Home | History | Annotate | Line # | Download | only in uvm
uvm_fault.c revision 1.191
      1 /*	$NetBSD: uvm_fault.c,v 1.191 2011/11/28 14:06:59 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  *
     27  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
     28  */
     29 
     30 /*
     31  * uvm_fault.c: fault handler
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.191 2011/11/28 14:06:59 yamt Exp $");
     36 
     37 #include "opt_uvmhist.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/kernel.h>
     42 #include <sys/mman.h>
     43 
     44 #include <uvm/uvm.h>
     45 
     46 /*
     47  *
     48  * a word on page faults:
     49  *
     50  * types of page faults we handle:
     51  *
     52  * CASE 1: upper layer faults                   CASE 2: lower layer faults
     53  *
     54  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
     55  *    read/write1     write>1                  read/write   +-cow_write/zero
     56  *         |             |                         |        |
     57  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
     58  * amap |  V  |       |  ---------> new |          |        | |  ^  |
     59  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
     60  *                                                 |        |    |
     61  *      +-----+       +-----+                   +--|--+     | +--|--+
     62  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
     63  *      +-----+       +-----+                   +-----+       +-----+
     64  *
     65  * d/c = don't care
     66  *
     67  *   case [0]: layerless fault
     68  *	no amap or uobj is present.   this is an error.
     69  *
     70  *   case [1]: upper layer fault [anon active]
     71  *     1A: [read] or [write with anon->an_ref == 1]
     72  *		I/O takes place in upper level anon and uobj is not touched.
     73  *     1B: [write with anon->an_ref > 1]
     74  *		new anon is alloc'd and data is copied off ["COW"]
     75  *
     76  *   case [2]: lower layer fault [uobj]
     77  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
     78  *		I/O takes place directly in object.
     79  *     2B: [write to copy_on_write] or [read on NULL uobj]
     80  *		data is "promoted" from uobj to a new anon.
     81  *		if uobj is null, then we zero fill.
     82  *
     83  * we follow the standard UVM locking protocol ordering:
     84  *
     85  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
     86  * we hold a PG_BUSY page if we unlock for I/O
     87  *
     88  *
     89  * the code is structured as follows:
     90  *
     91  *     - init the "IN" params in the ufi structure
     92  *   ReFault: (ERESTART returned to the loop in uvm_fault_internal)
     93  *     - do lookups [locks maps], check protection, handle needs_copy
     94  *     - check for case 0 fault (error)
     95  *     - establish "range" of fault
     96  *     - if we have an amap lock it and extract the anons
     97  *     - if sequential advice deactivate pages behind us
     98  *     - at the same time check pmap for unmapped areas and anon for pages
     99  *	 that we could map in (and do map it if found)
    100  *     - check object for resident pages that we could map in
    101  *     - if (case 2) goto Case2
    102  *     - >>> handle case 1
    103  *           - ensure source anon is resident in RAM
    104  *           - if case 1B alloc new anon and copy from source
    105  *           - map the correct page in
    106  *   Case2:
    107  *     - >>> handle case 2
    108  *           - ensure source page is resident (if uobj)
    109  *           - if case 2B alloc new anon and copy from source (could be zero
    110  *		fill if uobj == NULL)
    111  *           - map the correct page in
    112  *     - done!
    113  *
    114  * note on paging:
    115  *   if we have to do I/O we place a PG_BUSY page in the correct object,
    116  * unlock everything, and do the I/O.   when I/O is done we must reverify
    117  * the state of the world before assuming that our data structures are
    118  * valid.   [because mappings could change while the map is unlocked]
    119  *
    120  *  alternative 1: unbusy the page in question and restart the page fault
    121  *    from the top (ReFault).   this is easy but does not take advantage
    122  *    of the information that we already have from our previous lookup,
    123  *    although it is possible that the "hints" in the vm_map will help here.
    124  *
    125  * alternative 2: the system already keeps track of a "version" number of
    126  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
    127  *    mapping) you bump the version number up by one...]   so, we can save
    128  *    the version number of the map before we release the lock and start I/O.
    129  *    then when I/O is done we can relock and check the version numbers
    130  *    to see if anything changed.    this might save us some over 1 because
    131  *    we don't have to unbusy the page and may be less compares(?).
    132  *
    133  * alternative 3: put in backpointers or a way to "hold" part of a map
    134  *    in place while I/O is in progress.   this could be complex to
    135  *    implement (especially with structures like amap that can be referenced
    136  *    by multiple map entries, and figuring out what should wait could be
    137  *    complex as well...).
    138  *
    139  * we use alternative 2.  given that we are multi-threaded now we may want
    140  * to reconsider the choice.
    141  */
    142 
    143 /*
    144  * local data structures
    145  */
    146 
    147 struct uvm_advice {
    148 	int advice;
    149 	int nback;
    150 	int nforw;
    151 };
    152 
    153 /*
    154  * page range array:
    155  * note: index in array must match "advice" value
    156  * XXX: borrowed numbers from freebsd.   do they work well for us?
    157  */
    158 
    159 static const struct uvm_advice uvmadvice[] = {
    160 	{ UVM_ADV_NORMAL, 3, 4 },
    161 	{ UVM_ADV_RANDOM, 0, 0 },
    162 	{ UVM_ADV_SEQUENTIAL, 8, 7},
    163 };
    164 
    165 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
    166 
    167 /*
    168  * private prototypes
    169  */
    170 
    171 /*
    172  * inline functions
    173  */
    174 
    175 /*
    176  * uvmfault_anonflush: try and deactivate pages in specified anons
    177  *
    178  * => does not have to deactivate page if it is busy
    179  */
    180 
    181 static inline void
    182 uvmfault_anonflush(struct vm_anon **anons, int n)
    183 {
    184 	int lcv;
    185 	struct vm_page *pg;
    186 
    187 	for (lcv = 0; lcv < n; lcv++) {
    188 		if (anons[lcv] == NULL)
    189 			continue;
    190 		KASSERT(mutex_owned(anons[lcv]->an_lock));
    191 		pg = anons[lcv]->an_page;
    192 		if (pg && (pg->flags & PG_BUSY) == 0) {
    193 			mutex_enter(&uvm_pageqlock);
    194 			if (pg->wire_count == 0) {
    195 				uvm_pagedeactivate(pg);
    196 			}
    197 			mutex_exit(&uvm_pageqlock);
    198 		}
    199 	}
    200 }
    201 
    202 /*
    203  * normal functions
    204  */
    205 
    206 /*
    207  * uvmfault_amapcopy: clear "needs_copy" in a map.
    208  *
    209  * => called with VM data structures unlocked (usually, see below)
    210  * => we get a write lock on the maps and clear needs_copy for a VA
    211  * => if we are out of RAM we sleep (waiting for more)
    212  */
    213 
    214 static void
    215 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
    216 {
    217 	for (;;) {
    218 
    219 		/*
    220 		 * no mapping?  give up.
    221 		 */
    222 
    223 		if (uvmfault_lookup(ufi, true) == false)
    224 			return;
    225 
    226 		/*
    227 		 * copy if needed.
    228 		 */
    229 
    230 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
    231 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
    232 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
    233 
    234 		/*
    235 		 * didn't work?  must be out of RAM.   unlock and sleep.
    236 		 */
    237 
    238 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
    239 			uvmfault_unlockmaps(ufi, true);
    240 			uvm_wait("fltamapcopy");
    241 			continue;
    242 		}
    243 
    244 		/*
    245 		 * got it!   unlock and return.
    246 		 */
    247 
    248 		uvmfault_unlockmaps(ufi, true);
    249 		return;
    250 	}
    251 	/*NOTREACHED*/
    252 }
    253 
    254 /*
    255  * uvmfault_anonget: get data in an anon into a non-busy, non-released
    256  * page in that anon.
    257  *
    258  * => Map, amap and thus anon should be locked by caller.
    259  * => If we fail, we unlock everything and error is returned.
    260  * => If we are successful, return with everything still locked.
    261  * => We do not move the page on the queues [gets moved later].  If we
    262  *    allocate a new page [we_own], it gets put on the queues.  Either way,
    263  *    the result is that the page is on the queues at return time
    264  * => For pages which are on loan from a uvm_object (and thus are not owned
    265  *    by the anon): if successful, return with the owning object locked.
    266  *    The caller must unlock this object when it unlocks everything else.
    267  */
    268 
    269 int
    270 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
    271     struct vm_anon *anon)
    272 {
    273 	struct vm_page *pg;
    274 	int error;
    275 
    276 	UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
    277 	KASSERT(mutex_owned(anon->an_lock));
    278 	KASSERT(anon->an_lock == amap->am_lock);
    279 
    280 	/* Increment the counters.*/
    281 	uvmexp.fltanget++;
    282 	if (anon->an_page) {
    283 		curlwp->l_ru.ru_minflt++;
    284 	} else {
    285 		curlwp->l_ru.ru_majflt++;
    286 	}
    287 	error = 0;
    288 
    289 	/*
    290 	 * Loop until we get the anon data, or fail.
    291 	 */
    292 
    293 	for (;;) {
    294 		bool we_own, locked;
    295 		/*
    296 		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
    297 		 */
    298 		we_own = false;
    299 		pg = anon->an_page;
    300 
    301 		/*
    302 		 * If there is a resident page and it is loaned, then anon
    303 		 * may not own it.  Call out to uvm_anon_lockloanpg() to
    304 		 * identify and lock the real owner of the page.
    305 		 */
    306 
    307 		if (pg && pg->loan_count)
    308 			pg = uvm_anon_lockloanpg(anon);
    309 
    310 		/*
    311 		 * Is page resident?  Make sure it is not busy/released.
    312 		 */
    313 
    314 		if (pg) {
    315 
    316 			/*
    317 			 * at this point, if the page has a uobject [meaning
    318 			 * we have it on loan], then that uobject is locked
    319 			 * by us!   if the page is busy, we drop all the
    320 			 * locks (including uobject) and try again.
