Home | History | Annotate | Line # | Download | only in uvm
uvm_fault.c revision 1.191.2.2
      1 /*	$NetBSD: uvm_fault.c,v 1.191.2.2 2012/02/24 09:11:51 mrg Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  *
     27  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
     28  */
     29 
     30 /*
     31  * uvm_fault.c: fault handler
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.191.2.2 2012/02/24 09:11:51 mrg Exp $");
     36 
     37 #include "opt_uvmhist.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/kernel.h>
     42 #include <sys/mman.h>
     43 
     44 #include <uvm/uvm.h>
     45 
     46 /*
     47  *
     48  * a word on page faults:
     49  *
     50  * types of page faults we handle:
     51  *
     52  * CASE 1: upper layer faults                   CASE 2: lower layer faults
     53  *
     54  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
     55  *    read/write1     write>1                  read/write   +-cow_write/zero
     56  *         |             |                         |        |
     57  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
     58  * amap |  V  |       |  ---------> new |          |        | |  ^  |
     59  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
     60  *                                                 |        |    |
     61  *      +-----+       +-----+                   +--|--+     | +--|--+
     62  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
     63  *      +-----+       +-----+                   +-----+       +-----+
     64  *
     65  * d/c = don't care
     66  *
     67  *   case [0]: layerless fault
     68  *	no amap or uobj is present.   this is an error.
     69  *
     70  *   case [1]: upper layer fault [anon active]
     71  *     1A: [read] or [write with anon->an_ref == 1]
     72  *		I/O takes place in upper level anon and uobj is not touched.
     73  *     1B: [write with anon->an_ref > 1]
     74  *		new anon is alloc'd and data is copied off ["COW"]
     75  *
     76  *   case [2]: lower layer fault [uobj]
     77  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
     78  *		I/O takes place directly in object.
     79  *     2B: [write to copy_on_write] or [read on NULL uobj]
     80  *		data is "promoted" from uobj to a new anon.
     81  *		if uobj is null, then we zero fill.
     82  *
     83  * we follow the standard UVM locking protocol ordering:
     84  *
     85  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
     86  * we hold a PG_BUSY page if we unlock for I/O
     87  *
     88  *
     89  * the code is structured as follows:
     90  *
     91  *     - init the "IN" params in the ufi structure
     92  *   ReFault: (ERESTART returned to the loop in uvm_fault_internal)
     93  *     - do lookups [locks maps], check protection, handle needs_copy
     94  *     - check for case 0 fault (error)
     95  *     - establish "range" of fault
     96  *     - if we have an amap lock it and extract the anons
     97  *     - if sequential advice deactivate pages behind us
     98  *     - at the same time check pmap for unmapped areas and anon for pages
     99  *	 that we could map in (and do map it if found)
    100  *     - check object for resident pages that we could map in
    101  *     - if (case 2) goto Case2
    102  *     - >>> handle case 1
    103  *           - ensure source anon is resident in RAM
    104  *           - if case 1B alloc new anon and copy from source
    105  *           - map the correct page in
    106  *   Case2:
    107  *     - >>> handle case 2
    108  *           - ensure source page is resident (if uobj)
    109  *           - if case 2B alloc new anon and copy from source (could be zero
    110  *		fill if uobj == NULL)
    111  *           - map the correct page in
    112  *     - done!
    113  *
    114  * note on paging:
    115  *   if we have to do I/O we place a PG_BUSY page in the correct object,
    116  * unlock everything, and do the I/O.   when I/O is done we must reverify
    117  * the state of the world before assuming that our data structures are
    118  * valid.   [because mappings could change while the map is unlocked]
    119  *
    120  *  alternative 1: unbusy the page in question and restart the page fault
    121  *    from the top (ReFault).   this is easy but does not take advantage
    122  *    of the information that we already have from our previous lookup,
    123  *    although it is possible that the "hints" in the vm_map will help here.
    124  *
    125  * alternative 2: the system already keeps track of a "version" number of
    126  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
    127  *    mapping) you bump the version number up by one...]   so, we can save
    128  *    the version number of the map before we release the lock and start I/O.
    129  *    then when I/O is done we can relock and check the version numbers
    130  *    to see if anything changed.    this might save us some over 1 because
    131  *    we don't have to unbusy the page and may be less compares(?).
    132  *
    133  * alternative 3: put in backpointers or a way to "hold" part of a map
    134  *    in place while I/O is in progress.   this could be complex to
    135  *    implement (especially with structures like amap that can be referenced
    136  *    by multiple map entries, and figuring out what should wait could be
    137  *    complex as well...).
    138  *
    139  * we use alternative 2.  given that we are multi-threaded now we may want
    140  * to reconsider the choice.
    141  */
    142 
    143 /*
    144  * local data structures
    145  */
    146 
    147 struct uvm_advice {
    148 	int advice;
    149 	int nback;
    150 	int nforw;
    151 };
    152 
    153 /*
    154  * page range array:
    155  * note: index in array must match "advice" value
    156  * XXX: borrowed numbers from freebsd.   do they work well for us?
    157  */
    158 
    159 static const struct uvm_advice uvmadvice[] = {
    160 	{ UVM_ADV_NORMAL, 3, 4 },
    161 	{ UVM_ADV_RANDOM, 0, 0 },
    162 	{ UVM_ADV_SEQUENTIAL, 8, 7},
    163 };
    164 
    165 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
    166 
    167 /*
    168  * private prototypes
    169  */
    170 
    171 /*
    172  * externs from other modules
    173  */
    174 
    175 extern int start_init_exec;	/* Is init_main() done / init running? */
    176 
    177 /*
    178  * inline functions
    179  */
    180 
    181 /*
    182  * uvmfault_anonflush: try and deactivate pages in specified anons
    183  *
    184  * => does not have to deactivate page if it is busy
    185  */
    186 
    187 static inline void
    188 uvmfault_anonflush(struct vm_anon **anons, int n)
    189 {
    190 	int lcv;
    191 	struct vm_page *pg;
    192 
    193 	for (lcv = 0; lcv < n; lcv++) {
    194 		if (anons[lcv] == NULL)
    195 			continue;
    196 		KASSERT(mutex_owned(anons[lcv]->an_lock));
    197 		pg = anons[lcv]->an_page;
    198 		if (pg && (pg->flags & PG_BUSY) == 0) {
    199 			mutex_enter(&uvm_pageqlock);
    200 			if (pg->wire_count == 0) {
    201 				uvm_pagedeactivate(pg);
    202 			}
    203 			mutex_exit(&uvm_pageqlock);
    204 		}
    205 	}
    206 }
    207 
    208 /*
    209  * normal functions
    210  */
    211 
    212 /*
    213  * uvmfault_amapcopy: clear "needs_copy" in a map.
    214  *
    215  * => called with VM data structures unlocked (usually, see below)
    216  * => we get a write lock on the maps and clear needs_copy for a VA
    217  * => if we are out of RAM we sleep (waiting for more)
    218  */
    219 
    220 static void
    221 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
    222 {
    223 	for (;;) {
    224 
    225 		/*
    226 		 * no mapping?  give up.
    227 		 */
    228 
    229 		if (uvmfault_lookup(ufi, true) == false)
    230 			return;
    231 
    232 		/*
    233 		 * copy if needed.
    234 		 */
    235 
    236 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
    237 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
    238 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
    239 
    240 		/*
    241 		 * didn't work?  must be out of RAM.   unlock and sleep.
    242 		 */
    243 
    244 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
    245 			uvmfault_unlockmaps(ufi, true);
    246 			uvm_wait("fltamapcopy");
    247 			continue;
    248 		}
    249 
    250 		/*
    251 		 * got it!   unlock and return.
    252 		 */
    253 
    254 		uvmfault_unlockmaps(ufi, true);
    255 		return;
    256 	}
    257 	/*NOTREACHED*/
    258 }
    259 
    260 /*
    261  * uvmfault_anonget: get data in an anon into a non-busy, non-released
    262  * page in that anon.
    263  *
    264  * => Map, amap and thus anon should be locked by caller.
    265  * => If we fail, we unlock everything and error is returned.
    266  * => If we are successful, return with everything still locked.
    267  * => We do not move the page on the queues [gets moved later].  If we
    268  *    allocate a new page [we_own], it gets put on the queues.  Either way,
    269  *    the result is that the page is on the queues at return time
    270  * => For pages which are on loan from a uvm_object (and thus are not owned
    271  *    by the anon): if successful, return with the owning object locked.
    272  *    The caller must unlock this object when it unlocks everything else.
    273  */
    274 
    275 int
    276 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
    277     struct vm_anon *anon)
    278 {
    279 	struct vm_page *pg;
    280 	int error;
    281 
    282 	UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
    283 	KASSERT(mutex_owned(anon->an_lock));
    284 	KASSERT(anon->an_lock == amap->am_lock);
    285 
    286 	/* Increment the counters.*/
    287 	uvmexp.fltanget++;
    288 	if (anon->an_page) {
    289 		curlwp->l_ru.ru_minflt++;
    290 	} else {
    291 		curlwp->l_ru.ru_majflt++;
    292 	}
    293 	error = 0;
    294 
    295 	/*
    296 	 * Loop until we get the anon data, or fail.
    297 	 */
    298 
    299 	for (;;) {
    300 		bool we_own, locked;
    301 		/*
    302 		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
    303 		 */
    304 		we_own = false;
    305 		pg = anon->an_page;
    306 
    307 		/*
    308 		 * If there is a resident page and it is loaned, then anon
    309 		 * may not own it.  Call out to uvm_anon_lockloanpg() to
    310 		 * identify and lock the real owner of the page.
    311 		 */
    312 
    313 		if (pg && pg->loan_count)
    314 			pg = uvm_anon_lockloanpg(anon);
    315 
    316 		/*
    317 		 * Is page resident?  Make sure it is not busy/released.
    318 		 */
    319 
    320 		if (pg) {
    321 
    322 			/*
    323 			 * at this point, if the page has a uobject [meaning
    324 			 * we have it on loan], then that uobject is locked
    325 			 * by us!   if the page is busy, we drop all the
    326 			 * locks (including uobject) and try again.
    327 			 */
    328 
    329 			if ((pg->flags & PG_BUSY) == 0) {
    330 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
    331 				return 0;
    332 			}
    333 			pg->flags |= PG_WANTED;
    334 			uvmexp.fltpgwait++;
    335 
    336 			/*
    337 			 * The last unlock must be an atomic unlock and wait
    338 			 * on the owner of page.
