Home | History | Annotate | Line # | Download | only in uvm
uvm_fault.c revision 1.190.2.6
      1 /*	$NetBSD: uvm_fault.c,v 1.190.2.6 2014/05/22 11:41:19 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  *
     27  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
     28  */
     29 
     30 /*
     31  * uvm_fault.c: fault handler
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.190.2.6 2014/05/22 11:41:19 yamt Exp $");
     36 
     37 #include "opt_uvmhist.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/kernel.h>
     42 #include <sys/mman.h>
     43 
     44 #include <uvm/uvm.h>
     45 
     46 /*
     47  *
     48  * a word on page faults:
     49  *
     50  * types of page faults we handle:
     51  *
     52  * CASE 1: upper layer faults                   CASE 2: lower layer faults
     53  *
     54  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
     55  *    read/write1     write>1                  read/write   +-cow_write/zero
     56  *         |             |                         |        |
     57  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
     58  * amap |  V  |       |  ---------> new |          |        | |  ^  |
     59  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
     60  *                                                 |        |    |
     61  *      +-----+       +-----+                   +--|--+     | +--|--+
     62  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
     63  *      +-----+       +-----+                   +-----+       +-----+
     64  *
     65  * d/c = don't care
     66  *
     67  *   case [0]: layerless fault
     68  *	no amap or uobj is present.   this is an error.
     69  *
     70  *   case [1]: upper layer fault [anon active]
     71  *     1A: [read] or [write with anon->an_ref == 1]
     72  *		I/O takes place in upper level anon and uobj is not touched.
     73  *     1B: [write with anon->an_ref > 1]
     74  *		new anon is alloc'd and data is copied off ["COW"]
     75  *
     76  *   case [2]: lower layer fault [uobj]
     77  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
     78  *		I/O takes place directly in object.
     79  *     2B: [write to copy_on_write] or [read on NULL uobj]
     80  *		data is "promoted" from uobj to a new anon.
     81  *		if uobj is null, then we zero fill.
     82  *
     83  * we follow the standard UVM locking protocol ordering:
     84  *
     85  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
     86  * we hold a PG_BUSY page if we unlock for I/O
     87  *
     88  *
     89  * the code is structured as follows:
     90  *
     91  *     - init the "IN" params in the ufi structure
     92  *   ReFault: (ERESTART returned to the loop in uvm_fault_internal)
     93  *     - do lookups [locks maps], check protection, handle needs_copy
     94  *     - check for case 0 fault (error)
     95  *     - establish "range" of fault
     96  *     - if we have an amap lock it and extract the anons
     97  *     - if sequential advice deactivate pages behind us
     98  *     - at the same time check pmap for unmapped areas and anon for pages
     99  *	 that we could map in (and do map it if found)
    100  *     - check object for resident pages that we could map in
    101  *     - if (case 2) goto Case2
    102  *     - >>> handle case 1
    103  *           - ensure source anon is resident in RAM
    104  *           - if case 1B alloc new anon and copy from source
    105  *           - map the correct page in
    106  *   Case2:
    107  *     - >>> handle case 2
    108  *           - ensure source page is resident (if uobj)
    109  *           - if case 2B alloc new anon and copy from source (could be zero
    110  *		fill if uobj == NULL)
    111  *           - map the correct page in
    112  *     - done!
    113  *
    114  * note on paging:
    115  *   if we have to do I/O we place a PG_BUSY page in the correct object,
    116  * unlock everything, and do the I/O.   when I/O is done we must reverify
    117  * the state of the world before assuming that our data structures are
    118  * valid.   [because mappings could change while the map is unlocked]
    119  *
    120  *  alternative 1: unbusy the page in question and restart the page fault
    121  *    from the top (ReFault).   this is easy but does not take advantage
    122  *    of the information that we already have from our previous lookup,
    123  *    although it is possible that the "hints" in the vm_map will help here.
    124  *
    125  * alternative 2: the system already keeps track of a "version" number of
    126  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
    127  *    mapping) you bump the version number up by one...]   so, we can save
    128  *    the version number of the map before we release the lock and start I/O.
    129  *    then when I/O is done we can relock and check the version numbers
    130  *    to see if anything changed.    this might save us some over 1 because
    131  *    we don't have to unbusy the page and may be less compares(?).
    132  *
    133  * alternative 3: put in backpointers or a way to "hold" part of a map
    134  *    in place while I/O is in progress.   this could be complex to
    135  *    implement (especially with structures like amap that can be referenced
    136  *    by multiple map entries, and figuring out what should wait could be
    137  *    complex as well...).
    138  *
    139  * we use alternative 2.  given that we are multi-threaded now we may want
    140  * to reconsider the choice.
    141  */
    142 
    143 /*
    144  * local data structures
    145  */
    146 
    147 struct uvm_advice {
    148 	int advice;
    149 	int nback;
    150 	int nforw;
    151 };
    152 
    153 /*
    154  * page range array:
    155  * note: index in array must match "advice" value
    156  * XXX: borrowed numbers from freebsd.   do they work well for us?
    157  */
    158 
    159 static const struct uvm_advice uvmadvice[] = {
    160 	{ UVM_ADV_NORMAL, 3, 4 },
    161 	{ UVM_ADV_RANDOM, 0, 0 },
    162 	{ UVM_ADV_SEQUENTIAL, 8, 7},
    163 };
    164 
    165 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
    166 
    167 /*
    168  * private prototypes
    169  */
    170 
    171 /*
    172  * externs from other modules
    173  */
    174 
    175 extern int start_init_exec;	/* Is init_main() done / init running? */
    176 
    177 /*
    178  * inline functions
    179  */
    180 
    181 /*
    182  * uvmfault_anonflush: try and deactivate pages in specified anons
    183  *
    184  * => does not have to deactivate page if it is busy
    185  */
    186 
    187 static inline void
    188 uvmfault_anonflush(struct vm_anon **anons, int n)
    189 {
    190 	int lcv;
    191 	struct vm_page *pg;
    192 
    193 	for (lcv = 0; lcv < n; lcv++) {
    194 		if (anons[lcv] == NULL)
    195 			continue;
    196 		KASSERT(mutex_owned(anons[lcv]->an_lock));
    197 		pg = anons[lcv]->an_page;
    198 		if (pg && (pg->flags & PG_BUSY) == 0) {
    199 			mutex_enter(&uvm_pageqlock);
    200 			if (pg->wire_count == 0) {
    201 				uvm_pagedeactivate(pg);
    202 			}
    203 			mutex_exit(&uvm_pageqlock);
    204 		}
    205 	}
    206 }
    207 
    208 /*
    209  * normal functions
    210  */
    211 
    212 /*
    213  * uvmfault_amapcopy: clear "needs_copy" in a map.
    214  *
    215  * => called with VM data structures unlocked (usually, see below)
    216  * => we get a write lock on the maps and clear needs_copy for a VA
    217  * => if we are out of RAM we sleep (waiting for more)
    218  */
    219 
    220 static void
    221 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
    222 {
    223 	for (;;) {
    224 
    225 		/*
    226 		 * no mapping?  give up.
    227 		 */
    228 
    229 		if (uvmfault_lookup(ufi, true) == false)
    230 			return;
    231 
    232 		/*
    233 		 * copy if needed.
    234 		 */
    235 
    236 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
    237 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
    238 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
    239 
    240 		/*
    241 		 * didn't work?  must be out of RAM.   unlock and sleep.
    242 		 */
    243 
    244 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
    245 			uvmfault_unlockmaps(ufi, true);
    246 			uvm_wait("fltamapcopy");
    247 			continue;
    248 		}
    249 
    250 		/*
    251 		 * got it!   unlock and return.
    252 		 */
    253 
    254 		uvmfault_unlockmaps(ufi, true);
    255 		return;
    256 	}
    257 	/*NOTREACHED*/
    258 }
    259 
    260 /*
    261  * uvmfault_anonget: get data in an anon into a non-busy, non-released
    262  * page in that anon.
    263  *
    264  * => Map, amap and thus anon should be locked by caller.
    265  * => If we fail, we unlock everything and error is returned.
    266  * => If we are successful, return with everything still locked.
    267  * => We do not move the page on the queues [gets moved later].  If we
    268  *    allocate a new page [we_own], it gets put on the queues.  Either way,
    269  *    the result is that the page is on the queues at return time
    270  * => For pages which are on loan from a uvm_object (and thus are not owned
    271  *    by the anon): if successful, return with the owning object locked.
    272  *    The caller must unlock this object when it unlocks everything else.
    273  */
    274 
    275 int
    276 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
    277     struct vm_anon *anon)
    278 {
    279 	struct vm_page *pg;
    280 	int error;
    281 
    282 	UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
    283 	KASSERT(mutex_owned(anon->an_lock));
    284 	KASSERT(anon->an_lock == amap->am_lock);
    285 	KASSERT(amap->am_obj_lock == NULL || mutex_owned(amap->am_obj_lock));
    286 
    287 	/* Increment the counters.*/
    288 	uvmexp.fltanget++;
    289 	if (anon->an_page) {
    290 		curlwp->l_ru.ru_minflt++;
    291 	} else {
    292 		curlwp->l_ru.ru_majflt++;
    293 	}
    294 	error = 0;
    295 
    296 	/*
    297 	 * Loop until we get the anon data, or fail.
    298 	 */
    299 
    300 	for (;;) {
    301 		bool we_own, locked;
    302 		/*
    303 		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
    304 		 */
    305 		we_own = false;
    306 		pg = anon->an_page;
    307 		KASSERT(pg == NULL || pg->uanon == anon);
    308 		KASSERT(pg == NULL || pg->uobject == NULL ||
    309 		    pg->uobject->vmobjlock == amap->am_obj_lock);
    310 
    311 		/*
    312 		 * If there is a resident page and it is loaned, then anon
    313 		 * may not own it.  Call out to uvm_anon_lockloanpg() to
    314 		 * identify and lock the real owner of the page.
    315 		 */
    316 
    317 		if (pg && pg->loan_count)
    318 			pg = uvm_anon_lockloanpg(anon);
    319 
    320 		/*
    321 		 * Is page resident?  Make sure it is not busy/released.
    322 		 */
    323 
    324 		if (pg) {
    325 
    326 			/*
    327 			 * at this point, if the page has a uobject [meaning
    328 			 * we have it on loan], then that uobject is locked
    329 			 * by us!   if the page is busy, we drop all the
    330 			 * locks (including uobject) and try again.
    331 			 */
    332 
    333 			if ((pg->flags & PG_BUSY) == 0) {
    334 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
    335 				return 0;
    336 			}
    337 			pg->flags |= PG_WANTED;
    338 			uvmexp.fltpgwait++;
    339 
    340 			/*
    341 			 * The last unlock must be an atomic unlock and wait
    342 			 * on the owner of page.