    321 			 */
    322 
    323 			if ((pg->flags & PG_BUSY) == 0) {
    324 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
    325 				return 0;
    326 			}
    327 			pg->flags |= PG_WANTED;
    328 			uvmexp.fltpgwait++;
    329 
    330 			/*
    331 			 * The last unlock must be an atomic unlock and wait
    332 			 * on the owner of page.
    333 			 */
    334 
    335 			if (pg->uobject) {
    336 				/* Owner of page is UVM object. */
    337 				uvmfault_unlockall(ufi, amap, NULL);
    338 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
    339 				    0,0,0);
    340 				UVM_UNLOCK_AND_WAIT(pg,
    341 				    pg->uobject->vmobjlock,
    342 				    false, "anonget1", 0);
    343 			} else {
    344 				/* Owner of page is anon. */
    345 				uvmfault_unlockall(ufi, NULL, NULL);
    346 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
    347 				    0,0,0);
    348 				UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
    349 				    false, "anonget2", 0);
    350 			}
    351 		} else {
    352 #if defined(VMSWAP)
    353 			/*
    354 			 * No page, therefore allocate one.
    355 			 */
    356 
    357 			pg = uvm_pagealloc(NULL,
    358 			    ufi != NULL ? ufi->orig_rvaddr : 0,
    359 			    anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
    360 			if (pg == NULL) {
    361 				/* Out of memory.  Wait a little. */
    362 				uvmfault_unlockall(ufi, amap, NULL);
    363 				uvmexp.fltnoram++;
    364 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
    365 				    0,0,0);
    366 				if (!uvm_reclaimable()) {
    367 					return ENOMEM;
    368 				}
    369 				uvm_wait("flt_noram1");
    370 			} else {
    371 				/* PG_BUSY bit is set. */
    372 				we_own = true;
    373 				uvmfault_unlockall(ufi, amap, NULL);
    374 
    375 				/*
    376 				 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
    377 				 * the uvm_swap_get() function with all data
    378 				 * structures unlocked.  Note that it is OK
    379 				 * to read an_swslot here, because we hold
    380 				 * PG_BUSY on the page.
    381 				 */
    382 				uvmexp.pageins++;
    383 				error = uvm_swap_get(pg, anon->an_swslot,
    384 				    PGO_SYNCIO);
    385 
    386 				/*
    387 				 * We clean up after the I/O below in the
    388 				 * 'we_own' case.
    389 				 */
    390 			}
    391 #else
    392 			panic("%s: no page", __func__);
    393 #endif /* defined(VMSWAP) */
    394 		}
    395 
    396 		/*
    397 		 * Re-lock the map and anon.
    398 		 */
    399 
    400 		locked = uvmfault_relock(ufi);
    401 		if (locked || we_own) {
    402 			mutex_enter(anon->an_lock);
    403 		}
    404 
    405 		/*
    406 		 * If we own the page (i.e. we set PG_BUSY), then we need
    407 		 * to clean up after the I/O.  There are three cases to
    408 		 * consider:
    409 		 *
    410 		 * 1) Page was released during I/O: free anon and ReFault.
    411 		 * 2) I/O not OK.  Free the page and cause the fault to fail.
    412 		 * 3) I/O OK!  Activate the page and sync with the non-we_own
    413 		 *    case (i.e. drop anon lock if not locked).
    414 		 */
    415 
    416 		if (we_own) {
    417 #if defined(VMSWAP)
    418 			if (pg->flags & PG_WANTED) {
    419 				wakeup(pg);
    420 			}
    421 			if (error) {
    422 
    423 				/*
    424 				 * Remove the swap slot from the anon and
    425 				 * mark the anon as having no real slot.
    426 				 * Do not free the swap slot, thus preventing
    427 				 * it from being used again.
    428 				 */
    429 
    430 				if (anon->an_swslot > 0) {
    431 					uvm_swap_markbad(anon->an_swslot, 1);
    432 				}
    433 				anon->an_swslot = SWSLOT_BAD;
    434 
    435 				if ((pg->flags & PG_RELEASED) != 0) {
    436 					goto released;
    437 				}
    438 
    439 				/*
    440 				 * Note: page was never !PG_BUSY, so it
    441 				 * cannot be mapped and thus no need to
    442 				 * pmap_page_protect() it.
    443 				 */
    444 
    445 				mutex_enter(&uvm_pageqlock);
    446 				uvm_pagefree(pg);
    447 				mutex_exit(&uvm_pageqlock);
    448 
    449 				if (locked) {
    450 					uvmfault_unlockall(ufi, NULL, NULL);
    451 				}
    452 				mutex_exit(anon->an_lock);
    453 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
    454 				return error;
    455 			}
    456 
    457 			if ((pg->flags & PG_RELEASED) != 0) {
    458 released:
    459 				KASSERT(anon->an_ref == 0);
    460 
    461 				/*
    462 				 * Released while we had unlocked amap.
    463 				 */
    464 
    465 				if (locked) {
    466 					uvmfault_unlockall(ufi, NULL, NULL);
    467 				}
    468 				uvm_anon_release(anon);
    469 
    470 				if (error) {
    471 					UVMHIST_LOG(maphist,
    472 					    "<- ERROR/RELEASED", 0,0,0,0);
    473 					return error;
    474 				}
    475 
    476 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
    477 				return ERESTART;
    478 			}
    479 
    480 			/*
    481 			 * We have successfully read the page, activate it.
    482 			 */
    483 
    484 			mutex_enter(&uvm_pageqlock);
    485 			uvm_pageactivate(pg);
    486 			mutex_exit(&uvm_pageqlock);
    487 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    488 			UVM_PAGE_OWN(pg, NULL);
    489 #else
    490 			panic("%s: we_own", __func__);
    491 #endif /* defined(VMSWAP) */
    492 		}
    493 
    494 		/*
    495 		 * We were not able to re-lock the map - restart the fault.
    496 		 */
    497 
    498 		if (!locked) {
    499 			if (we_own) {
    500 				mutex_exit(anon->an_lock);
    501 			}
    502 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    503 			return ERESTART;
    504 		}
    505 
    506 		/*
    507 		 * Verify that no one has touched the amap and moved
    508 		 * the anon on us.
    509 		 */
    510 
    511 		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
    512 		    ufi->orig_rvaddr - ufi->entry->start) != anon) {
    513 
    514 			uvmfault_unlockall(ufi, amap, NULL);
    515 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    516 			return ERESTART;
    517 		}
    518 
    519 		/*
    520 		 * Retry..
    521 		 */
    522 
    523 		uvmexp.fltanretry++;
    524 		continue;
    525 	}
    526 	/*NOTREACHED*/
    527 }
    528 
    529 /*
    530  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
    531  *
    532  *	1. allocate an anon and a page.
    533  *	2. fill its contents.
    534  *	3. put it into amap.
    535  *
    536  * => if we fail (result != 0) we unlock everything.
    537  * => on success, return a new locked anon via 'nanon'.
    538  *    (*nanon)->an_page will be a resident, locked, dirty page.
    539  * => it's caller's responsibility to put the promoted nanon->an_page to the
    540  *    page queue.
    541  */
    542 
    543 static int
    544 uvmfault_promote(struct uvm_faultinfo *ufi,
    545     struct vm_anon *oanon,
    546     struct vm_page *uobjpage,
    547     struct vm_anon **nanon, /* OUT: allocated anon */
    548     struct vm_anon **spare)
    549 {
    550 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
    551 	struct uvm_object *uobj;
    552 	struct vm_anon *anon;
    553 	struct vm_page *pg;
    554 	struct vm_page *opg;
    555 	int error;
    556 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    557 
    558 	if (oanon) {
    559 		/* anon COW */
    560 		opg = oanon->an_page;
    561 		KASSERT(opg != NULL);
    562 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
    563 	} else if (uobjpage != PGO_DONTCARE) {
    564 		/* object-backed COW */
    565 		opg = uobjpage;
    566 	} else {
    567 		/* ZFOD */
    568 		opg = NULL;
    569 	}
    570 	if (opg != NULL) {
    571 		uobj = opg->uobject;
    572 	} else {
    573 		uobj = NULL;
    574 	}
    575 
    576 	KASSERT(amap != NULL);
    577 	KASSERT(uobjpage != NULL);
    578 	KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
    579 	KASSERT(mutex_owned(amap->am_lock));
    580 	KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
    581 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
    582 
    583 	if (*spare != NULL) {
    584 		anon = *spare;
    585 		*spare = NULL;
    586 	} else if (ufi->map != kernel_map) {
    587 		anon = uvm_analloc();
    588 	} else {
    589 		UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
    590 
    591 		/*
    592 		 * we can't allocate anons with kernel_map locked.
    593 		 */
    594 
    595 		uvm_page_unbusy(&uobjpage, 1);
    596 		uvmfault_unlockall(ufi, amap, uobj);
    597 
    598 		*spare = uvm_analloc();
    599 		if (*spare == NULL) {
    600 			goto nomem;
    601 		}
    602 		KASSERT((*spare)->an_lock == NULL);
    603 		error = ERESTART;
    604 		goto done;
    605 	}
    606 	if (anon) {
    607 
    608 		/*
    609 		 * The new anon is locked.
    610 		 *
    611 		 * if opg == NULL, we want a zero'd, dirty page,
    612 		 * so have uvm_pagealloc() do that for us.
    613 		 */
    614 
    615 		KASSERT(anon->an_lock == NULL);
    616 		anon->an_lock = amap->am_lock;
    617 		pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
    618 		    UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
    619 		if (pg == NULL) {
    620 			anon->an_lock = NULL;
    621 		}
    622 	} else {
    623 		pg = NULL;
    624 	}
    625 
    626 	/*
    627 	 * out of memory resources?