    339 			 */
    340 
    341 			if (pg->uobject) {
    342 				/* Owner of page is UVM object. */
    343 				uvmfault_unlockall(ufi, amap, NULL);
    344 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
    345 				    0,0,0);
    346 				UVM_UNLOCK_AND_WAIT(pg,
    347 				    pg->uobject->vmobjlock,
    348 				    false, "anonget1", 0);
    349 			} else {
    350 				/* Owner of page is anon. */
    351 				uvmfault_unlockall(ufi, NULL, NULL);
    352 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
    353 				    0,0,0);
    354 				UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
    355 				    false, "anonget2", 0);
    356 			}
    357 		} else {
    358 #if defined(VMSWAP)
    359 			/*
    360 			 * No page, therefore allocate one.
    361 			 */
    362 
    363 			pg = uvm_pagealloc(NULL,
    364 			    ufi != NULL ? ufi->orig_rvaddr : 0,
    365 			    anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
    366 			if (pg == NULL) {
    367 				/* Out of memory.  Wait a little. */
    368 				uvmfault_unlockall(ufi, amap, NULL);
    369 				uvmexp.fltnoram++;
    370 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
    371 				    0,0,0);
    372 				if (!uvm_reclaimable()) {
    373 					return ENOMEM;
    374 				}
    375 				uvm_wait("flt_noram1");
    376 			} else {
    377 				/* PG_BUSY bit is set. */
    378 				we_own = true;
    379 				uvmfault_unlockall(ufi, amap, NULL);
    380 
    381 				/*
    382 				 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
    383 				 * the uvm_swap_get() function with all data
    384 				 * structures unlocked.  Note that it is OK
    385 				 * to read an_swslot here, because we hold
    386 				 * PG_BUSY on the page.
    387 				 */
    388 				uvmexp.pageins++;
    389 				error = uvm_swap_get(pg, anon->an_swslot,
    390 				    PGO_SYNCIO);
    391 
    392 				/*
    393 				 * We clean up after the I/O below in the
    394 				 * 'we_own' case.
    395 				 */
    396 			}
    397 #else
    398 			panic("%s: no page", __func__);
    399 #endif /* defined(VMSWAP) */
    400 		}
    401 
    402 		/*
    403 		 * Re-lock the map and anon.
    404 		 */
    405 
    406 		locked = uvmfault_relock(ufi);
    407 		if (locked || we_own) {
    408 			mutex_enter(anon->an_lock);
    409 		}
    410 
    411 		/*
    412 		 * If we own the page (i.e. we set PG_BUSY), then we need
    413 		 * to clean up after the I/O.  There are three cases to
    414 		 * consider:
    415 		 *
    416 		 * 1) Page was released during I/O: free anon and ReFault.
    417 		 * 2) I/O not OK.  Free the page and cause the fault to fail.
    418 		 * 3) I/O OK!  Activate the page and sync with the non-we_own
    419 		 *    case (i.e. drop anon lock if not locked).
    420 		 */
    421 
    422 		if (we_own) {
    423 #if defined(VMSWAP)
    424 			if (pg->flags & PG_WANTED) {
    425 				wakeup(pg);
    426 			}
    427 			if (error) {
    428 
    429 				/*
    430 				 * Remove the swap slot from the anon and
    431 				 * mark the anon as having no real slot.
    432 				 * Do not free the swap slot, thus preventing
    433 				 * it from being used again.
    434 				 */
    435 
    436 				if (anon->an_swslot > 0) {
    437 					uvm_swap_markbad(anon->an_swslot, 1);
    438 				}
    439 				anon->an_swslot = SWSLOT_BAD;
    440 
    441 				if ((pg->flags & PG_RELEASED) != 0) {
    442 					goto released;
    443 				}
    444 
    445 				/*
    446 				 * Note: page was never !PG_BUSY, so it
    447 				 * cannot be mapped and thus no need to
    448 				 * pmap_page_protect() it.
    449 				 */
    450 
    451 				mutex_enter(&uvm_pageqlock);
    452 				uvm_pagefree(pg);
    453 				mutex_exit(&uvm_pageqlock);
    454 
    455 				if (locked) {
    456 					uvmfault_unlockall(ufi, NULL, NULL);
    457 				}
    458 				mutex_exit(anon->an_lock);
    459 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
    460 				return error;
    461 			}
    462 
    463 			if ((pg->flags & PG_RELEASED) != 0) {
    464 released:
    465 				KASSERT(anon->an_ref == 0);
    466 
    467 				/*
    468 				 * Released while we had unlocked amap.
    469 				 */
    470 
    471 				if (locked) {
    472 					uvmfault_unlockall(ufi, NULL, NULL);
    473 				}
    474 				uvm_anon_release(anon);
    475 
    476 				if (error) {
    477 					UVMHIST_LOG(maphist,
    478 					    "<- ERROR/RELEASED", 0,0,0,0);
    479 					return error;
    480 				}
    481 
    482 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
    483 				return ERESTART;
    484 			}
    485 
    486 			/*
    487 			 * We have successfully read the page, activate it.
    488 			 */
    489 
    490 			mutex_enter(&uvm_pageqlock);
    491 			uvm_pageactivate(pg);
    492 			mutex_exit(&uvm_pageqlock);
    493 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    494 			UVM_PAGE_OWN(pg, NULL);
    495 #else
    496 			panic("%s: we_own", __func__);
    497 #endif /* defined(VMSWAP) */
    498 		}
    499 
    500 		/*
    501 		 * We were not able to re-lock the map - restart the fault.
    502 		 */
    503 
    504 		if (!locked) {
    505 			if (we_own) {
    506 				mutex_exit(anon->an_lock);
    507 			}
    508 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    509 			return ERESTART;
    510 		}
    511 
    512 		/*
    513 		 * Verify that no one has touched the amap and moved
    514 		 * the anon on us.
    515 		 */
    516 
    517 		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
    518 		    ufi->orig_rvaddr - ufi->entry->start) != anon) {
    519 
    520 			uvmfault_unlockall(ufi, amap, NULL);
    521 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    522 			return ERESTART;
    523 		}
    524 
    525 		/*
    526 		 * Retry..
    527 		 */
    528 
    529 		uvmexp.fltanretry++;
    530 		continue;
    531 	}
    532 	/*NOTREACHED*/
    533 }
    534 
    535 /*
    536  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
    537  *
    538  *	1. allocate an anon and a page.
    539  *	2. fill its contents.
    540  *	3. put it into amap.
    541  *
    542  * => if we fail (result != 0) we unlock everything.
    543  * => on success, return a new locked anon via 'nanon'.
    544  *    (*nanon)->an_page will be a resident, locked, dirty page.
    545  * => it's caller's responsibility to put the promoted nanon->an_page to the
    546  *    page queue.
    547  */
    548 
    549 static int
    550 uvmfault_promote(struct uvm_faultinfo *ufi,
    551     struct vm_anon *oanon,
    552     struct vm_page *uobjpage,
    553     struct vm_anon **nanon, /* OUT: allocated anon */
    554     struct vm_anon **spare)
    555 {
    556 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
    557 	struct uvm_object *uobj;
    558 	struct vm_anon *anon;
    559 	struct vm_page *pg;
    560 	struct vm_page *opg;
    561 	int error;
    562 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    563 
    564 	if (oanon) {
    565 		/* anon COW */
    566 		opg = oanon->an_page;
    567 		KASSERT(opg != NULL);
    568 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
    569 	} else if (uobjpage != PGO_DONTCARE) {
    570 		/* object-backed COW */
    571 		opg = uobjpage;
    572 	} else {
    573 		/* ZFOD */
    574 		opg = NULL;
    575 	}
    576 	if (opg != NULL) {
    577 		uobj = opg->uobject;
    578 	} else {
    579 		uobj = NULL;
    580 	}
    581 
    582 	KASSERT(amap != NULL);
    583 	KASSERT(uobjpage != NULL);
    584 	KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
    585 	KASSERT(mutex_owned(amap->am_lock));
    586 	KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
    587 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
    588 
    589 	if (*spare != NULL) {
    590 		anon = *spare;
    591 		*spare = NULL;
    592 	} else {
    593 		anon = uvm_analloc();
    594 	}
    595 	if (anon) {
    596 
    597 		/*
    598 		 * The new anon is locked.
    599 		 *
    600 		 * if opg == NULL, we want a zero'd, dirty page,
    601 		 * so have uvm_pagealloc() do that for us.
    602 		 */
    603 
    604 		KASSERT(anon->an_lock == NULL);
    605 		anon->an_lock = amap->am_lock;
    606 		pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
    607 		    UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
    608 		if (pg == NULL) {
    609 			anon->an_lock = NULL;
    610 		}
    611 	} else {
    612 		pg = NULL;
    613 	}
    614 
    615 	/*
    616 	 * out of memory resources?
    617 	 */
    618 
    619 	if (pg == NULL) {
    620 		/* save anon for the next try. */
    621 		if (anon != NULL) {
    622 			*spare = anon;
    623 		}
    624 
    625 		/* unlock and fail ... */
    626 		uvm_page_unbusy(&uobjpage, 1);
    627 		uvmfault_unlockall(ufi, amap, uobj);
    628 		if (!uvm_reclaimable()) {
    629 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
    630 			uvmexp.fltnoanon++;
    631 			error = ENOMEM;
    632 			goto done;
    633 		}
    634 
    635 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
    636 		uvmexp.fltnoram++;
    637 		uvm_wait("flt_noram5");
    638 		error = ERESTART;
    639 		goto done;
    640 	}
    641 
    642 	/* copy page [pg now dirty] */
    643 	if (opg) {
    644 		uvm_pagecopy(opg, pg);
    645 	}
    646 
    647 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
    648 	    oanon != NULL);
    649 
    650 	*nanon = anon;
    651 	error = 0;
    652 done:
    653 	return error;
    654 }
    655 
    656 
    657 /*
    658  *   F A U L T   -   m a i n   e n t r y   p o i n t
    659  */
    660 
    661 /*
    662  * uvm_fault: page fault handler
    663  *
    664  * => called from MD code to resolve a page fault
    665  * => VM data structures usually should be unlocked.   however, it is
    666  *	possible to call here with the main map locked if the caller
    667  *	gets a write lock, sets it recusive, and then calls us (c.f.