    343 			 */
    344 
    345 			uvmfault_unlockall(ufi, NULL, NULL);
    346 			if (pg->uobject) {
    347 				/* Owner of page is UVM object. */
    348 				KASSERT(amap->am_obj_lock ==
    349 				    pg->uobject->vmobjlock);
    350 				mutex_exit(amap->am_lock); /* XXX */
    351 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
    352 				    0,0,0);
    353 				UVM_UNLOCK_AND_WAIT(pg,
    354 				    pg->uobject->vmobjlock,
    355 				    false, "anonget1", 0);
    356 			} else {
    357 				/* Owner of page is anon. */
    358 				if (amap->am_obj_lock != NULL) {
    359 					mutex_exit(amap->am_obj_lock); /* XXX */
    360 				}
    361 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
    362 				    0,0,0);
    363 				UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
    364 				    false, "anonget2", 0);
    365 			}
    366 		} else {
    367 #if defined(VMSWAP)
    368 			/*
    369 			 * No page, therefore allocate one.
    370 			 */
    371 
    372 			pg = uvm_pagealloc(NULL,
    373 			    ufi != NULL ? ufi->orig_rvaddr : 0,
    374 			    anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
    375 			if (pg == NULL) {
    376 				/* Out of memory.  Wait a little. */
    377 				uvmfault_unlockall(ufi, amap, NULL);
    378 				uvmexp.fltnoram++;
    379 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
    380 				    0,0,0);
    381 				if (!uvm_reclaimable()) {
    382 					return ENOMEM;
    383 				}
    384 				uvm_wait("flt_noram1");
    385 			} else {
    386 				/* PG_BUSY bit is set. */
    387 				we_own = true;
    388 				uvmfault_unlockall(ufi, amap, NULL);
    389 
    390 				/*
    391 				 * Pass a PG_BUSY+PG_FAKE clean page into
    392 				 * the uvm_swap_get() function with all data
    393 				 * structures unlocked.  Note that it is OK
    394 				 * to read an_swslot here, because we hold
    395 				 * PG_BUSY on the page.
    396 				 */
    397 				uvmexp.pageins++;
    398 				error = uvm_swap_get(pg, anon->an_swslot,
    399 				    PGO_SYNCIO);
    400 
    401 				/*
    402 				 * We clean up after the I/O below in the
    403 				 * 'we_own' case.
    404 				 */
    405 			}
    406 #else
    407 			panic("%s: no page", __func__);
    408 #endif /* defined(VMSWAP) */
    409 		}
    410 
    411 		/*
    412 		 * Re-lock the map and anon.
    413 		 */
    414 
    415 		locked = uvmfault_relock(ufi);
    416 		if (locked) {
    417 			amap_lock(amap);
    418 		} else if (we_own) {
    419 			mutex_enter(anon->an_lock);
    420 		}
    421 
    422 		/*
    423 		 * If we own the page (i.e. we set PG_BUSY), then we need
    424 		 * to clean up after the I/O.  There are three cases to
    425 		 * consider:
    426 		 *
    427 		 * 1) Page was released during I/O: free anon and ReFault.
    428 		 * 2) I/O not OK.  Free the page and cause the fault to fail.
    429 		 * 3) I/O OK!  Activate the page and sync with the non-we_own
    430 		 *    case (i.e. drop anon lock if not locked).
    431 		 */
    432 
    433 		if (we_own) {
    434 #if defined(VMSWAP)
    435 			if (pg->flags & PG_WANTED) {
    436 				wakeup(pg);
    437 			}
    438 			if (error) {
    439 
    440 				/*
    441 				 * Remove the swap slot from the anon and
    442 				 * mark the anon as having no real slot.
    443 				 * Do not free the swap slot, thus preventing
    444 				 * it from being used again.
    445 				 */
    446 
    447 				if (anon->an_swslot > 0) {
    448 					uvm_swap_markbad(anon->an_swslot, 1);
    449 				}
    450 				anon->an_swslot = SWSLOT_BAD;
    451 
    452 				if ((pg->flags & PG_RELEASED) != 0) {
    453 					goto released;
    454 				}
    455 
    456 				/*
    457 				 * Note: page was never !PG_BUSY, so it
    458 				 * cannot be mapped and thus no need to
    459 				 * pmap_page_protect() it.
    460 				 */
    461 
    462 				mutex_enter(&uvm_pageqlock);
    463 				uvm_pagefree(pg);
    464 				mutex_exit(&uvm_pageqlock);
    465 
    466 				if (locked) {
    467 					uvmfault_unlockall(ufi, NULL, NULL);
    468 					if (amap->am_obj_lock != NULL) {
    469 						/* XXX */
    470 						mutex_exit(amap->am_obj_lock);
    471 					}
    472 				}
    473 				mutex_exit(anon->an_lock);
    474 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
    475 				return error;
    476 			}
    477 
    478 			if ((pg->flags & PG_RELEASED) != 0) {
    479 released:
    480 				KASSERT(anon->an_ref == 0);
    481 
    482 				/*
    483 				 * Released while we had unlocked amap.
    484 				 */
    485 
    486 				if (locked) {
    487 					uvmfault_unlockall(ufi, NULL, NULL);
    488 					if (amap->am_obj_lock != NULL) {
    489 						/* XXX */
    490 						mutex_exit(amap->am_obj_lock);
    491 					}
    492 				}
    493 				uvm_anon_release(anon);
    494 
    495 				if (error) {
    496 					UVMHIST_LOG(maphist,
    497 					    "<- ERROR/RELEASED", 0,0,0,0);
    498 					return error;
    499 				}
    500 
    501 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
    502 				return ERESTART;
    503 			}
    504 
    505 			/*
    506 			 * We have successfully read the page, activate it.
    507 			 */
    508 
    509 			mutex_enter(&uvm_pageqlock);
    510 			uvm_pageactivate(pg);
    511 			mutex_exit(&uvm_pageqlock);
    512 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    513 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
    514 			UVM_PAGE_OWN(pg, NULL);
    515 #else
    516 			panic("%s: we_own", __func__);
    517 #endif /* defined(VMSWAP) */
    518 		}
    519 
    520 		/*
    521 		 * We were not able to re-lock the map - restart the fault.
    522 		 */
    523 
    524 		if (!locked) {
    525 			if (we_own) {
    526 				mutex_exit(anon->an_lock);
    527 			}
    528 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    529 			return ERESTART;
    530 		}
    531 
    532 		/*
    533 		 * Verify that no one has touched the amap and moved
    534 		 * the anon on us.
    535 		 */
    536 
    537 		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
    538 		    ufi->orig_rvaddr - ufi->entry->start) != anon) {
    539 
    540 			uvmfault_unlockall(ufi, amap, NULL);
    541 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    542 			return ERESTART;
    543 		}
    544 
    545 		/*
    546 		 * Retry..
    547 		 */
    548 
    549 		uvmexp.fltanretry++;
    550 		continue;
    551 	}
    552 	/*NOTREACHED*/
    553 }
    554 
    555 /*
    556  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
    557  *
    558  *	1. allocate an anon and a page.
    559  *	2. fill its contents.
    560  *	3. put it into amap.
    561  *
    562  * => if we fail (result != 0) we unlock everything.
    563  * => on success, return a new locked anon via 'nanon'.
    564  *    (*nanon)->an_page will be a resident, locked, dirty page.
    565  * => it's caller's responsibility to put the promoted nanon->an_page to the
    566  *    page queue.
    567  */
    568 
    569 static int
    570 uvmfault_promote(struct uvm_faultinfo *ufi,
    571     struct vm_anon *oanon,
    572     struct vm_page *uobjpage,
    573     struct vm_anon **nanon, /* OUT: allocated anon */
    574     struct vm_anon **spare)
    575 {
    576 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
    577 	struct uvm_object *uobj;
    578 	struct vm_anon *anon;
    579 	struct vm_page *pg;
    580 	struct vm_page *opg;
    581 	int error;
    582 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    583 
    584 	if (oanon) {
    585 		/* anon COW */
    586 		opg = oanon->an_page;
    587 		KASSERT(opg != NULL);
    588 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
    589 	} else if (uobjpage != PGO_DONTCARE) {
    590 		/* object-backed COW */
    591 		opg = uobjpage;
    592 	} else {
    593 		/* ZFOD */
    594 		opg = NULL;
    595 	}
    596 	if (opg != NULL) {
    597 		uobj = opg->uobject;
    598 	} else {
    599 		uobj = NULL;
    600 	}
    601 
    602 	KASSERT(amap != NULL);
    603 	KASSERT(uobjpage != NULL);
    604 	KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
    605 	KASSERT(mutex_owned(amap->am_lock));
    606 	KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
    607 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
    608 
    609 	if (*spare != NULL) {
    610 		anon = *spare;
    611 		*spare = NULL;
    612 	} else {
    613 		anon = uvm_analloc();
    614 	}
    615 	if (anon) {
    616 
    617 		/*
    618 		 * The new anon is locked.
    619 		 *
    620 		 * if opg == NULL, we want a zero'd, dirty page,
    621 		 * so have uvm_pagealloc() do that for us.
    622 		 */
    623 
    624 		KASSERT(anon->an_lock == NULL);
    625 		anon->an_lock = amap->am_lock;
    626 		pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
    627 		    UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
    628 		if (pg == NULL) {
    629 			anon->an_lock = NULL;
    630 		}
    631 	} else {
    632 		pg = NULL;
    633 	}
    634 
    635 	/*
    636 	 * out of memory resources?
    637 	 */
    638 
    639 	if (pg == NULL) {
    640 		/* save anon for the next try. */
    641 		if (anon != NULL) {
    642 			*spare = anon;
    643 		}
    644 
    645 		/* unlock and fail ... */
    646 		uvm_page_unbusy(&uobjpage, 1);
    647 		uvmfault_unlockall(ufi, amap, uobj);
    648 		if (!uvm_reclaimable()) {
    649 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
    650 			uvmexp.fltnoanon++;
    651 			error = ENOMEM;
    652 			goto done;
    653 		}
    654 
    655 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
    656 		uvmexp.fltnoram++;
    657 		uvm_wait("flt_noram5");
    658 		error = ERESTART;
    659 		goto done;
    660 	}
    661 
    662 	/* copy page [pg now dirty] */
    663 	if (opg) {
    664 		uvm_pagecopy(opg, pg);
    665 	}
    666 	KASSERT(uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_DIRTY);
    667 
    668 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
    669 	    oanon != NULL);
    670 
    671 	*nanon = anon;
    672 	error = 0;
    673 done:
    674 	return error;
    675 }
    676 
    677 
    678 /*
    679  *   F A U L T   -   m a i n   e n t r y   p o i n t
    680  */
    681 
    682 /*
    683  * uvm_fault: page fault handler
    684  *
    685  * => called from MD code to resolve a page fault
    686  * => VM data structures usually should be unlocked.   however, it is
    687  *	possible to call here with the main map locked if the caller
    688  *	gets a write lock, sets it recusive, and then calls us (c.f.
