uvm_fault.c revision 1.192 1 /* $NetBSD: uvm_fault.c,v 1.192 2012/01/27 19:48:41 para Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 */
29
30 /*
31 * uvm_fault.c: fault handler
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.192 2012/01/27 19:48:41 para Exp $");
36
37 #include "opt_uvmhist.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/mman.h>
43
44 #include <uvm/uvm.h>
45
46 /*
47 *
48 * a word on page faults:
49 *
50 * types of page faults we handle:
51 *
52 * CASE 1: upper layer faults CASE 2: lower layer faults
53 *
54 * CASE 1A CASE 1B CASE 2A CASE 2B
55 * read/write1 write>1 read/write +-cow_write/zero
56 * | | | |
57 * +--|--+ +--|--+ +-----+ + | + | +-----+
58 * amap | V | | ---------> new | | | | ^ |
59 * +-----+ +-----+ +-----+ + | + | +--|--+
60 * | | |
61 * +-----+ +-----+ +--|--+ | +--|--+
62 * uobj | d/c | | d/c | | V | +----+ |
63 * +-----+ +-----+ +-----+ +-----+
64 *
65 * d/c = don't care
66 *
67 * case [0]: layerless fault
68 * no amap or uobj is present. this is an error.
69 *
70 * case [1]: upper layer fault [anon active]
71 * 1A: [read] or [write with anon->an_ref == 1]
72 * I/O takes place in upper level anon and uobj is not touched.
73 * 1B: [write with anon->an_ref > 1]
74 * new anon is alloc'd and data is copied off ["COW"]
75 *
76 * case [2]: lower layer fault [uobj]
77 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78 * I/O takes place directly in object.
79 * 2B: [write to copy_on_write] or [read on NULL uobj]
80 * data is "promoted" from uobj to a new anon.
81 * if uobj is null, then we zero fill.
82 *
83 * we follow the standard UVM locking protocol ordering:
84 *
85 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86 * we hold a PG_BUSY page if we unlock for I/O
87 *
88 *
89 * the code is structured as follows:
90 *
91 * - init the "IN" params in the ufi structure
92 * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
93 * - do lookups [locks maps], check protection, handle needs_copy
94 * - check for case 0 fault (error)
95 * - establish "range" of fault
96 * - if we have an amap lock it and extract the anons
97 * - if sequential advice deactivate pages behind us
98 * - at the same time check pmap for unmapped areas and anon for pages
99 * that we could map in (and do map it if found)
100 * - check object for resident pages that we could map in
101 * - if (case 2) goto Case2
102 * - >>> handle case 1
103 * - ensure source anon is resident in RAM
104 * - if case 1B alloc new anon and copy from source
105 * - map the correct page in
106 * Case2:
107 * - >>> handle case 2
108 * - ensure source page is resident (if uobj)
109 * - if case 2B alloc new anon and copy from source (could be zero
110 * fill if uobj == NULL)
111 * - map the correct page in
112 * - done!
113 *
114 * note on paging:
115 * if we have to do I/O we place a PG_BUSY page in the correct object,
116 * unlock everything, and do the I/O. when I/O is done we must reverify
117 * the state of the world before assuming that our data structures are
118 * valid. [because mappings could change while the map is unlocked]
119 *
120 * alternative 1: unbusy the page in question and restart the page fault
121 * from the top (ReFault). this is easy but does not take advantage
122 * of the information that we already have from our previous lookup,
123 * although it is possible that the "hints" in the vm_map will help here.
124 *
125 * alternative 2: the system already keeps track of a "version" number of
126 * a map. [i.e. every time you write-lock a map (e.g. to change a
127 * mapping) you bump the version number up by one...] so, we can save
128 * the version number of the map before we release the lock and start I/O.
129 * then when I/O is done we can relock and check the version numbers
130 * to see if anything changed. this might save us some over 1 because
131 * we don't have to unbusy the page and may be less compares(?).
132 *
133 * alternative 3: put in backpointers or a way to "hold" part of a map
134 * in place while I/O is in progress. this could be complex to
135 * implement (especially with structures like amap that can be referenced
136 * by multiple map entries, and figuring out what should wait could be
137 * complex as well...).
138 *
139 * we use alternative 2. given that we are multi-threaded now we may want
140 * to reconsider the choice.