    668  *	uvm_map_pageable).   this should be avoided because it keeps
    669  *	the map locked off during I/O.
    670  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
    671  */
    672 
    673 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
    674 			 ~VM_PROT_WRITE : VM_PROT_ALL)
    675 
    676 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
    677 #define UVM_FAULT_WIRE		(1 << 0)
    678 #define UVM_FAULT_MAXPROT	(1 << 1)
    679 
    680 struct uvm_faultctx {
    681 
    682 	/*
    683 	 * the following members are set up by uvm_fault_check() and
    684 	 * read-only after that.
    685 	 *
    686 	 * note that narrow is used by uvm_fault_check() to change
    687 	 * the behaviour after ERESTART.
    688 	 *
    689 	 * most of them might change after RESTART if the underlying
    690 	 * map entry has been changed behind us.  an exception is
    691 	 * wire_paging, which does never change.
    692 	 */
    693 	vm_prot_t access_type;
    694 	vaddr_t startva;
    695 	int npages;
    696 	int centeridx;
    697 	bool narrow;		/* work on a single requested page only */
    698 	bool wire_mapping;	/* request a PMAP_WIRED mapping
    699 				   (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
    700 	bool wire_paging;	/* request uvm_pagewire
    701 				   (true for UVM_FAULT_WIRE) */
    702 	bool cow_now;		/* VM_PROT_WRITE is actually requested
    703 				   (ie. should break COW and page loaning) */
    704 
    705 	/*
    706 	 * enter_prot is set up by uvm_fault_check() and clamped
    707 	 * (ie. drop the VM_PROT_WRITE bit) in various places in case
    708 	 * of !cow_now.
    709 	 */
    710 	vm_prot_t enter_prot;	/* prot at which we want to enter pages in */
    711 
    712 	/*
    713 	 * the following member is for uvmfault_promote() and ERESTART.
    714 	 */
    715 	struct vm_anon *anon_spare;
    716 
    717 	/*
    718 	 * the folloing is actually a uvm_fault_lower() internal.
    719 	 * it's here merely for debugging.
    720 	 * (or due to the mechanical separation of the function?)
    721 	 */
    722 	bool promote;
    723 };
    724 
    725 static inline int	uvm_fault_check(
    726 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    727 			    struct vm_anon ***, bool);
    728 
    729 static int		uvm_fault_upper(
    730 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    731 			    struct vm_anon **);
    732 static inline int	uvm_fault_upper_lookup(
    733 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    734 			    struct vm_anon **, struct vm_page **);
    735 static inline void	uvm_fault_upper_neighbor(
    736 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    737 			    vaddr_t, struct vm_page *, bool);
    738 static inline int	uvm_fault_upper_loan(
    739 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    740 			    struct vm_anon *, struct uvm_object **);
    741 static inline int	uvm_fault_upper_promote(
    742 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    743 			    struct uvm_object *, struct vm_anon *);
    744 static inline int	uvm_fault_upper_direct(
    745 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    746 			    struct uvm_object *, struct vm_anon *);
    747 static int		uvm_fault_upper_enter(
    748 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    749 			    struct uvm_object *, struct vm_anon *,
    750 			    struct vm_page *, struct vm_anon *);
    751 static inline void	uvm_fault_upper_done(
    752 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    753 			    struct vm_anon *, struct vm_page *);
    754 
    755 static int		uvm_fault_lower(
    756 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    757 			    struct vm_page **);
    758 static inline void	uvm_fault_lower_lookup(
    759 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    760 			    struct vm_page **);
    761 static inline void	uvm_fault_lower_neighbor(
    762 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    763 			    vaddr_t, struct vm_page *, bool);
    764 static inline int	uvm_fault_lower_io(
    765 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    766 			    struct uvm_object **, struct vm_page **);
    767 static inline int	uvm_fault_lower_direct(
    768 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    769 			    struct uvm_object *, struct vm_page *);
    770 static inline int	uvm_fault_lower_direct_loan(
    771 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    772 			    struct uvm_object *, struct vm_page **,
    773 			    struct vm_page **);
    774 static inline int	uvm_fault_lower_promote(
    775 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    776 			    struct uvm_object *, struct vm_page *);
    777 static int		uvm_fault_lower_enter(
    778 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    779 			    struct uvm_object *,
    780 			    struct vm_anon *, struct vm_page *);
    781 static inline void	uvm_fault_lower_done(
    782 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    783 			    struct uvm_object *, struct vm_page *);
    784 
    785 int
    786 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
    787     vm_prot_t access_type, int fault_flag)
    788 {
    789 	struct cpu_data *cd;
    790 	struct uvm_cpu *ucpu;
    791 	struct uvm_faultinfo ufi;
    792 	struct uvm_faultctx flt = {
    793 		.access_type = access_type,
    794 
    795 		/* don't look for neighborhood * pages on "wire" fault */
    796 		.narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
    797 
    798 		/* "wire" fault causes wiring of both mapping and paging */
    799 		.wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
    800 		.wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
    801 	};
    802 	const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
    803 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
    804 	struct vm_page *pages_store[UVM_MAXRANGE], **pages;
    805 	int error;
    806 #if 0
    807 	uintptr_t delta, delta2, delta3;
    808 #endif
    809 	UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
    810 
    811 	UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
    812 	      orig_map, vaddr, access_type, fault_flag);
    813 
    814 	cd = &(curcpu()->ci_data);
    815 	cd->cpu_nfault++;
    816 	ucpu = cd->cpu_uvm;
    817 
    818 	/* Don't flood RNG subsystem with samples. */
    819 	if (cd->cpu_nfault % 503)
    820 		goto norng;
    821 #if 0
    822 	/*
    823 	 * Avoid trying to count "entropy" for accesses of regular
    824 	 * stride, by checking the 1st, 2nd, 3rd order differentials
    825 	 * of vaddr, like the rnd code does internally with sample times.
    826 	 *
    827 	 * XXX If the selection of only every 503rd fault above is
    828 	 * XXX removed, this code should exclude most samples, but
    829 	 * XXX does not, and is therefore disabled.
    830 	 */
    831 	if (ucpu->last_fltaddr > (uintptr_t)trunc_page(vaddr))
    832 		delta = ucpu->last_fltaddr - (uintptr_t)trunc_page(vaddr);
    833 	else
    834 		delta = (uintptr_t)trunc_page(vaddr) - ucpu->last_fltaddr;
    835 
    836 	if (ucpu->last_delta > delta)
    837 		delta2 = ucpu->last_delta - delta;
    838 	else
    839 		delta2 = delta - ucpu->last_delta;
    840 
    841 	if (ucpu->last_delta2 > delta2)
    842 		delta3 = ucpu->last_delta2 - delta2;
    843 	else
    844 		delta3 = delta2 - ucpu->last_delta2;
    845 
    846 	ucpu->last_fltaddr = (uintptr_t)vaddr;
    847 	ucpu->last_delta = delta;
    848 	ucpu->last_delta2 = delta2;
    849 
    850 	if (delta != 0 && delta2 != 0 && delta3 != 0)
    851 #endif
    852 	/* Don't count anything until user interaction is possible */
    853 	if (__predict_true(start_init_exec)) {
    854 		kpreempt_disable();
    855 		rnd_add_uint32(&ucpu->rs,
    856 			       sizeof(vaddr_t) == sizeof(uint32_t) ?
    857 			       (uint32_t)vaddr : sizeof(vaddr_t) ==
    858 			       sizeof(uint64_t) ?
    859 			       (uint32_t)(vaddr & 0x00000000ffffffff) :
    860 			       (uint32_t)(cd->cpu_nfault & 0x00000000ffffffff));
    861 		kpreempt_enable();
    862 	}
    863 norng:
    864 	/*
    865 	 * init the IN parameters in the ufi
    866 	 */
    867 
    868 	ufi.orig_map = orig_map;
    869 	ufi.orig_rvaddr = trunc_page(vaddr);
    870 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
    871 
    872 	error = ERESTART;
    873 	while (error == ERESTART) { /* ReFault: */
    874 		anons = anons_store;
    875 		pages = pages_store;
    876 
    877 		error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
    878 		if (error != 0)
    879 			continue;
    880 
    881 		error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
    882 		if (error != 0)
    883 			continue;
    884 
    885 		if (pages[flt.centeridx] == PGO_DONTCARE)
    886 			error = uvm_fault_upper(&ufi, &flt, anons);
    887 		else {
    888 			struct uvm_object * const uobj =
    889 			    ufi.entry->object.uvm_obj;
    890 
    891 			if (uobj && uobj->pgops->pgo_fault != NULL) {
    892 				/*
    893 				 * invoke "special" fault routine.
    894 				 */
    895 				mutex_enter(uobj->vmobjlock);
    896 				/* locked: maps(read), amap(if there), uobj */
    897 				error = uobj->pgops->pgo_fault(&ufi,
    898 				    flt.startva, pages, flt.npages,
    899 				    flt.centeridx, flt.access_type,
    900 				    PGO_LOCKED|PGO_SYNCIO);
    901 
    902 				/*
    903 				 * locked: nothing, pgo_fault has unlocked
    904 				 * everything
    905 				 */
    906 
    907 				/*
    908 				 * object fault routine responsible for
    909 				 * pmap_update().
    910 				 */
    911 			} else {
    912 				error = uvm_fault_lower(&ufi, &flt, pages);
    913 			}
    914 		}
    915 	}
    916 
    917 	if (flt.anon_spare != NULL) {
    918 		flt.anon_spare->an_ref--;
    919 		KASSERT(flt.anon_spare->an_ref == 0);
    920 		KASSERT(flt.anon_spare->an_lock == NULL);
    921 		uvm_anon_free(flt.anon_spare);
    922 	}
    923 	return error;
    924 }
    925 
    926 /*
    927  * uvm_fault_check: check prot, handle needs-copy, etc.
    928  *
    929  *	1. lookup entry.
    930  *	2. check protection.
    931  *	3. adjust fault condition (mainly for simulated fault).
    932  *	4. handle needs-copy (lazy amap copy).
    933  *	5. establish range of interest for neighbor fault (aka pre-fault).
    934  *	6. look up anons (if amap exists).
    935  *	7. flush pages (if MADV_SEQUENTIAL)
    936  *
    937  * => called with nothing locked.
    938  * => if we fail (result != 0) we unlock everything.
    939  * => initialize/adjust many members of flt.