    689  *	uvm_map_pageable).   this should be avoided because it keeps
    690  *	the map locked off during I/O.
    691  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
    692  */
    693 
    694 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
    695 			 ~VM_PROT_WRITE : VM_PROT_ALL)
    696 
    697 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
    698 #define UVM_FAULT_WIRE		(1 << 0)
    699 #define UVM_FAULT_MAXPROT	(1 << 1)
    700 
    701 struct uvm_faultctx {
    702 
    703 	/*
    704 	 * the following members are set up by uvm_fault_check() and
    705 	 * read-only after that.
    706 	 *
    707 	 * note that narrow is used by uvm_fault_check() to change
    708 	 * the behaviour after ERESTART.
    709 	 *
    710 	 * most of them might change after RESTART if the underlying
    711 	 * map entry has been changed behind us.  an exception is
    712 	 * wire_paging, which does never change.
    713 	 */
    714 	vm_prot_t access_type;
    715 	vaddr_t startva;
    716 	int npages;
    717 	int centeridx;
    718 	bool narrow;		/* work on a single requested page only */
    719 	bool wire_mapping;	/* request a PMAP_WIRED mapping
    720 				   (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
    721 	bool wire_paging;	/* request uvm_pagewire
    722 				   (true for UVM_FAULT_WIRE) */
    723 	bool cow_now;		/* VM_PROT_WRITE is actually requested
    724 				   (ie. should break COW and page loaning) */
    725 
    726 	/*
    727 	 * enter_prot is set up by uvm_fault_check() and clamped
    728 	 * (ie. drop the VM_PROT_WRITE bit) in various places in case
    729 	 * of !cow_now.
    730 	 */
    731 	vm_prot_t enter_prot;	/* prot at which we want to enter pages in */
    732 
    733 	/*
    734 	 * the following member is for uvmfault_promote() and ERESTART.
    735 	 */
    736 	struct vm_anon *anon_spare;
    737 
    738 	/*
    739 	 * the folloing is actually a uvm_fault_lower() internal.
    740 	 * it's here merely for debugging.
    741 	 * (or due to the mechanical separation of the function?)
    742 	 */
    743 	bool promote;
    744 };
    745 
    746 static inline int	uvm_fault_check(
    747 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    748 			    struct vm_anon ***, bool);
    749 
    750 static int		uvm_fault_upper(
    751 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    752 			    struct vm_anon **);
    753 static inline int	uvm_fault_upper_lookup(
    754 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    755 			    struct vm_anon **, struct vm_page **);
    756 static inline void	uvm_fault_upper_neighbor(
    757 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    758 			    vaddr_t, struct vm_page *, bool);
    759 static inline int	uvm_fault_upper_loan(
    760 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    761 			    struct vm_anon *);
    762 static inline int	uvm_fault_upper_promote(
    763 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    764 			    struct vm_anon *);
    765 static inline int	uvm_fault_upper_direct(
    766 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    767 			    struct vm_anon *);
    768 static int		uvm_fault_upper_enter(
    769 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    770 			    struct vm_anon *, struct vm_page *,
    771 			    struct vm_anon *);
    772 static inline void	uvm_fault_upper_done(
    773 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    774 			    struct vm_anon *, struct vm_page *);
    775 
    776 static int		uvm_fault_lower(
    777 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    778 			    struct vm_page **);
    779 static inline void	uvm_fault_lower_lookup(
    780 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    781 			    struct vm_page **);
    782 static inline void	uvm_fault_lower_neighbor(
    783 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    784 			    vaddr_t, struct vm_page *);
    785 static inline int	uvm_fault_lower_io(
    786 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    787 			    struct uvm_object **, struct vm_page **);
    788 static inline int	uvm_fault_lower_direct(
    789 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    790 			    struct uvm_object *, struct vm_page *);
    791 static inline int	uvm_fault_lower_direct_loan(
    792 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    793 			    struct uvm_object *, struct vm_page **,
    794 			    struct vm_page **);
    795 static inline int	uvm_fault_lower_promote(
    796 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    797 			    struct uvm_object *, struct vm_page *);
    798 static int		uvm_fault_lower_enter(
    799 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    800 			    struct uvm_object *,
    801 			    struct vm_anon *, struct vm_page *);
    802 static inline void	uvm_fault_lower_done(
    803 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    804 			    struct uvm_object *, struct vm_page *);
    805 
    806 int
    807 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
    808     vm_prot_t access_type, int fault_flag)
    809 {
    810 	struct cpu_data *cd;
    811 	struct uvm_cpu *ucpu;
    812 	struct uvm_faultinfo ufi;
    813 	struct uvm_faultctx flt = {
    814 		.access_type = access_type,
    815 
    816 		/* don't look for neighborhood * pages on "wire" fault */
    817 		.narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
    818 
    819 		/* "wire" fault causes wiring of both mapping and paging */
    820 		.wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
    821 		.wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
    822 	};
    823 	const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
    824 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
    825 	struct vm_page *pages_store[UVM_MAXRANGE], **pages;
    826 	int error;
    827 #if 0
    828 	uintptr_t delta, delta2, delta3;
    829 #endif
    830 	UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
    831 
    832 	UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
    833 	      orig_map, vaddr, access_type, fault_flag);
    834 
    835 	cd = &(curcpu()->ci_data);
    836 	cd->cpu_nfault++;
    837 	ucpu = cd->cpu_uvm;
    838 
    839 	/* Don't flood RNG subsystem with samples. */
    840 	if (cd->cpu_nfault % 503)
    841 		goto norng;
    842 #if 0
    843 	/*
    844 	 * Avoid trying to count "entropy" for accesses of regular
    845 	 * stride, by checking the 1st, 2nd, 3rd order differentials
    846 	 * of vaddr, like the rnd code does internally with sample times.
    847 	 *
    848 	 * XXX If the selection of only every 503rd fault above is
    849 	 * XXX removed, this code should exclude most samples, but
    850 	 * XXX does not, and is therefore disabled.
    851 	 */
    852 	if (ucpu->last_fltaddr > (uintptr_t)trunc_page(vaddr))
    853 		delta = ucpu->last_fltaddr - (uintptr_t)trunc_page(vaddr);
    854 	else
    855 		delta = (uintptr_t)trunc_page(vaddr) - ucpu->last_fltaddr;
    856 
    857 	if (ucpu->last_delta > delta)
    858 		delta2 = ucpu->last_delta - delta;
    859 	else
    860 		delta2 = delta - ucpu->last_delta;
    861 
    862 	if (ucpu->last_delta2 > delta2)
    863 		delta3 = ucpu->last_delta2 - delta2;
    864 	else
    865 		delta3 = delta2 - ucpu->last_delta2;
    866 
    867 	ucpu->last_fltaddr = (uintptr_t)vaddr;
    868 	ucpu->last_delta = delta;
    869 	ucpu->last_delta2 = delta2;
    870 
    871 	if (delta != 0 && delta2 != 0 && delta3 != 0)
    872 #endif
    873 	/* Don't count anything until user interaction is possible */
    874 	if (__predict_true(start_init_exec)) {
    875 		kpreempt_disable();
    876 		rnd_add_uint32(&ucpu->rs,
    877 			       sizeof(vaddr_t) == sizeof(uint32_t) ?
    878 			       (uint32_t)vaddr : sizeof(vaddr_t) ==
    879 			       sizeof(uint64_t) ?
    880 			       (uint32_t)(vaddr & 0x00000000ffffffff) :
    881 			       (uint32_t)(cd->cpu_nfault & 0x00000000ffffffff));
    882 		kpreempt_enable();
    883 	}
    884 norng:
    885 	/*
    886 	 * init the IN parameters in the ufi
    887 	 */
    888 
    889 	ufi.orig_map = orig_map;
    890 	ufi.orig_rvaddr = trunc_page(vaddr);
    891 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
    892 
    893 	error = ERESTART;
    894 	while (error == ERESTART) { /* ReFault: */
    895 		anons = anons_store;
    896 		pages = pages_store;
    897 
    898 		error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
    899 		if (error != 0)
    900 			continue;
    901 
    902 		error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
    903 		if (error != 0)
    904 			continue;
    905 
    906 		if (pages[flt.centeridx] == PGO_DONTCARE)
    907 			error = uvm_fault_upper(&ufi, &flt, anons);
    908 		else {
    909 			struct uvm_object * const uobj =
    910 			    ufi.entry->object.uvm_obj;
    911 
    912 			if (uobj && uobj->pgops->pgo_fault != NULL) {
    913 				/*
    914 				 * invoke "special" fault routine.
    915 				 */
    916 				mutex_enter(uobj->vmobjlock);
    917 				/* locked: maps(read), amap(if there), uobj */
    918 				error = uobj->pgops->pgo_fault(&ufi,
    919 				    flt.startva, pages, flt.npages,
    920 				    flt.centeridx, flt.access_type,
    921 				    PGO_LOCKED|PGO_SYNCIO);
    922 
    923 				/*
    924 				 * locked: nothing, pgo_fault has unlocked
    925 				 * everything
    926 				 */
    927 
    928 				/*
    929 				 * object fault routine responsible for
    930 				 * pmap_update().
    931 				 */
    932 			} else {
    933 				error = uvm_fault_lower(&ufi, &flt, pages);
    934 			}
    935 		}
    936 	}
    937 
    938 	if (flt.anon_spare != NULL) {
    939 		flt.anon_spare->an_ref--;
    940 		KASSERT(flt.anon_spare->an_ref == 0);
    941 		KASSERT(flt.anon_spare->an_lock == NULL);
    942 		uvm_anon_free(flt.anon_spare);
    943 	}
    944 	return error;
    945 }
    946 
    947 /*
    948  * uvm_fault_check: check prot, handle needs-copy, etc.
    949  *
    950  *	1. lookup entry.
    951  *	2. check protection.
    952  *	3. adjust fault condition (mainly for simulated fault).
    953  *	4. handle needs-copy (lazy amap copy).
    954  *	5. establish range of interest for neighbor fault (aka pre-fault).
    955  *	6. look up anons (if amap exists).
    956  *	7. flush pages (if MADV_SEQUENTIAL)
    957  *
    958  * => called with nothing locked.
    959  * => if we fail (result != 0) we unlock everything.
    960  * => initialize/adjust many members of flt.