    628 	 */
    629 
    630 	if (pg == NULL) {
    631 		/* save anon for the next try. */
    632 		if (anon != NULL) {
    633 			*spare = anon;
    634 		}
    635 
    636 		/* unlock and fail ... */
    637 		uvm_page_unbusy(&uobjpage, 1);
    638 		uvmfault_unlockall(ufi, amap, uobj);
    639 nomem:
    640 		if (!uvm_reclaimable()) {
    641 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
    642 			uvmexp.fltnoanon++;
    643 			error = ENOMEM;
    644 			goto done;
    645 		}
    646 
    647 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
    648 		uvmexp.fltnoram++;
    649 		uvm_wait("flt_noram5");
    650 		error = ERESTART;
    651 		goto done;
    652 	}
    653 
    654 	/* copy page [pg now dirty] */
    655 	if (opg) {
    656 		uvm_pagecopy(opg, pg);
    657 	}
    658 
    659 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
    660 	    oanon != NULL);
    661 
    662 	*nanon = anon;
    663 	error = 0;
    664 done:
    665 	return error;
    666 }
    667 
    668 
    669 /*
    670  *   F A U L T   -   m a i n   e n t r y   p o i n t
    671  */
    672 
    673 /*
    674  * uvm_fault: page fault handler
    675  *
    676  * => called from MD code to resolve a page fault
    677  * => VM data structures usually should be unlocked.   however, it is
    678  *	possible to call here with the main map locked if the caller
    679  *	gets a write lock, sets it recusive, and then calls us (c.f.
    680  *	uvm_map_pageable).   this should be avoided because it keeps
    681  *	the map locked off during I/O.
    682  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
    683  */
    684 
    685 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
    686 			 ~VM_PROT_WRITE : VM_PROT_ALL)
    687 
    688 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
    689 #define UVM_FAULT_WIRE		(1 << 0)
    690 #define UVM_FAULT_MAXPROT	(1 << 1)
    691 
    692 struct uvm_faultctx {
    693 
    694 	/*
    695 	 * the following members are set up by uvm_fault_check() and
    696 	 * read-only after that.
    697 	 *
    698 	 * note that narrow is used by uvm_fault_check() to change
    699 	 * the behaviour after ERESTART.
    700 	 *
    701 	 * most of them might change after RESTART if the underlying
    702 	 * map entry has been changed behind us.  an exception is
    703 	 * wire_paging, which does never change.
    704 	 */
    705 	vm_prot_t access_type;
    706 	vaddr_t startva;
    707 	int npages;
    708 	int centeridx;
    709 	bool narrow;		/* work on a single requested page only */
    710 	bool wire_mapping;	/* request a PMAP_WIRED mapping
    711 				   (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
    712 	bool wire_paging;	/* request uvm_pagewire
    713 				   (true for UVM_FAULT_WIRE) */
    714 	bool cow_now;		/* VM_PROT_WRITE is actually requested
    715 				   (ie. should break COW and page loaning) */
    716 
    717 	/*
    718 	 * enter_prot is set up by uvm_fault_check() and clamped
    719 	 * (ie. drop the VM_PROT_WRITE bit) in various places in case
    720 	 * of !cow_now.
    721 	 */
    722 	vm_prot_t enter_prot;	/* prot at which we want to enter pages in */
    723 
    724 	/*
    725 	 * the following member is for uvmfault_promote() and ERESTART.
    726 	 */
    727 	struct vm_anon *anon_spare;
    728 
    729 	/*
    730 	 * the folloing is actually a uvm_fault_lower() internal.
    731 	 * it's here merely for debugging.
    732 	 * (or due to the mechanical separation of the function?)
    733 	 */
    734 	bool promote;
    735 };
    736 
    737 static inline int	uvm_fault_check(
    738 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    739 			    struct vm_anon ***, bool);
    740 
    741 static int		uvm_fault_upper(
    742 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    743 			    struct vm_anon **);
    744 static inline int	uvm_fault_upper_lookup(
    745 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    746 			    struct vm_anon **, struct vm_page **);
    747 static inline void	uvm_fault_upper_neighbor(
    748 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    749 			    vaddr_t, struct vm_page *, bool);
    750 static inline int	uvm_fault_upper_loan(
    751 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    752 			    struct vm_anon *, struct uvm_object **);
    753 static inline int	uvm_fault_upper_promote(
    754 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    755 			    struct uvm_object *, struct vm_anon *);
    756 static inline int	uvm_fault_upper_direct(
    757 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    758 			    struct uvm_object *, struct vm_anon *);
    759 static int		uvm_fault_upper_enter(
    760 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    761 			    struct uvm_object *, struct vm_anon *,
    762 			    struct vm_page *, struct vm_anon *);
    763 static inline void	uvm_fault_upper_done(
    764 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    765 			    struct vm_anon *, struct vm_page *);
    766 
    767 static int		uvm_fault_lower(
    768 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    769 			    struct vm_page **);
    770 static inline void	uvm_fault_lower_lookup(
    771 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    772 			    struct vm_page **);
    773 static inline void	uvm_fault_lower_neighbor(
    774 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    775 			    vaddr_t, struct vm_page *, bool);
    776 static inline int	uvm_fault_lower_io(
    777 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    778 			    struct uvm_object **, struct vm_page **);
    779 static inline int	uvm_fault_lower_direct(
    780 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    781 			    struct uvm_object *, struct vm_page *);
    782 static inline int	uvm_fault_lower_direct_loan(
    783 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    784 			    struct uvm_object *, struct vm_page **,
    785 			    struct vm_page **);
    786 static inline int	uvm_fault_lower_promote(
    787 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    788 			    struct uvm_object *, struct vm_page *);
    789 static int		uvm_fault_lower_enter(
    790 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    791 			    struct uvm_object *,
    792 			    struct vm_anon *, struct vm_page *);
    793 static inline void	uvm_fault_lower_done(
    794 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    795 			    struct uvm_object *, struct vm_page *);
    796 
    797 int
    798 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
    799     vm_prot_t access_type, int fault_flag)
    800 {
    801 	struct uvm_faultinfo ufi;
    802 	struct uvm_faultctx flt = {
    803 		.access_type = access_type,
    804 
    805 		/* don't look for neighborhood * pages on "wire" fault */
    806 		.narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
    807 
    808 		/* "wire" fault causes wiring of both mapping and paging */
    809 		.wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
    810 		.wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
    811 	};
    812 	const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
    813 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
    814 	struct vm_page *pages_store[UVM_MAXRANGE], **pages;
    815 	int error;
    816 	UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
    817 
    818 	UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
    819 	      orig_map, vaddr, access_type, fault_flag);
    820 
    821 	curcpu()->ci_data.cpu_nfault++;
    822 
    823 	/*
    824 	 * init the IN parameters in the ufi
    825 	 */
    826 
    827 	ufi.orig_map = orig_map;
    828 	ufi.orig_rvaddr = trunc_page(vaddr);
    829 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
    830 
    831 	error = ERESTART;
    832 	while (error == ERESTART) { /* ReFault: */
    833 		anons = anons_store;
    834 		pages = pages_store;
    835 
    836 		error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
    837 		if (error != 0)
    838 			continue;
    839 
    840 		error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
    841 		if (error != 0)
    842 			continue;
    843 
    844 		if (pages[flt.centeridx] == PGO_DONTCARE)
    845 			error = uvm_fault_upper(&ufi, &flt, anons);
    846 		else {
    847 			struct uvm_object * const uobj =
    848 			    ufi.entry->object.uvm_obj;
    849 
    850 			if (uobj && uobj->pgops->pgo_fault != NULL) {
    851 				/*
    852 				 * invoke "special" fault routine.
    853 				 */
    854 				mutex_enter(uobj->vmobjlock);
    855 				/* locked: maps(read), amap(if there), uobj */
    856 				error = uobj->pgops->pgo_fault(&ufi,
    857 				    flt.startva, pages, flt.npages,
    858 				    flt.centeridx, flt.access_type,
    859 				    PGO_LOCKED|PGO_SYNCIO);
    860 
    861 				/*
    862 				 * locked: nothing, pgo_fault has unlocked
    863 				 * everything
    864 				 */
    865 
    866 				/*
    867 				 * object fault routine responsible for
    868 				 * pmap_update().
    869 				 */
    870 			} else {
    871 				error = uvm_fault_lower(&ufi, &flt, pages);
    872 			}
    873 		}
    874 	}
    875 
    876 	if (flt.anon_spare != NULL) {
    877 		flt.anon_spare->an_ref--;
    878 		KASSERT(flt.anon_spare->an_ref == 0);
    879 		KASSERT(flt.anon_spare->an_lock == NULL);
    880 		uvm_anon_free(flt.anon_spare);
    881 	}
    882 	return error;
    883 }
    884 
    885 /*
    886  * uvm_fault_check: check prot, handle needs-copy, etc.
    887  *
    888  *	1. lookup entry.
    889  *	2. check protection.
    890  *	3. adjust fault condition (mainly for simulated fault).
    891  *	4. handle needs-copy (lazy amap copy).
    892  *	5. establish range of interest for neighbor fault (aka pre-fault).
    893  *	6. look up anons (if amap exists).
    894  *	7. flush pages (if MADV_SEQUENTIAL)
    895  *
    896  * => called with nothing locked.
    897  * => if we fail (result != 0) we unlock everything.
    898  * => initialize/adjust many members of flt.
    899  */
    900 
    901 static int
    902 uvm_fault_check(
    903 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
    904 	struct vm_anon ***ranons, bool maxprot)
    905 {
    906 	struct vm_amap *amap;
    907 	struct uvm_object *uobj;
    908 	vm_prot_t check_prot;
    909 	int nback, nforw;
    910 	UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
    911 
    912 	/*
    913 	 * lookup and lock the maps
    914 	 */
    915 
    916 	if (uvmfault_lookup(ufi, false) == false) {
    917 		UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr,
    918 		    0,0,0);
    919 		return EFAULT;
    920 	}
    921 	/* locked: maps(read) */
    922 
    923 #ifdef DIAGNOSTIC
    924 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
    925 		printf("Page fault on non-pageable map:\n");
    926 		printf("ufi->map = %p\n", ufi->map);
    927 		printf("ufi->orig_map = %p\n", ufi->orig_map);
    928 		printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
    929 		panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
    930 	}
    931 #endif
    932 
    933 	/*
    934 	 * check protection
    935 	 */
    936 
    937 	check_prot = maxprot ?