    940  */
    941 
    942 static int
    943 uvm_fault_check(
    944 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
    945 	struct vm_anon ***ranons, bool maxprot)
    946 {
    947 	struct vm_amap *amap;
    948 	struct uvm_object *uobj;
    949 	vm_prot_t check_prot;
    950 	int nback, nforw;
    951 	UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
    952 
    953 	/*
    954 	 * lookup and lock the maps
    955 	 */
    956 
    957 	if (uvmfault_lookup(ufi, false) == false) {
    958 		UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr,
    959 		    0,0,0);
    960 		return EFAULT;
    961 	}
    962 	/* locked: maps(read) */
    963 
    964 #ifdef DIAGNOSTIC
    965 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
    966 		printf("Page fault on non-pageable map:\n");
    967 		printf("ufi->map = %p\n", ufi->map);
    968 		printf("ufi->orig_map = %p\n", ufi->orig_map);
    969 		printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
    970 		panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
    971 	}
    972 #endif
    973 
    974 	/*
    975 	 * check protection
    976 	 */
    977 
    978 	check_prot = maxprot ?
    979 	    ufi->entry->max_protection : ufi->entry->protection;
    980 	if ((check_prot & flt->access_type) != flt->access_type) {
    981 		UVMHIST_LOG(maphist,
    982 		    "<- protection failure (prot=0x%x, access=0x%x)",
    983 		    ufi->entry->protection, flt->access_type, 0, 0);
    984 		uvmfault_unlockmaps(ufi, false);
    985 		return EACCES;
    986 	}
    987 
    988 	/*
    989 	 * "enter_prot" is the protection we want to enter the page in at.
    990 	 * for certain pages (e.g. copy-on-write pages) this protection can
    991 	 * be more strict than ufi->entry->protection.  "wired" means either
    992 	 * the entry is wired or we are fault-wiring the pg.
    993 	 */
    994 
    995 	flt->enter_prot = ufi->entry->protection;
    996 	if (VM_MAPENT_ISWIRED(ufi->entry))
    997 		flt->wire_mapping = true;
    998 
    999 	if (flt->wire_mapping) {
   1000 		flt->access_type = flt->enter_prot; /* full access for wired */
   1001 		flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
   1002 	} else {
   1003 		flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
   1004 	}
   1005 
   1006 	flt->promote = false;
   1007 
   1008 	/*
   1009 	 * handle "needs_copy" case.   if we need to copy the amap we will
   1010 	 * have to drop our readlock and relock it with a write lock.  (we
   1011 	 * need a write lock to change anything in a map entry [e.g.
   1012 	 * needs_copy]).
   1013 	 */
   1014 
   1015 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
   1016 		if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
   1017 			KASSERT(!maxprot);
   1018 			/* need to clear */
   1019 			UVMHIST_LOG(maphist,
   1020 			    "  need to clear needs_copy and refault",0,0,0,0);
   1021 			uvmfault_unlockmaps(ufi, false);
   1022 			uvmfault_amapcopy(ufi);
   1023 			uvmexp.fltamcopy++;
   1024 			return ERESTART;
   1025 
   1026 		} else {
   1027 
   1028 			/*
   1029 			 * ensure that we pmap_enter page R/O since
   1030 			 * needs_copy is still true
   1031 			 */
   1032 
   1033 			flt->enter_prot &= ~VM_PROT_WRITE;
   1034 		}
   1035 	}
   1036 
   1037 	/*
   1038 	 * identify the players
   1039 	 */
   1040 
   1041 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
   1042 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
   1043 
   1044 	/*
   1045 	 * check for a case 0 fault.  if nothing backing the entry then
   1046 	 * error now.
   1047 	 */
   1048 
   1049 	if (amap == NULL && uobj == NULL) {
   1050 		uvmfault_unlockmaps(ufi, false);
   1051 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
   1052 		return EFAULT;
   1053 	}
   1054 
   1055 	/*
   1056 	 * establish range of interest based on advice from mapper
   1057 	 * and then clip to fit map entry.   note that we only want
   1058 	 * to do this the first time through the fault.   if we
   1059 	 * ReFault we will disable this by setting "narrow" to true.
   1060 	 */
   1061 
   1062 	if (flt->narrow == false) {
   1063 
   1064 		/* wide fault (!narrow) */
   1065 		KASSERT(uvmadvice[ufi->entry->advice].advice ==
   1066 			 ufi->entry->advice);
   1067 		nback = MIN(uvmadvice[ufi->entry->advice].nback,
   1068 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
   1069 		flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
   1070 		/*
   1071 		 * note: "-1" because we don't want to count the
   1072 		 * faulting page as forw
   1073 		 */
   1074 		nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
   1075 			    ((ufi->entry->end - ufi->orig_rvaddr) >>
   1076 			     PAGE_SHIFT) - 1);
   1077 		flt->npages = nback + nforw + 1;
   1078 		flt->centeridx = nback;
   1079 
   1080 		flt->narrow = true;	/* ensure only once per-fault */
   1081 
   1082 	} else {
   1083 
   1084 		/* narrow fault! */
   1085 		nback = nforw = 0;
   1086 		flt->startva = ufi->orig_rvaddr;
   1087 		flt->npages = 1;
   1088 		flt->centeridx = 0;
   1089 
   1090 	}
   1091 	/* offset from entry's start to pgs' start */
   1092 	const voff_t eoff = flt->startva - ufi->entry->start;
   1093 
   1094 	/* locked: maps(read) */
   1095 	UVMHIST_LOG(maphist, "  narrow=%d, back=%d, forw=%d, startva=0x%x",
   1096 		    flt->narrow, nback, nforw, flt->startva);
   1097 	UVMHIST_LOG(maphist, "  entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
   1098 		    amap, uobj, 0);
   1099 
   1100 	/*
   1101 	 * if we've got an amap, lock it and extract current anons.
   1102 	 */
   1103 
   1104 	if (amap) {
   1105 		amap_lock(amap);
   1106 		amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
   1107 	} else {
   1108 		*ranons = NULL;	/* to be safe */
   1109 	}
   1110 
   1111 	/* locked: maps(read), amap(if there) */
   1112 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1113 
   1114 	/*
   1115 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
   1116 	 * now and then forget about them (for the rest of the fault).
   1117 	 */
   1118 
   1119 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
   1120 
   1121 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
   1122 		    0,0,0,0);
   1123 		/* flush back-page anons? */
   1124 		if (amap)
   1125 			uvmfault_anonflush(*ranons, nback);
   1126 
   1127 		/* flush object? */
   1128 		if (uobj) {
   1129 			voff_t uoff;
   1130 
   1131 			uoff = ufi->entry->offset + eoff;
   1132 			mutex_enter(uobj->vmobjlock);
   1133 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
   1134 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
   1135 		}
   1136 
   1137 		/* now forget about the backpages */
   1138 		if (amap)
   1139 			*ranons += nback;
   1140 		flt->startva += (nback << PAGE_SHIFT);
   1141 		flt->npages -= nback;
   1142 		flt->centeridx = 0;
   1143 	}
   1144 	/*
   1145 	 * => startva is fixed
   1146 	 * => npages is fixed
   1147 	 */
   1148 	KASSERT(flt->startva <= ufi->orig_rvaddr);
   1149 	KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
   1150 	    flt->startva + (flt->npages << PAGE_SHIFT));
   1151 	return 0;
   1152 }
   1153 
   1154 /*
   1155  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
   1156  *
   1157  * iterate range of interest:
   1158  *	1. check if h/w mapping exists.  if yes, we don't care
   1159  *	2. check if anon exists.  if not, page is lower.
   1160  *	3. if anon exists, enter h/w mapping for neighbors.
   1161  *
   1162  * => called with amap locked (if exists).
   1163  */
   1164 
   1165 static int
   1166 uvm_fault_upper_lookup(
   1167 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1168 	struct vm_anon **anons, struct vm_page **pages)
   1169 {
   1170 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1171 	int lcv;
   1172 	vaddr_t currva;
   1173 	bool shadowed;
   1174 	UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
   1175 
   1176 	/* locked: maps(read), amap(if there) */
   1177 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1178 
   1179 	/*
   1180 	 * map in the backpages and frontpages we found in the amap in hopes
   1181 	 * of preventing future faults.    we also init the pages[] array as
   1182 	 * we go.
   1183 	 */
   1184 
   1185 	currva = flt->startva;
   1186 	shadowed = false;
   1187 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1188 		/*
   1189 		 * don't play with VAs that are already mapped
   1190 		 * (except for center)
   1191 		 */
   1192 		if (lcv != flt->centeridx &&
   1193 		    pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
   1194 			pages[lcv] = PGO_DONTCARE;
   1195 			continue;
   1196 		}
   1197 
   1198 		/*
   1199 		 * unmapped or center page.   check if any anon at this level.
   1200 		 */
   1201 		if (amap == NULL || anons[lcv] == NULL) {
   1202 			pages[lcv] = NULL;
   1203 			continue;
   1204 		}
   1205 
   1206 		/*
   1207 		 * check for present page and map if possible.   re-activate it.
   1208 		 */
   1209 
   1210 		pages[lcv] = PGO_DONTCARE;
   1211 		if (lcv == flt->centeridx) {	/* save center for later! */
   1212 			shadowed = true;
   1213 			continue;
   1214 		}
   1215 
   1216 		struct vm_anon *anon = anons[lcv];
   1217 		struct vm_page *pg = anon->an_page;
   1218 
   1219 		KASSERT(anon->an_lock == amap->am_lock);
   1220 
   1221 		/* Ignore loaned and busy pages. */
   1222 		if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
   1223 			uvm_fault_upper_neighbor(ufi, flt, currva,
   1224 			    pg, anon->an_ref > 1);
   1225 		}
   1226 	}
   1227 
   1228 	/* locked: maps(read), amap(if there) */
   1229 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1230 	/* (shadowed == true) if there is an anon at the faulting address */
   1231 	UVMHIST_LOG(maphist, "  shadowed=%d, will_get=%d", shadowed,
   1232 	    (ufi->entry->object.uvm_obj && shadowed != false),0,0);
   1233 
   1234 	/*
   1235 	 * note that if we are really short of RAM we could sleep in the above
   1236 	 * call to pmap_enter with everything locked.   bad?
   1237 	 *
   1238 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
   1239 	 * XXX case.  --thorpej
   1240 	 */
   1241 
   1242 	return 0;
   1243 }
   1244 
   1245 /*
   1246  * uvm_fault_upper_neighbor: enter single lower neighbor page.