    961  */
    962 
    963 static int
    964 uvm_fault_check(
    965 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
    966 	struct vm_anon ***ranons, bool maxprot)
    967 {
    968 	struct vm_amap *amap;
    969 	struct uvm_object *uobj;
    970 	vm_prot_t check_prot;
    971 	int nback, nforw;
    972 	UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
    973 
    974 	/*
    975 	 * lookup and lock the maps
    976 	 */
    977 
    978 	if (uvmfault_lookup(ufi, false) == false) {
    979 		UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr,
    980 		    0,0,0);
    981 		return EFAULT;
    982 	}
    983 	/* locked: maps(read) */
    984 
    985 #ifdef DIAGNOSTIC
    986 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
    987 		printf("Page fault on non-pageable map:\n");
    988 		printf("ufi->map = %p\n", ufi->map);
    989 		printf("ufi->orig_map = %p\n", ufi->orig_map);
    990 		printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
    991 		panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
    992 	}
    993 #endif
    994 
    995 	/*
    996 	 * check protection
    997 	 */
    998 
    999 	check_prot = maxprot ?
   1000 	    ufi->entry->max_protection : ufi->entry->protection;
   1001 	if ((check_prot & flt->access_type) != flt->access_type) {
   1002 		UVMHIST_LOG(maphist,
   1003 		    "<- protection failure (prot=0x%x, access=0x%x)",
   1004 		    ufi->entry->protection, flt->access_type, 0, 0);
   1005 		uvmfault_unlockmaps(ufi, false);
   1006 		return EACCES;
   1007 	}
   1008 
   1009 	/*
   1010 	 * "enter_prot" is the protection we want to enter the page in at.
   1011 	 * for certain pages (e.g. copy-on-write pages) this protection can
   1012 	 * be more strict than ufi->entry->protection.  "wired" means either
   1013 	 * the entry is wired or we are fault-wiring the pg.
   1014 	 */
   1015 
   1016 	flt->enter_prot = ufi->entry->protection;
   1017 	if (VM_MAPENT_ISWIRED(ufi->entry))
   1018 		flt->wire_mapping = true;
   1019 
   1020 	if (flt->wire_mapping) {
   1021 		flt->access_type = flt->enter_prot; /* full access for wired */
   1022 		flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
   1023 	} else {
   1024 		flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
   1025 	}
   1026 
   1027 	flt->promote = false;
   1028 
   1029 	/*
   1030 	 * handle "needs_copy" case.   if we need to copy the amap we will
   1031 	 * have to drop our readlock and relock it with a write lock.  (we
   1032 	 * need a write lock to change anything in a map entry [e.g.
   1033 	 * needs_copy]).
   1034 	 */
   1035 
   1036 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
   1037 		if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
   1038 			KASSERT(!maxprot);
   1039 			/* need to clear */
   1040 			UVMHIST_LOG(maphist,
   1041 			    "  need to clear needs_copy and refault",0,0,0,0);
   1042 			uvmfault_unlockmaps(ufi, false);
   1043 			uvmfault_amapcopy(ufi);
   1044 			uvmexp.fltamcopy++;
   1045 			return ERESTART;
   1046 
   1047 		} else {
   1048 
   1049 			/*
   1050 			 * ensure that we pmap_enter page R/O since
   1051 			 * needs_copy is still true
   1052 			 */
   1053 
   1054 			flt->enter_prot &= ~VM_PROT_WRITE;
   1055 		}
   1056 	}
   1057 
   1058 	/*
   1059 	 * identify the players
   1060 	 */
   1061 
   1062 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
   1063 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
   1064 
   1065 	/*
   1066 	 * check for a case 0 fault.  if nothing backing the entry then
   1067 	 * error now.
   1068 	 */
   1069 
   1070 	if (amap == NULL && uobj == NULL) {
   1071 		uvmfault_unlockmaps(ufi, false);
   1072 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
   1073 		return EFAULT;
   1074 	}
   1075 
   1076 	/*
   1077 	 * establish range of interest based on advice from mapper
   1078 	 * and then clip to fit map entry.   note that we only want
   1079 	 * to do this the first time through the fault.   if we
   1080 	 * ReFault we will disable this by setting "narrow" to true.
   1081 	 */
   1082 
   1083 	if (flt->narrow == false) {
   1084 
   1085 		/* wide fault (!narrow) */
   1086 		KASSERT(uvmadvice[ufi->entry->advice].advice ==
   1087 			 ufi->entry->advice);
   1088 		nback = MIN(uvmadvice[ufi->entry->advice].nback,
   1089 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
   1090 		flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
   1091 		/*
   1092 		 * note: "-1" because we don't want to count the
   1093 		 * faulting page as forw
   1094 		 */
   1095 		nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
   1096 			    ((ufi->entry->end - ufi->orig_rvaddr) >>
   1097 			     PAGE_SHIFT) - 1);
   1098 		flt->npages = nback + nforw + 1;
   1099 		flt->centeridx = nback;
   1100 
   1101 		flt->narrow = true;	/* ensure only once per-fault */
   1102 
   1103 	} else {
   1104 
   1105 		/* narrow fault! */
   1106 		nback = nforw = 0;
   1107 		flt->startva = ufi->orig_rvaddr;
   1108 		flt->npages = 1;
   1109 		flt->centeridx = 0;
   1110 
   1111 	}
   1112 	/* offset from entry's start to pgs' start */
   1113 	const voff_t eoff = flt->startva - ufi->entry->start;
   1114 
   1115 	/* locked: maps(read) */
   1116 	UVMHIST_LOG(maphist, "  narrow=%d, back=%d, forw=%d, startva=0x%x",
   1117 		    flt->narrow, nback, nforw, flt->startva);
   1118 	UVMHIST_LOG(maphist, "  entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
   1119 		    amap, uobj, 0);
   1120 
   1121 	/*
   1122 	 * if we've got an amap, lock it and extract current anons.
   1123 	 */
   1124 
   1125 	if (amap) {
   1126 		amap_lock(amap);
   1127 		KASSERT(uobj == NULL || amap->am_obj_lock == NULL);
   1128 		amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
   1129 	} else {
   1130 		*ranons = NULL;	/* to be safe */
   1131 	}
   1132 
   1133 	/* locked: maps(read), amap(if there) */
   1134 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1135 
   1136 	/*
   1137 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
   1138 	 * now and then forget about them (for the rest of the fault).
   1139 	 */
   1140 
   1141 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
   1142 
   1143 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
   1144 		    0,0,0,0);
   1145 		/* flush back-page anons? */
   1146 		if (amap)
   1147 			uvmfault_anonflush(*ranons, nback);
   1148 
   1149 		/* flush object? */
   1150 		if (uobj) {
   1151 			voff_t uoff;
   1152 
   1153 			uoff = ufi->entry->offset + eoff;
   1154 			mutex_enter(uobj->vmobjlock);
   1155 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
   1156 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
   1157 		}
   1158 
   1159 		/* now forget about the backpages */
   1160 		if (amap)
   1161 			*ranons += nback;
   1162 		flt->startva += (nback << PAGE_SHIFT);
   1163 		flt->npages -= nback;
   1164 		flt->centeridx = 0;
   1165 	}
   1166 	/*
   1167 	 * => startva is fixed
   1168 	 * => npages is fixed
   1169 	 */
   1170 	KASSERT(flt->startva <= ufi->orig_rvaddr);
   1171 	KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
   1172 	    flt->startva + (flt->npages << PAGE_SHIFT));
   1173 	return 0;
   1174 }
   1175 
   1176 /*
   1177  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
   1178  *
   1179  * iterate range of interest:
   1180  *	1. check if h/w mapping exists.  if yes, we don't care
   1181  *	2. check if anon exists.  if not, page is lower.
   1182  *	3. if anon exists, enter h/w mapping for neighbors.
   1183  *
   1184  * => called with amap locked (if exists).
   1185  */
   1186 
   1187 static int
   1188 uvm_fault_upper_lookup(
   1189 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1190 	struct vm_anon **anons, struct vm_page **pages)
   1191 {
   1192 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1193 	int lcv;
   1194 	vaddr_t currva;
   1195 	bool shadowed __unused;
   1196 	UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
   1197 
   1198 	/* locked: maps(read), amap(if there) */
   1199 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1200 
   1201 	/*
   1202 	 * map in the backpages and frontpages we found in the amap in hopes
   1203 	 * of preventing future faults.    we also init the pages[] array as
   1204 	 * we go.
   1205 	 */
   1206 
   1207 	currva = flt->startva;
   1208 	shadowed = false;
   1209 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1210 		/*
   1211 		 * don't play with VAs that are already mapped
   1212 		 * (except for center)
   1213 		 */
   1214 		if (lcv != flt->centeridx &&
   1215 		    pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
   1216 			pages[lcv] = PGO_DONTCARE;
   1217 			continue;
   1218 		}
   1219 
   1220 		/*
   1221 		 * unmapped or center page.   check if any anon at this level.
   1222 		 */
   1223 		if (amap == NULL || anons[lcv] == NULL) {
   1224 			pages[lcv] = NULL;
   1225 			continue;
   1226 		}
   1227 
   1228 		/*
   1229 		 * check for present page and map if possible.   re-activate it.
   1230 		 */
   1231 
   1232 		pages[lcv] = PGO_DONTCARE;
   1233 		if (lcv == flt->centeridx) {	/* save center for later! */
   1234 			shadowed = true;
   1235 			continue;
   1236 		}
   1237 
   1238 		struct vm_anon *anon = anons[lcv];
   1239 		struct vm_page *pg = anon->an_page;
   1240 
   1241 		KASSERT(anon->an_lock == amap->am_lock);
   1242 
   1243 		/* Ignore loaned and busy pages. */
   1244 		if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
   1245 			uvm_fault_upper_neighbor(ufi, flt, currva,
   1246 			    pg, anon->an_ref > 1);
   1247 		}
   1248 	}
   1249 
   1250 	/* locked: maps(read), amap(if there) */
   1251 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1252 	/* (shadowed == true) if there is an anon at the faulting address */
   1253 	UVMHIST_LOG(maphist, "  shadowed=%d, will_get=%d", shadowed,
   1254 	    (ufi->entry->object.uvm_obj && shadowed != false),0,0);
   1255 
   1256 	/*
   1257 	 * note that if we are really short of RAM we could sleep in the above
   1258 	 * call to pmap_enter with everything locked.   bad?
   1259 	 *
   1260 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
   1261 	 * XXX case.  --thorpej
   1262 	 */
   1263 
   1264 	return 0;
   1265 }
   1266 
   1267 /*
   1268  * uvm_fault_upper_neighbor: enter single lower neighbor page.
   1269  *
   1270  * => called with amap and anon locked.