    938 	    ufi->entry->max_protection : ufi->entry->protection;
    939 	if ((check_prot & flt->access_type) != flt->access_type) {
    940 		UVMHIST_LOG(maphist,
    941 		    "<- protection failure (prot=0x%x, access=0x%x)",
    942 		    ufi->entry->protection, flt->access_type, 0, 0);
    943 		uvmfault_unlockmaps(ufi, false);
    944 		return EACCES;
    945 	}
    946 
    947 	/*
    948 	 * "enter_prot" is the protection we want to enter the page in at.
    949 	 * for certain pages (e.g. copy-on-write pages) this protection can
    950 	 * be more strict than ufi->entry->protection.  "wired" means either
    951 	 * the entry is wired or we are fault-wiring the pg.
    952 	 */
    953 
    954 	flt->enter_prot = ufi->entry->protection;
    955 	if (VM_MAPENT_ISWIRED(ufi->entry))
    956 		flt->wire_mapping = true;
    957 
    958 	if (flt->wire_mapping) {
    959 		flt->access_type = flt->enter_prot; /* full access for wired */
    960 		flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
    961 	} else {
    962 		flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
    963 	}
    964 
    965 	flt->promote = false;
    966 
    967 	/*
    968 	 * handle "needs_copy" case.   if we need to copy the amap we will
    969 	 * have to drop our readlock and relock it with a write lock.  (we
    970 	 * need a write lock to change anything in a map entry [e.g.
    971 	 * needs_copy]).
    972 	 */
    973 
    974 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
    975 		if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
    976 			KASSERT(!maxprot);
    977 			/* need to clear */
    978 			UVMHIST_LOG(maphist,
    979 			    "  need to clear needs_copy and refault",0,0,0,0);
    980 			uvmfault_unlockmaps(ufi, false);
    981 			uvmfault_amapcopy(ufi);
    982 			uvmexp.fltamcopy++;
    983 			return ERESTART;
    984 
    985 		} else {
    986 
    987 			/*
    988 			 * ensure that we pmap_enter page R/O since
    989 			 * needs_copy is still true
    990 			 */
    991 
    992 			flt->enter_prot &= ~VM_PROT_WRITE;
    993 		}
    994 	}
    995 
    996 	/*
    997 	 * identify the players
    998 	 */
    999 
   1000 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
   1001 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
   1002 
   1003 	/*
   1004 	 * check for a case 0 fault.  if nothing backing the entry then
   1005 	 * error now.
   1006 	 */
   1007 
   1008 	if (amap == NULL && uobj == NULL) {
   1009 		uvmfault_unlockmaps(ufi, false);
   1010 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
   1011 		return EFAULT;
   1012 	}
   1013 
   1014 	/*
   1015 	 * establish range of interest based on advice from mapper
   1016 	 * and then clip to fit map entry.   note that we only want
   1017 	 * to do this the first time through the fault.   if we
   1018 	 * ReFault we will disable this by setting "narrow" to true.
   1019 	 */
   1020 
   1021 	if (flt->narrow == false) {
   1022 
   1023 		/* wide fault (!narrow) */
   1024 		KASSERT(uvmadvice[ufi->entry->advice].advice ==
   1025 			 ufi->entry->advice);
   1026 		nback = MIN(uvmadvice[ufi->entry->advice].nback,
   1027 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
   1028 		flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
   1029 		/*
   1030 		 * note: "-1" because we don't want to count the
   1031 		 * faulting page as forw
   1032 		 */
   1033 		nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
   1034 			    ((ufi->entry->end - ufi->orig_rvaddr) >>
   1035 			     PAGE_SHIFT) - 1);
   1036 		flt->npages = nback + nforw + 1;
   1037 		flt->centeridx = nback;
   1038 
   1039 		flt->narrow = true;	/* ensure only once per-fault */
   1040 
   1041 	} else {
   1042 
   1043 		/* narrow fault! */
   1044 		nback = nforw = 0;
   1045 		flt->startva = ufi->orig_rvaddr;
   1046 		flt->npages = 1;
   1047 		flt->centeridx = 0;
   1048 
   1049 	}
   1050 	/* offset from entry's start to pgs' start */
   1051 	const voff_t eoff = flt->startva - ufi->entry->start;
   1052 
   1053 	/* locked: maps(read) */
   1054 	UVMHIST_LOG(maphist, "  narrow=%d, back=%d, forw=%d, startva=0x%x",
   1055 		    flt->narrow, nback, nforw, flt->startva);
   1056 	UVMHIST_LOG(maphist, "  entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
   1057 		    amap, uobj, 0);
   1058 
   1059 	/*
   1060 	 * if we've got an amap, lock it and extract current anons.
   1061 	 */
   1062 
   1063 	if (amap) {
   1064 		amap_lock(amap);
   1065 		amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
   1066 	} else {
   1067 		*ranons = NULL;	/* to be safe */
   1068 	}
   1069 
   1070 	/* locked: maps(read), amap(if there) */
   1071 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1072 
   1073 	/*
   1074 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
   1075 	 * now and then forget about them (for the rest of the fault).
   1076 	 */
   1077 
   1078 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
   1079 
   1080 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
   1081 		    0,0,0,0);
   1082 		/* flush back-page anons? */
   1083 		if (amap)
   1084 			uvmfault_anonflush(*ranons, nback);
   1085 
   1086 		/* flush object? */
   1087 		if (uobj) {
   1088 			voff_t uoff;
   1089 
   1090 			uoff = ufi->entry->offset + eoff;
   1091 			mutex_enter(uobj->vmobjlock);
   1092 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
   1093 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
   1094 		}
   1095 
   1096 		/* now forget about the backpages */
   1097 		if (amap)
   1098 			*ranons += nback;
   1099 		flt->startva += (nback << PAGE_SHIFT);
   1100 		flt->npages -= nback;
   1101 		flt->centeridx = 0;
   1102 	}
   1103 	/*
   1104 	 * => startva is fixed
   1105 	 * => npages is fixed
   1106 	 */
   1107 	KASSERT(flt->startva <= ufi->orig_rvaddr);
   1108 	KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
   1109 	    flt->startva + (flt->npages << PAGE_SHIFT));
   1110 	return 0;
   1111 }
   1112 
   1113 /*
   1114  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
   1115  *
   1116  * iterate range of interest:
   1117  *	1. check if h/w mapping exists.  if yes, we don't care
   1118  *	2. check if anon exists.  if not, page is lower.
   1119  *	3. if anon exists, enter h/w mapping for neighbors.
   1120  *
   1121  * => called with amap locked (if exists).
   1122  */
   1123 
   1124 static int
   1125 uvm_fault_upper_lookup(
   1126 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1127 	struct vm_anon **anons, struct vm_page **pages)
   1128 {
   1129 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1130 	int lcv;
   1131 	vaddr_t currva;
   1132 	bool shadowed;
   1133 	UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
   1134 
   1135 	/* locked: maps(read), amap(if there) */
   1136 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1137 
   1138 	/*
   1139 	 * map in the backpages and frontpages we found in the amap in hopes
   1140 	 * of preventing future faults.    we also init the pages[] array as
   1141 	 * we go.
   1142 	 */
   1143 
   1144 	currva = flt->startva;
   1145 	shadowed = false;
   1146 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1147 		/*
   1148 		 * don't play with VAs that are already mapped
   1149 		 * (except for center)
   1150 		 */
   1151 		if (lcv != flt->centeridx &&
   1152 		    pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
   1153 			pages[lcv] = PGO_DONTCARE;
   1154 			continue;
   1155 		}
   1156 
   1157 		/*
   1158 		 * unmapped or center page.   check if any anon at this level.
   1159 		 */
   1160 		if (amap == NULL || anons[lcv] == NULL) {
   1161 			pages[lcv] = NULL;
   1162 			continue;
   1163 		}
   1164 
   1165 		/*
   1166 		 * check for present page and map if possible.   re-activate it.
   1167 		 */
   1168 
   1169 		pages[lcv] = PGO_DONTCARE;
   1170 		if (lcv == flt->centeridx) {	/* save center for later! */
   1171 			shadowed = true;
   1172 			continue;
   1173 		}
   1174 
   1175 		struct vm_anon *anon = anons[lcv];
   1176 		struct vm_page *pg = anon->an_page;
   1177 
   1178 		KASSERT(anon->an_lock == amap->am_lock);
   1179 
   1180 		/* Ignore loaned and busy pages. */
   1181 		if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
   1182 			uvm_fault_upper_neighbor(ufi, flt, currva,
   1183 			    pg, anon->an_ref > 1);
   1184 		}
   1185 	}
   1186 
   1187 	/* locked: maps(read), amap(if there) */
   1188 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1189 	/* (shadowed == true) if there is an anon at the faulting address */
   1190 	UVMHIST_LOG(maphist, "  shadowed=%d, will_get=%d", shadowed,
   1191 	    (ufi->entry->object.uvm_obj && shadowed != false),0,0);
   1192 
   1193 	/*
   1194 	 * note that if we are really short of RAM we could sleep in the above
   1195 	 * call to pmap_enter with everything locked.   bad?
   1196 	 *
   1197 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
   1198 	 * XXX case.  --thorpej
   1199 	 */
   1200 
   1201 	return 0;
   1202 }
   1203 
   1204 /*
   1205  * uvm_fault_upper_neighbor: enter single lower neighbor page.
   1206  *
   1207  * => called with amap and anon locked.
   1208  */
   1209 
   1210 static void
   1211 uvm_fault_upper_neighbor(
   1212 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1213 	vaddr_t currva, struct vm_page *pg, bool readonly)
   1214 {
   1215 	UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
   1216 
   1217 	/* locked: amap, anon */
   1218 
   1219 	mutex_enter(&uvm_pageqlock);
   1220 	uvm_pageenqueue(pg);
   1221 	mutex_exit(&uvm_pageqlock);
   1222 	UVMHIST_LOG(maphist,
   1223 	    "  MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
   1224 	    ufi->orig_map->pmap, currva, pg, 0);
   1225 	uvmexp.fltnamap++;
   1226 
   1227 	/*
   1228 	 * Since this page isn't the page that's actually faulting,
   1229 	 * ignore pmap_enter() failures; it's not critical that we
   1230 	 * enter these right now.
