 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2192
2193 /*
2194 * No need to undo what we did; we can simply think of
2195 * this as the pmap throwing away the mapping information.
2196 *
2197 * We do, however, have to go through the ReFault path,
2198 * as the map may change while we're asleep.
2199 */
2200
2201 /*
2202 * ensure that the page is queued in the case that
2203 * we just promoted the page.
2204 */
2205
2206 mutex_enter(&uvm_pageqlock);
2207 uvm_pageenqueue(pg);
2208 mutex_exit(&uvm_pageqlock);
2209
2210 if (pg->flags & PG_WANTED)
2211 wakeup(pg);
2212
2213 /*
2214 * note that pg can't be PG_RELEASED since we did not drop
2215 * the object lock since the last time we checked.
2216 */
2217 KASSERT((pg->flags & PG_RELEASED) == 0);
2218
2219 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2220 UVM_PAGE_OWN(pg, NULL);
2221
2222 uvmfault_unlockall(ufi, amap, uobj);
2223 if (!uvm_reclaimable()) {
2224 UVMHIST_LOG(maphist,
2225 "<- failed. out of VM",0,0,0,0);
2226 /* XXX instrumentation */
2227 error = ENOMEM;
2228 return error;
2229 }
2230 /* XXX instrumentation */
2231 uvm_wait("flt_pmfail2");
2232 return ERESTART;
2233 }
2234
2235 uvm_fault_lower_done(ufi, flt, uobj, pg);
2236
2237 /*
2238 * note that pg can't be PG_RELEASED since we did not drop the object
2239 * lock since the last time we checked.
2240 */
2241 KASSERT((pg->flags & PG_RELEASED) == 0);
2242 if (pg->flags & PG_WANTED)
2243 wakeup(pg);
2244 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2245 UVM_PAGE_OWN(pg, NULL);
2246
2247 pmap_update(ufi->orig_map->pmap);
2248 uvmfault_unlockall(ufi, amap, uobj);
2249
2250 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2251 return 0;
2252 }
2253
2254 /*
2255 * uvm_fault_lower_done: queue lower center page.
2256 */
2257
2258 void
2259 uvm_fault_lower_done(
2260 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2261 struct uvm_object *uobj, struct vm_page *pg)
2262 {
2263 bool dropswap = false;
2264
2265 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2266
2267 mutex_enter(&uvm_pageqlock);
2268 if (flt->wire_paging) {
2269 uvm_pagewire(pg);
2270 if (pg->pqflags & PQ_AOBJ) {
2271
2272 /*
2273 * since the now-wired page cannot be paged out,
2274 * release its swap resources for others to use.
2275 * since an aobj page with no swap cannot be clean,
2276 * mark it dirty now.
2277 */
2278
2279 KASSERT(uobj != NULL);
2280 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
2281 dropswap = true;
2282 }
2283 } else {
2284 uvm_pageactivate(pg);
2285 }
2286 mutex_exit(&uvm_pageqlock);
2287
2288 if (dropswap) {
2289 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2290 }
2291 }
2292
2293
2294 /*
2295 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2296 *
2297 * => map may be read-locked by caller, but MUST NOT be write-locked.
2298 * => if map is read-locked, any operations which may cause map to
2299 * be write-locked in uvm_fault() must be taken care of by
2300 * the caller. See uvm_map_pageable().
2301 */
2302
2303 int
2304 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2305 vm_prot_t access_type, int maxprot)
2306 {
2307 vaddr_t va;
2308 int error;
2309
2310 /*
2311 * now fault it in a page at a time. if the fault fails then we have
2312 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2313 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2314 */
2315
2316 /*
2317 * XXX work around overflowing a vaddr_t. this prevents us from
2318 * wiring the last page in the address space, though.
2319 */
2320 if (start > end) {
2321 return EFAULT;
2322 }
2323
2324 for (va = start; va < end; va += PAGE_SIZE) {
2325 error = uvm_fault_internal(map, va, access_type,
2326 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2327 if (error) {
2328 if (va != start) {
2329 uvm_fault_unwire(map, start, va);
2330 }
2331 return error;
2332 }
2333 }
2334 return 0;
2335 }
2336
2337 /*
2338 * uvm_fault_unwire(): unwire range of virtual space.
2339 */
2340
2341 void
2342 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2343 {
2344 vm_map_lock_read(map);
2345 uvm_fault_unwire_locked(map, start, end);
2346 vm_map_unlock_read(map);
2347 }
2348
2349 /*
2350 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2351 *
2352 * => map must be at least read-locked.
2353 */
2354
2355 void
2356 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2357 {
2358 struct vm_map_entry *entry, *oentry;
2359 pmap_t pmap = vm_map_pmap(map);
2360 vaddr_t va;
2361 paddr_t pa;
2362 struct vm_page *pg;
2363
2364 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2365
2366 /*
2367 * we assume that the area we are unwiring has actually been wired
2368 * in the first place. this means that we should be able to extract
2369 * the PAs from the pmap. we also lock out the page daemon so that
2370 * we can call uvm_pageunwire.
2371 */
2372
2373 /*
2374 * find the beginning map entry for the region.
2375 */
2376
2377 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2378 if (uvm_map_lookup_entry(map, start, &entry) == false)
2379 panic("uvm_fault_unwire_locked: address not in map");
2380
2381 oentry = NULL;
2382 for (va = start; va < end; va += PAGE_SIZE) {
2383 if (pmap_extract(pmap, va, &pa) == false)
2384 continue;
2385
2386 /*
2387 * find the map entry for the current address.
2388 */
2389
2390 KASSERT(va >= entry->start);
2391 while (va >= entry->end) {
2392 KASSERT(entry->next != &map->header &&
2393 entry->next->start <= entry->end);
2394 entry = entry->next;
2395 }
2396
2397 /*
2398 * lock it.
2399 */
2400
2401 if (entry != oentry) {
2402 if (oentry != NULL) {
2403 mutex_exit(&uvm_pageqlock);
2404 uvm_map_unlock_entry(oentry);
2405 }
2406 uvm_map_lock_entry(entry);
2407 mutex_enter(&uvm_pageqlock);
2408 oentry = entry;
2409 }
2410
2411 /*
2412 * if the entry is no longer wired, tell the pmap.
2413 */
2414
2415 if (VM_MAPENT_ISWIRED(entry) == 0)
2416 pmap_unwire(pmap, va);
2417
2418 pg = PHYS_TO_VM_PAGE(pa);
2419 if (pg)
2420 uvm_pageunwire(pg);
2421 }
2422
2423 if (oentry != NULL) {
2424 mutex_exit(&uvm_pageqlock);
2425 uvm_map_unlock_entry(entry);
2426 }
2427 }
2428