   1271  */
   1272 
   1273 static void
   1274 uvm_fault_upper_neighbor(
   1275 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1276 	vaddr_t currva, struct vm_page *pg, bool readonly)
   1277 {
   1278 	UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
   1279 
   1280 	/* locked: amap, anon */
   1281 	KASSERT(pg->uobject == NULL);
   1282 	KASSERT(pg->uanon != NULL);
   1283 	KASSERT(mutex_owned(pg->uanon->an_lock));
   1284 	KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
   1285 	mutex_enter(&uvm_pageqlock);
   1286 	uvm_pageenqueue(pg);
   1287 	mutex_exit(&uvm_pageqlock);
   1288 	UVMHIST_LOG(maphist,
   1289 	    "  MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
   1290 	    ufi->orig_map->pmap, currva, pg, 0);
   1291 	uvmexp.fltnamap++;
   1292 
   1293 	/*
   1294 	 * Since this page isn't the page that's actually faulting,
   1295 	 * ignore pmap_enter() failures; it's not critical that we
   1296 	 * enter these right now.
   1297 	 */
   1298 
   1299 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1300 	    VM_PAGE_TO_PHYS(pg),
   1301 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1302 	    flt->enter_prot,
   1303 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
   1304 
   1305 	pmap_update(ufi->orig_map->pmap);
   1306 }
   1307 
   1308 /*
   1309  * uvm_fault_upper: handle upper fault.
   1310  *
   1311  *	1. acquire anon lock.
   1312  *	2. get anon.  let uvmfault_anonget do the dirty work.
   1313  *	3. handle loan.
   1314  *	4. dispatch direct or promote handlers.
   1315  */
   1316 
   1317 static int
   1318 uvm_fault_upper(
   1319 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1320 	struct vm_anon **anons)
   1321 {
   1322 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1323 	struct vm_anon * const anon = anons[flt->centeridx];
   1324 	struct uvm_object *uobj;
   1325 	int error;
   1326 	UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
   1327 
   1328 	/* locked: maps(read), amap, anon */
   1329 	KASSERT(mutex_owned(amap->am_lock));
   1330 	KASSERT(anon->an_lock == amap->am_lock);
   1331 
   1332 	/*
   1333 	 * handle case 1: fault on an anon in our amap
   1334 	 */
   1335 
   1336 	UVMHIST_LOG(maphist, "  case 1 fault: anon=0x%x", anon, 0,0,0);
   1337 
   1338 	/*
   1339 	 * no matter if we have case 1A or case 1B we are going to need to
   1340 	 * have the anon's memory resident.   ensure that now.
   1341 	 */
   1342 
   1343 	/*
   1344 	 * let uvmfault_anonget do the dirty work.
   1345 	 * if it fails (!OK) it will unlock everything for us.
   1346 	 * if it succeeds, locks are still valid and locked.
   1347 	 * also, if it is OK, then the anon's page is on the queues.
   1348 	 * if the page is on loan from a uvm_object, then anonget will
   1349 	 * lock that object for us if it does not fail.
   1350 	 */
   1351 
   1352 	error = uvmfault_anonget(ufi, amap, anon);
   1353 	switch (error) {
   1354 	case 0:
   1355 		break;
   1356 
   1357 	case ERESTART:
   1358 		return ERESTART;
   1359 
   1360 	case EAGAIN:
   1361 		kpause("fltagain1", false, hz/2, NULL);
   1362 		return ERESTART;
   1363 
   1364 	default:
   1365 		return error;
   1366 	}
   1367 
   1368 	/*
   1369 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
   1370 	 */
   1371 
   1372 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
   1373 
   1374 	/* locked: maps(read), amap, anon, uobj(if one) */
   1375 	KASSERT(mutex_owned(amap->am_lock));
   1376 	KASSERT(anon->an_lock == amap->am_lock);
   1377 	KASSERT(uobj == NULL || amap->am_obj_lock == uobj->vmobjlock);
   1378 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1379 
   1380 	/*
   1381 	 * special handling for loaned pages
   1382 	 */
   1383 
   1384 	if (anon->an_page->loan_count) {
   1385 		error = uvm_fault_upper_loan(ufi, flt, anon);
   1386 		if (error != 0)
   1387 			return error;
   1388 	}
   1389 
   1390 	/*
   1391 	 * if we are case 1B then we will need to allocate a new blank
   1392 	 * anon to transfer the data into.   note that we have a lock
   1393 	 * on anon, so no one can busy or release the page until we are done.
   1394 	 * also note that the ref count can't drop to zero here because
   1395 	 * it is > 1 and we are only dropping one ref.
   1396 	 *
   1397 	 * in the (hopefully very rare) case that we are out of RAM we
   1398 	 * will unlock, wait for more RAM, and refault.
   1399 	 *
   1400 	 * if we are out of anon VM we kill the process (XXX: could wait?).
   1401 	 */
   1402 
   1403 	if (flt->cow_now && anon->an_ref > 1) {
   1404 		flt->promote = true;
   1405 		error = uvm_fault_upper_promote(ufi, flt, anon);
   1406 	} else {
   1407 		error = uvm_fault_upper_direct(ufi, flt, anon);
   1408 	}
   1409 	return error;
   1410 }
   1411 
   1412 /*
   1413  * uvm_fault_upper_loan: handle loaned upper page.
   1414  *
   1415  *	1. if not cow'ing now, simply adjust flt->enter_prot.
   1416  *	2. if cow'ing now, and if ref count is 1, break loan.
   1417  */
   1418 
   1419 static int
   1420 uvm_fault_upper_loan(
   1421 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1422 	struct vm_anon *anon)
   1423 {
   1424 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1425 	int error = 0;
   1426 	UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
   1427 
   1428 	if (!flt->cow_now) {
   1429 
   1430 		/*
   1431 		 * for read faults on loaned pages we just cap the
   1432 		 * protection at read-only.
   1433 		 */
   1434 
   1435 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1436 
   1437 	} else {
   1438 		/*
   1439 		 * note that we can't allow writes into a loaned page!
   1440 		 *
   1441 		 * if we have a write fault on a loaned page in an
   1442 		 * anon then we need to look at the anon's ref count.
   1443 		 * if it is greater than one then we are going to do
   1444 		 * a normal copy-on-write fault into a new anon (this
   1445 		 * is not a problem).  however, if the reference count
   1446 		 * is one (a case where we would normally allow a
   1447 		 * write directly to the page) then we need to kill
   1448 		 * the loan before we continue.
   1449 		 */
   1450 
   1451 		/* >1 case is already ok */
   1452 		if (anon->an_ref == 1) {
   1453 			struct uvm_object * const uobj __unused =
   1454 			    anon->an_page->uobject;
   1455 
   1456 			KASSERT(uobj == NULL ||
   1457 			    uobj->vmobjlock == amap->am_obj_lock);
   1458 			KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1459 			error = uvm_loanbreak_anon(anon);
   1460 			if (error != 0) {
   1461 				uvmfault_unlockall(ufi, amap, NULL);
   1462 				uvm_wait("flt_noram2");
   1463 				return ERESTART;
   1464 			}
   1465 			/* if we were a loan reciever uobj is gone */
   1466 			KASSERT(anon->an_page->uobject == NULL);
   1467 		}
   1468 	}
   1469 	return error;
   1470 }
   1471 
   1472 /*
   1473  * uvm_fault_upper_promote: promote upper page.
   1474  *
   1475  *	1. call uvmfault_promote.
   1476  *	2. enqueue page.
   1477  *	3. deref.
   1478  *	4. pass page to uvm_fault_upper_enter.
   1479  */
   1480 
   1481 static int
   1482 uvm_fault_upper_promote(
   1483 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1484 	struct vm_anon *anon)
   1485 {
   1486 	struct vm_anon * const oanon = anon;
   1487 	struct vm_page *pg;
   1488 	int error;
   1489 	UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
   1490 
   1491 	UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
   1492 	uvmexp.flt_acow++;
   1493 
   1494 	error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
   1495 	    &flt->anon_spare);
   1496 	switch (error) {
   1497 	case 0:
   1498 		break;
   1499 	case ERESTART:
   1500 		return ERESTART;
   1501 	default:
   1502 		return error;
   1503 	}
   1504 
   1505 	KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
   1506 
   1507 	pg = anon->an_page;
   1508 	mutex_enter(&uvm_pageqlock);
   1509 	uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
   1510 	mutex_exit(&uvm_pageqlock);
   1511 	pg->flags &= ~(PG_BUSY|PG_FAKE);
   1512 	UVM_PAGE_OWN(pg, NULL);
   1513 
   1514 	/* deref: can not drop to zero here by defn! */
   1515 	KASSERT(oanon->an_ref > 1);
   1516 	oanon->an_ref--;
   1517 
   1518 	/*
   1519 	 * note: oanon is still locked, as is the new anon.  we
   1520 	 * need to check for this later when we unlock oanon; if
   1521 	 * oanon != anon, we'll have to unlock anon, too.
   1522 	 */
   1523 
   1524 	return uvm_fault_upper_enter(ufi, flt, anon, pg, oanon);
   1525 }
   1526 
   1527 /*
   1528  * uvm_fault_upper_direct: handle direct fault.
   1529  */
   1530 
   1531 static int
   1532 uvm_fault_upper_direct(
   1533 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1534 	struct vm_anon *anon)
   1535 {
   1536 	struct vm_anon * const oanon = anon;
   1537 	struct vm_page *pg;
   1538 	UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
   1539 
   1540 	uvmexp.flt_anon++;
   1541 	pg = anon->an_page;
   1542 	if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
   1543 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1544 
   1545 	return uvm_fault_upper_enter(ufi, flt, anon, pg, oanon);
   1546 }
   1547 
   1548 /*
   1549  * uvm_fault_upper_enter: enter h/w mapping of upper page.
   1550  */
   1551 
   1552 static int
   1553 uvm_fault_upper_enter(
   1554 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1555 	struct vm_anon *anon, struct vm_page *pg, struct vm_anon *oanon)
   1556 {
   1557 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1558 	struct uvm_object *uobj __unused = pg->uobject;
   1559 	UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
   1560 
   1561 	/* locked: maps(read), amap, oanon, anon(if different from oanon) */
   1562 	KASSERT(mutex_owned(amap->am_lock));
   1563 	KASSERT(anon->an_lock == amap->am_lock);
   1564 	KASSERT(oanon->an_lock == amap->am_lock);
   1565 	KASSERT(uobj == NULL || amap->am_obj_lock == uobj->vmobjlock);
   1566 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1567 	KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
   1568 
   1569 	/*
   1570 	 * now map the page in.