   1231 	 */
   1232 
   1233 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1234 	    VM_PAGE_TO_PHYS(pg),
   1235 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1236 	    flt->enter_prot,
   1237 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
   1238 
   1239 	pmap_update(ufi->orig_map->pmap);
   1240 }
   1241 
   1242 /*
   1243  * uvm_fault_upper: handle upper fault.
   1244  *
   1245  *	1. acquire anon lock.
   1246  *	2. get anon.  let uvmfault_anonget do the dirty work.
   1247  *	3. handle loan.
   1248  *	4. dispatch direct or promote handlers.
   1249  */
   1250 
   1251 static int
   1252 uvm_fault_upper(
   1253 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1254 	struct vm_anon **anons)
   1255 {
   1256 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1257 	struct vm_anon * const anon = anons[flt->centeridx];
   1258 	struct uvm_object *uobj;
   1259 	int error;
   1260 	UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
   1261 
   1262 	/* locked: maps(read), amap, anon */
   1263 	KASSERT(mutex_owned(amap->am_lock));
   1264 	KASSERT(anon->an_lock == amap->am_lock);
   1265 
   1266 	/*
   1267 	 * handle case 1: fault on an anon in our amap
   1268 	 */
   1269 
   1270 	UVMHIST_LOG(maphist, "  case 1 fault: anon=0x%x", anon, 0,0,0);
   1271 
   1272 	/*
   1273 	 * no matter if we have case 1A or case 1B we are going to need to
   1274 	 * have the anon's memory resident.   ensure that now.
   1275 	 */
   1276 
   1277 	/*
   1278 	 * let uvmfault_anonget do the dirty work.
   1279 	 * if it fails (!OK) it will unlock everything for us.
   1280 	 * if it succeeds, locks are still valid and locked.
   1281 	 * also, if it is OK, then the anon's page is on the queues.
   1282 	 * if the page is on loan from a uvm_object, then anonget will
   1283 	 * lock that object for us if it does not fail.
   1284 	 */
   1285 
   1286 	error = uvmfault_anonget(ufi, amap, anon);
   1287 	switch (error) {
   1288 	case 0:
   1289 		break;
   1290 
   1291 	case ERESTART:
   1292 		return ERESTART;
   1293 
   1294 	case EAGAIN:
   1295 		kpause("fltagain1", false, hz/2, NULL);
   1296 		return ERESTART;
   1297 
   1298 	default:
   1299 		return error;
   1300 	}
   1301 
   1302 	/*
   1303 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
   1304 	 */
   1305 
   1306 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
   1307 
   1308 	/* locked: maps(read), amap, anon, uobj(if one) */
   1309 	KASSERT(mutex_owned(amap->am_lock));
   1310 	KASSERT(anon->an_lock == amap->am_lock);
   1311 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1312 
   1313 	/*
   1314 	 * special handling for loaned pages
   1315 	 */
   1316 
   1317 	if (anon->an_page->loan_count) {
   1318 		error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
   1319 		if (error != 0)
   1320 			return error;
   1321 	}
   1322 
   1323 	/*
   1324 	 * if we are case 1B then we will need to allocate a new blank
   1325 	 * anon to transfer the data into.   note that we have a lock
   1326 	 * on anon, so no one can busy or release the page until we are done.
   1327 	 * also note that the ref count can't drop to zero here because
   1328 	 * it is > 1 and we are only dropping one ref.
   1329 	 *
   1330 	 * in the (hopefully very rare) case that we are out of RAM we
   1331 	 * will unlock, wait for more RAM, and refault.
   1332 	 *
   1333 	 * if we are out of anon VM we kill the process (XXX: could wait?).
   1334 	 */
   1335 
   1336 	if (flt->cow_now && anon->an_ref > 1) {
   1337 		flt->promote = true;
   1338 		error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
   1339 	} else {
   1340 		error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
   1341 	}
   1342 	return error;
   1343 }
   1344 
   1345 /*
   1346  * uvm_fault_upper_loan: handle loaned upper page.
   1347  *
   1348  *	1. if not cow'ing now, simply adjust flt->enter_prot.
   1349  *	2. if cow'ing now, and if ref count is 1, break loan.
   1350  */
   1351 
   1352 static int
   1353 uvm_fault_upper_loan(
   1354 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1355 	struct vm_anon *anon, struct uvm_object **ruobj)
   1356 {
   1357 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1358 	int error = 0;
   1359 	UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
   1360 
   1361 	if (!flt->cow_now) {
   1362 
   1363 		/*
   1364 		 * for read faults on loaned pages we just cap the
   1365 		 * protection at read-only.
   1366 		 */
   1367 
   1368 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1369 
   1370 	} else {
   1371 		/*
   1372 		 * note that we can't allow writes into a loaned page!
   1373 		 *
   1374 		 * if we have a write fault on a loaned page in an
   1375 		 * anon then we need to look at the anon's ref count.
   1376 		 * if it is greater than one then we are going to do
   1377 		 * a normal copy-on-write fault into a new anon (this
   1378 		 * is not a problem).  however, if the reference count
   1379 		 * is one (a case where we would normally allow a
   1380 		 * write directly to the page) then we need to kill
   1381 		 * the loan before we continue.
   1382 		 */
   1383 
   1384 		/* >1 case is already ok */
   1385 		if (anon->an_ref == 1) {
   1386 			error = uvm_loanbreak_anon(anon, *ruobj);
   1387 			if (error != 0) {
   1388 				uvmfault_unlockall(ufi, amap, *ruobj);
   1389 				uvm_wait("flt_noram2");
   1390 				return ERESTART;
   1391 			}
   1392 			/* if we were a loan reciever uobj is gone */
   1393 			if (*ruobj)
   1394 				*ruobj = NULL;
   1395 		}
   1396 	}
   1397 	return error;
   1398 }
   1399 
   1400 /*
   1401  * uvm_fault_upper_promote: promote upper page.
   1402  *
   1403  *	1. call uvmfault_promote.
   1404  *	2. enqueue page.
   1405  *	3. deref.
   1406  *	4. pass page to uvm_fault_upper_enter.
   1407  */
   1408 
   1409 static int
   1410 uvm_fault_upper_promote(
   1411 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1412 	struct uvm_object *uobj, struct vm_anon *anon)
   1413 {
   1414 	struct vm_anon * const oanon = anon;
   1415 	struct vm_page *pg;
   1416 	int error;
   1417 	UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
   1418 
   1419 	UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
   1420 	uvmexp.flt_acow++;
   1421 
   1422 	error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
   1423 	    &flt->anon_spare);
   1424 	switch (error) {
   1425 	case 0:
   1426 		break;
   1427 	case ERESTART:
   1428 		return ERESTART;
   1429 	default:
   1430 		return error;
   1431 	}
   1432 
   1433 	KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
   1434 
   1435 	pg = anon->an_page;
   1436 	mutex_enter(&uvm_pageqlock);
   1437 	uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
   1438 	mutex_exit(&uvm_pageqlock);
   1439 	pg->flags &= ~(PG_BUSY|PG_FAKE);
   1440 	UVM_PAGE_OWN(pg, NULL);
   1441 
   1442 	/* deref: can not drop to zero here by defn! */
   1443 	KASSERT(oanon->an_ref > 1);
   1444 	oanon->an_ref--;
   1445 
   1446 	/*
   1447 	 * note: oanon is still locked, as is the new anon.  we
   1448 	 * need to check for this later when we unlock oanon; if
   1449 	 * oanon != anon, we'll have to unlock anon, too.
   1450 	 */
   1451 
   1452 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1453 }
   1454 
   1455 /*
   1456  * uvm_fault_upper_direct: handle direct fault.
   1457  */
   1458 
   1459 static int
   1460 uvm_fault_upper_direct(
   1461 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1462 	struct uvm_object *uobj, struct vm_anon *anon)
   1463 {
   1464 	struct vm_anon * const oanon = anon;
   1465 	struct vm_page *pg;
   1466 	UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
   1467 
   1468 	uvmexp.flt_anon++;
   1469 	pg = anon->an_page;
   1470 	if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
   1471 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1472 
   1473 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1474 }
   1475 
   1476 /*
   1477  * uvm_fault_upper_enter: enter h/w mapping of upper page.
   1478  */
   1479 
   1480 static int
   1481 uvm_fault_upper_enter(
   1482 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1483 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
   1484 	struct vm_anon *oanon)
   1485 {
   1486 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1487 	UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
   1488 
   1489 	/* locked: maps(read), amap, oanon, anon(if different from oanon) */
   1490 	KASSERT(mutex_owned(amap->am_lock));
   1491 	KASSERT(anon->an_lock == amap->am_lock);
   1492 	KASSERT(oanon->an_lock == amap->am_lock);
   1493 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1494 
   1495 	/*
   1496 	 * now map the page in.
   1497 	 */
   1498 
   1499 	UVMHIST_LOG(maphist,
   1500 	    "  MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
   1501 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
   1502 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
   1503 	    VM_PAGE_TO_PHYS(pg),
   1504 	    flt->enter_prot, flt->access_type | PMAP_CANFAIL |
   1505 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   1506 
   1507 		/*
   1508 		 * No need to undo what we did; we can simply think of
   1509 		 * this as the pmap throwing away the mapping information.
   1510 		 *
   1511 		 * We do, however, have to go through the ReFault path,
   1512 		 * as the map may change while we're asleep.
   1513 		 */
   1514 
   1515 		uvmfault_unlockall(ufi, amap, uobj);
   1516 		if (!uvm_reclaimable()) {
   1517 			UVMHIST_LOG(maphist,
   1518 			    "<- failed.  out of VM",0,0,0,0);
   1519 			/* XXX instrumentation */
   1520 			return ENOMEM;
   1521 		}
   1522 		/* XXX instrumentation */
   1523 		uvm_wait("flt_pmfail1");
   1524 		return ERESTART;
   1525 	}
   1526 
   1527 	uvm_fault_upper_done(ufi, flt, anon, pg);
   1528 
   1529 	/*
   1530 	 * done case 1!  finish up by unlocking everything and returning success
   1531 	 */
   1532 
   1533 	pmap_update(ufi->orig_map->pmap);
   1534 	uvmfault_unlockall(ufi, amap, uobj);
   1535 	return 0;
   1536 }
   1537 
   1538 /*
   1539  * uvm_fault_upper_done: queue upper center page.