   1247  *
   1248  * => called with amap and anon locked.
   1249  */
   1250 
   1251 static void
   1252 uvm_fault_upper_neighbor(
   1253 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1254 	vaddr_t currva, struct vm_page *pg, bool readonly)
   1255 {
   1256 	UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
   1257 
   1258 	/* locked: amap, anon */
   1259 
   1260 	mutex_enter(&uvm_pageqlock);
   1261 	uvm_pageenqueue(pg);
   1262 	mutex_exit(&uvm_pageqlock);
   1263 	UVMHIST_LOG(maphist,
   1264 	    "  MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
   1265 	    ufi->orig_map->pmap, currva, pg, 0);
   1266 	uvmexp.fltnamap++;
   1267 
   1268 	/*
   1269 	 * Since this page isn't the page that's actually faulting,
   1270 	 * ignore pmap_enter() failures; it's not critical that we
   1271 	 * enter these right now.
   1272 	 */
   1273 
   1274 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1275 	    VM_PAGE_TO_PHYS(pg),
   1276 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1277 	    flt->enter_prot,
   1278 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
   1279 
   1280 	pmap_update(ufi->orig_map->pmap);
   1281 }
   1282 
   1283 /*
   1284  * uvm_fault_upper: handle upper fault.
   1285  *
   1286  *	1. acquire anon lock.
   1287  *	2. get anon.  let uvmfault_anonget do the dirty work.
   1288  *	3. handle loan.
   1289  *	4. dispatch direct or promote handlers.
   1290  */
   1291 
   1292 static int
   1293 uvm_fault_upper(
   1294 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1295 	struct vm_anon **anons)
   1296 {
   1297 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1298 	struct vm_anon * const anon = anons[flt->centeridx];
   1299 	struct uvm_object *uobj;
   1300 	int error;
   1301 	UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
   1302 
   1303 	/* locked: maps(read), amap, anon */
   1304 	KASSERT(mutex_owned(amap->am_lock));
   1305 	KASSERT(anon->an_lock == amap->am_lock);
   1306 
   1307 	/*
   1308 	 * handle case 1: fault on an anon in our amap
   1309 	 */
   1310 
   1311 	UVMHIST_LOG(maphist, "  case 1 fault: anon=0x%x", anon, 0,0,0);
   1312 
   1313 	/*
   1314 	 * no matter if we have case 1A or case 1B we are going to need to
   1315 	 * have the anon's memory resident.   ensure that now.
   1316 	 */
   1317 
   1318 	/*
   1319 	 * let uvmfault_anonget do the dirty work.
   1320 	 * if it fails (!OK) it will unlock everything for us.
   1321 	 * if it succeeds, locks are still valid and locked.
   1322 	 * also, if it is OK, then the anon's page is on the queues.
   1323 	 * if the page is on loan from a uvm_object, then anonget will
   1324 	 * lock that object for us if it does not fail.
   1325 	 */
   1326 
   1327 	error = uvmfault_anonget(ufi, amap, anon);
   1328 	switch (error) {
   1329 	case 0:
   1330 		break;
   1331 
   1332 	case ERESTART:
   1333 		return ERESTART;
   1334 
   1335 	case EAGAIN:
   1336 		kpause("fltagain1", false, hz/2, NULL);
   1337 		return ERESTART;
   1338 
   1339 	default:
   1340 		return error;
   1341 	}
   1342 
   1343 	/*
   1344 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
   1345 	 */
   1346 
   1347 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
   1348 
   1349 	/* locked: maps(read), amap, anon, uobj(if one) */
   1350 	KASSERT(mutex_owned(amap->am_lock));
   1351 	KASSERT(anon->an_lock == amap->am_lock);
   1352 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1353 
   1354 	/*
   1355 	 * special handling for loaned pages
   1356 	 */
   1357 
   1358 	if (anon->an_page->loan_count) {
   1359 		error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
   1360 		if (error != 0)
   1361 			return error;
   1362 	}
   1363 
   1364 	/*
   1365 	 * if we are case 1B then we will need to allocate a new blank
   1366 	 * anon to transfer the data into.   note that we have a lock
   1367 	 * on anon, so no one can busy or release the page until we are done.
   1368 	 * also note that the ref count can't drop to zero here because
   1369 	 * it is > 1 and we are only dropping one ref.
   1370 	 *
   1371 	 * in the (hopefully very rare) case that we are out of RAM we
   1372 	 * will unlock, wait for more RAM, and refault.
   1373 	 *
   1374 	 * if we are out of anon VM we kill the process (XXX: could wait?).
   1375 	 */
   1376 
   1377 	if (flt->cow_now && anon->an_ref > 1) {
   1378 		flt->promote = true;
   1379 		error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
   1380 	} else {
   1381 		error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
   1382 	}
   1383 	return error;
   1384 }
   1385 
   1386 /*
   1387  * uvm_fault_upper_loan: handle loaned upper page.
   1388  *
   1389  *	1. if not cow'ing now, simply adjust flt->enter_prot.
   1390  *	2. if cow'ing now, and if ref count is 1, break loan.
   1391  */
   1392 
   1393 static int
   1394 uvm_fault_upper_loan(
   1395 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1396 	struct vm_anon *anon, struct uvm_object **ruobj)
   1397 {
   1398 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1399 	int error = 0;
   1400 	UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
   1401 
   1402 	if (!flt->cow_now) {
   1403 
   1404 		/*
   1405 		 * for read faults on loaned pages we just cap the
   1406 		 * protection at read-only.
   1407 		 */
   1408 
   1409 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1410 
   1411 	} else {
   1412 		/*
   1413 		 * note that we can't allow writes into a loaned page!
   1414 		 *
   1415 		 * if we have a write fault on a loaned page in an
   1416 		 * anon then we need to look at the anon's ref count.
   1417 		 * if it is greater than one then we are going to do
   1418 		 * a normal copy-on-write fault into a new anon (this
   1419 		 * is not a problem).  however, if the reference count
   1420 		 * is one (a case where we would normally allow a
   1421 		 * write directly to the page) then we need to kill
   1422 		 * the loan before we continue.
   1423 		 */
   1424 
   1425 		/* >1 case is already ok */
   1426 		if (anon->an_ref == 1) {
   1427 			error = uvm_loanbreak_anon(anon, *ruobj);
   1428 			if (error != 0) {
   1429 				uvmfault_unlockall(ufi, amap, *ruobj);
   1430 				uvm_wait("flt_noram2");
   1431 				return ERESTART;
   1432 			}
   1433 			/* if we were a loan reciever uobj is gone */
   1434 			if (*ruobj)
   1435 				*ruobj = NULL;
   1436 		}
   1437 	}
   1438 	return error;
   1439 }
   1440 
   1441 /*
   1442  * uvm_fault_upper_promote: promote upper page.
   1443  *
   1444  *	1. call uvmfault_promote.
   1445  *	2. enqueue page.
   1446  *	3. deref.
   1447  *	4. pass page to uvm_fault_upper_enter.
   1448  */
   1449 
   1450 static int
   1451 uvm_fault_upper_promote(
   1452 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1453 	struct uvm_object *uobj, struct vm_anon *anon)
   1454 {
   1455 	struct vm_anon * const oanon = anon;
   1456 	struct vm_page *pg;
   1457 	int error;
   1458 	UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
   1459 
   1460 	UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
   1461 	uvmexp.flt_acow++;
   1462 
   1463 	error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
   1464 	    &flt->anon_spare);
   1465 	switch (error) {
   1466 	case 0:
   1467 		break;
   1468 	case ERESTART:
   1469 		return ERESTART;
   1470 	default:
   1471 		return error;
   1472 	}
   1473 
   1474 	KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
   1475 
   1476 	pg = anon->an_page;
   1477 	mutex_enter(&uvm_pageqlock);
   1478 	uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
   1479 	mutex_exit(&uvm_pageqlock);
   1480 	pg->flags &= ~(PG_BUSY|PG_FAKE);
   1481 	UVM_PAGE_OWN(pg, NULL);
   1482 
   1483 	/* deref: can not drop to zero here by defn! */
   1484 	KASSERT(oanon->an_ref > 1);
   1485 	oanon->an_ref--;
   1486 
   1487 	/*
   1488 	 * note: oanon is still locked, as is the new anon.  we
   1489 	 * need to check for this later when we unlock oanon; if
   1490 	 * oanon != anon, we'll have to unlock anon, too.
   1491 	 */
   1492 
   1493 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1494 }
   1495 
   1496 /*
   1497  * uvm_fault_upper_direct: handle direct fault.
   1498  */
   1499 
   1500 static int
   1501 uvm_fault_upper_direct(
   1502 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1503 	struct uvm_object *uobj, struct vm_anon *anon)
   1504 {
   1505 	struct vm_anon * const oanon = anon;
   1506 	struct vm_page *pg;
   1507 	UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
   1508 
   1509 	uvmexp.flt_anon++;
   1510 	pg = anon->an_page;
   1511 	if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
   1512 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1513 
   1514 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1515 }
   1516 
   1517 /*
   1518  * uvm_fault_upper_enter: enter h/w mapping of upper page.
   1519  */
   1520 
   1521 static int
   1522 uvm_fault_upper_enter(
   1523 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1524 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
   1525 	struct vm_anon *oanon)
   1526 {
   1527 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1528 	UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
   1529 
   1530 	/* locked: maps(read), amap, oanon, anon(if different from oanon) */
   1531 	KASSERT(mutex_owned(amap->am_lock));
   1532 	KASSERT(anon->an_lock == amap->am_lock);
   1533 	KASSERT(oanon->an_lock == amap->am_lock);
   1534 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1535 
   1536 	/*
   1537 	 * now map the page in.
   1538 	 */
   1539 
   1540 	UVMHIST_LOG(maphist,
   1541 	    "  MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
   1542 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
   1543 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
   1544 	    VM_PAGE_TO_PHYS(pg),
   1545 	    flt->enter_prot, flt->access_type | PMAP_CANFAIL |
   1546 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   1547 
   1548 		/*
   1549 		 * No need to undo what we did; we can simply think of
   1550 		 * this as the pmap throwing away the mapping information.
   1551 		 *
   1552 		 * We do, however, have to go through the ReFault path,
   1553 		 * as the map may change while we're asleep.