   1571 	 */
   1572 
   1573 	UVMHIST_LOG(maphist,
   1574 	    "  MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
   1575 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
   1576 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
   1577 	    VM_PAGE_TO_PHYS(pg),
   1578 	    flt->enter_prot, flt->access_type | PMAP_CANFAIL |
   1579 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   1580 
   1581 		/*
   1582 		 * No need to undo what we did; we can simply think of
   1583 		 * this as the pmap throwing away the mapping information.
   1584 		 *
   1585 		 * We do, however, have to go through the ReFault path,
   1586 		 * as the map may change while we're asleep.
   1587 		 */
   1588 
   1589 		uvmfault_unlockall(ufi, amap, NULL);
   1590 		if (!uvm_reclaimable()) {
   1591 			UVMHIST_LOG(maphist,
   1592 			    "<- failed.  out of VM",0,0,0,0);
   1593 			/* XXX instrumentation */
   1594 			return ENOMEM;
   1595 		}
   1596 		/* XXX instrumentation */
   1597 		uvm_wait("flt_pmfail1");
   1598 		return ERESTART;
   1599 	}
   1600 
   1601 	uvm_fault_upper_done(ufi, flt, anon, pg);
   1602 
   1603 	/*
   1604 	 * done case 1!  finish up by unlocking everything and returning success
   1605 	 */
   1606 
   1607 	pmap_update(ufi->orig_map->pmap);
   1608 	uvmfault_unlockall(ufi, amap, NULL);
   1609 	return 0;
   1610 }
   1611 
   1612 /*
   1613  * uvm_fault_upper_done: queue upper center page.
   1614  */
   1615 
   1616 static void
   1617 uvm_fault_upper_done(
   1618 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1619 	struct vm_anon *anon, struct vm_page *pg)
   1620 {
   1621 	const bool wire_paging = flt->wire_paging;
   1622 
   1623 	UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
   1624 
   1625 	/*
   1626 	 * ... update the page queues.
   1627 	 */
   1628 
   1629 	mutex_enter(&uvm_pageqlock);
   1630 	if (wire_paging) {
   1631 		uvm_pagewire(pg);
   1632 
   1633 		/*
   1634 		 * since the now-wired page cannot be paged out,
   1635 		 * release its swap resources for others to use.
   1636 		 * since an anon with no swap cannot be clean,
   1637 		 * mark it dirty now.
   1638 		 */
   1639 
   1640 		uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   1641 	} else {
   1642 		uvm_pageactivate(pg);
   1643 	}
   1644 	mutex_exit(&uvm_pageqlock);
   1645 
   1646 	if (wire_paging) {
   1647 		uvm_anon_dropswap(anon);
   1648 	}
   1649 }
   1650 
   1651 /*
   1652  * uvm_fault_lower: handle lower fault.
   1653  *
   1654  *	1. check uobj
   1655  *	1.1. if null, ZFOD.
   1656  *	1.2. if not null, look up unnmapped neighbor pages.
   1657  *	2. for center page, check if promote.
   1658  *	2.1. ZFOD always needs promotion.
   1659  *	2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
   1660  *	3. if uobj is not ZFOD and page is not found, do i/o.
   1661  *	4. dispatch either direct / promote fault.
   1662  */
   1663 
   1664 static int
   1665 uvm_fault_lower(
   1666 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1667 	struct vm_page **pages)
   1668 {
   1669 #ifdef DIAGNOSTIC
   1670 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1671 #endif
   1672 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1673 	struct vm_page *uobjpage;
   1674 	int error;
   1675 	UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
   1676 
   1677 	/*
   1678 	 * now, if the desired page is not shadowed by the amap and we have
   1679 	 * a backing object that does not have a special fault routine, then
   1680 	 * we ask (with pgo_get) the object for resident pages that we care
   1681 	 * about and attempt to map them in.  we do not let pgo_get block
   1682 	 * (PGO_LOCKED).
   1683 	 */
   1684 
   1685 	if (uobj == NULL) {
   1686 		/* zero fill; don't care neighbor pages */
   1687 		uobjpage = NULL;
   1688 	} else {
   1689 		uvm_fault_lower_lookup(ufi, flt, pages);
   1690 		uobjpage = pages[flt->centeridx];
   1691 	}
   1692 
   1693 	/*
   1694 	 * note that at this point we are done with any front or back pages.
   1695 	 * we are now going to focus on the center page (i.e. the one we've
   1696 	 * faulted on).  if we have faulted on the upper (anon) layer
   1697 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
   1698 	 * not touched it yet).  if we have faulted on the bottom (uobj)
   1699 	 * layer [i.e. case 2] and the page was both present and available,
   1700 	 * then we've got a pointer to it as "uobjpage" and we've already
   1701 	 * made it BUSY.
   1702 	 */
   1703 
   1704 	/*
   1705 	 * locked:
   1706 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
   1707 	 */
   1708 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1709 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1710 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1711 
   1712 	/*
   1713 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
   1714 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
   1715 	 * have a backing object, check and see if we are going to promote
   1716 	 * the data up to an anon during the fault.
   1717 	 */
   1718 
   1719 	if (uobj == NULL) {
   1720 		uobjpage = PGO_DONTCARE;
   1721 		flt->promote = true;		/* always need anon here */
   1722 	} else {
   1723 		KASSERT(uobjpage != PGO_DONTCARE);
   1724 		flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
   1725 	}
   1726 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%d, zfill=%d",
   1727 	    flt->promote, (uobj == NULL), 0,0);
   1728 
   1729 	/*
   1730 	 * if uobjpage is not null then we do not need to do I/O to get the
   1731 	 * uobjpage.
   1732 	 *
   1733 	 * if uobjpage is null, then we need to unlock and ask the pager to
   1734 	 * get the data for us.   once we have the data, we need to reverify
   1735 	 * the state the world.   we are currently not holding any resources.
   1736 	 */
   1737 
   1738 	if (uobjpage) {
   1739 		/* update rusage counters */
   1740 		curlwp->l_ru.ru_minflt++;
   1741 	} else {
   1742 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
   1743 		if (error != 0)
   1744 			return error;
   1745 	}
   1746 
   1747 	/*
   1748 	 * locked:
   1749 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
   1750 	 */
   1751 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1752 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1753 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1754 
   1755 	/*
   1756 	 * notes:
   1757 	 *  - at this point uobjpage can not be NULL
   1758 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
   1759 	 *  for it above)
   1760 	 *  - at this point uobjpage could be PG_WANTED (handle later)
   1761 	 */
   1762 
   1763 	KASSERT(uobjpage != NULL);
   1764 	KASSERT(uobj == NULL || uobj == uobjpage->uobject);
   1765 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
   1766 	    uvm_pagegetdirty(uobjpage) == UVM_PAGE_STATUS_CLEAN);
   1767 
   1768 	if (!flt->promote) {
   1769 		error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
   1770 	} else {
   1771 		error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
   1772 	}
   1773 	return error;
   1774 }
   1775 
   1776 /*
   1777  * uvm_fault_lower_lookup: look up on-memory uobj pages.
   1778  *
   1779  *	1. get on-memory pages.
   1780  *	2. if failed, give up (get only center page later).
   1781  *	3. if succeeded, enter h/w mapping of neighbor pages.
   1782  */
   1783 
   1784 static void
   1785 uvm_fault_lower_lookup(
   1786 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1787 	struct vm_page **pages)
   1788 {
   1789 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1790 	int lcv, gotpages;
   1791 	vaddr_t currva;
   1792 	UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
   1793 
   1794 	mutex_enter(uobj->vmobjlock);
   1795 	/* Locked: maps(read), amap(if there), uobj */
   1796 
   1797 	uvmexp.fltlget++;
   1798 	gotpages = flt->npages;
   1799 	(void) uobj->pgops->pgo_get(uobj,
   1800 	    ufi->entry->offset + flt->startva - ufi->entry->start,
   1801 	    pages, &gotpages, flt->centeridx,
   1802 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
   1803 
   1804 	KASSERT(mutex_owned(uobj->vmobjlock));
   1805 
   1806 	/*
   1807 	 * check for pages to map, if we got any
   1808 	 */
   1809 
   1810 	if (gotpages == 0) {
   1811 		pages[flt->centeridx] = NULL;
   1812 		return;
   1813 	}
   1814 
   1815 	currva = flt->startva;
   1816 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1817 		struct vm_page *curpg;
   1818 
   1819 		curpg = pages[lcv];
   1820 		if (curpg == NULL || curpg == PGO_DONTCARE) {
   1821 			continue;
   1822 		}
   1823 		KASSERT(curpg->uobject == uobj);
   1824 
   1825 		/*
   1826 		 * if center page is resident and not PG_BUSY|PG_RELEASED
   1827 		 * then pgo_get made it PG_BUSY for us and gave us a handle
   1828 		 * to it.
   1829 		 */
   1830 
   1831 		if (lcv == flt->centeridx) {
   1832 			UVMHIST_LOG(maphist, "  got uobjpage "
   1833 			    "(0x%x) with locked get",
   1834 			    curpg, 0,0,0);
   1835 		} else {
   1836 			uvm_fault_lower_neighbor(ufi, flt, currva, curpg);
   1837 		}
   1838 	}
   1839 	pmap_update(ufi->orig_map->pmap);
   1840 }
   1841 
   1842 /*
   1843  * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
   1844  */
   1845 
   1846 static void
   1847 uvm_fault_lower_neighbor(
   1848 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1849 	vaddr_t currva, struct vm_page *pg)
   1850 {
   1851 	const bool readonly = uvm_pagereadonly_p(pg) || pg->loan_count > 0;
   1852 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1853 
   1854 	/* locked: maps(read), amap(if there), uobj */
   1855 
   1856 	/*
   1857 	 * calling pgo_get with PGO_LOCKED returns us pages which
   1858 	 * are neither busy nor released, so we don't need to check
   1859 	 * for this.  we can just directly enter the pages.
   1860 	 */
   1861 
   1862 	mutex_enter(&uvm_pageqlock);
   1863 	uvm_pageenqueue(pg);
   1864 	mutex_exit(&uvm_pageqlock);
   1865 	UVMHIST_LOG(maphist,
   1866 	    "  MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
   1867 	    ufi->orig_map->pmap, currva, pg, 0);
   1868 	uvmexp.fltnomap++;
   1869 
   1870 	/*
   1871 	 * Since this page isn't the page that's actually faulting,
   1872 	 * ignore pmap_enter() failures; it's not critical that we
   1873 	 * enter these right now.
   1874 	 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
   1875 	 * held the lock the whole time we've had the handle.
