uvm_fault.c revision 1.191 1 /* $NetBSD: uvm_fault.c,v 1.191 2011/11/28 14:06:59 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 */
29
30 /*
31 * uvm_fault.c: fault handler
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.191 2011/11/28 14:06:59 yamt Exp $");
36
37 #include "opt_uvmhist.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/mman.h>
43
44 #include <uvm/uvm.h>
45
46 /*
47 *
48 * a word on page faults:
49 *
50 * types of page faults we handle:
51 *
52 * CASE 1: upper layer faults CASE 2: lower layer faults
53 *
54 * CASE 1A CASE 1B CASE 2A CASE 2B
55 * read/write1 write>1 read/write +-cow_write/zero
56 * | | | |
57 * +--|--+ +--|--+ +-----+ + | + | +-----+
58 * amap | V | | ---------> new | | | | ^ |
59 * +-----+ +-----+ +-----+ + | + | +--|--+
60 * | | |
61 * +-----+ +-----+ +--|--+ | +--|--+
62 * uobj | d/c | | d/c | | V | +----+ |
63 * +-----+ +-----+ +-----+ +-----+
64 *
65 * d/c = don't care
66 *
67 * case [0]: layerless fault
68 * no amap or uobj is present. this is an error.
69 *
70 * case [1]: upper layer fault [anon active]
71 * 1A: [read] or [write with anon->an_ref == 1]
72 * I/O takes place in upper level anon and uobj is not touched.
73 * 1B: [write with anon->an_ref > 1]
74 * new anon is alloc'd and data is copied off ["COW"]
75 *
76 * case [2]: lower layer fault [uobj]
77 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78 * I/O takes place directly in object.
79 * 2B: [write to copy_on_write] or [read on NULL uobj]
80 * data is "promoted" from uobj to a new anon.
81 * if uobj is null, then we zero fill.
82 *
83 * we follow the standard UVM locking protocol ordering:
84 *
85 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86 * we hold a PG_BUSY page if we unlock for I/O
87 *
88 *
89 * the code is structured as follows:
90 *
91 * - init the "IN" params in the ufi structure
92 * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
93 * - do lookups [locks maps], check protection, handle needs_copy
94 * - check for case 0 fault (error)
95 * - establish "range" of fault
96 * - if we have an amap lock it and extract the anons
97 * - if sequential advice deactivate pages behind us
98 * - at the same time check pmap for unmapped areas and anon for pages
99 * that we could map in (and do map it if found)
100 * - check object for resident pages that we could map in
101 * - if (case 2) goto Case2
102 * - >>> handle case 1
103 * - ensure source anon is resident in RAM
104 * - if case 1B alloc new anon and copy from source
105 * - map the correct page in
106 * Case2:
107 * - >>> handle case 2
108 * - ensure source page is resident (if uobj)
109 * - if case 2B alloc new anon and copy from source (could be zero
110 * fill if uobj == NULL)
111 * - map the correct page in
112 * - done!
113 *
114 * note on paging:
115 * if we have to do I/O we place a PG_BUSY page in the correct object,
116 * unlock everything, and do the I/O. when I/O is done we must reverify
117 * the state of the world before assuming that our data structures are
118 * valid. [because mappings could change while the map is unlocked]
119 *
120 * alternative 1: unbusy the page in question and restart the page fault
121 * from the top (ReFault). this is easy but does not take advantage
122 * of the information that we already have from our previous lookup,
123 * although it is possible that the "hints" in the vm_map will help here.
124 *
125 * alternative 2: the system already keeps track of a "version" number of
126 * a map. [i.e. every time you write-lock a map (e.g. to change a
127 * mapping) you bump the version number up by one...] so, we can save
128 * the version number of the map before we release the lock and start I/O.
129 * then when I/O is done we can relock and check the version numbers
130 * to see if anything changed. this might save us some over 1 because
131 * we don't have to unbusy the page and may be less compares(?).
132 *
133 * alternative 3: put in backpointers or a way to "hold" part of a map
134 * in place while I/O is in progress. this could be complex to
135 * implement (especially with structures like amap that can be referenced
136 * by multiple map entries, and figuring out what should wait could be
137 * complex as well...).
138 *
139 * we use alternative 2. given that we are multi-threaded now we may want
140 * to reconsider the choice.
141 */
142
143 /*
144 * local data structures
145 */
146
147 struct uvm_advice {
148 int advice;
149 int nback;
150 int nforw;
151 };
152
153 /*
154 * page range array:
155 * note: index in array must match "advice" value
156 * XXX: borrowed numbers from freebsd. do they work well for us?
157 */
158
159 static const struct uvm_advice uvmadvice[] = {
160 { UVM_ADV_NORMAL, 3, 4 },
161 { UVM_ADV_RANDOM, 0, 0 },
162 { UVM_ADV_SEQUENTIAL, 8, 7},
163 };
164
165 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
166
167 /*
168 * private prototypes
169 */
170
171 /*
172 * inline functions
173 */
174
175 /*
176 * uvmfault_anonflush: try and deactivate pages in specified anons
177 *
178 * => does not have to deactivate page if it is busy
179 */
180
181 static inline void
182 uvmfault_anonflush(struct vm_anon **anons, int n)
183 {
184 int lcv;
185 struct vm_page *pg;
186
187 for (lcv = 0; lcv < n; lcv++) {
188 if (anons[lcv] == NULL)
189 continue;
190 KASSERT(mutex_owned(anons[lcv]->an_lock));
191 pg = anons[lcv]->an_page;
192 if (pg && (pg->flags & PG_BUSY) == 0) {
193 mutex_enter(&uvm_pageqlock);
194 if (pg->wire_count == 0) {
195 uvm_pagedeactivate(pg);
196 }
197 mutex_exit(&uvm_pageqlock);
198 }
199 }
200 }
201
202 /*
203 * normal functions
204 */
205
206 /*
207 * uvmfault_amapcopy: clear "needs_copy" in a map.
208 *
209 * => called with VM data structures unlocked (usually, see below)
210 * => we get a write lock on the maps and clear needs_copy for a VA
211 * => if we are out of RAM we sleep (waiting for more)
212 */
213
214 static void
215 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
216 {
217 for (;;) {
218
219 /*
220 * no mapping? give up.
221 */
222
223 if (uvmfault_lookup(ufi, true) == false)
224 return;
225
226 /*
227 * copy if needed.
228 */
229
230 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
231 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
232 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
233
234 /*
235 * didn't work? must be out of RAM. unlock and sleep.
236 */
237
238 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
239 uvmfault_unlockmaps(ufi, true);
240 uvm_wait("fltamapcopy");
241 continue;
242 }
243
244 /*
245 * got it! unlock and return.
246 */
247
248 uvmfault_unlockmaps(ufi, true);
249 return;
250 }
251 /*NOTREACHED*/
252 }
253
254 /*
255 * uvmfault_anonget: get data in an anon into a non-busy, non-released
256 * page in that anon.
257 *
258 * => Map, amap and thus anon should be locked by caller.
259 * => If we fail, we unlock everything and error is returned.
260 * => If we are successful, return with everything still locked.
261 * => We do not move the page on the queues [gets moved later]. If we
262 * allocate a new page [we_own], it gets put on the queues. Either way,
263 * the result is that the page is on the queues at return time
264 * => For pages which are on loan from a uvm_object (and thus are not owned
265 * by the anon): if successful, return with the owning object locked.
266 * The caller must unlock this object when it unlocks everything else.
267 */
268
269 int
270 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
271 struct vm_anon *anon)
272 {
273 struct vm_page *pg;
274 int error;
275
276 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
277 KASSERT(mutex_owned(anon->an_lock));
278 KASSERT(anon->an_lock == amap->am_lock);
279
280 /* Increment the counters.*/
281 uvmexp.fltanget++;
282 if (anon->an_page) {
283 curlwp->l_ru.ru_minflt++;
284 } else {
285 curlwp->l_ru.ru_majflt++;
286 }
287 error = 0;
288
289 /*
290 * Loop until we get the anon data, or fail.
291 */
292
293 for (;;) {
294 bool we_own, locked;
295 /*
296 * Note: 'we_own' will become true if we set PG_BUSY on a page.
297 */
298 we_own = false;
299 pg = anon->an_page;
300
301 /*
302 * If there is a resident page and it is loaned, then anon
303 * may not own it. Call out to uvm_anon_lockloanpg() to
304 * identify and lock the real owner of the page.
305 */
306
307 if (pg && pg->loan_count)
308 pg = uvm_anon_lockloanpg(anon);
309
310 /*
311 * Is page resident? Make sure it is not busy/released.