   1554 		 */
   1555 
   1556 		uvmfault_unlockall(ufi, amap, uobj);
   1557 		if (!uvm_reclaimable()) {
   1558 			UVMHIST_LOG(maphist,
   1559 			    "<- failed.  out of VM",0,0,0,0);
   1560 			/* XXX instrumentation */
   1561 			return ENOMEM;
   1562 		}
   1563 		/* XXX instrumentation */
   1564 		uvm_wait("flt_pmfail1");
   1565 		return ERESTART;
   1566 	}
   1567 
   1568 	uvm_fault_upper_done(ufi, flt, anon, pg);
   1569 
   1570 	/*
   1571 	 * done case 1!  finish up by unlocking everything and returning success
   1572 	 */
   1573 
   1574 	pmap_update(ufi->orig_map->pmap);
   1575 	uvmfault_unlockall(ufi, amap, uobj);
   1576 	return 0;
   1577 }
   1578 
   1579 /*
   1580  * uvm_fault_upper_done: queue upper center page.
   1581  */
   1582 
   1583 static void
   1584 uvm_fault_upper_done(
   1585 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1586 	struct vm_anon *anon, struct vm_page *pg)
   1587 {
   1588 	const bool wire_paging = flt->wire_paging;
   1589 
   1590 	UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
   1591 
   1592 	/*
   1593 	 * ... update the page queues.
   1594 	 */
   1595 
   1596 	mutex_enter(&uvm_pageqlock);
   1597 	if (wire_paging) {
   1598 		uvm_pagewire(pg);
   1599 
   1600 		/*
   1601 		 * since the now-wired page cannot be paged out,
   1602 		 * release its swap resources for others to use.
   1603 		 * since an anon with no swap cannot be PG_CLEAN,
   1604 		 * clear its clean flag now.
   1605 		 */
   1606 
   1607 		pg->flags &= ~(PG_CLEAN);
   1608 
   1609 	} else {
   1610 		uvm_pageactivate(pg);
   1611 	}
   1612 	mutex_exit(&uvm_pageqlock);
   1613 
   1614 	if (wire_paging) {
   1615 		uvm_anon_dropswap(anon);
   1616 	}
   1617 }
   1618 
   1619 /*
   1620  * uvm_fault_lower: handle lower fault.
   1621  *
   1622  *	1. check uobj
   1623  *	1.1. if null, ZFOD.
   1624  *	1.2. if not null, look up unnmapped neighbor pages.
   1625  *	2. for center page, check if promote.
   1626  *	2.1. ZFOD always needs promotion.
   1627  *	2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
   1628  *	3. if uobj is not ZFOD and page is not found, do i/o.
   1629  *	4. dispatch either direct / promote fault.
   1630  */
   1631 
   1632 static int
   1633 uvm_fault_lower(
   1634 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1635 	struct vm_page **pages)
   1636 {
   1637 #ifdef DIAGNOSTIC
   1638 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1639 #endif
   1640 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1641 	struct vm_page *uobjpage;
   1642 	int error;
   1643 	UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
   1644 
   1645 	/*
   1646 	 * now, if the desired page is not shadowed by the amap and we have
   1647 	 * a backing object that does not have a special fault routine, then
   1648 	 * we ask (with pgo_get) the object for resident pages that we care
   1649 	 * about and attempt to map them in.  we do not let pgo_get block
   1650 	 * (PGO_LOCKED).
   1651 	 */
   1652 
   1653 	if (uobj == NULL) {
   1654 		/* zero fill; don't care neighbor pages */
   1655 		uobjpage = NULL;
   1656 	} else {
   1657 		uvm_fault_lower_lookup(ufi, flt, pages);
   1658 		uobjpage = pages[flt->centeridx];
   1659 	}
   1660 
   1661 	/*
   1662 	 * note that at this point we are done with any front or back pages.
   1663 	 * we are now going to focus on the center page (i.e. the one we've
   1664 	 * faulted on).  if we have faulted on the upper (anon) layer
   1665 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
   1666 	 * not touched it yet).  if we have faulted on the bottom (uobj)
   1667 	 * layer [i.e. case 2] and the page was both present and available,
   1668 	 * then we've got a pointer to it as "uobjpage" and we've already
   1669 	 * made it BUSY.
   1670 	 */
   1671 
   1672 	/*
   1673 	 * locked:
   1674 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
   1675 	 */
   1676 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1677 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1678 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1679 
   1680 	/*
   1681 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
   1682 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
   1683 	 * have a backing object, check and see if we are going to promote
   1684 	 * the data up to an anon during the fault.
   1685 	 */
   1686 
   1687 	if (uobj == NULL) {
   1688 		uobjpage = PGO_DONTCARE;
   1689 		flt->promote = true;		/* always need anon here */
   1690 	} else {
   1691 		KASSERT(uobjpage != PGO_DONTCARE);
   1692 		flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
   1693 	}
   1694 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%d, zfill=%d",
   1695 	    flt->promote, (uobj == NULL), 0,0);
   1696 
   1697 	/*
   1698 	 * if uobjpage is not null then we do not need to do I/O to get the
   1699 	 * uobjpage.
   1700 	 *
   1701 	 * if uobjpage is null, then we need to unlock and ask the pager to
   1702 	 * get the data for us.   once we have the data, we need to reverify
   1703 	 * the state the world.   we are currently not holding any resources.
   1704 	 */
   1705 
   1706 	if (uobjpage) {
   1707 		/* update rusage counters */
   1708 		curlwp->l_ru.ru_minflt++;
   1709 	} else {
   1710 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
   1711 		if (error != 0)
   1712 			return error;
   1713 	}
   1714 
   1715 	/*
   1716 	 * locked:
   1717 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
   1718 	 */
   1719 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1720 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1721 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1722 
   1723 	/*
   1724 	 * notes:
   1725 	 *  - at this point uobjpage can not be NULL
   1726 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
   1727 	 *  for it above)
   1728 	 *  - at this point uobjpage could be PG_WANTED (handle later)
   1729 	 */
   1730 
   1731 	KASSERT(uobjpage != NULL);
   1732 	KASSERT(uobj == NULL || uobj == uobjpage->uobject);
   1733 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
   1734 	    (uobjpage->flags & PG_CLEAN) != 0);
   1735 
   1736 	if (!flt->promote) {
   1737 		error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
   1738 	} else {
   1739 		error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
   1740 	}
   1741 	return error;
   1742 }
   1743 
   1744 /*
   1745  * uvm_fault_lower_lookup: look up on-memory uobj pages.
   1746  *
   1747  *	1. get on-memory pages.
   1748  *	2. if failed, give up (get only center page later).
   1749  *	3. if succeeded, enter h/w mapping of neighbor pages.
   1750  */
   1751 
   1752 static void
   1753 uvm_fault_lower_lookup(
   1754 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1755 	struct vm_page **pages)
   1756 {
   1757 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1758 	int lcv, gotpages;
   1759 	vaddr_t currva;
   1760 	UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
   1761 
   1762 	mutex_enter(uobj->vmobjlock);
   1763 	/* Locked: maps(read), amap(if there), uobj */
   1764 
   1765 	uvmexp.fltlget++;
   1766 	gotpages = flt->npages;
   1767 	(void) uobj->pgops->pgo_get(uobj,
   1768 	    ufi->entry->offset + flt->startva - ufi->entry->start,
   1769 	    pages, &gotpages, flt->centeridx,
   1770 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
   1771 
   1772 	KASSERT(mutex_owned(uobj->vmobjlock));
   1773 
   1774 	/*
   1775 	 * check for pages to map, if we got any
   1776 	 */
   1777 
   1778 	if (gotpages == 0) {
   1779 		pages[flt->centeridx] = NULL;
   1780 		return;
   1781 	}
   1782 
   1783 	currva = flt->startva;
   1784 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1785 		struct vm_page *curpg;
   1786 
   1787 		curpg = pages[lcv];
   1788 		if (curpg == NULL || curpg == PGO_DONTCARE) {
   1789 			continue;
   1790 		}
   1791 		KASSERT(curpg->uobject == uobj);
   1792 
   1793 		/*
   1794 		 * if center page is resident and not PG_BUSY|PG_RELEASED
   1795 		 * then pgo_get made it PG_BUSY for us and gave us a handle
   1796 		 * to it.
   1797 		 */
   1798 
   1799 		if (lcv == flt->centeridx) {
   1800 			UVMHIST_LOG(maphist, "  got uobjpage "
   1801 			    "(0x%x) with locked get",
   1802 			    curpg, 0,0,0);
   1803 		} else {
   1804 			bool readonly = (curpg->flags & PG_RDONLY)
   1805 			    || (curpg->loan_count > 0)
   1806 			    || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
   1807 
   1808 			uvm_fault_lower_neighbor(ufi, flt,
   1809 			    currva, curpg, readonly);
   1810 		}
   1811 	}
   1812 	pmap_update(ufi->orig_map->pmap);
   1813 }
   1814 
   1815 /*
   1816  * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
   1817  */
   1818 
   1819 static void
   1820 uvm_fault_lower_neighbor(
   1821 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1822 	vaddr_t currva, struct vm_page *pg, bool readonly)
   1823 {
   1824 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1825 
   1826 	/* locked: maps(read), amap(if there), uobj */
   1827 
   1828 	/*
   1829 	 * calling pgo_get with PGO_LOCKED returns us pages which
   1830 	 * are neither busy nor released, so we don't need to check
   1831 	 * for this.  we can just directly enter the pages.
   1832 	 */
   1833 
   1834 	mutex_enter(&uvm_pageqlock);
   1835 	uvm_pageenqueue(pg);
   1836 	mutex_exit(&uvm_pageqlock);
   1837 	UVMHIST_LOG(maphist,
   1838 	    "  MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
   1839 	    ufi->orig_map->pmap, currva, pg, 0);
   1840 	uvmexp.fltnomap++;
   1841 
   1842 	/*
   1843 	 * Since this page isn't the page that's actually faulting,
   1844 	 * ignore pmap_enter() failures; it's not critical that we
   1845 	 * enter these right now.
   1846 	 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
   1847 	 * held the lock the whole time we've had the handle.