   1540  */
   1541 
   1542 static void
   1543 uvm_fault_upper_done(
   1544 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1545 	struct vm_anon *anon, struct vm_page *pg)
   1546 {
   1547 	const bool wire_paging = flt->wire_paging;
   1548 
   1549 	UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
   1550 
   1551 	/*
   1552 	 * ... update the page queues.
   1553 	 */
   1554 
   1555 	mutex_enter(&uvm_pageqlock);
   1556 	if (wire_paging) {
   1557 		uvm_pagewire(pg);
   1558 
   1559 		/*
   1560 		 * since the now-wired page cannot be paged out,
   1561 		 * release its swap resources for others to use.
   1562 		 * since an anon with no swap cannot be PG_CLEAN,
   1563 		 * clear its clean flag now.
   1564 		 */
   1565 
   1566 		pg->flags &= ~(PG_CLEAN);
   1567 
   1568 	} else {
   1569 		uvm_pageactivate(pg);
   1570 	}
   1571 	mutex_exit(&uvm_pageqlock);
   1572 
   1573 	if (wire_paging) {
   1574 		uvm_anon_dropswap(anon);
   1575 	}
   1576 }
   1577 
   1578 /*
   1579  * uvm_fault_lower: handle lower fault.
   1580  *
   1581  *	1. check uobj
   1582  *	1.1. if null, ZFOD.
   1583  *	1.2. if not null, look up unnmapped neighbor pages.
   1584  *	2. for center page, check if promote.
   1585  *	2.1. ZFOD always needs promotion.
   1586  *	2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
   1587  *	3. if uobj is not ZFOD and page is not found, do i/o.
   1588  *	4. dispatch either direct / promote fault.
   1589  */
   1590 
   1591 static int
   1592 uvm_fault_lower(
   1593 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1594 	struct vm_page **pages)
   1595 {
   1596 #ifdef DIAGNOSTIC
   1597 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1598 #endif
   1599 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1600 	struct vm_page *uobjpage;
   1601 	int error;
   1602 	UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
   1603 
   1604 	/*
   1605 	 * now, if the desired page is not shadowed by the amap and we have
   1606 	 * a backing object that does not have a special fault routine, then
   1607 	 * we ask (with pgo_get) the object for resident pages that we care
   1608 	 * about and attempt to map them in.  we do not let pgo_get block
   1609 	 * (PGO_LOCKED).
   1610 	 */
   1611 
   1612 	if (uobj == NULL) {
   1613 		/* zero fill; don't care neighbor pages */
   1614 		uobjpage = NULL;
   1615 	} else {
   1616 		uvm_fault_lower_lookup(ufi, flt, pages);
   1617 		uobjpage = pages[flt->centeridx];
   1618 	}
   1619 
   1620 	/*
   1621 	 * note that at this point we are done with any front or back pages.
   1622 	 * we are now going to focus on the center page (i.e. the one we've
   1623 	 * faulted on).  if we have faulted on the upper (anon) layer
   1624 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
   1625 	 * not touched it yet).  if we have faulted on the bottom (uobj)
   1626 	 * layer [i.e. case 2] and the page was both present and available,
   1627 	 * then we've got a pointer to it as "uobjpage" and we've already
   1628 	 * made it BUSY.
   1629 	 */
   1630 
   1631 	/*
   1632 	 * locked:
   1633 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
   1634 	 */
   1635 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1636 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1637 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1638 
   1639 	/*
   1640 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
   1641 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
   1642 	 * have a backing object, check and see if we are going to promote
   1643 	 * the data up to an anon during the fault.
   1644 	 */
   1645 
   1646 	if (uobj == NULL) {
   1647 		uobjpage = PGO_DONTCARE;
   1648 		flt->promote = true;		/* always need anon here */
   1649 	} else {
   1650 		KASSERT(uobjpage != PGO_DONTCARE);
   1651 		flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
   1652 	}
   1653 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%d, zfill=%d",
   1654 	    flt->promote, (uobj == NULL), 0,0);
   1655 
   1656 	/*
   1657 	 * if uobjpage is not null then we do not need to do I/O to get the
   1658 	 * uobjpage.
   1659 	 *
   1660 	 * if uobjpage is null, then we need to unlock and ask the pager to
   1661 	 * get the data for us.   once we have the data, we need to reverify
   1662 	 * the state the world.   we are currently not holding any resources.
   1663 	 */
   1664 
   1665 	if (uobjpage) {
   1666 		/* update rusage counters */
   1667 		curlwp->l_ru.ru_minflt++;
   1668 	} else {
   1669 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
   1670 		if (error != 0)
   1671 			return error;
   1672 	}
   1673 
   1674 	/*
   1675 	 * locked:
   1676 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
   1677 	 */
   1678 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1679 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1680 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1681 
   1682 	/*
   1683 	 * notes:
   1684 	 *  - at this point uobjpage can not be NULL
   1685 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
   1686 	 *  for it above)
   1687 	 *  - at this point uobjpage could be PG_WANTED (handle later)
   1688 	 */
   1689 
   1690 	KASSERT(uobjpage != NULL);
   1691 	KASSERT(uobj == NULL || uobj == uobjpage->uobject);
   1692 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
   1693 	    (uobjpage->flags & PG_CLEAN) != 0);
   1694 
   1695 	if (!flt->promote) {
   1696 		error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
   1697 	} else {
   1698 		error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
   1699 	}
   1700 	return error;
   1701 }
   1702 
   1703 /*
   1704  * uvm_fault_lower_lookup: look up on-memory uobj pages.
   1705  *
   1706  *	1. get on-memory pages.
   1707  *	2. if failed, give up (get only center page later).
   1708  *	3. if succeeded, enter h/w mapping of neighbor pages.
   1709  */
   1710 
   1711 static void
   1712 uvm_fault_lower_lookup(
   1713 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1714 	struct vm_page **pages)
   1715 {
   1716 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1717 	int lcv, gotpages;
   1718 	vaddr_t currva;
   1719 	UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
   1720 
   1721 	mutex_enter(uobj->vmobjlock);
   1722 	/* Locked: maps(read), amap(if there), uobj */
   1723 
   1724 	uvmexp.fltlget++;
   1725 	gotpages = flt->npages;
   1726 	(void) uobj->pgops->pgo_get(uobj,
   1727 	    ufi->entry->offset + flt->startva - ufi->entry->start,
   1728 	    pages, &gotpages, flt->centeridx,
   1729 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
   1730 
   1731 	KASSERT(mutex_owned(uobj->vmobjlock));
   1732 
   1733 	/*
   1734 	 * check for pages to map, if we got any
   1735 	 */
   1736 
   1737 	if (gotpages == 0) {
   1738 		pages[flt->centeridx] = NULL;
   1739 		return;
   1740 	}
   1741 
   1742 	currva = flt->startva;
   1743 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1744 		struct vm_page *curpg;
   1745 
   1746 		curpg = pages[lcv];
   1747 		if (curpg == NULL || curpg == PGO_DONTCARE) {
   1748 			continue;
   1749 		}
   1750 		KASSERT(curpg->uobject == uobj);
   1751 
   1752 		/*
   1753 		 * if center page is resident and not PG_BUSY|PG_RELEASED
   1754 		 * then pgo_get made it PG_BUSY for us and gave us a handle
   1755 		 * to it.
   1756 		 */
   1757 
   1758 		if (lcv == flt->centeridx) {
   1759 			UVMHIST_LOG(maphist, "  got uobjpage "
   1760 			    "(0x%x) with locked get",
   1761 			    curpg, 0,0,0);
   1762 		} else {
   1763 			bool readonly = (curpg->flags & PG_RDONLY)
   1764 			    || (curpg->loan_count > 0)
   1765 			    || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
   1766 
   1767 			uvm_fault_lower_neighbor(ufi, flt,
   1768 			    currva, curpg, readonly);
   1769 		}
   1770 	}
   1771 	pmap_update(ufi->orig_map->pmap);
   1772 }
   1773 
   1774 /*
   1775  * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
   1776  */
   1777 
   1778 static void
   1779 uvm_fault_lower_neighbor(
   1780 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1781 	vaddr_t currva, struct vm_page *pg, bool readonly)
   1782 {
   1783 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1784 
   1785 	/* locked: maps(read), amap(if there), uobj */
   1786 
   1787 	/*
   1788 	 * calling pgo_get with PGO_LOCKED returns us pages which
   1789 	 * are neither busy nor released, so we don't need to check
   1790 	 * for this.  we can just directly enter the pages.
   1791 	 */
   1792 
   1793 	mutex_enter(&uvm_pageqlock);
   1794 	uvm_pageenqueue(pg);
   1795 	mutex_exit(&uvm_pageqlock);
   1796 	UVMHIST_LOG(maphist,
   1797 	    "  MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
   1798 	    ufi->orig_map->pmap, currva, pg, 0);
   1799 	uvmexp.fltnomap++;
   1800 
   1801 	/*
   1802 	 * Since this page isn't the page that's actually faulting,
   1803 	 * ignore pmap_enter() failures; it's not critical that we
   1804 	 * enter these right now.
   1805 	 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
   1806 	 * held the lock the whole time we've had the handle.
   1807 	 */
   1808 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1809 	KASSERT((pg->flags & PG_RELEASED) == 0);
   1810 	KASSERT((pg->flags & PG_WANTED) == 0);
   1811 	KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
   1812 	pg->flags &= ~(PG_BUSY);
   1813 	UVM_PAGE_OWN(pg, NULL);
   1814 
   1815 	KASSERT(mutex_owned(pg->uobject->vmobjlock));
   1816 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1817 	    VM_PAGE_TO_PHYS(pg),
   1818 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1819 	    flt->enter_prot & MASK(ufi->entry),
   1820 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
   1821 }
   1822 
   1823 /*
   1824  * uvm_fault_lower_io: get lower page from backing store.
   1825  *
   1826  *	1. unlock everything, because i/o will block.
   1827  *	2. call pgo_get.