312 */
313
314 if (pg) {
315
316 /*
317 * at this point, if the page has a uobject [meaning
318 * we have it on loan], then that uobject is locked
319 * by us! if the page is busy, we drop all the
320 * locks (including uobject) and try again.
321 */
322
323 if ((pg->flags & PG_BUSY) == 0) {
324 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
325 return 0;
326 }
327 pg->flags |= PG_WANTED;
328 uvmexp.fltpgwait++;
329
330 /*
331 * The last unlock must be an atomic unlock and wait
332 * on the owner of page.
333 */
334
335 if (pg->uobject) {
336 /* Owner of page is UVM object. */
337 uvmfault_unlockall(ufi, amap, NULL);
338 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
339 0,0,0);
340 UVM_UNLOCK_AND_WAIT(pg,
341 pg->uobject->vmobjlock,
342 false, "anonget1", 0);
343 } else {
344 /* Owner of page is anon. */
345 uvmfault_unlockall(ufi, NULL, NULL);
346 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
347 0,0,0);
348 UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
349 false, "anonget2", 0);
350 }
351 } else {
352 #if defined(VMSWAP)
353 /*
354 * No page, therefore allocate one.
355 */
356
357 pg = uvm_pagealloc(NULL,
358 ufi != NULL ? ufi->orig_rvaddr : 0,
359 anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
360 if (pg == NULL) {
361 /* Out of memory. Wait a little. */
362 uvmfault_unlockall(ufi, amap, NULL);
363 uvmexp.fltnoram++;
364 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
365 0,0,0);
366 if (!uvm_reclaimable()) {
367 return ENOMEM;
368 }
369 uvm_wait("flt_noram1");
370 } else {
371 /* PG_BUSY bit is set. */
372 we_own = true;
373 uvmfault_unlockall(ufi, amap, NULL);
374
375 /*
376 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
377 * the uvm_swap_get() function with all data
378 * structures unlocked. Note that it is OK
379 * to read an_swslot here, because we hold
380 * PG_BUSY on the page.
381 */
382 uvmexp.pageins++;
383 error = uvm_swap_get(pg, anon->an_swslot,
384 PGO_SYNCIO);
385
386 /*
387 * We clean up after the I/O below in the
388 * 'we_own' case.
389 */
390 }
391 #else
392 panic("%s: no page", __func__);
393 #endif /* defined(VMSWAP) */
394 }
395
396 /*
397 * Re-lock the map and anon.
398 */
399
400 locked = uvmfault_relock(ufi);
401 if (locked || we_own) {
402 mutex_enter(anon->an_lock);
403 }
404
405 /*
406 * If we own the page (i.e. we set PG_BUSY), then we need
407 * to clean up after the I/O. There are three cases to
408 * consider:
409 *
410 * 1) Page was released during I/O: free anon and ReFault.
411 * 2) I/O not OK. Free the page and cause the fault to fail.
412 * 3) I/O OK! Activate the page and sync with the non-we_own
413 * case (i.e. drop anon lock if not locked).
414 */
415
416 if (we_own) {
417 #if defined(VMSWAP)
418 if (pg->flags & PG_WANTED) {
419 wakeup(pg);
420 }
421 if (error) {
422
423 /*
424 * Remove the swap slot from the anon and
425 * mark the anon as having no real slot.
426 * Do not free the swap slot, thus preventing
427 * it from being used again.
428 */
429
430 if (anon->an_swslot > 0) {
431 uvm_swap_markbad(anon->an_swslot, 1);
432 }
433 anon->an_swslot = SWSLOT_BAD;
434
435 if ((pg->flags & PG_RELEASED) != 0) {
436 goto released;
437 }
438
439 /*
440 * Note: page was never !PG_BUSY, so it
441 * cannot be mapped and thus no need to
442 * pmap_page_protect() it.
443 */
444
445 mutex_enter(&uvm_pageqlock);
446 uvm_pagefree(pg);
447 mutex_exit(&uvm_pageqlock);
448
449 if (locked) {
450 uvmfault_unlockall(ufi, NULL, NULL);
451 }
452 mutex_exit(anon->an_lock);
453 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
454 return error;
455 }
456
457 if ((pg->flags & PG_RELEASED) != 0) {
458 released:
459 KASSERT(anon->an_ref == 0);
460
461 /*
462 * Released while we had unlocked amap.
463 */
464
465 if (locked) {
466 uvmfault_unlockall(ufi, NULL, NULL);
467 }
468 uvm_anon_release(anon);
469
470 if (error) {
471 UVMHIST_LOG(maphist,
472 "<- ERROR/RELEASED", 0,0,0,0);
473 return error;
474 }
475
476 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
477 return ERESTART;
478 }
479
480 /*
481 * We have successfully read the page, activate it.
482 */
483
484 mutex_enter(&uvm_pageqlock);
485 uvm_pageactivate(pg);
486 mutex_exit(&uvm_pageqlock);
487 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
488 UVM_PAGE_OWN(pg, NULL);
489 #else
490 panic("%s: we_own", __func__);
491 #endif /* defined(VMSWAP) */
492 }
493
494 /*
495 * We were not able to re-lock the map - restart the fault.
496 */
497
498 if (!locked) {
499 if (we_own) {
500 mutex_exit(anon->an_lock);
501 }
502 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
503 return ERESTART;
504 }
505
506 /*
507 * Verify that no one has touched the amap and moved
508 * the anon on us.
509 */
510
511 if (ufi != NULL && amap_lookup(&ufi->entry->aref,
512 ufi->orig_rvaddr - ufi->entry->start) != anon) {
513
514 uvmfault_unlockall(ufi, amap, NULL);
515 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
516 return ERESTART;
517 }
518
519 /*
520 * Retry..
521 */
522
523 uvmexp.fltanretry++;
524 continue;
525 }
526 /*NOTREACHED*/
527 }
528
529 /*
530 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
531 *
532 * 1. allocate an anon and a page.
533 * 2. fill its contents.
534 * 3. put it into amap.
535 *
536 * => if we fail (result != 0) we unlock everything.
537 * => on success, return a new locked anon via 'nanon'.
538 * (*nanon)->an_page will be a resident, locked, dirty page.
539 * => it's caller's responsibility to put the promoted nanon->an_page to the
540 * page queue.
541 */
542
543 static int
544 uvmfault_promote(struct uvm_faultinfo *ufi,
545 struct vm_anon *oanon,
546 struct vm_page *uobjpage,
547 struct vm_anon **nanon, /* OUT: allocated anon */
548 struct vm_anon **spare)
549 {
550 struct vm_amap *amap = ufi->entry->aref.ar_amap;
551 struct uvm_object *uobj;
552 struct vm_anon *anon;
553 struct vm_page *pg;
554 struct vm_page *opg;
555 int error;
556 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
557
558 if (oanon) {
559 /* anon COW */
560 opg = oanon->an_page;
561 KASSERT(opg != NULL);
562 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
563 } else if (uobjpage != PGO_DONTCARE) {
564 /* object-backed COW */
565 opg = uobjpage;
566 } else {
567 /* ZFOD */
568 opg = NULL;
569 }
570 if (opg != NULL) {
571 uobj = opg->uobject;
572 } else {
573 uobj = NULL;
574 }
575
576 KASSERT(amap != NULL);
577 KASSERT(uobjpage != NULL);
578 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
579 KASSERT(mutex_owned(amap->am_lock));
580 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
581 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
582
583 if (*spare != NULL) {
584 anon = *spare;
585 *spare = NULL;
586 } else if (ufi->map != kernel_map) {
587 anon = uvm_analloc();
588 } else {
589 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
590
591 /*
592 * we can't allocate anons with kernel_map locked.
593 */
594
595 uvm_page_unbusy(&uobjpage, 1);
596 uvmfault_unlockall(ufi, amap, uobj);
597
598 *spare = uvm_analloc();
599 if (*spare == NULL) {
600 goto nomem;
601 }
602 KASSERT((*spare)->an_lock == NULL);
603 error = ERESTART;
604 goto done;
605 }
606 if (anon) {
607
608 /*
609 * The new anon is locked.
610 *
611 * if opg == NULL, we want a zero'd, dirty page,
612 * so have uvm_pagealloc() do that for us.
613 */
614
615 KASSERT(anon->an_lock == NULL);
616 anon->an_lock = amap->am_lock;
617 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
618 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
619 if (pg == NULL) {
620 anon->an_lock = NULL;
621 }
622 } else {
623 pg = NULL;
624 }
625
626 /*
627 * out of memory resources?