   1876 	 */
   1877 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1878 	KASSERT((pg->flags & PG_RELEASED) == 0);
   1879 	KASSERT((pg->flags & PG_WANTED) == 0);
   1880 	KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
   1881 	    uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN);
   1882 	pg->flags &= ~(PG_BUSY);
   1883 	UVM_PAGE_OWN(pg, NULL);
   1884 
   1885 	KASSERT(mutex_owned(pg->uobject->vmobjlock));
   1886 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1887 	    VM_PAGE_TO_PHYS(pg),
   1888 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1889 	    flt->enter_prot & MASK(ufi->entry),
   1890 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
   1891 }
   1892 
   1893 /*
   1894  * uvm_fault_lower_io: get lower page from backing store.
   1895  *
   1896  *	1. unlock everything, because i/o will block.
   1897  *	2. call pgo_get.
   1898  *	3. if failed, recover.
   1899  *	4. if succeeded, relock everything and verify things.
   1900  */
   1901 
   1902 static int
   1903 uvm_fault_lower_io(
   1904 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1905 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
   1906 {
   1907 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1908 	struct uvm_object *uobj = *ruobj;
   1909 	struct vm_page *pg;
   1910 	bool locked;
   1911 	int gotpages;
   1912 	int error;
   1913 	voff_t uoff;
   1914 	UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
   1915 
   1916 	/* update rusage counters */
   1917 	curlwp->l_ru.ru_majflt++;
   1918 
   1919 	/* Locked: maps(read), amap(if there), uobj */
   1920 	uvmfault_unlockall(ufi, amap, NULL);
   1921 
   1922 	/* Locked: uobj */
   1923 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1924 
   1925 	uvmexp.fltget++;
   1926 	gotpages = 1;
   1927 	pg = NULL;
   1928 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
   1929 	error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
   1930 	    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
   1931 	    PGO_SYNCIO);
   1932 	/* locked: pg(if no error) */
   1933 
   1934 	/*
   1935 	 * recover from I/O
   1936 	 */
   1937 
   1938 	if (error) {
   1939 		if (error == EAGAIN) {
   1940 			UVMHIST_LOG(maphist,
   1941 			    "  pgo_get says TRY AGAIN!",0,0,0,0);
   1942 			kpause("fltagain2", false, hz/2, NULL);
   1943 			return ERESTART;
   1944 		}
   1945 
   1946 #if 0
   1947 		KASSERT(error != ERESTART);
   1948 #else
   1949 		/* XXXUEBS don't re-fault? */
   1950 		if (error == ERESTART)
   1951 			error = EIO;
   1952 #endif
   1953 
   1954 		UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
   1955 		    error, 0,0,0);
   1956 		return error;
   1957 	}
   1958 
   1959 	/*
   1960 	 * re-verify the state of the world by first trying to relock
   1961 	 * the maps.  always relock the object.
   1962 	 */
   1963 
   1964 	locked = uvmfault_relock(ufi);
   1965 	if (locked && amap)
   1966 		amap_lock(amap);
   1967 
   1968 	/* might be changed */
   1969 	uobj = pg->uobject;
   1970 
   1971 	mutex_enter(uobj->vmobjlock);
   1972 	KASSERT((pg->flags & PG_BUSY) != 0);
   1973 
   1974 	mutex_enter(&uvm_pageqlock);
   1975 	uvm_pageactivate(pg);
   1976 	mutex_exit(&uvm_pageqlock);
   1977 
   1978 	/* locked(locked): maps(read), amap(if !null), uobj, pg */
   1979 	/* locked(!locked): uobj, pg */
   1980 
   1981 	/*
   1982 	 * verify that the page has not be released and re-verify
   1983 	 * that amap slot is still free.   if there is a problem,
   1984 	 * we unlock and clean up.
   1985 	 */
   1986 
   1987 	if ((pg->flags & PG_RELEASED) != 0 ||
   1988 	    (locked && amap && amap_lookup(&ufi->entry->aref,
   1989 	      ufi->orig_rvaddr - ufi->entry->start))) {
   1990 		if (locked)
   1991 			uvmfault_unlockall(ufi, amap, NULL);
   1992 		locked = false;
   1993 	}
   1994 
   1995 	/*
   1996 	 * didn't get the lock?   release the page and retry.
   1997 	 */
   1998 
   1999 	if (locked == false) {
   2000 		UVMHIST_LOG(maphist,
   2001 		    "  wasn't able to relock after fault: retry",
   2002 		    0,0,0,0);
   2003 		if (pg->flags & PG_WANTED) {
   2004 			wakeup(pg);
   2005 		}
   2006 		if ((pg->flags & PG_RELEASED) == 0) {
   2007 			pg->flags &= ~(PG_BUSY | PG_WANTED);
   2008 			UVM_PAGE_OWN(pg, NULL);
   2009 		} else {
   2010 			uvmexp.fltpgrele++;
   2011 			uvm_pagefree(pg);
   2012 		}
   2013 		mutex_exit(uobj->vmobjlock);
   2014 		return ERESTART;
   2015 	}
   2016 
   2017 	/*
   2018 	 * we have the data in pg which is busy and
   2019 	 * not released.  we are holding object lock (so the page
   2020 	 * can't be released on us).
   2021 	 */
   2022 
   2023 	/* locked: maps(read), amap(if !null), uobj, pg */
   2024 
   2025 	*ruobj = uobj;
   2026 	*ruobjpage = pg;
   2027 	return 0;
   2028 }
   2029 
   2030 /*
   2031  * uvm_fault_lower_direct: fault lower center page
   2032  *
   2033  *	1. adjust flt->enter_prot.
   2034  *	2. if page is loaned, resolve.
   2035  */
   2036 
   2037 int
   2038 uvm_fault_lower_direct(
   2039 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2040 	struct uvm_object *uobj, struct vm_page *uobjpage)
   2041 {
   2042 	struct vm_page *pg;
   2043 	UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
   2044 
   2045 	/*
   2046 	 * we are not promoting.   if the mapping is COW ensure that we
   2047 	 * don't give more access than we should (e.g. when doing a read
   2048 	 * fault on a COPYONWRITE mapping we want to map the COW page in
   2049 	 * R/O even though the entry protection could be R/W).
   2050 	 *
   2051 	 * set "pg" to the page we want to map in (uobjpage, usually)
   2052 	 */
   2053 
   2054 	uvmexp.flt_obj++;
   2055 	if (UVM_ET_ISCOPYONWRITE(ufi->entry))
   2056 		flt->enter_prot &= ~VM_PROT_WRITE;
   2057 	pg = uobjpage;		/* map in the actual object */
   2058 
   2059 	KASSERT(uobjpage != PGO_DONTCARE);
   2060 
   2061 	/*
   2062 	 * we are faulting directly on the page.   be careful
   2063 	 * about writing to loaned pages...
   2064 	 */
   2065 
   2066 	if (uobjpage->loan_count) {
   2067 		uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
   2068 	}
   2069 	KASSERT(pg == uobjpage);
   2070 
   2071 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   2072 	return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
   2073 }
   2074 
   2075 /*
   2076  * uvm_fault_lower_direct_loan: resolve loaned page.
   2077  *
   2078  *	1. if not cow'ing, adjust flt->enter_prot.
   2079  *	2. if cow'ing, break loan.
   2080  */
   2081 
   2082 static int
   2083 uvm_fault_lower_direct_loan(
   2084 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2085 	struct uvm_object *uobj, struct vm_page **rpg,
   2086 	struct vm_page **ruobjpage)
   2087 {
   2088 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2089 	struct vm_page *pg;
   2090 	struct vm_page *uobjpage = *ruobjpage;
   2091 	UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
   2092 
   2093 	if (!flt->cow_now) {
   2094 		/* read fault: cap the protection at readonly */
   2095 		/* cap! */
   2096 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   2097 	} else {
   2098 		/* write fault: must break the loan here */
   2099 
   2100 		pg = uvm_loanbreak(uobjpage);
   2101 		if (pg == NULL) {
   2102 
   2103 			/*
   2104 			 * drop ownership of page, it can't be released
   2105 			 */
   2106 
   2107 			if (uobjpage->flags & PG_WANTED)
   2108 				wakeup(uobjpage);
   2109 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   2110 			UVM_PAGE_OWN(uobjpage, NULL);
   2111 
   2112 			uvmfault_unlockall(ufi, amap, uobj);
   2113 			UVMHIST_LOG(maphist,
   2114 			  "  out of RAM breaking loan, waiting",
   2115 			  0,0,0,0);
   2116 			uvmexp.fltnoram++;
   2117 			uvm_wait("flt_noram4");
   2118 			return ERESTART;
   2119 		}
   2120 		*rpg = pg;
   2121 		*ruobjpage = pg;
   2122 	}
   2123 	return 0;
   2124 }
   2125 
   2126 /*
   2127  * uvm_fault_lower_promote: promote lower page.
   2128  *
   2129  *	1. call uvmfault_promote.
   2130  *	2. fill in data.
   2131  *	3. if not ZFOD, dispose old page.
   2132  */
   2133 
   2134 int
   2135 uvm_fault_lower_promote(
   2136 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2137 	struct uvm_object *uobj, struct vm_page *uobjpage)
   2138 {
   2139 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2140 	struct vm_anon *anon;
   2141 	struct vm_page *pg;
   2142 	int error;
   2143 	UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
   2144 
   2145 	KASSERT(amap != NULL);
   2146 
   2147 	/*
   2148 	 * If we are going to promote the data to an anon we
   2149 	 * allocate a blank anon here and plug it into our amap.
   2150 	 */
   2151 	error = uvmfault_promote(ufi, NULL, uobjpage,
   2152 	    &anon, &flt->anon_spare);
   2153 	switch (error) {
   2154 	case 0:
   2155 		break;
   2156 	case ERESTART:
   2157 		return ERESTART;
   2158 	default:
   2159 		return error;
   2160 	}
   2161 
   2162 	pg = anon->an_page;
   2163 
   2164 	/*
   2165 	 * Fill in the data.
   2166 	 */
   2167 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   2168 
   2169 	if (uobjpage != PGO_DONTCARE) {
   2170 		uvmexp.flt_prcopy++;
   2171 
   2172 		/*
   2173 		 * promote to shared amap?  make sure all sharing
   2174 		 * procs see it
   2175 		 */
   2176 
   2177 		if ((amap_flags(amap) & AMAP_SHARED) != 0) {
   2178 			pmap_page_protect(uobjpage, VM_PROT_NONE);
   2179 			/*
   2180 			 * XXX: PAGE MIGHT BE WIRED!
   2181 			 */
   2182 		}
   2183 
   2184 		/*
   2185 		 * dispose of uobjpage.  it can't be PG_RELEASED
   2186 		 * since we still hold the object lock.