   1848 	 */
   1849 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1850 	KASSERT((pg->flags & PG_RELEASED) == 0);
   1851 	KASSERT((pg->flags & PG_WANTED) == 0);
   1852 	KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
   1853 	pg->flags &= ~(PG_BUSY);
   1854 	UVM_PAGE_OWN(pg, NULL);
   1855 
   1856 	KASSERT(mutex_owned(pg->uobject->vmobjlock));
   1857 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1858 	    VM_PAGE_TO_PHYS(pg),
   1859 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1860 	    flt->enter_prot & MASK(ufi->entry),
   1861 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
   1862 }
   1863 
   1864 /*
   1865  * uvm_fault_lower_io: get lower page from backing store.
   1866  *
   1867  *	1. unlock everything, because i/o will block.
   1868  *	2. call pgo_get.
   1869  *	3. if failed, recover.
   1870  *	4. if succeeded, relock everything and verify things.
   1871  */
   1872 
   1873 static int
   1874 uvm_fault_lower_io(
   1875 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1876 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
   1877 {
   1878 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1879 	struct uvm_object *uobj = *ruobj;
   1880 	struct vm_page *pg;
   1881 	bool locked;
   1882 	int gotpages;
   1883 	int error;
   1884 	voff_t uoff;
   1885 	UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
   1886 
   1887 	/* update rusage counters */
   1888 	curlwp->l_ru.ru_majflt++;
   1889 
   1890 	/* Locked: maps(read), amap(if there), uobj */
   1891 	uvmfault_unlockall(ufi, amap, NULL);
   1892 
   1893 	/* Locked: uobj */
   1894 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1895 
   1896 	uvmexp.fltget++;
   1897 	gotpages = 1;
   1898 	pg = NULL;
   1899 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
   1900 	error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
   1901 	    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
   1902 	    PGO_SYNCIO);
   1903 	/* locked: pg(if no error) */
   1904 
   1905 	/*
   1906 	 * recover from I/O
   1907 	 */
   1908 
   1909 	if (error) {
   1910 		if (error == EAGAIN) {
   1911 			UVMHIST_LOG(maphist,
   1912 			    "  pgo_get says TRY AGAIN!",0,0,0,0);
   1913 			kpause("fltagain2", false, hz/2, NULL);
   1914 			return ERESTART;
   1915 		}
   1916 
   1917 #if 0
   1918 		KASSERT(error != ERESTART);
   1919 #else
   1920 		/* XXXUEBS don't re-fault? */
   1921 		if (error == ERESTART)
   1922 			error = EIO;
   1923 #endif
   1924 
   1925 		UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
   1926 		    error, 0,0,0);
   1927 		return error;
   1928 	}
   1929 
   1930 	/*
   1931 	 * re-verify the state of the world by first trying to relock
   1932 	 * the maps.  always relock the object.
   1933 	 */
   1934 
   1935 	locked = uvmfault_relock(ufi);
   1936 	if (locked && amap)
   1937 		amap_lock(amap);
   1938 
   1939 	/* might be changed */
   1940 	uobj = pg->uobject;
   1941 
   1942 	mutex_enter(uobj->vmobjlock);
   1943 	KASSERT((pg->flags & PG_BUSY) != 0);
   1944 
   1945 	mutex_enter(&uvm_pageqlock);
   1946 	uvm_pageactivate(pg);
   1947 	mutex_exit(&uvm_pageqlock);
   1948 
   1949 	/* locked(locked): maps(read), amap(if !null), uobj, pg */
   1950 	/* locked(!locked): uobj, pg */
   1951 
   1952 	/*
   1953 	 * verify that the page has not be released and re-verify
   1954 	 * that amap slot is still free.   if there is a problem,
   1955 	 * we unlock and clean up.
   1956 	 */
   1957 
   1958 	if ((pg->flags & PG_RELEASED) != 0 ||
   1959 	    (locked && amap && amap_lookup(&ufi->entry->aref,
   1960 	      ufi->orig_rvaddr - ufi->entry->start))) {
   1961 		if (locked)
   1962 			uvmfault_unlockall(ufi, amap, NULL);
   1963 		locked = false;
   1964 	}
   1965 
   1966 	/*
   1967 	 * didn't get the lock?   release the page and retry.
   1968 	 */
   1969 
   1970 	if (locked == false) {
   1971 		UVMHIST_LOG(maphist,
   1972 		    "  wasn't able to relock after fault: retry",
   1973 		    0,0,0,0);
   1974 		if (pg->flags & PG_WANTED) {
   1975 			wakeup(pg);
   1976 		}
   1977 		if ((pg->flags & PG_RELEASED) == 0) {
   1978 			pg->flags &= ~(PG_BUSY | PG_WANTED);
   1979 			UVM_PAGE_OWN(pg, NULL);
   1980 		} else {
   1981 			uvmexp.fltpgrele++;
   1982 			uvm_pagefree(pg);
   1983 		}
   1984 		mutex_exit(uobj->vmobjlock);
   1985 		return ERESTART;
   1986 	}
   1987 
   1988 	/*
   1989 	 * we have the data in pg which is busy and
   1990 	 * not released.  we are holding object lock (so the page
   1991 	 * can't be released on us).
   1992 	 */
   1993 
   1994 	/* locked: maps(read), amap(if !null), uobj, pg */
   1995 
   1996 	*ruobj = uobj;
   1997 	*ruobjpage = pg;
   1998 	return 0;
   1999 }
   2000 
   2001 /*
   2002  * uvm_fault_lower_direct: fault lower center page
   2003  *
   2004  *	1. adjust flt->enter_prot.
   2005  *	2. if page is loaned, resolve.
   2006  */
   2007 
   2008 int
   2009 uvm_fault_lower_direct(
   2010 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2011 	struct uvm_object *uobj, struct vm_page *uobjpage)
   2012 {
   2013 	struct vm_page *pg;
   2014 	UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
   2015 
   2016 	/*
   2017 	 * we are not promoting.   if the mapping is COW ensure that we
   2018 	 * don't give more access than we should (e.g. when doing a read
   2019 	 * fault on a COPYONWRITE mapping we want to map the COW page in
   2020 	 * R/O even though the entry protection could be R/W).
   2021 	 *
   2022 	 * set "pg" to the page we want to map in (uobjpage, usually)
   2023 	 */
   2024 
   2025 	uvmexp.flt_obj++;
   2026 	if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
   2027 	    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
   2028 		flt->enter_prot &= ~VM_PROT_WRITE;
   2029 	pg = uobjpage;		/* map in the actual object */
   2030 
   2031 	KASSERT(uobjpage != PGO_DONTCARE);
   2032 
   2033 	/*
   2034 	 * we are faulting directly on the page.   be careful
   2035 	 * about writing to loaned pages...
   2036 	 */
   2037 
   2038 	if (uobjpage->loan_count) {
   2039 		uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
   2040 	}
   2041 	KASSERT(pg == uobjpage);
   2042 
   2043 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   2044 	return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
   2045 }
   2046 
   2047 /*
   2048  * uvm_fault_lower_direct_loan: resolve loaned page.
   2049  *
   2050  *	1. if not cow'ing, adjust flt->enter_prot.
   2051  *	2. if cow'ing, break loan.
   2052  */
   2053 
   2054 static int
   2055 uvm_fault_lower_direct_loan(
   2056 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2057 	struct uvm_object *uobj, struct vm_page **rpg,
   2058 	struct vm_page **ruobjpage)
   2059 {
   2060 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2061 	struct vm_page *pg;
   2062 	struct vm_page *uobjpage = *ruobjpage;
   2063 	UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
   2064 
   2065 	if (!flt->cow_now) {
   2066 		/* read fault: cap the protection at readonly */
   2067 		/* cap! */
   2068 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   2069 	} else {
   2070 		/* write fault: must break the loan here */
   2071 
   2072 		pg = uvm_loanbreak(uobjpage);
   2073 		if (pg == NULL) {
   2074 
   2075 			/*
   2076 			 * drop ownership of page, it can't be released
   2077 			 */
   2078 
   2079 			if (uobjpage->flags & PG_WANTED)
   2080 				wakeup(uobjpage);
   2081 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   2082 			UVM_PAGE_OWN(uobjpage, NULL);
   2083 
   2084 			uvmfault_unlockall(ufi, amap, uobj);
   2085 			UVMHIST_LOG(maphist,
   2086 			  "  out of RAM breaking loan, waiting",
   2087 			  0,0,0,0);
   2088 			uvmexp.fltnoram++;
   2089 			uvm_wait("flt_noram4");
   2090 			return ERESTART;
   2091 		}
   2092 		*rpg = pg;
   2093 		*ruobjpage = pg;
   2094 	}
   2095 	return 0;
   2096 }
   2097 
   2098 /*
   2099  * uvm_fault_lower_promote: promote lower page.
   2100  *
   2101  *	1. call uvmfault_promote.
   2102  *	2. fill in data.
   2103  *	3. if not ZFOD, dispose old page.
   2104  */
   2105 
   2106 int
   2107 uvm_fault_lower_promote(
   2108 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2109 	struct uvm_object *uobj, struct vm_page *uobjpage)
   2110 {
   2111 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2112 	struct vm_anon *anon;
   2113 	struct vm_page *pg;
   2114 	int error;
   2115 	UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
   2116 
   2117 	KASSERT(amap != NULL);
   2118 
   2119 	/*
   2120 	 * If we are going to promote the data to an anon we
   2121 	 * allocate a blank anon here and plug it into our amap.
   2122 	 */
   2123 	error = uvmfault_promote(ufi, NULL, uobjpage,
   2124 	    &anon, &flt->anon_spare);
   2125 	switch (error) {
   2126 	case 0:
   2127 		break;
   2128 	case ERESTART:
   2129 		return ERESTART;
   2130 	default:
   2131 		return error;
   2132 	}
   2133 
   2134 	pg = anon->an_page;
   2135 
   2136 	/*
   2137 	 * Fill in the data.
   2138 	 */
   2139 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   2140 
   2141 	if (uobjpage != PGO_DONTCARE) {
   2142 		uvmexp.flt_prcopy++;
   2143 
   2144 		/*
   2145 		 * promote to shared amap?  make sure all sharing
   2146 		 * procs see it
   2147 		 */
   2148 
   2149 		if ((amap_flags(amap) & AMAP_SHARED) != 0) {
   2150 			pmap_page_protect(uobjpage, VM_PROT_NONE);
   2151 			/*
   2152 			 * XXX: PAGE MIGHT BE WIRED!
   2153 			 */
   2154 		}
   2155 
   2156 		/*
   2157 		 * dispose of uobjpage.  it can't be PG_RELEASED
   2158 		 * since we still hold the object lock.