628 */
629
630 if (pg == NULL) {
631 /* save anon for the next try. */
632 if (anon != NULL) {
633 *spare = anon;
634 }
635
636 /* unlock and fail ... */
637 uvm_page_unbusy(&uobjpage, 1);
638 uvmfault_unlockall(ufi, amap, uobj);
639 nomem:
640 if (!uvm_reclaimable()) {
641 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
642 uvmexp.fltnoanon++;
643 error = ENOMEM;
644 goto done;
645 }
646
647 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
648 uvmexp.fltnoram++;
649 uvm_wait("flt_noram5");
650 error = ERESTART;
651 goto done;
652 }
653
654 /* copy page [pg now dirty] */
655 if (opg) {
656 uvm_pagecopy(opg, pg);
657 }
658
659 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
660 oanon != NULL);
661
662 *nanon = anon;
663 error = 0;
664 done:
665 return error;
666 }
667
668
669 /*
670 * F A U L T - m a i n e n t r y p o i n t
671 */
672
673 /*
674 * uvm_fault: page fault handler
675 *
676 * => called from MD code to resolve a page fault
677 * => VM data structures usually should be unlocked. however, it is
678 * possible to call here with the main map locked if the caller
679 * gets a write lock, sets it recusive, and then calls us (c.f.
680 * uvm_map_pageable). this should be avoided because it keeps
681 * the map locked off during I/O.
682 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
683 */
684
685 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
686 ~VM_PROT_WRITE : VM_PROT_ALL)
687
688 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
689 #define UVM_FAULT_WIRE (1 << 0)
690 #define UVM_FAULT_MAXPROT (1 << 1)
691
692 struct uvm_faultctx {
693
694 /*
695 * the following members are set up by uvm_fault_check() and
696 * read-only after that.
697 *
698 * note that narrow is used by uvm_fault_check() to change
699 * the behaviour after ERESTART.
700 *
701 * most of them might change after RESTART if the underlying
702 * map entry has been changed behind us. an exception is
703 * wire_paging, which does never change.
704 */
705 vm_prot_t access_type;
706 vaddr_t startva;
707 int npages;
708 int centeridx;
709 bool narrow; /* work on a single requested page only */
710 bool wire_mapping; /* request a PMAP_WIRED mapping
711 (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
712 bool wire_paging; /* request uvm_pagewire
713 (true for UVM_FAULT_WIRE) */
714 bool cow_now; /* VM_PROT_WRITE is actually requested
715 (ie. should break COW and page loaning) */
716
717 /*
718 * enter_prot is set up by uvm_fault_check() and clamped
719 * (ie. drop the VM_PROT_WRITE bit) in various places in case
720 * of !cow_now.
721 */
722 vm_prot_t enter_prot; /* prot at which we want to enter pages in */
723
724 /*
725 * the following member is for uvmfault_promote() and ERESTART.
726 */
727 struct vm_anon *anon_spare;
728
729 /*
730 * the folloing is actually a uvm_fault_lower() internal.
731 * it's here merely for debugging.
732 * (or due to the mechanical separation of the function?)
733 */
734 bool promote;
735 };
736
737 static inline int uvm_fault_check(
738 struct uvm_faultinfo *, struct uvm_faultctx *,
739 struct vm_anon ***, bool);
740
741 static int uvm_fault_upper(
742 struct uvm_faultinfo *, struct uvm_faultctx *,
743 struct vm_anon **);
744 static inline int uvm_fault_upper_lookup(
745 struct uvm_faultinfo *, const struct uvm_faultctx *,
746 struct vm_anon **, struct vm_page **);
747 static inline void uvm_fault_upper_neighbor(
748 struct uvm_faultinfo *, const struct uvm_faultctx *,
749 vaddr_t, struct vm_page *, bool);
750 static inline int uvm_fault_upper_loan(
751 struct uvm_faultinfo *, struct uvm_faultctx *,
752 struct vm_anon *, struct uvm_object **);
753 static inline int uvm_fault_upper_promote(
754 struct uvm_faultinfo *, struct uvm_faultctx *,
755 struct uvm_object *, struct vm_anon *);
756 static inline int uvm_fault_upper_direct(
757 struct uvm_faultinfo *, struct uvm_faultctx *,
758 struct uvm_object *, struct vm_anon *);
759 static int uvm_fault_upper_enter(
760 struct uvm_faultinfo *, const struct uvm_faultctx *,
761 struct uvm_object *, struct vm_anon *,
762 struct vm_page *, struct vm_anon *);
763 static inline void uvm_fault_upper_done(
764 struct uvm_faultinfo *, const struct uvm_faultctx *,
765 struct vm_anon *, struct vm_page *);
766
767 static int uvm_fault_lower(
768 struct uvm_faultinfo *, struct uvm_faultctx *,
769 struct vm_page **);
770 static inline void uvm_fault_lower_lookup(
771 struct uvm_faultinfo *, const struct uvm_faultctx *,
772 struct vm_page **);
773 static inline void uvm_fault_lower_neighbor(
774 struct uvm_faultinfo *, const struct uvm_faultctx *,
775 vaddr_t, struct vm_page *, bool);
776 static inline int uvm_fault_lower_io(
777 struct uvm_faultinfo *, const struct uvm_faultctx *,
778 struct uvm_object **, struct vm_page **);
779 static inline int uvm_fault_lower_direct(
780 struct uvm_faultinfo *, struct uvm_faultctx *,
781 struct uvm_object *, struct vm_page *);
782 static inline int uvm_fault_lower_direct_loan(
783 struct uvm_faultinfo *, struct uvm_faultctx *,
784 struct uvm_object *, struct vm_page **,
785 struct vm_page **);
786 static inline int uvm_fault_lower_promote(
787 struct uvm_faultinfo *, struct uvm_faultctx *,
788 struct uvm_object *, struct vm_page *);
789 static int uvm_fault_lower_enter(
790 struct uvm_faultinfo *, const struct uvm_faultctx *,
791 struct uvm_object *,
792 struct vm_anon *, struct vm_page *);
793 static inline void uvm_fault_lower_done(
794 struct uvm_faultinfo *, const struct uvm_faultctx *,
795 struct uvm_object *, struct vm_page *);
796
797 int
798 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
799 vm_prot_t access_type, int fault_flag)
800 {
801 struct uvm_faultinfo ufi;
802 struct uvm_faultctx flt = {
803 .access_type = access_type,
804
805 /* don't look for neighborhood * pages on "wire" fault */
806 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
807
808 /* "wire" fault causes wiring of both mapping and paging */
809 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
810 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
811 };
812 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
813 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
814 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
815 int error;
816 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
817
818 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
819 orig_map, vaddr, access_type, fault_flag);
820
821 curcpu()->ci_data.cpu_nfault++;
822
823 /*
824 * init the IN parameters in the ufi
825 */
826
827 ufi.orig_map = orig_map;
828 ufi.orig_rvaddr = trunc_page(vaddr);
829 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
830
831 error = ERESTART;
832 while (error == ERESTART) { /* ReFault: */
833 anons = anons_store;
834 pages = pages_store;
835
836 error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
837 if (error != 0)
838 continue;
839
840 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
841 if (error != 0)
842 continue;
843
844 if (pages[flt.centeridx] == PGO_DONTCARE)
845 error = uvm_fault_upper(&ufi, &flt, anons);
846 else {
847 struct uvm_object * const uobj =
848 ufi.entry->object.uvm_obj;
849
850 if (uobj && uobj->pgops->pgo_fault != NULL) {
851 /*
852 * invoke "special" fault routine.
853 */
854 mutex_enter(uobj->vmobjlock);
855 /* locked: maps(read), amap(if there), uobj */
856 error = uobj->pgops->pgo_fault(&ufi,
857 flt.startva, pages, flt.npages,
858 flt.centeridx, flt.access_type,
859 PGO_LOCKED|PGO_SYNCIO);
860
861 /*
862 * locked: nothing, pgo_fault has unlocked
863 * everything
864 */
865
866 /*
867 * object fault routine responsible for
868 * pmap_update().
869 */
870 } else {
871 error = uvm_fault_lower(&ufi, &flt, pages);
872 }
873 }
874 }
875
876 if (flt.anon_spare != NULL) {
877 flt.anon_spare->an_ref--;
878 KASSERT(flt.anon_spare->an_ref == 0);
879 KASSERT(flt.anon_spare->an_lock == NULL);
880 uvm_anon_free(flt.anon_spare);
881 }
882 return error;
883 }
884
885 /*
886 * uvm_fault_check: check prot, handle needs-copy, etc.
887 *
888 * 1. lookup entry.
889 * 2. check protection.
890 * 3. adjust fault condition (mainly for simulated fault).
891 * 4. handle needs-copy (lazy amap copy).
892 * 5. establish range of interest for neighbor fault (aka pre-fault).
893 * 6. look up anons (if amap exists).
894 * 7. flush pages (if MADV_SEQUENTIAL)
895 *
896 * => called with nothing locked.