141 */
142
143 /*
144 * local data structures
145 */
146
147 struct uvm_advice {
148 int advice;
149 int nback;
150 int nforw;
151 };
152
153 /*
154 * page range array:
155 * note: index in array must match "advice" value
156 * XXX: borrowed numbers from freebsd. do they work well for us?
157 */
158
159 static const struct uvm_advice uvmadvice[] = {
160 { UVM_ADV_NORMAL, 3, 4 },
161 { UVM_ADV_RANDOM, 0, 0 },
162 { UVM_ADV_SEQUENTIAL, 8, 7},
163 };
164
165 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
166
167 /*
168 * private prototypes
169 */
170
171 /*
172 * inline functions
173 */
174
175 /*
176 * uvmfault_anonflush: try and deactivate pages in specified anons
177 *
178 * => does not have to deactivate page if it is busy
179 */
180
181 static inline void
182 uvmfault_anonflush(struct vm_anon **anons, int n)
183 {
184 int lcv;
185 struct vm_page *pg;
186
187 for (lcv = 0; lcv < n; lcv++) {
188 if (anons[lcv] == NULL)
189 continue;
190 KASSERT(mutex_owned(anons[lcv]->an_lock));
191 pg = anons[lcv]->an_page;
192 if (pg && (pg->flags & PG_BUSY) == 0) {
193 mutex_enter(&uvm_pageqlock);
194 if (pg->wire_count == 0) {
195 uvm_pagedeactivate(pg);
196 }
197 mutex_exit(&uvm_pageqlock);
198 }
199 }
200 }
201
202 /*
203 * normal functions
204 */
205
206 /*
207 * uvmfault_amapcopy: clear "needs_copy" in a map.
208 *
209 * => called with VM data structures unlocked (usually, see below)
210 * => we get a write lock on the maps and clear needs_copy for a VA
211 * => if we are out of RAM we sleep (waiting for more)
212 */
213
214 static void
215 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
216 {
217 for (;;) {
218
219 /*
220 * no mapping? give up.
221 */
222
223 if (uvmfault_lookup(ufi, true) == false)
224 return;
225
226 /*
227 * copy if needed.
228 */
229
230 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
231 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
232 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
233
234 /*
235 * didn't work? must be out of RAM. unlock and sleep.
236 */
237
238 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
239 uvmfault_unlockmaps(ufi, true);
240 uvm_wait("fltamapcopy");
241 continue;
242 }
243
244 /*
245 * got it! unlock and return.
246 */
247
248 uvmfault_unlockmaps(ufi, true);
249 return;
250 }
251 /*NOTREACHED*/
252 }
253
254 /*
255 * uvmfault_anonget: get data in an anon into a non-busy, non-released
256 * page in that anon.
257 *
258 * => Map, amap and thus anon should be locked by caller.
259 * => If we fail, we unlock everything and error is returned.
260 * => If we are successful, return with everything still locked.
261 * => We do not move the page on the queues [gets moved later]. If we
262 * allocate a new page [we_own], it gets put on the queues. Either way,
263 * the result is that the page is on the queues at return time
264 * => For pages which are on loan from a uvm_object (and thus are not owned
265 * by the anon): if successful, return with the owning object locked.
266 * The caller must unlock this object when it unlocks everything else.
267 */
268
269 int
270 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
271 struct vm_anon *anon)
272 {
273 struct vm_page *pg;
274 int error;
275
276 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
277 KASSERT(mutex_owned(anon->an_lock));
278 KASSERT(anon->an_lock == amap->am_lock);
279
280 /* Increment the counters.*/
281 uvmexp.fltanget++;
282 if (anon->an_page) {
283 curlwp->l_ru.ru_minflt++;
284 } else {
285 curlwp->l_ru.ru_majflt++;
286 }
287 error = 0;
288
289 /*
290 * Loop until we get the anon data, or fail.
291 */
292
293 for (;;) {
294 bool we_own, locked;
295 /*
296 * Note: 'we_own' will become true if we set PG_BUSY on a page.
297 */
298 we_own = false;
299 pg = anon->an_page;
300
301 /*
302 * If there is a resident page and it is loaned, then anon
303 * may not own it. Call out to uvm_anon_lockloanpg() to
304 * identify and lock the real owner of the page.