   2187 		 */
   2188 
   2189 		if (uobjpage->flags & PG_WANTED) {
   2190 			/* still have the obj lock */
   2191 			wakeup(uobjpage);
   2192 		}
   2193 		uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   2194 		UVM_PAGE_OWN(uobjpage, NULL);
   2195 
   2196 		UVMHIST_LOG(maphist,
   2197 		    "  promote uobjpage 0x%x to anon/page 0x%x/0x%x",
   2198 		    uobjpage, anon, pg, 0);
   2199 
   2200 	} else {
   2201 		uvmexp.flt_przero++;
   2202 
   2203 		/*
   2204 		 * Page is zero'd and marked dirty by
   2205 		 * uvmfault_promote().
   2206 		 */
   2207 
   2208 		UVMHIST_LOG(maphist,"  zero fill anon/page 0x%x/0%x",
   2209 		    anon, pg, 0, 0);
   2210 	}
   2211 
   2212 	return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
   2213 }
   2214 
   2215 /*
   2216  * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
   2217  * from the lower page.
   2218  */
   2219 
   2220 int
   2221 uvm_fault_lower_enter(
   2222 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2223 	struct uvm_object *uobj,
   2224 	struct vm_anon *anon, struct vm_page *pg)
   2225 {
   2226 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2227 	const bool readonly = uvm_pagereadonly_p(pg);
   2228 	int error;
   2229 	UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
   2230 
   2231 	/*
   2232 	 * Locked:
   2233 	 *
   2234 	 *	maps(read), amap(if !null), uobj(if !null),
   2235 	 *	anon(if !null), pg(if anon), unlock_uobj(if !null)
   2236 	 *
   2237 	 * Note: pg is either the uobjpage or the new page in the new anon.
   2238 	 */
   2239 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   2240 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   2241 	KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
   2242 	KASSERT((pg->flags & PG_BUSY) != 0);
   2243 
   2244 	/*
   2245 	 * all resources are present.   we can now map it in and free our
   2246 	 * resources.
   2247 	 */
   2248 
   2249 	UVMHIST_LOG(maphist,
   2250 	    "  MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
   2251 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
   2252 	KASSERTMSG((flt->access_type & VM_PROT_WRITE) == 0 || !readonly,
   2253 	    "promote=%u cow_now=%u access_type=%x enter_prot=%x cow=%u "
   2254 	    "entry=%p map=%p orig_rvaddr=%p pg=%p",
   2255 	    flt->promote, flt->cow_now, flt->access_type, flt->enter_prot,
   2256 	    UVM_ET_ISCOPYONWRITE(ufi->entry), ufi->entry, ufi->orig_map,
   2257 	    (void *)ufi->orig_rvaddr, pg);
   2258 	KASSERT((flt->access_type & VM_PROT_WRITE) == 0 || !readonly);
   2259 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
   2260 	    VM_PAGE_TO_PHYS(pg),
   2261 	    readonly ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
   2262 	    flt->access_type | PMAP_CANFAIL |
   2263 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   2264 
   2265 		/*
   2266 		 * No need to undo what we did; we can simply think of
   2267 		 * this as the pmap throwing away the mapping information.
   2268 		 *
   2269 		 * We do, however, have to go through the ReFault path,
   2270 		 * as the map may change while we're asleep.
   2271 		 */
   2272 
   2273 		/*
   2274 		 * ensure that the page is queued in the case that
   2275 		 * we just promoted the page.
   2276 		 */
   2277 
   2278 		mutex_enter(&uvm_pageqlock);
   2279 		uvm_pageenqueue(pg);
   2280 		mutex_exit(&uvm_pageqlock);
   2281 
   2282 		if (pg->flags & PG_WANTED)
   2283 			wakeup(pg);
   2284 
   2285 		/*
   2286 		 * note that pg can't be PG_RELEASED since we did not drop
   2287 		 * the object lock since the last time we checked.
   2288 		 */
   2289 		KASSERT((pg->flags & PG_RELEASED) == 0);
   2290 
   2291 		pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2292 		UVM_PAGE_OWN(pg, NULL);
   2293 
   2294 		uvmfault_unlockall(ufi, amap, uobj);
   2295 		if (!uvm_reclaimable()) {
   2296 			UVMHIST_LOG(maphist,
   2297 			    "<- failed.  out of VM",0,0,0,0);
   2298 			/* XXX instrumentation */
   2299 			error = ENOMEM;
   2300 			return error;
   2301 		}
   2302 		/* XXX instrumentation */
   2303 		uvm_wait("flt_pmfail2");
   2304 		return ERESTART;
   2305 	}
   2306 
   2307 	uvm_fault_lower_done(ufi, flt, uobj, pg);
   2308 
   2309 	/*
   2310 	 * note that pg can't be PG_RELEASED since we did not drop the object
   2311 	 * lock since the last time we checked.
   2312 	 */
   2313 	KASSERT((pg->flags & PG_RELEASED) == 0);
   2314 	if (pg->flags & PG_WANTED)
   2315 		wakeup(pg);
   2316 	pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2317 	UVM_PAGE_OWN(pg, NULL);
   2318 
   2319 	pmap_update(ufi->orig_map->pmap);
   2320 	uvmfault_unlockall(ufi, amap, uobj);
   2321 
   2322 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
   2323 	return 0;
   2324 }
   2325 
   2326 /*
   2327  * uvm_fault_lower_done: queue lower center page.
   2328  */
   2329 
   2330 void
   2331 uvm_fault_lower_done(
   2332 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2333 	struct uvm_object *uobj, struct vm_page *pg)
   2334 {
   2335 	bool dropswap = false;
   2336 
   2337 	UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
   2338 
   2339 	mutex_enter(&uvm_pageqlock);
   2340 	if (flt->wire_paging) {
   2341 		uvm_pagewire(pg);
   2342 		if (pg->pqflags & PQ_AOBJ) {
   2343 
   2344 			/*
   2345 			 * since the now-wired page cannot be paged out,
   2346 			 * release its swap resources for others to use.
   2347 			 * since an aobj page with no swap cannot be clean,
   2348 			 * mark it dirty now.
   2349 			 */
   2350 
   2351 			KASSERT(uobj != NULL);
   2352 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   2353 			dropswap = true;
   2354 		}
   2355 	} else {
   2356 		uvm_pageactivate(pg);
   2357 	}
   2358 	mutex_exit(&uvm_pageqlock);
   2359 
   2360 	if (dropswap) {
   2361 		uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
   2362 	}
   2363 }
   2364 
   2365 
   2366 /*
   2367  * uvm_fault_wire: wire down a range of virtual addresses in a map.
   2368  *
   2369  * => map may be read-locked by caller, but MUST NOT be write-locked.
   2370  * => if map is read-locked, any operations which may cause map to
   2371  *	be write-locked in uvm_fault() must be taken care of by
   2372  *	the caller.  See uvm_map_pageable().
   2373  */
   2374 
   2375 int
   2376 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
   2377     vm_prot_t access_type, int maxprot)
   2378 {
   2379 	vaddr_t va;
   2380 	int error;
   2381 
   2382 	/*
   2383 	 * now fault it in a page at a time.   if the fault fails then we have
   2384 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
   2385 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
   2386 	 */
   2387 
   2388 	/*
   2389 	 * XXX work around overflowing a vaddr_t.  this prevents us from
   2390 	 * wiring the last page in the address space, though.
   2391 	 */
   2392 	if (start > end) {
   2393 		return EFAULT;
   2394 	}
   2395 
   2396 	for (va = start; va < end; va += PAGE_SIZE) {
   2397 		error = uvm_fault_internal(map, va, access_type,
   2398 		    (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
   2399 		if (error) {
   2400 			if (va != start) {
   2401 				uvm_fault_unwire(map, start, va);
   2402 			}
   2403 			return error;
   2404 		}
   2405 	}
   2406 	return 0;
   2407 }
   2408 
   2409 /*
   2410  * uvm_fault_unwire(): unwire range of virtual space.
   2411  */
   2412 
   2413 void
   2414 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
   2415 {
   2416 	vm_map_lock_read(map);
   2417 	uvm_fault_unwire_locked(map, start, end);
   2418 	vm_map_unlock_read(map);
   2419 }
   2420 
   2421 /*
   2422  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
   2423  *
   2424  * => map must be at least read-locked.
   2425  */
   2426 
   2427 void
   2428 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
   2429 {
   2430 	struct vm_map_entry *entry, *oentry;
   2431 	pmap_t pmap = vm_map_pmap(map);
   2432 	vaddr_t va;
   2433 	paddr_t pa;
   2434 	struct vm_page *pg;
   2435 
   2436 	/*
   2437 	 * we assume that the area we are unwiring has actually been wired
   2438 	 * in the first place.   this means that we should be able to extract
   2439 	 * the PAs from the pmap.   we also lock out the page daemon so that
   2440 	 * we can call uvm_pageunwire.
   2441 	 */
   2442 
   2443 	/*
   2444 	 * find the beginning map entry for the region.
   2445 	 */
   2446 
   2447 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
   2448 	if (uvm_map_lookup_entry(map, start, &entry) == false)
   2449 		panic("uvm_fault_unwire_locked: address not in map");
   2450 
   2451 	oentry = NULL;
   2452 	for (va = start; va < end; va += PAGE_SIZE) {
   2453 		if (pmap_extract(pmap, va, &pa) == false)
   2454 			continue;
   2455 
   2456 		/*
   2457 		 * find the map entry for the current address.
   2458 		 */
   2459 
   2460 		KASSERT(va >= entry->start);
   2461 		while (va >= entry->end) {
   2462 			KASSERT(entry->next != &map->header &&
   2463 				entry->next->start <= entry->end);
   2464 			entry = entry->next;
   2465 		}
   2466 
   2467 		/*
   2468 		 * lock it.
   2469 		 */
   2470 
   2471 		if (entry != oentry) {
   2472 			if (oentry != NULL) {
   2473 				mutex_exit(&uvm_pageqlock);
   2474 				uvm_map_unlock_entry(oentry);
   2475 			}
   2476 			uvm_map_lock_entry(entry);
   2477 			mutex_enter(&uvm_pageqlock);
   2478 			oentry = entry;
   2479 		}
   2480 
   2481 		/*
   2482 		 * if the entry is no longer wired, tell the pmap.
   2483 		 */
   2484 
   2485 		if (VM_MAPENT_ISWIRED(entry) == 0)
   2486 			pmap_unwire(pmap, va);
   2487 
   2488 		pg = PHYS_TO_VM_PAGE(pa);
   2489 		if (pg)
   2490 			uvm_pageunwire(pg);
   2491 	}
   2492 
   2493 	if (oentry != NULL) {
   2494 		mutex_exit(&uvm_pageqlock);
   2495 		uvm_map_unlock_entry(entry);
   2496 	}
   2497 }
   2498