897 * => if we fail (result != 0) we unlock everything.
898 * => initialize/adjust many members of flt.
899 */
900
901 static int
902 uvm_fault_check(
903 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
904 struct vm_anon ***ranons, bool maxprot)
905 {
906 struct vm_amap *amap;
907 struct uvm_object *uobj;
908 vm_prot_t check_prot;
909 int nback, nforw;
910 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
911
912 /*
913 * lookup and lock the maps
914 */
915
916 if (uvmfault_lookup(ufi, false) == false) {
917 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr,
918 0,0,0);
919 return EFAULT;
920 }
921 /* locked: maps(read) */
922
923 #ifdef DIAGNOSTIC
924 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
925 printf("Page fault on non-pageable map:\n");
926 printf("ufi->map = %p\n", ufi->map);
927 printf("ufi->orig_map = %p\n", ufi->orig_map);
928 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
929 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
930 }
931 #endif
932
933 /*
934 * check protection
935 */
936
937 check_prot = maxprot ?
938 ufi->entry->max_protection : ufi->entry->protection;
939 if ((check_prot & flt->access_type) != flt->access_type) {
940 UVMHIST_LOG(maphist,
941 "<- protection failure (prot=0x%x, access=0x%x)",
942 ufi->entry->protection, flt->access_type, 0, 0);
943 uvmfault_unlockmaps(ufi, false);
944 return EACCES;
945 }
946
947 /*
948 * "enter_prot" is the protection we want to enter the page in at.
949 * for certain pages (e.g. copy-on-write pages) this protection can
950 * be more strict than ufi->entry->protection. "wired" means either
951 * the entry is wired or we are fault-wiring the pg.
952 */
953
954 flt->enter_prot = ufi->entry->protection;
955 if (VM_MAPENT_ISWIRED(ufi->entry))
956 flt->wire_mapping = true;
957
958 if (flt->wire_mapping) {
959 flt->access_type = flt->enter_prot; /* full access for wired */
960 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
961 } else {
962 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
963 }
964
965 flt->promote = false;
966
967 /*
968 * handle "needs_copy" case. if we need to copy the amap we will
969 * have to drop our readlock and relock it with a write lock. (we
970 * need a write lock to change anything in a map entry [e.g.
971 * needs_copy]).
972 */
973
974 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
975 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
976 KASSERT(!maxprot);
977 /* need to clear */
978 UVMHIST_LOG(maphist,
979 " need to clear needs_copy and refault",0,0,0,0);
980 uvmfault_unlockmaps(ufi, false);
981 uvmfault_amapcopy(ufi);
982 uvmexp.fltamcopy++;
983 return ERESTART;
984
985 } else {
986
987 /*
988 * ensure that we pmap_enter page R/O since
989 * needs_copy is still true
990 */
991
992 flt->enter_prot &= ~VM_PROT_WRITE;
993 }
994 }
995
996 /*
997 * identify the players
998 */
999
1000 amap = ufi->entry->aref.ar_amap; /* upper layer */
1001 uobj = ufi->entry->object.uvm_obj; /* lower layer */
1002
1003 /*
1004 * check for a case 0 fault. if nothing backing the entry then
1005 * error now.
1006 */
1007
1008 if (amap == NULL && uobj == NULL) {
1009 uvmfault_unlockmaps(ufi, false);
1010 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
1011 return EFAULT;
1012 }
1013
1014 /*
1015 * establish range of interest based on advice from mapper
1016 * and then clip to fit map entry. note that we only want
1017 * to do this the first time through the fault. if we
1018 * ReFault we will disable this by setting "narrow" to true.
1019 */
1020
1021 if (flt->narrow == false) {
1022
1023 /* wide fault (!narrow) */
1024 KASSERT(uvmadvice[ufi->entry->advice].advice ==
1025 ufi->entry->advice);
1026 nback = MIN(uvmadvice[ufi->entry->advice].nback,
1027 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1028 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1029 /*
1030 * note: "-1" because we don't want to count the
1031 * faulting page as forw
1032 */
1033 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1034 ((ufi->entry->end - ufi->orig_rvaddr) >>
1035 PAGE_SHIFT) - 1);
1036 flt->npages = nback + nforw + 1;
1037 flt->centeridx = nback;
1038
1039 flt->narrow = true; /* ensure only once per-fault */
1040
1041 } else {
1042
1043 /* narrow fault! */
1044 nback = nforw = 0;
1045 flt->startva = ufi->orig_rvaddr;
1046 flt->npages = 1;
1047 flt->centeridx = 0;
1048
1049 }
1050 /* offset from entry's start to pgs' start */
1051 const voff_t eoff = flt->startva - ufi->entry->start;
1052
1053 /* locked: maps(read) */
1054 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
1055 flt->narrow, nback, nforw, flt->startva);
1056 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1057 amap, uobj, 0);
1058
1059 /*
1060 * if we've got an amap, lock it and extract current anons.
1061 */
1062
1063 if (amap) {
1064 amap_lock(amap);
1065 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1066 } else {
1067 *ranons = NULL; /* to be safe */
1068 }
1069
1070 /* locked: maps(read), amap(if there) */
1071 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1072
1073 /*
1074 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1075 * now and then forget about them (for the rest of the fault).
1076 */
1077
1078 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1079
1080 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1081 0,0,0,0);
1082 /* flush back-page anons? */
1083 if (amap)
1084 uvmfault_anonflush(*ranons, nback);
1085
1086 /* flush object? */
1087 if (uobj) {
1088 voff_t uoff;
1089
1090 uoff = ufi->entry->offset + eoff;
1091 mutex_enter(uobj->vmobjlock);
1092 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1093 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1094 }
1095
1096 /* now forget about the backpages */
1097 if (amap)
1098 *ranons += nback;
1099 flt->startva += (nback << PAGE_SHIFT);
1100 flt->npages -= nback;
1101 flt->centeridx = 0;
1102 }
1103 /*
1104 * => startva is fixed
1105 * => npages is fixed
1106 */
1107 KASSERT(flt->startva <= ufi->orig_rvaddr);
1108 KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1109 flt->startva + (flt->npages << PAGE_SHIFT));
1110 return 0;
1111 }
1112
1113 /*
1114 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1115 *
1116 * iterate range of interest:
1117 * 1. check if h/w mapping exists. if yes, we don't care
1118 * 2. check if anon exists. if not, page is lower.
1119 * 3. if anon exists, enter h/w mapping for neighbors.
1120 *
1121 * => called with amap locked (if exists).
1122 */
1123
1124 static int
1125 uvm_fault_upper_lookup(
1126 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1127 struct vm_anon **anons, struct vm_page **pages)
1128 {
1129 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1130 int lcv;
1131 vaddr_t currva;
1132 bool shadowed;
1133 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1134
1135 /* locked: maps(read), amap(if there) */
1136 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1137
1138 /*
1139 * map in the backpages and frontpages we found in the amap in hopes
1140 * of preventing future faults. we also init the pages[] array as
1141 * we go.
1142 */
1143
1144 currva = flt->startva;
1145 shadowed = false;
1146 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1147 /*
1148 * don't play with VAs that are already mapped
1149 * (except for center)
1150 */
1151 if (lcv != flt->centeridx &&
1152 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1153 pages[lcv] = PGO_DONTCARE;
1154 continue;
1155 }
1156
1157 /*
1158 * unmapped or center page. check if any anon at this level.
1159 */
1160 if (amap == NULL || anons[lcv] == NULL) {
1161 pages[lcv] = NULL;
1162 continue;
1163 }
1164
1165 /*
1166 * check for present page and map if possible. re-activate it.
1167 */
1168
1169 pages[lcv] = PGO_DONTCARE;
1170 if (lcv == flt->centeridx) { /* save center for later! */
1171 shadowed = true;
1172 continue;
1173 }
1174
1175 struct vm_anon *anon = anons[lcv];
1176 struct vm_page *pg = anon->an_page;
1177
1178 KASSERT(anon->an_lock == amap->am_lock);
1179
1180 /* Ignore loaned and busy pages. */
1181 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
1182 uvm_fault_upper_neighbor(ufi, flt, currva,
1183 pg, anon->an_ref > 1);
1184 }
1185 }
1186
1187 /* locked: maps(read), amap(if there) */
1188 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1189 /* (shadowed == true) if there is an anon at the faulting address */
1190 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1191 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1192
1193 /*
1194 * note that if we are really short of RAM we could sleep in the above
1195 * call to pmap_enter with everything locked. bad?
1196 *
1197 * XXX Actually, that is bad; pmap_enter() should just fail in that
1198 * XXX case. --thorpej
1199 */
1200
1201 return 0;
1202 }
1203
1204 /*
1205 * uvm_fault_upper_neighbor: enter single lower neighbor page.