305 */
306
307 if (pg && pg->loan_count)
308 pg = uvm_anon_lockloanpg(anon);
309
310 /*
311 * Is page resident? Make sure it is not busy/released.
312 */
313
314 if (pg) {
315
316 /*
317 * at this point, if the page has a uobject [meaning
318 * we have it on loan], then that uobject is locked
319 * by us! if the page is busy, we drop all the
320 * locks (including uobject) and try again.
321 */
322
323 if ((pg->flags & PG_BUSY) == 0) {
324 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
325 return 0;
326 }
327 pg->flags |= PG_WANTED;
328 uvmexp.fltpgwait++;
329
330 /*
331 * The last unlock must be an atomic unlock and wait
332 * on the owner of page.
333 */
334
335 if (pg->uobject) {
336 /* Owner of page is UVM object. */
337 uvmfault_unlockall(ufi, amap, NULL);
338 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
339 0,0,0);
340 UVM_UNLOCK_AND_WAIT(pg,
341 pg->uobject->vmobjlock,
342 false, "anonget1", 0);
343 } else {
344 /* Owner of page is anon. */
345 uvmfault_unlockall(ufi, NULL, NULL);
346 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
347 0,0,0);
348 UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
349 false, "anonget2", 0);
350 }
351 } else {
352 #if defined(VMSWAP)
353 /*
354 * No page, therefore allocate one.
355 */
356
357 pg = uvm_pagealloc(NULL,
358 ufi != NULL ? ufi->orig_rvaddr : 0,
359 anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
360 if (pg == NULL) {
361 /* Out of memory. Wait a little. */
362 uvmfault_unlockall(ufi, amap, NULL);
363 uvmexp.fltnoram++;
364 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
365 0,0,0);
366 if (!uvm_reclaimable()) {
367 return ENOMEM;
368 }
369 uvm_wait("flt_noram1");
370 } else {
371 /* PG_BUSY bit is set. */
372 we_own = true;
373 uvmfault_unlockall(ufi, amap, NULL);
374
375 /*
376 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
377 * the uvm_swap_get() function with all data
378 * structures unlocked. Note that it is OK
379 * to read an_swslot here, because we hold
380 * PG_BUSY on the page.
381 */
382 uvmexp.pageins++;
383 error = uvm_swap_get(pg, anon->an_swslot,
384 PGO_SYNCIO);
385
386 /*
387 * We clean up after the I/O below in the
388 * 'we_own' case.
389 */
390 }
391 #else
392 panic("%s: no page", __func__);
393 #endif /* defined(VMSWAP) */
394 }
395
396 /*
397 * Re-lock the map and anon.
398 */
399
400 locked = uvmfault_relock(ufi);
401 if (locked || we_own) {
402 mutex_enter(anon->an_lock);
403 }
404
405 /*
406 * If we own the page (i.e. we set PG_BUSY), then we need
407 * to clean up after the I/O. There are three cases to
408 * consider:
409 *
410 * 1) Page was released during I/O: free anon and ReFault.
411 * 2) I/O not OK. Free the page and cause the fault to fail.
412 * 3) I/O OK! Activate the page and sync with the non-we_own
413 * case (i.e. drop anon lock if not locked).
414 */
415
416 if (we_own) {
417 #if defined(VMSWAP)
418 if (pg->flags & PG_WANTED) {
419 wakeup(pg);
420 }
421 if (error) {
422
423 /*
424 * Remove the swap slot from the anon and
425 * mark the anon as having no real slot.
426 * Do not free the swap slot, thus preventing
427 * it from being used again.
428 */
429
430 if (anon->an_swslot > 0) {
431 uvm_swap_markbad(anon->an_swslot, 1);
432 }
433 anon->an_swslot = SWSLOT_BAD;
434
435 if ((pg->flags & PG_RELEASED) != 0) {
436 goto released;
437 }
438
439 /*
440 * Note: page was never !PG_BUSY, so it
441 * cannot be mapped and thus no need to
442 * pmap_page_protect() it.