   1828  *	3. if failed, recover.
   1829  *	4. if succeeded, relock everything and verify things.
   1830  */
   1831 
   1832 static int
   1833 uvm_fault_lower_io(
   1834 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1835 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
   1836 {
   1837 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1838 	struct uvm_object *uobj = *ruobj;
   1839 	struct vm_page *pg;
   1840 	bool locked;
   1841 	int gotpages;
   1842 	int error;
   1843 	voff_t uoff;
   1844 	UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
   1845 
   1846 	/* update rusage counters */
   1847 	curlwp->l_ru.ru_majflt++;
   1848 
   1849 	/* Locked: maps(read), amap(if there), uobj */
   1850 	uvmfault_unlockall(ufi, amap, NULL);
   1851 
   1852 	/* Locked: uobj */
   1853 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1854 
   1855 	uvmexp.fltget++;
   1856 	gotpages = 1;
   1857 	pg = NULL;
   1858 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
   1859 	error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
   1860 	    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
   1861 	    PGO_SYNCIO);
   1862 	/* locked: pg(if no error) */
   1863 
   1864 	/*
   1865 	 * recover from I/O
   1866 	 */
   1867 
   1868 	if (error) {
   1869 		if (error == EAGAIN) {
   1870 			UVMHIST_LOG(maphist,
   1871 			    "  pgo_get says TRY AGAIN!",0,0,0,0);
   1872 			kpause("fltagain2", false, hz/2, NULL);
   1873 			return ERESTART;
   1874 		}
   1875 
   1876 #if 0
   1877 		KASSERT(error != ERESTART);
   1878 #else
   1879 		/* XXXUEBS don't re-fault? */
   1880 		if (error == ERESTART)
   1881 			error = EIO;
   1882 #endif
   1883 
   1884 		UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
   1885 		    error, 0,0,0);
   1886 		return error;
   1887 	}
   1888 
   1889 	/*
   1890 	 * re-verify the state of the world by first trying to relock
   1891 	 * the maps.  always relock the object.
   1892 	 */
   1893 
   1894 	locked = uvmfault_relock(ufi);
   1895 	if (locked && amap)
   1896 		amap_lock(amap);
   1897 
   1898 	/* might be changed */
   1899 	uobj = pg->uobject;
   1900 
   1901 	mutex_enter(uobj->vmobjlock);
   1902 	KASSERT((pg->flags & PG_BUSY) != 0);
   1903 
   1904 	mutex_enter(&uvm_pageqlock);
   1905 	uvm_pageactivate(pg);
   1906 	mutex_exit(&uvm_pageqlock);
   1907 
   1908 	/* locked(locked): maps(read), amap(if !null), uobj, pg */
   1909 	/* locked(!locked): uobj, pg */
   1910 
   1911 	/*
   1912 	 * verify that the page has not be released and re-verify
   1913 	 * that amap slot is still free.   if there is a problem,
   1914 	 * we unlock and clean up.
   1915 	 */
   1916 
   1917 	if ((pg->flags & PG_RELEASED) != 0 ||
   1918 	    (locked && amap && amap_lookup(&ufi->entry->aref,
   1919 	      ufi->orig_rvaddr - ufi->entry->start))) {
   1920 		if (locked)
   1921 			uvmfault_unlockall(ufi, amap, NULL);
   1922 		locked = false;
   1923 	}
   1924 
   1925 	/*
   1926 	 * didn't get the lock?   release the page and retry.
   1927 	 */
   1928 
   1929 	if (locked == false) {
   1930 		UVMHIST_LOG(maphist,
   1931 		    "  wasn't able to relock after fault: retry",
   1932 		    0,0,0,0);
   1933 		if (pg->flags & PG_WANTED) {
   1934 			wakeup(pg);
   1935 		}
   1936 		if ((pg->flags & PG_RELEASED) == 0) {
   1937 			pg->flags &= ~(PG_BUSY | PG_WANTED);
   1938 			UVM_PAGE_OWN(pg, NULL);
   1939 		} else {
   1940 			uvmexp.fltpgrele++;
   1941 			uvm_pagefree(pg);
   1942 		}
   1943 		mutex_exit(uobj->vmobjlock);
   1944 		return ERESTART;
   1945 	}
   1946 
   1947 	/*
   1948 	 * we have the data in pg which is busy and
   1949 	 * not released.  we are holding object lock (so the page
   1950 	 * can't be released on us).
   1951 	 */
   1952 
   1953 	/* locked: maps(read), amap(if !null), uobj, pg */
   1954 
   1955 	*ruobj = uobj;
   1956 	*ruobjpage = pg;
   1957 	return 0;
   1958 }
   1959 
   1960 /*
   1961  * uvm_fault_lower_direct: fault lower center page
   1962  *
   1963  *	1. adjust flt->enter_prot.
   1964  *	2. if page is loaned, resolve.
   1965  */
   1966 
   1967 int
   1968 uvm_fault_lower_direct(
   1969 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1970 	struct uvm_object *uobj, struct vm_page *uobjpage)
   1971 {
   1972 	struct vm_page *pg;
   1973 	UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
   1974 
   1975 	/*
   1976 	 * we are not promoting.   if the mapping is COW ensure that we
   1977 	 * don't give more access than we should (e.g. when doing a read
   1978 	 * fault on a COPYONWRITE mapping we want to map the COW page in
   1979 	 * R/O even though the entry protection could be R/W).
   1980 	 *
   1981 	 * set "pg" to the page we want to map in (uobjpage, usually)
   1982 	 */
   1983 
   1984 	uvmexp.flt_obj++;
   1985 	if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
   1986 	    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
   1987 		flt->enter_prot &= ~VM_PROT_WRITE;
   1988 	pg = uobjpage;		/* map in the actual object */
   1989 
   1990 	KASSERT(uobjpage != PGO_DONTCARE);
   1991 
   1992 	/*
   1993 	 * we are faulting directly on the page.   be careful
   1994 	 * about writing to loaned pages...
   1995 	 */
   1996 
   1997 	if (uobjpage->loan_count) {
   1998 		uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
   1999 	}
   2000 	KASSERT(pg == uobjpage);
   2001 
   2002 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   2003 	return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
   2004 }
   2005 
   2006 /*
   2007  * uvm_fault_lower_direct_loan: resolve loaned page.
   2008  *
   2009  *	1. if not cow'ing, adjust flt->enter_prot.
   2010  *	2. if cow'ing, break loan.
   2011  */
   2012 
   2013 static int
   2014 uvm_fault_lower_direct_loan(
   2015 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2016 	struct uvm_object *uobj, struct vm_page **rpg,
   2017 	struct vm_page **ruobjpage)
   2018 {
   2019 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2020 	struct vm_page *pg;
   2021 	struct vm_page *uobjpage = *ruobjpage;
   2022 	UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
   2023 
   2024 	if (!flt->cow_now) {
   2025 		/* read fault: cap the protection at readonly */
   2026 		/* cap! */
   2027 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   2028 	} else {
   2029 		/* write fault: must break the loan here */
   2030 
   2031 		pg = uvm_loanbreak(uobjpage);
   2032 		if (pg == NULL) {
   2033 
   2034 			/*
   2035 			 * drop ownership of page, it can't be released
   2036 			 */
   2037 
   2038 			if (uobjpage->flags & PG_WANTED)
   2039 				wakeup(uobjpage);
   2040 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   2041 			UVM_PAGE_OWN(uobjpage, NULL);
   2042 
   2043 			uvmfault_unlockall(ufi, amap, uobj);
   2044 			UVMHIST_LOG(maphist,
   2045 			  "  out of RAM breaking loan, waiting",
   2046 			  0,0,0,0);
   2047 			uvmexp.fltnoram++;
   2048 			uvm_wait("flt_noram4");
   2049 			return ERESTART;
   2050 		}
   2051 		*rpg = pg;
   2052 		*ruobjpage = pg;
   2053 	}
   2054 	return 0;
   2055 }
   2056 
   2057 /*
   2058  * uvm_fault_lower_promote: promote lower page.
   2059  *
   2060  *	1. call uvmfault_promote.
   2061  *	2. fill in data.
   2062  *	3. if not ZFOD, dispose old page.
   2063  */
   2064 
   2065 int
   2066 uvm_fault_lower_promote(
   2067 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2068 	struct uvm_object *uobj, struct vm_page *uobjpage)
   2069 {
   2070 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2071 	struct vm_anon *anon;
   2072 	struct vm_page *pg;
   2073 	int error;
   2074 	UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
   2075 
   2076 	KASSERT(amap != NULL);
   2077 
   2078 	/*
   2079 	 * If we are going to promote the data to an anon we
   2080 	 * allocate a blank anon here and plug it into our amap.
   2081 	 */
   2082 	error = uvmfault_promote(ufi, NULL, uobjpage,
   2083 	    &anon, &flt->anon_spare);
   2084 	switch (error) {
   2085 	case 0:
   2086 		break;
   2087 	case ERESTART:
   2088 		return ERESTART;
   2089 	default:
   2090 		return error;
   2091 	}
   2092 
   2093 	pg = anon->an_page;
   2094 
   2095 	/*
   2096 	 * Fill in the data.
   2097 	 */
   2098 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   2099 
   2100 	if (uobjpage != PGO_DONTCARE) {
   2101 		uvmexp.flt_prcopy++;
   2102 
   2103 		/*
   2104 		 * promote to shared amap?  make sure all sharing
   2105 		 * procs see it
   2106 		 */
   2107 
   2108 		if ((amap_flags(amap) & AMAP_SHARED) != 0) {
   2109 			pmap_page_protect(uobjpage, VM_PROT_NONE);
   2110 			/*
   2111 			 * XXX: PAGE MIGHT BE WIRED!
   2112 			 */
   2113 		}
   2114 
   2115 		/*
   2116 		 * dispose of uobjpage.  it can't be PG_RELEASED
   2117 		 * since we still hold the object lock.