1206 *
1207 * => called with amap and anon locked.
1208 */
1209
1210 static void
1211 uvm_fault_upper_neighbor(
1212 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1213 vaddr_t currva, struct vm_page *pg, bool readonly)
1214 {
1215 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1216
1217 /* locked: amap, anon */
1218
1219 mutex_enter(&uvm_pageqlock);
1220 uvm_pageenqueue(pg);
1221 mutex_exit(&uvm_pageqlock);
1222 UVMHIST_LOG(maphist,
1223 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1224 ufi->orig_map->pmap, currva, pg, 0);
1225 uvmexp.fltnamap++;
1226
1227 /*
1228 * Since this page isn't the page that's actually faulting,
1229 * ignore pmap_enter() failures; it's not critical that we
1230 * enter these right now.
1231 */
1232
1233 (void) pmap_enter(ufi->orig_map->pmap, currva,
1234 VM_PAGE_TO_PHYS(pg),
1235 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1236 flt->enter_prot,
1237 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1238
1239 pmap_update(ufi->orig_map->pmap);
1240 }
1241
1242 /*
1243 * uvm_fault_upper: handle upper fault.
1244 *
1245 * 1. acquire anon lock.
1246 * 2. get anon. let uvmfault_anonget do the dirty work.
1247 * 3. handle loan.
1248 * 4. dispatch direct or promote handlers.
1249 */
1250
1251 static int
1252 uvm_fault_upper(
1253 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1254 struct vm_anon **anons)
1255 {
1256 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1257 struct vm_anon * const anon = anons[flt->centeridx];
1258 struct uvm_object *uobj;
1259 int error;
1260 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1261
1262 /* locked: maps(read), amap, anon */
1263 KASSERT(mutex_owned(amap->am_lock));
1264 KASSERT(anon->an_lock == amap->am_lock);
1265
1266 /*
1267 * handle case 1: fault on an anon in our amap
1268 */
1269
1270 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1271
1272 /*
1273 * no matter if we have case 1A or case 1B we are going to need to
1274 * have the anon's memory resident. ensure that now.
1275 */
1276
1277 /*
1278 * let uvmfault_anonget do the dirty work.
1279 * if it fails (!OK) it will unlock everything for us.
1280 * if it succeeds, locks are still valid and locked.
1281 * also, if it is OK, then the anon's page is on the queues.
1282 * if the page is on loan from a uvm_object, then anonget will
1283 * lock that object for us if it does not fail.
1284 */
1285
1286 error = uvmfault_anonget(ufi, amap, anon);
1287 switch (error) {
1288 case 0:
1289 break;
1290
1291 case ERESTART:
1292 return ERESTART;
1293
1294 case EAGAIN:
1295 kpause("fltagain1", false, hz/2, NULL);
1296 return ERESTART;
1297
1298 default:
1299 return error;
1300 }
1301
1302 /*
1303 * uobj is non null if the page is on loan from an object (i.e. uobj)
1304 */
1305
1306 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1307
1308 /* locked: maps(read), amap, anon, uobj(if one) */
1309 KASSERT(mutex_owned(amap->am_lock));
1310 KASSERT(anon->an_lock == amap->am_lock);
1311 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1312
1313 /*
1314 * special handling for loaned pages
1315 */
1316
1317 if (anon->an_page->loan_count) {
1318 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1319 if (error != 0)
1320 return error;
1321 }
1322
1323 /*
1324 * if we are case 1B then we will need to allocate a new blank
1325 * anon to transfer the data into. note that we have a lock
1326 * on anon, so no one can busy or release the page until we are done.
1327 * also note that the ref count can't drop to zero here because
1328 * it is > 1 and we are only dropping one ref.
1329 *
1330 * in the (hopefully very rare) case that we are out of RAM we
1331 * will unlock, wait for more RAM, and refault.
1332 *
1333 * if we are out of anon VM we kill the process (XXX: could wait?).
1334 */
1335
1336 if (flt->cow_now && anon->an_ref > 1) {
1337 flt->promote = true;
1338 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1339 } else {
1340 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1341 }
1342 return error;
1343 }
1344
1345 /*
1346 * uvm_fault_upper_loan: handle loaned upper page.
1347 *
1348 * 1. if not cow'ing now, simply adjust flt->enter_prot.
1349 * 2. if cow'ing now, and if ref count is 1, break loan.
1350 */
1351
1352 static int
1353 uvm_fault_upper_loan(
1354 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1355 struct vm_anon *anon, struct uvm_object **ruobj)
1356 {
1357 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1358 int error = 0;
1359 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1360
1361 if (!flt->cow_now) {
1362
1363 /*
1364 * for read faults on loaned pages we just cap the
1365 * protection at read-only.
1366 */
1367
1368 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1369
1370 } else {
1371 /*
1372 * note that we can't allow writes into a loaned page!
1373 *
1374 * if we have a write fault on a loaned page in an
1375 * anon then we need to look at the anon's ref count.
1376 * if it is greater than one then we are going to do
1377 * a normal copy-on-write fault into a new anon (this
1378 * is not a problem). however, if the reference count
1379 * is one (a case where we would normally allow a
1380 * write directly to the page) then we need to kill
1381 * the loan before we continue.
1382 */
1383
1384 /* >1 case is already ok */
1385 if (anon->an_ref == 1) {
1386 error = uvm_loanbreak_anon(anon, *ruobj);
1387 if (error != 0) {
1388 uvmfault_unlockall(ufi, amap, *ruobj);
1389 uvm_wait("flt_noram2");
1390 return ERESTART;
1391 }
1392 /* if we were a loan reciever uobj is gone */
1393 if (*ruobj)
1394 *ruobj = NULL;
1395 }
1396 }
1397 return error;
1398 }
1399
1400 /*
1401 * uvm_fault_upper_promote: promote upper page.
1402 *
1403 * 1. call uvmfault_promote.
1404 * 2. enqueue page.
1405 * 3. deref.
1406 * 4. pass page to uvm_fault_upper_enter.
1407 */
1408
1409 static int
1410 uvm_fault_upper_promote(
1411 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1412 struct uvm_object *uobj, struct vm_anon *anon)
1413 {
1414 struct vm_anon * const oanon = anon;
1415 struct vm_page *pg;
1416 int error;
1417 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1418
1419 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1420 uvmexp.flt_acow++;
1421
1422 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1423 &flt->anon_spare);
1424 switch (error) {
1425 case 0:
1426 break;
1427 case ERESTART:
1428 return ERESTART;
1429 default:
1430 return error;
1431 }
1432
1433 KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
1434
1435 pg = anon->an_page;
1436 mutex_enter(&uvm_pageqlock);
1437 uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
1438 mutex_exit(&uvm_pageqlock);
1439 pg->flags &= ~(PG_BUSY|PG_FAKE);
1440 UVM_PAGE_OWN(pg, NULL);
1441
1442 /* deref: can not drop to zero here by defn! */
1443 KASSERT(oanon->an_ref > 1);
1444 oanon->an_ref--;
1445
1446 /*
1447 * note: oanon is still locked, as is the new anon. we
1448 * need to check for this later when we unlock oanon; if
1449 * oanon != anon, we'll have to unlock anon, too.
1450 */
1451
1452 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1453 }
1454
1455 /*
1456 * uvm_fault_upper_direct: handle direct fault.
1457 */
1458
1459 static int
1460 uvm_fault_upper_direct(
1461 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1462 struct uvm_object *uobj, struct vm_anon *anon)
1463 {
1464 struct vm_anon * const oanon = anon;
1465 struct vm_page *pg;
1466 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1467
1468 uvmexp.flt_anon++;
1469 pg = anon->an_page;
1470 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1471 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1472
1473 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1474 }
1475
1476 /*
1477 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1478 */
1479
1480 static int
1481 uvm_fault_upper_enter(
1482 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1483 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1484 struct vm_anon *oanon)
1485 {
1486 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1487 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1488
1489 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1490 KASSERT(mutex_owned(amap->am_lock));
1491 KASSERT(anon->an_lock == amap->am_lock);
1492 KASSERT(oanon->an_lock == amap->am_lock);
1493 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1494
1495 /*
1496 * now map the page in.
1497 */
1498
1499 UVMHIST_LOG(maphist,
1500 " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1501 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1502 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1503 VM_PAGE_TO_PHYS(pg),
1504 flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1505 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1506
1507 /*
1508 * No need to undo what we did; we can simply think of
1509 * this as the pmap throwing away the mapping information.
1510 *
1511 * We do, however, have to go through the ReFault path,
1512 * as the map may change while we're asleep.