   2159 		 */
   2160 
   2161 		if (uobjpage->flags & PG_WANTED) {
   2162 			/* still have the obj lock */
   2163 			wakeup(uobjpage);
   2164 		}
   2165 		uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   2166 		UVM_PAGE_OWN(uobjpage, NULL);
   2167 
   2168 		UVMHIST_LOG(maphist,
   2169 		    "  promote uobjpage 0x%x to anon/page 0x%x/0x%x",
   2170 		    uobjpage, anon, pg, 0);
   2171 
   2172 	} else {
   2173 		uvmexp.flt_przero++;
   2174 
   2175 		/*
   2176 		 * Page is zero'd and marked dirty by
   2177 		 * uvmfault_promote().
   2178 		 */
   2179 
   2180 		UVMHIST_LOG(maphist,"  zero fill anon/page 0x%x/0%x",
   2181 		    anon, pg, 0, 0);
   2182 	}
   2183 
   2184 	return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
   2185 }
   2186 
   2187 /*
   2188  * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
   2189  * from the lower page.
   2190  */
   2191 
   2192 int
   2193 uvm_fault_lower_enter(
   2194 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2195 	struct uvm_object *uobj,
   2196 	struct vm_anon *anon, struct vm_page *pg)
   2197 {
   2198 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2199 	int error;
   2200 	UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
   2201 
   2202 	/*
   2203 	 * Locked:
   2204 	 *
   2205 	 *	maps(read), amap(if !null), uobj(if !null),
   2206 	 *	anon(if !null), pg(if anon), unlock_uobj(if !null)
   2207 	 *
   2208 	 * Note: pg is either the uobjpage or the new page in the new anon.
   2209 	 */
   2210 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   2211 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   2212 	KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
   2213 	KASSERT((pg->flags & PG_BUSY) != 0);
   2214 
   2215 	/*
   2216 	 * all resources are present.   we can now map it in and free our
   2217 	 * resources.
   2218 	 */
   2219 
   2220 	UVMHIST_LOG(maphist,
   2221 	    "  MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
   2222 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
   2223 	KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
   2224 		(pg->flags & PG_RDONLY) == 0);
   2225 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
   2226 	    VM_PAGE_TO_PHYS(pg),
   2227 	    (pg->flags & PG_RDONLY) != 0 ?
   2228 	    flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
   2229 	    flt->access_type | PMAP_CANFAIL |
   2230 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   2231 
   2232 		/*
   2233 		 * No need to undo what we did; we can simply think of
   2234 		 * this as the pmap throwing away the mapping information.
   2235 		 *
   2236 		 * We do, however, have to go through the ReFault path,
   2237 		 * as the map may change while we're asleep.
   2238 		 */
   2239 
   2240 		/*
   2241 		 * ensure that the page is queued in the case that
   2242 		 * we just promoted the page.
   2243 		 */
   2244 
   2245 		mutex_enter(&uvm_pageqlock);
   2246 		uvm_pageenqueue(pg);
   2247 		mutex_exit(&uvm_pageqlock);
   2248 
   2249 		if (pg->flags & PG_WANTED)
   2250 			wakeup(pg);
   2251 
   2252 		/*
   2253 		 * note that pg can't be PG_RELEASED since we did not drop
   2254 		 * the object lock since the last time we checked.
   2255 		 */
   2256 		KASSERT((pg->flags & PG_RELEASED) == 0);
   2257 
   2258 		pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2259 		UVM_PAGE_OWN(pg, NULL);
   2260 
   2261 		uvmfault_unlockall(ufi, amap, uobj);
   2262 		if (!uvm_reclaimable()) {
   2263 			UVMHIST_LOG(maphist,
   2264 			    "<- failed.  out of VM",0,0,0,0);
   2265 			/* XXX instrumentation */
   2266 			error = ENOMEM;
   2267 			return error;
   2268 		}
   2269 		/* XXX instrumentation */
   2270 		uvm_wait("flt_pmfail2");
   2271 		return ERESTART;
   2272 	}
   2273 
   2274 	uvm_fault_lower_done(ufi, flt, uobj, pg);
   2275 
   2276 	/*
   2277 	 * note that pg can't be PG_RELEASED since we did not drop the object
   2278 	 * lock since the last time we checked.
   2279 	 */
   2280 	KASSERT((pg->flags & PG_RELEASED) == 0);
   2281 	if (pg->flags & PG_WANTED)
   2282 		wakeup(pg);
   2283 	pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2284 	UVM_PAGE_OWN(pg, NULL);
   2285 
   2286 	pmap_update(ufi->orig_map->pmap);
   2287 	uvmfault_unlockall(ufi, amap, uobj);
   2288 
   2289 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
   2290 	return 0;
   2291 }
   2292 
   2293 /*
   2294  * uvm_fault_lower_done: queue lower center page.
   2295  */
   2296 
   2297 void
   2298 uvm_fault_lower_done(
   2299 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2300 	struct uvm_object *uobj, struct vm_page *pg)
   2301 {
   2302 	bool dropswap = false;
   2303 
   2304 	UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
   2305 
   2306 	mutex_enter(&uvm_pageqlock);
   2307 	if (flt->wire_paging) {
   2308 		uvm_pagewire(pg);
   2309 		if (pg->pqflags & PQ_AOBJ) {
   2310 
   2311 			/*
   2312 			 * since the now-wired page cannot be paged out,
   2313 			 * release its swap resources for others to use.
   2314 			 * since an aobj page with no swap cannot be PG_CLEAN,
   2315 			 * clear its clean flag now.
   2316 			 */
   2317 
   2318 			KASSERT(uobj != NULL);
   2319 			pg->flags &= ~(PG_CLEAN);
   2320 			dropswap = true;
   2321 		}
   2322 	} else {
   2323 		uvm_pageactivate(pg);
   2324 	}
   2325 	mutex_exit(&uvm_pageqlock);
   2326 
   2327 	if (dropswap) {
   2328 		uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
   2329 	}
   2330 }
   2331 
   2332 
   2333 /*
   2334  * uvm_fault_wire: wire down a range of virtual addresses in a map.
   2335  *
   2336  * => map may be read-locked by caller, but MUST NOT be write-locked.
   2337  * => if map is read-locked, any operations which may cause map to
   2338  *	be write-locked in uvm_fault() must be taken care of by
   2339  *	the caller.  See uvm_map_pageable().
   2340  */
   2341 
   2342 int
   2343 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
   2344     vm_prot_t access_type, int maxprot)
   2345 {
   2346 	vaddr_t va;
   2347 	int error;
   2348 
   2349 	/*
   2350 	 * now fault it in a page at a time.   if the fault fails then we have
   2351 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
   2352 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
   2353 	 */
   2354 
   2355 	/*
   2356 	 * XXX work around overflowing a vaddr_t.  this prevents us from
   2357 	 * wiring the last page in the address space, though.
   2358 	 */
   2359 	if (start > end) {
   2360 		return EFAULT;
   2361 	}
   2362 
   2363 	for (va = start; va < end; va += PAGE_SIZE) {
   2364 		error = uvm_fault_internal(map, va, access_type,
   2365 		    (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
   2366 		if (error) {
   2367 			if (va != start) {
   2368 				uvm_fault_unwire(map, start, va);
   2369 			}
   2370 			return error;
   2371 		}
   2372 	}
   2373 	return 0;
   2374 }
   2375 
   2376 /*
   2377  * uvm_fault_unwire(): unwire range of virtual space.
   2378  */
   2379 
   2380 void
   2381 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
   2382 {
   2383 	vm_map_lock_read(map);
   2384 	uvm_fault_unwire_locked(map, start, end);
   2385 	vm_map_unlock_read(map);
   2386 }
   2387 
   2388 /*
   2389  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
   2390  *
   2391  * => map must be at least read-locked.
   2392  */
   2393 
   2394 void
   2395 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
   2396 {
   2397 	struct vm_map_entry *entry, *oentry;
   2398 	pmap_t pmap = vm_map_pmap(map);
   2399 	vaddr_t va;
   2400 	paddr_t pa;
   2401 	struct vm_page *pg;
   2402 
   2403 	/*
   2404 	 * we assume that the area we are unwiring has actually been wired
   2405 	 * in the first place.   this means that we should be able to extract
   2406 	 * the PAs from the pmap.   we also lock out the page daemon so that
   2407 	 * we can call uvm_pageunwire.
   2408 	 */
   2409 
   2410 	/*
   2411 	 * find the beginning map entry for the region.
   2412 	 */
   2413 
   2414 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
   2415 	if (uvm_map_lookup_entry(map, start, &entry) == false)
   2416 		panic("uvm_fault_unwire_locked: address not in map");
   2417 
   2418 	oentry = NULL;
   2419 	for (va = start; va < end; va += PAGE_SIZE) {
   2420 		if (pmap_extract(pmap, va, &pa) == false)
   2421 			continue;
   2422 
   2423 		/*
   2424 		 * find the map entry for the current address.
   2425 		 */
   2426 
   2427 		KASSERT(va >= entry->start);
   2428 		while (va >= entry->end) {
   2429 			KASSERT(entry->next != &map->header &&
   2430 				entry->next->start <= entry->end);
   2431 			entry = entry->next;
   2432 		}
   2433 
   2434 		/*
   2435 		 * lock it.
   2436 		 */
   2437 
   2438 		if (entry != oentry) {
   2439 			if (oentry != NULL) {
   2440 				mutex_exit(&uvm_pageqlock);
   2441 				uvm_map_unlock_entry(oentry);
   2442 			}
   2443 			uvm_map_lock_entry(entry);
   2444 			mutex_enter(&uvm_pageqlock);
   2445 			oentry = entry;
   2446 		}
   2447 
   2448 		/*
   2449 		 * if the entry is no longer wired, tell the pmap.
   2450 		 */
   2451 
   2452 		if (VM_MAPENT_ISWIRED(entry) == 0)
   2453 			pmap_unwire(pmap, va);
   2454 
   2455 		pg = PHYS_TO_VM_PAGE(pa);
   2456 		if (pg)
   2457 			uvm_pageunwire(pg);
   2458 	}
   2459 
   2460 	if (oentry != NULL) {
   2461 		mutex_exit(&uvm_pageqlock);
   2462 		uvm_map_unlock_entry(entry);
   2463 	}
   2464 }
   2465