   2118 		 */
   2119 
   2120 		if (uobjpage->flags & PG_WANTED) {
   2121 			/* still have the obj lock */
   2122 			wakeup(uobjpage);
   2123 		}
   2124 		uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   2125 		UVM_PAGE_OWN(uobjpage, NULL);
   2126 
   2127 		UVMHIST_LOG(maphist,
   2128 		    "  promote uobjpage 0x%x to anon/page 0x%x/0x%x",
   2129 		    uobjpage, anon, pg, 0);
   2130 
   2131 	} else {
   2132 		uvmexp.flt_przero++;
   2133 
   2134 		/*
   2135 		 * Page is zero'd and marked dirty by
   2136 		 * uvmfault_promote().
   2137 		 */
   2138 
   2139 		UVMHIST_LOG(maphist,"  zero fill anon/page 0x%x/0%x",
   2140 		    anon, pg, 0, 0);
   2141 	}
   2142 
   2143 	return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
   2144 }
   2145 
   2146 /*
   2147  * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
   2148  * from the lower page.
   2149  */
   2150 
   2151 int
   2152 uvm_fault_lower_enter(
   2153 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2154 	struct uvm_object *uobj,
   2155 	struct vm_anon *anon, struct vm_page *pg)
   2156 {
   2157 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2158 	int error;
   2159 	UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
   2160 
   2161 	/*
   2162 	 * Locked:
   2163 	 *
   2164 	 *	maps(read), amap(if !null), uobj(if !null),
   2165 	 *	anon(if !null), pg(if anon), unlock_uobj(if !null)
   2166 	 *
   2167 	 * Note: pg is either the uobjpage or the new page in the new anon.
   2168 	 */
   2169 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   2170 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   2171 	KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
   2172 	KASSERT((pg->flags & PG_BUSY) != 0);
   2173 
   2174 	/*
   2175 	 * all resources are present.   we can now map it in and free our
   2176 	 * resources.
   2177 	 */
   2178 
   2179 	UVMHIST_LOG(maphist,
   2180 	    "  MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
   2181 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
   2182 	KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
   2183 		(pg->flags & PG_RDONLY) == 0);
   2184 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
   2185 	    VM_PAGE_TO_PHYS(pg),
   2186 	    (pg->flags & PG_RDONLY) != 0 ?
   2187 	    flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
   2188 	    flt->access_type | PMAP_CANFAIL |
   2189 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   2190 
   2191 		/*
   2192 		 * No need to undo what we did; we can simply think of
   2193 		 * this as the pmap throwing away the mapping information.
   2194 		 *
   2195 		 * We do, however, have to go through the ReFault path,
   2196 		 * as the map may change while we're asleep.
   2197 		 */
   2198 
   2199 		/*
   2200 		 * ensure that the page is queued in the case that
   2201 		 * we just promoted the page.
   2202 		 */
   2203 
   2204 		mutex_enter(&uvm_pageqlock);
   2205 		uvm_pageenqueue(pg);
   2206 		mutex_exit(&uvm_pageqlock);
   2207 
   2208 		if (pg->flags & PG_WANTED)
   2209 			wakeup(pg);
   2210 
   2211 		/*
   2212 		 * note that pg can't be PG_RELEASED since we did not drop
   2213 		 * the object lock since the last time we checked.
   2214 		 */
   2215 		KASSERT((pg->flags & PG_RELEASED) == 0);
   2216 
   2217 		pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2218 		UVM_PAGE_OWN(pg, NULL);
   2219 
   2220 		uvmfault_unlockall(ufi, amap, uobj);
   2221 		if (!uvm_reclaimable()) {
   2222 			UVMHIST_LOG(maphist,
   2223 			    "<- failed.  out of VM",0,0,0,0);
   2224 			/* XXX instrumentation */
   2225 			error = ENOMEM;
   2226 			return error;
   2227 		}
   2228 		/* XXX instrumentation */
   2229 		uvm_wait("flt_pmfail2");
   2230 		return ERESTART;
   2231 	}
   2232 
   2233 	uvm_fault_lower_done(ufi, flt, uobj, pg);
   2234 
   2235 	/*
   2236 	 * note that pg can't be PG_RELEASED since we did not drop the object
   2237 	 * lock since the last time we checked.
   2238 	 */
   2239 	KASSERT((pg->flags & PG_RELEASED) == 0);
   2240 	if (pg->flags & PG_WANTED)
   2241 		wakeup(pg);
   2242 	pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2243 	UVM_PAGE_OWN(pg, NULL);
   2244 
   2245 	pmap_update(ufi->orig_map->pmap);
   2246 	uvmfault_unlockall(ufi, amap, uobj);
   2247 
   2248 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
   2249 	return 0;
   2250 }
   2251 
   2252 /*
   2253  * uvm_fault_lower_done: queue lower center page.
   2254  */
   2255 
   2256 void
   2257 uvm_fault_lower_done(
   2258 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2259 	struct uvm_object *uobj, struct vm_page *pg)
   2260 {
   2261 	bool dropswap = false;
   2262 
   2263 	UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
   2264 
   2265 	mutex_enter(&uvm_pageqlock);
   2266 	if (flt->wire_paging) {
   2267 		uvm_pagewire(pg);
   2268 		if (pg->pqflags & PQ_AOBJ) {
   2269 
   2270 			/*
   2271 			 * since the now-wired page cannot be paged out,
   2272 			 * release its swap resources for others to use.
   2273 			 * since an aobj page with no swap cannot be PG_CLEAN,
   2274 			 * clear its clean flag now.
   2275 			 */
   2276 
   2277 			KASSERT(uobj != NULL);
   2278 			pg->flags &= ~(PG_CLEAN);
   2279 			dropswap = true;
   2280 		}
   2281 	} else {
   2282 		uvm_pageactivate(pg);
   2283 	}
   2284 	mutex_exit(&uvm_pageqlock);
   2285 
   2286 	if (dropswap) {
   2287 		uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
   2288 	}
   2289 }
   2290 
   2291 
   2292 /*
   2293  * uvm_fault_wire: wire down a range of virtual addresses in a map.
   2294  *
   2295  * => map may be read-locked by caller, but MUST NOT be write-locked.
   2296  * => if map is read-locked, any operations which may cause map to
   2297  *	be write-locked in uvm_fault() must be taken care of by
   2298  *	the caller.  See uvm_map_pageable().
   2299  */
   2300 
   2301 int
   2302 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
   2303     vm_prot_t access_type, int maxprot)
   2304 {
   2305 	vaddr_t va;
   2306 	int error;
   2307 
   2308 	/*
   2309 	 * now fault it in a page at a time.   if the fault fails then we have
   2310 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
   2311 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
   2312 	 */
   2313 
   2314 	/*
   2315 	 * XXX work around overflowing a vaddr_t.  this prevents us from
   2316 	 * wiring the last page in the address space, though.
   2317 	 */
   2318 	if (start > end) {
   2319 		return EFAULT;
   2320 	}
   2321 
   2322 	for (va = start; va < end; va += PAGE_SIZE) {
   2323 		error = uvm_fault_internal(map, va, access_type,
   2324 		    (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
   2325 		if (error) {
   2326 			if (va != start) {
   2327 				uvm_fault_unwire(map, start, va);
   2328 			}
   2329 			return error;
   2330 		}
   2331 	}
   2332 	return 0;
   2333 }
   2334 
   2335 /*
   2336  * uvm_fault_unwire(): unwire range of virtual space.
   2337  */
   2338 
   2339 void
   2340 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
   2341 {
   2342 	vm_map_lock_read(map);
   2343 	uvm_fault_unwire_locked(map, start, end);
   2344 	vm_map_unlock_read(map);
   2345 }
   2346 
   2347 /*
   2348  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
   2349  *
   2350  * => map must be at least read-locked.
   2351  */
   2352 
   2353 void
   2354 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
   2355 {
   2356 	struct vm_map_entry *entry, *oentry;
   2357 	pmap_t pmap = vm_map_pmap(map);
   2358 	vaddr_t va;
   2359 	paddr_t pa;
   2360 	struct vm_page *pg;
   2361 
   2362 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
   2363 
   2364 	/*
   2365 	 * we assume that the area we are unwiring has actually been wired
   2366 	 * in the first place.   this means that we should be able to extract
   2367 	 * the PAs from the pmap.   we also lock out the page daemon so that
   2368 	 * we can call uvm_pageunwire.
   2369 	 */
   2370 
   2371 	/*
   2372 	 * find the beginning map entry for the region.
   2373 	 */
   2374 
   2375 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
   2376 	if (uvm_map_lookup_entry(map, start, &entry) == false)
   2377 		panic("uvm_fault_unwire_locked: address not in map");
   2378 
   2379 	oentry = NULL;
   2380 	for (va = start; va < end; va += PAGE_SIZE) {
   2381 		if (pmap_extract(pmap, va, &pa) == false)
   2382 			continue;
   2383 
   2384 		/*
   2385 		 * find the map entry for the current address.
   2386 		 */
   2387 
   2388 		KASSERT(va >= entry->start);
   2389 		while (va >= entry->end) {
   2390 			KASSERT(entry->next != &map->header &&
   2391 				entry->next->start <= entry->end);
   2392 			entry = entry->next;
   2393 		}
   2394 
   2395 		/*
   2396 		 * lock it.
   2397 		 */
   2398 
   2399 		if (entry != oentry) {
   2400 			if (oentry != NULL) {
   2401 				mutex_exit(&uvm_pageqlock);
   2402 				uvm_map_unlock_entry(oentry);
   2403 			}
   2404 			uvm_map_lock_entry(entry);
   2405 			mutex_enter(&uvm_pageqlock);
   2406 			oentry = entry;
   2407 		}
   2408 
   2409 		/*
   2410 		 * if the entry is no longer wired, tell the pmap.
   2411 		 */
   2412 
   2413 		if (VM_MAPENT_ISWIRED(entry) == 0)
   2414 			pmap_unwire(pmap, va);
   2415 
   2416 		pg = PHYS_TO_VM_PAGE(pa);
   2417 		if (pg)
   2418 			uvm_pageunwire(pg);
   2419 	}
   2420 
   2421 	if (oentry != NULL) {
   2422 		mutex_exit(&uvm_pageqlock);
   2423 		uvm_map_unlock_entry(entry);
   2424 	}
   2425 }
   2426