1513 */
1514
1515 uvmfault_unlockall(ufi, amap, uobj);
1516 if (!uvm_reclaimable()) {
1517 UVMHIST_LOG(maphist,
1518 "<- failed. out of VM",0,0,0,0);
1519 /* XXX instrumentation */
1520 return ENOMEM;
1521 }
1522 /* XXX instrumentation */
1523 uvm_wait("flt_pmfail1");
1524 return ERESTART;
1525 }
1526
1527 uvm_fault_upper_done(ufi, flt, anon, pg);
1528
1529 /*
1530 * done case 1! finish up by unlocking everything and returning success
1531 */
1532
1533 pmap_update(ufi->orig_map->pmap);
1534 uvmfault_unlockall(ufi, amap, uobj);
1535 return 0;
1536 }
1537
1538 /*
1539 * uvm_fault_upper_done: queue upper center page.
1540 */
1541
1542 static void
1543 uvm_fault_upper_done(
1544 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1545 struct vm_anon *anon, struct vm_page *pg)
1546 {
1547 const bool wire_paging = flt->wire_paging;
1548
1549 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1550
1551 /*
1552 * ... update the page queues.
1553 */
1554
1555 mutex_enter(&uvm_pageqlock);
1556 if (wire_paging) {
1557 uvm_pagewire(pg);
1558
1559 /*
1560 * since the now-wired page cannot be paged out,
1561 * release its swap resources for others to use.
1562 * since an anon with no swap cannot be PG_CLEAN,
1563 * clear its clean flag now.
1564 */
1565
1566 pg->flags &= ~(PG_CLEAN);
1567
1568 } else {
1569 uvm_pageactivate(pg);
1570 }
1571 mutex_exit(&uvm_pageqlock);
1572
1573 if (wire_paging) {
1574 uvm_anon_dropswap(anon);
1575 }
1576 }
1577
1578 /*
1579 * uvm_fault_lower: handle lower fault.
1580 *
1581 * 1. check uobj
1582 * 1.1. if null, ZFOD.
1583 * 1.2. if not null, look up unnmapped neighbor pages.
1584 * 2. for center page, check if promote.
1585 * 2.1. ZFOD always needs promotion.
1586 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1587 * 3. if uobj is not ZFOD and page is not found, do i/o.
1588 * 4. dispatch either direct / promote fault.
1589 */
1590
1591 static int
1592 uvm_fault_lower(
1593 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1594 struct vm_page **pages)
1595 {
1596 #ifdef DIAGNOSTIC
1597 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1598 #endif
1599 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1600 struct vm_page *uobjpage;
1601 int error;
1602 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1603
1604 /*
1605 * now, if the desired page is not shadowed by the amap and we have
1606 * a backing object that does not have a special fault routine, then
1607 * we ask (with pgo_get) the object for resident pages that we care
1608 * about and attempt to map them in. we do not let pgo_get block
1609 * (PGO_LOCKED).
1610 */
1611
1612 if (uobj == NULL) {
1613 /* zero fill; don't care neighbor pages */
1614 uobjpage = NULL;
1615 } else {
1616 uvm_fault_lower_lookup(ufi, flt, pages);
1617 uobjpage = pages[flt->centeridx];
1618 }
1619
1620 /*
1621 * note that at this point we are done with any front or back pages.
1622 * we are now going to focus on the center page (i.e. the one we've
1623 * faulted on). if we have faulted on the upper (anon) layer
1624 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1625 * not touched it yet). if we have faulted on the bottom (uobj)
1626 * layer [i.e. case 2] and the page was both present and available,
1627 * then we've got a pointer to it as "uobjpage" and we've already
1628 * made it BUSY.
1629 */
1630
1631 /*
1632 * locked:
1633 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1634 */
1635 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1636 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1637 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1638
1639 /*
1640 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1641 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1642 * have a backing object, check and see if we are going to promote
1643 * the data up to an anon during the fault.
1644 */
1645
1646 if (uobj == NULL) {
1647 uobjpage = PGO_DONTCARE;
1648 flt->promote = true; /* always need anon here */
1649 } else {
1650 KASSERT(uobjpage != PGO_DONTCARE);
1651 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1652 }
1653 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1654 flt->promote, (uobj == NULL), 0,0);
1655
1656 /*
1657 * if uobjpage is not null then we do not need to do I/O to get the
1658 * uobjpage.
1659 *
1660 * if uobjpage is null, then we need to unlock and ask the pager to
1661 * get the data for us. once we have the data, we need to reverify
1662 * the state the world. we are currently not holding any resources.
1663 */
1664
1665 if (uobjpage) {
1666 /* update rusage counters */
1667 curlwp->l_ru.ru_minflt++;
1668 } else {
1669 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1670 if (error != 0)
1671 return error;
1672 }
1673
1674 /*
1675 * locked:
1676 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1677 */
1678 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1679 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1680 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1681
1682 /*
1683 * notes:
1684 * - at this point uobjpage can not be NULL
1685 * - at this point uobjpage can not be PG_RELEASED (since we checked
1686 * for it above)
1687 * - at this point uobjpage could be PG_WANTED (handle later)
1688 */
1689
1690 KASSERT(uobjpage != NULL);
1691 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1692 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1693 (uobjpage->flags & PG_CLEAN) != 0);
1694
1695 if (!flt->promote) {
1696 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1697 } else {
1698 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1699 }
1700 return error;
1701 }
1702
1703 /*
1704 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1705 *
1706 * 1. get on-memory pages.
1707 * 2. if failed, give up (get only center page later).
1708 * 3. if succeeded, enter h/w mapping of neighbor pages.
1709 */
1710
1711 static void
1712 uvm_fault_lower_lookup(
1713 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1714 struct vm_page **pages)
1715 {
1716 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1717 int lcv, gotpages;
1718 vaddr_t currva;
1719 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1720
1721 mutex_enter(uobj->vmobjlock);
1722 /* Locked: maps(read), amap(if there), uobj */
1723
1724 uvmexp.fltlget++;
1725 gotpages = flt->npages;
1726 (void) uobj->pgops->pgo_get(uobj,
1727 ufi->entry->offset + flt->startva - ufi->entry->start,
1728 pages, &gotpages, flt->centeridx,
1729 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1730
1731 KASSERT(mutex_owned(uobj->vmobjlock));
1732
1733 /*
1734 * check for pages to map, if we got any
1735 */
1736
1737 if (gotpages == 0) {
1738 pages[flt->centeridx] = NULL;
1739 return;
1740 }
1741
1742 currva = flt->startva;
1743 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1744 struct vm_page *curpg;
1745
1746 curpg = pages[lcv];
1747 if (curpg == NULL || curpg == PGO_DONTCARE) {
1748 continue;
1749 }
1750 KASSERT(curpg->uobject == uobj);
1751
1752 /*
1753 * if center page is resident and not PG_BUSY|PG_RELEASED
1754 * then pgo_get made it PG_BUSY for us and gave us a handle
1755 * to it.
1756 */
1757
1758 if (lcv == flt->centeridx) {
1759 UVMHIST_LOG(maphist, " got uobjpage "
1760 "(0x%x) with locked get",
1761 curpg, 0,0,0);
1762 } else {
1763 bool readonly = (curpg->flags & PG_RDONLY)
1764 || (curpg->loan_count > 0)
1765 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1766
1767 uvm_fault_lower_neighbor(ufi, flt,
1768 currva, curpg, readonly);
1769 }
1770 }
1771 pmap_update(ufi->orig_map->pmap);
1772 }
1773
1774 /*
1775 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1776 */
1777
1778 static void
1779 uvm_fault_lower_neighbor(
1780 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1781 vaddr_t currva, struct vm_page *pg, bool readonly)
1782 {
1783 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1784
1785 /* locked: maps(read), amap(if there), uobj */
1786
1787 /*
1788 * calling pgo_get with PGO_LOCKED returns us pages which
1789 * are neither busy nor released, so we don't need to check
1790 * for this. we can just directly enter the pages.
1791 */
1792
1793 mutex_enter(&uvm_pageqlock);
1794 uvm_pageenqueue(pg);
1795 mutex_exit(&uvm_pageqlock);
1796 UVMHIST_LOG(maphist,
1797 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1798 ufi->orig_map->pmap, currva, pg, 0);
1799 uvmexp.fltnomap++;
1800
1801 /*
1802 * Since this page isn't the page that's actually faulting,
1803 * ignore pmap_enter() failures; it's not critical that we
1804 * enter these right now.
1805 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1806 * held the lock the whole time we've had the handle.
1807 */
1808 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1809 KASSERT((pg->flags & PG_RELEASED) == 0);
1810 KASSERT((pg->flags & PG_WANTED) == 0);
1811 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
1812 pg->flags &= ~(PG_BUSY);
1813 UVM_PAGE_OWN(pg, NULL);
1814
1815 KASSERT(mutex_owned(pg->uobject->vmobjlock));
1816 (void) pmap_enter(ufi->orig_map->pmap, currva,
1817 VM_PAGE_TO_PHYS(pg),
1818 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1819 flt->enter_prot & MASK(ufi->entry),
1820 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1821 }
1822
1823 /*
1824 * uvm_fault_lower_io: get lower page from backing store.
1825 *
1826 * 1. unlock everything, because i/o will block.
1827 * 2. call pgo_get.
1828 * 3. if failed, recover.
1829 * 4. if succeeded, relock everything and verify things.
1830 */
1831
1832 static int
1833 uvm_fault_lower_io(
1834 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1835 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1836 {
1837 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1838 struct uvm_object *uobj = *ruobj;
1839 struct vm_page *pg;
1840 bool locked;
1841 int gotpages;
1842 int error;
1843 voff_t uoff;
1844 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1845
1846 /* update rusage counters */
1847 curlwp->l_ru.ru_majflt++;
1848
1849 /* Locked: maps(read), amap(if there), uobj */
1850 uvmfault_unlockall(ufi, amap, NULL);
1851
1852 /* Locked: uobj */
1853 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1854
1855 uvmexp.fltget++;
1856 gotpages = 1;
1857 pg = NULL;
1858 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1859 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1860 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1861 PGO_SYNCIO);
1862 /* locked: pg(if no error) */
1863
1864 /*
1865 * recover from I/O
1866 */
1867
1868 if (error) {
1869 if (error == EAGAIN) {
1870 UVMHIST_LOG(maphist,
1871 " pgo_get says TRY AGAIN!",0,0,0,0);
1872 kpause("fltagain2", false, hz/2, NULL);
1873 return ERESTART;
1874 }
1875
1876 #if 0
1877 KASSERT(error != ERESTART);
1878 #else
1879 /* XXXUEBS don't re-fault? */
1880 if (error == ERESTART)
1881 error = EIO;
1882 #endif
1883
1884 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1885 error, 0,0,0);
1886 return error;
1887 }
1888
1889 /*
1890 * re-verify the state of the world by first trying to relock
1891 * the maps. always relock the object.
1892 */
1893
1894 locked = uvmfault_relock(ufi);
1895 if (locked && amap)
1896 amap_lock(amap);
1897
1898 /* might be changed */
1899 uobj = pg->uobject;
1900
1901 mutex_enter(uobj->vmobjlock);
1902 KASSERT((pg->flags & PG_BUSY) != 0);
1903
1904 mutex_enter(&uvm_pageqlock);
1905 uvm_pageactivate(pg);
1906 mutex_exit(&uvm_pageqlock);
1907
1908 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1909 /* locked(!locked): uobj, pg */
1910
1911 /*
1912 * verify that the page has not be released and re-verify
1913 * that amap slot is still free. if there is a problem,
1914 * we unlock and clean up.
1915 */
1916
1917 if ((pg->flags & PG_RELEASED) != 0 ||
1918 (locked && amap && amap_lookup(&ufi->entry->aref,
1919 ufi->orig_rvaddr - ufi->entry->start))) {
1920 if (locked)
1921 uvmfault_unlockall(ufi, amap, NULL);
1922 locked = false;
1923 }
1924
1925 /*
1926 * didn't get the lock? release the page and retry.
1927 */
1928
1929 if (locked == false) {
1930 UVMHIST_LOG(maphist,
1931 " wasn't able to relock after fault: retry",
1932 0,0,0,0);
1933 if (pg->flags & PG_WANTED) {
1934 wakeup(pg);
1935 }
1936 if ((pg->flags & PG_RELEASED) == 0) {
1937 pg->flags &= ~(PG_BUSY | PG_WANTED);
1938 UVM_PAGE_OWN(pg, NULL);
1939 } else {
1940 uvmexp.fltpgrele++;
1941 uvm_pagefree(pg);
1942 }
1943 mutex_exit(uobj->vmobjlock);
1944 return ERESTART;
1945 }
1946
1947 /*
1948 * we have the data in pg which is busy and
1949 * not released. we are holding object lock (so the page
1950 * can't be released on us).
1951 */
1952
1953 /* locked: maps(read), amap(if !null), uobj, pg */
1954
1955 *ruobj = uobj;
1956 *ruobjpage = pg;
1957 return 0;
1958 }
1959
1960 /*
1961 * uvm_fault_lower_direct: fault lower center page
1962 *
1963 * 1. adjust flt->enter_prot.
1964 * 2. if page is loaned, resolve.
1965 */
1966
1967 int
1968 uvm_fault_lower_direct(
1969 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1970 struct uvm_object *uobj, struct vm_page *uobjpage)
1971 {
1972 struct vm_page *pg;
1973 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1974
1975 /*
1976 * we are not promoting. if the mapping is COW ensure that we
1977 * don't give more access than we should (e.g. when doing a read
1978 * fault on a COPYONWRITE mapping we want to map the COW page in
1979 * R/O even though the entry protection could be R/W).
1980 *
1981 * set "pg" to the page we want to map in (uobjpage, usually)
1982 */
1983
1984 uvmexp.flt_obj++;
1985 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1986 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1987 flt->enter_prot &= ~VM_PROT_WRITE;
1988 pg = uobjpage; /* map in the actual object */
1989
1990 KASSERT(uobjpage != PGO_DONTCARE);
1991
1992 /*
1993 * we are faulting directly on the page. be careful
1994 * about writing to loaned pages...
1995 */
1996
1997 if (uobjpage->loan_count) {
1998 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1999 }
2000 KASSERT(pg == uobjpage);
2001
2002 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2003 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
2004 }
2005
2006 /*
2007 * uvm_fault_lower_direct_loan: resolve loaned page.
2008 *
2009 * 1. if not cow'ing, adjust flt->enter_prot.
2010 * 2. if cow'ing, break loan.
2011 */
2012
2013 static int
2014 uvm_fault_lower_direct_loan(
2015 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2016 struct uvm_object *uobj, struct vm_page **rpg,
2017 struct vm_page **ruobjpage)
2018 {
2019 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2020 struct vm_page *pg;
2021 struct vm_page *uobjpage = *ruobjpage;
2022 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
2023
2024 if (!flt->cow_now) {
2025 /* read fault: cap the protection at readonly */
2026 /* cap! */
2027 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2028 } else {
2029 /* write fault: must break the loan here */
2030
2031 pg = uvm_loanbreak(uobjpage);
2032 if (pg == NULL) {
2033
2034 /*
2035 * drop ownership of page, it can't be released
2036 */
2037
2038 if (uobjpage->flags & PG_WANTED)
2039 wakeup(uobjpage);
2040 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2041 UVM_PAGE_OWN(uobjpage, NULL);
2042
2043 uvmfault_unlockall(ufi, amap, uobj);
2044 UVMHIST_LOG(maphist,
2045 " out of RAM breaking loan, waiting",
2046 0,0,0,0);
2047 uvmexp.fltnoram++;
2048 uvm_wait("flt_noram4");
2049 return ERESTART;
2050 }
2051 *rpg = pg;
2052 *ruobjpage = pg;
2053 }
2054 return 0;
2055 }
2056
2057 /*
2058 * uvm_fault_lower_promote: promote lower page.
2059 *
2060 * 1. call uvmfault_promote.
2061 * 2. fill in data.
2062 * 3. if not ZFOD, dispose old page.
2063 */
2064
2065 int
2066 uvm_fault_lower_promote(
2067 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2068 struct uvm_object *uobj, struct vm_page *uobjpage)
2069 {
2070 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2071 struct vm_anon *anon;
2072 struct vm_page *pg;
2073 int error;
2074 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2075
2076 KASSERT(amap != NULL);
2077
2078 /*
2079 * If we are going to promote the data to an anon we
2080 * allocate a blank anon here and plug it into our amap.
2081 */
2082 error = uvmfault_promote(ufi, NULL, uobjpage,
2083 &anon, &flt->anon_spare);
2084 switch (error) {
2085 case 0:
2086 break;
2087 case ERESTART:
2088 return ERESTART;
2089 default:
2090 return error;
2091 }
2092
2093 pg = anon->an_page;
2094
2095 /*
2096 * Fill in the data.
2097 */
2098 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2099
2100 if (uobjpage != PGO_DONTCARE) {
2101 uvmexp.flt_prcopy++;
2102
2103 /*
2104 * promote to shared amap? make sure all sharing
2105 * procs see it
2106 */
2107
2108 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2109 pmap_page_protect(uobjpage, VM_PROT_NONE);
2110 /*
2111 * XXX: PAGE MIGHT BE WIRED!
2112 */
2113 }
2114
2115 /*
2116 * dispose of uobjpage. it can't be PG_RELEASED
2117 * since we still hold the object lock.
2118 */
2119
2120 if (uobjpage->flags & PG_WANTED) {
2121 /* still have the obj lock */
2122 wakeup(uobjpage);
2123 }
2124 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2125 UVM_PAGE_OWN(uobjpage, NULL);
2126
2127 UVMHIST_LOG(maphist,
2128 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2129 uobjpage, anon, pg, 0);
2130
2131 } else {
2132 uvmexp.flt_przero++;
2133
2134 /*
2135 * Page is zero'd and marked dirty by
2136 * uvmfault_promote().
2137 */
2138
2139 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2140 anon, pg, 0, 0);
2141 }
2142
2143 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2144 }
2145
2146 /*
2147 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2148 * from the lower page.
2149 */
2150
2151 int
2152 uvm_fault_lower_enter(
2153 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2154 struct uvm_object *uobj,
2155 struct vm_anon *anon, struct vm_page *pg)
2156 {
2157 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2158 int error;
2159 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2160
2161 /*
2162 * Locked:
2163 *
2164 * maps(read), amap(if !null), uobj(if !null),
2165 * anon(if !null), pg(if anon), unlock_uobj(if !null)
2166 *
2167 * Note: pg is either the uobjpage or the new page in the new anon.
2168 */
2169 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
2170 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
2171 KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2172 KASSERT((pg->flags & PG_BUSY) != 0);
2173
2174 /*
2175 * all resources are present. we can now map it in and free our
2176 * resources.
2177 */
2178
2179 UVMHIST_LOG(maphist,
2180 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2181 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2182 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2183 (pg->flags & PG_RDONLY) == 0);
2184 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2185 VM_PAGE_TO_PHYS(pg),
2186 (pg->flags & PG_RDONLY) != 0 ?
2187 flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2188 flt->access_type | PMAP_CANFAIL |
2189 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2190
2191 /*
2192 * No need to undo what we did; we can simply think of
2193 * this as the pmap throwing away the mapping information.
2194 *
2195 * We do, however, have to go through the ReFault path,
2196 * as the map may change while we're asleep.
2197 */
2198
2199 /*
2200 * ensure that the page is queued in the case that
2201 * we just promoted the page.
2202 */
2203
2204 mutex_enter(&uvm_pageqlock);
2205 uvm_pageenqueue(pg);
2206 mutex_exit(&uvm_pageqlock);
2207
2208 if (pg->flags & PG_WANTED)
2209 wakeup(pg);
2210
2211 /*
2212 * note that pg can't be PG_RELEASED since we did not drop
2213 * the object lock since the last time we checked.
2214 */
2215 KASSERT((pg->flags & PG_RELEASED) == 0);
2216
2217 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2218 UVM_PAGE_OWN(pg, NULL);
2219
2220 uvmfault_unlockall(ufi, amap, uobj);
2221 if (!uvm_reclaimable()) {
2222 UVMHIST_LOG(maphist,
2223 "<- failed. out of VM",0,0,0,0);
2224 /* XXX instrumentation */
2225 error = ENOMEM;
2226 return error;
2227 }
2228 /* XXX instrumentation */
2229 uvm_wait("flt_pmfail2");
2230 return ERESTART;
2231 }
2232
2233 uvm_fault_lower_done(ufi, flt, uobj, pg);
2234
2235 /*
2236 * note that pg can't be PG_RELEASED since we did not drop the object
2237 * lock since the last time we checked.
2238 */
2239 KASSERT((pg->flags & PG_RELEASED) == 0);
2240 if (pg->flags & PG_WANTED)
2241 wakeup(pg);
2242 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2243 UVM_PAGE_OWN(pg, NULL);
2244
2245 pmap_update(ufi->orig_map->pmap);
2246 uvmfault_unlockall(ufi, amap, uobj);
2247
2248 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2249 return 0;
2250 }
2251
2252 /*
2253 * uvm_fault_lower_done: queue lower center page.
2254 */
2255
2256 void
2257 uvm_fault_lower_done(
2258 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2259 struct uvm_object *uobj, struct vm_page *pg)
2260 {
2261 bool dropswap = false;
2262
2263 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2264
2265 mutex_enter(&uvm_pageqlock);
2266 if (flt->wire_paging) {
2267 uvm_pagewire(pg);
2268 if (pg->pqflags & PQ_AOBJ) {
2269
2270 /*
2271 * since the now-wired page cannot be paged out,
2272 * release its swap resources for others to use.
2273 * since an aobj page with no swap cannot be PG_CLEAN,
2274 * clear its clean flag now.
2275 */
2276
2277 KASSERT(uobj != NULL);
2278 pg->flags &= ~(PG_CLEAN);
2279 dropswap = true;
2280 }
2281 } else {
2282 uvm_pageactivate(pg);
2283 }
2284 mutex_exit(&uvm_pageqlock);
2285
2286 if (dropswap) {
2287 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2288 }
2289 }
2290
2291
2292 /*
2293 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2294 *
2295 * => map may be read-locked by caller, but MUST NOT be write-locked.
2296 * => if map is read-locked, any operations which may cause map to
2297 * be write-locked in uvm_fault() must be taken care of by
2298 * the caller. See uvm_map_pageable().
2299 */
2300
2301 int
2302 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2303 vm_prot_t access_type, int maxprot)
2304 {
2305 vaddr_t va;
2306 int error;
2307
2308 /*
2309 * now fault it in a page at a time. if the fault fails then we have
2310 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2311 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2312 */
2313
2314 /*
2315 * XXX work around overflowing a vaddr_t. this prevents us from
2316 * wiring the last page in the address space, though.
2317 */
2318 if (start > end) {
2319 return EFAULT;
2320 }
2321
2322 for (va = start; va < end; va += PAGE_SIZE) {
2323 error = uvm_fault_internal(map, va, access_type,
2324 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2325 if (error) {
2326 if (va != start) {
2327 uvm_fault_unwire(map, start, va);
2328 }
2329 return error;
2330 }
2331 }
2332 return 0;
2333 }
2334
2335 /*
2336 * uvm_fault_unwire(): unwire range of virtual space.
2337 */
2338
2339 void
2340 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2341 {
2342 vm_map_lock_read(map);
2343 uvm_fault_unwire_locked(map, start, end);
2344 vm_map_unlock_read(map);
2345 }
2346
2347 /*
2348 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2349 *
2350 * => map must be at least read-locked.
2351 */
2352
2353 void
2354 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2355 {
2356 struct vm_map_entry *entry, *oentry;
2357 pmap_t pmap = vm_map_pmap(map);
2358 vaddr_t va;
2359 paddr_t pa;
2360 struct vm_page *pg;
2361
2362 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2363
2364 /*
2365 * we assume that the area we are unwiring has actually been wired
2366 * in the first place. this means that we should be able to extract
2367 * the PAs from the pmap. we also lock out the page daemon so that
2368 * we can call uvm_pageunwire.
2369 */
2370
2371 /*
2372 * find the beginning map entry for the region.
2373 */
2374
2375 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2376 if (uvm_map_lookup_entry(map, start, &entry) == false)
2377 panic("uvm_fault_unwire_locked: address not in map");
2378
2379 oentry = NULL;
2380 for (va = start; va < end; va += PAGE_SIZE) {
2381 if (pmap_extract(pmap, va, &pa) == false)
2382 continue;
2383
2384 /*
2385 * find the map entry for the current address.
2386 */
2387
2388 KASSERT(va >= entry->start);
2389 while (va >= entry->end) {
2390 KASSERT(entry->next != &map->header &&
2391 entry->next->start <= entry->end);
2392 entry = entry->next;
2393 }
2394
2395 /*
2396 * lock it.
2397 */
2398
2399 if (entry != oentry) {
2400 if (oentry != NULL) {
2401 mutex_exit(&uvm_pageqlock);
2402 uvm_map_unlock_entry(oentry);
2403 }
2404 uvm_map_lock_entry(entry);
2405 mutex_enter(&uvm_pageqlock);
2406 oentry = entry;
2407 }
2408
2409 /*
2410 * if the entry is no longer wired, tell the pmap.
2411 */
2412
2413 if (VM_MAPENT_ISWIRED(entry) == 0)
2414 pmap_unwire(pmap, va);
2415
2416 pg = PHYS_TO_VM_PAGE(pa);
2417 if (pg)
2418 uvm_pageunwire(pg);
2419 }
2420
2421 if (oentry != NULL) {
2422 mutex_exit(&uvm_pageqlock);
2423 uvm_map_unlock_entry(entry);
2424 }
2425 }
2426