443 */
444
445 mutex_enter(&uvm_pageqlock);
446 uvm_pagefree(pg);
447 mutex_exit(&uvm_pageqlock);
448
449 if (locked) {
450 uvmfault_unlockall(ufi, NULL, NULL);
451 }
452 mutex_exit(anon->an_lock);
453 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
454 return error;
455 }
456
457 if ((pg->flags & PG_RELEASED) != 0) {
458 released:
459 KASSERT(anon->an_ref == 0);
460
461 /*
462 * Released while we had unlocked amap.
463 */
464
465 if (locked) {
466 uvmfault_unlockall(ufi, NULL, NULL);
467 }
468 uvm_anon_release(anon);
469
470 if (error) {
471 UVMHIST_LOG(maphist,
472 "<- ERROR/RELEASED", 0,0,0,0);
473 return error;
474 }
475
476 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
477 return ERESTART;
478 }
479
480 /*
481 * We have successfully read the page, activate it.
482 */
483
484 mutex_enter(&uvm_pageqlock);
485 uvm_pageactivate(pg);
486 mutex_exit(&uvm_pageqlock);
487 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
488 UVM_PAGE_OWN(pg, NULL);
489 #else
490 panic("%s: we_own", __func__);
491 #endif /* defined(VMSWAP) */
492 }
493
494 /*
495 * We were not able to re-lock the map - restart the fault.
496 */
497
498 if (!locked) {
499 if (we_own) {
500 mutex_exit(anon->an_lock);
501 }
502 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
503 return ERESTART;
504 }
505
506 /*
507 * Verify that no one has touched the amap and moved
508 * the anon on us.
509 */
510
511 if (ufi != NULL && amap_lookup(&ufi->entry->aref,
512 ufi->orig_rvaddr - ufi->entry->start) != anon) {
513
514 uvmfault_unlockall(ufi, amap, NULL);
515 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
516 return ERESTART;
517 }
518
519 /*
520 * Retry..
521 */
522
523 uvmexp.fltanretry++;
524 continue;
525 }
526 /*NOTREACHED*/
527 }
528
529 /*
530 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
531 *
532 * 1. allocate an anon and a page.
533 * 2. fill its contents.
534 * 3. put it into amap.
535 *
536 * => if we fail (result != 0) we unlock everything.
537 * => on success, return a new locked anon via 'nanon'.
538 * (*nanon)->an_page will be a resident, locked, dirty page.
539 * => it's caller's responsibility to put the promoted nanon->an_page to the
540 * page queue.
541 */
542
543 static int
544 uvmfault_promote(struct uvm_faultinfo *ufi,
545 struct vm_anon *oanon,
546 struct vm_page *uobjpage,
547 struct vm_anon **nanon, /* OUT: allocated anon */
548 struct vm_anon **spare)
549 {
550 struct vm_amap *amap = ufi->entry->aref.ar_amap;
551 struct uvm_object *uobj;
552 struct vm_anon *anon;
553 struct vm_page *pg;
554 struct vm_page *opg;
555 int error;
556 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
557
558 if (oanon) {
559 /* anon COW */
560 opg = oanon->an_page;
561 KASSERT(opg != NULL);
562 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
563 } else if (uobjpage != PGO_DONTCARE) {
564 /* object-backed COW */
565 opg = uobjpage;
566 } else {
567 /* ZFOD */
568 opg = NULL;
569 }
570 if (opg != NULL) {
571 uobj = opg->uobject;
572 } else {
573 uobj = NULL;
574 }
575
576 KASSERT(amap != NULL);
577 KASSERT(uobjpage != NULL);
578 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
579 KASSERT(mutex_owned(amap->am_lock));
580 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
581 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
582
583 if (*spare != NULL) {
584 anon = *spare;
585 *spare = NULL;
586 } else {
587 anon = uvm_analloc();
588 }
589 if (anon) {
590
591 /*
592 * The new anon is locked.
593 *
594 * if opg == NULL, we want a zero'd, dirty page,
595 * so have uvm_pagealloc() do that for us.
596 */
597
598 KASSERT(anon->an_lock == NULL);
599 anon->an_lock = amap->am_lock;
600 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
601 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
602 if (pg == NULL) {
603 anon->an_lock = NULL;
604 }
605 } else {
606 pg = NULL;
607 }
608
609 /*
610 * out of memory resources?
611 */
612
613 if (pg == NULL) {
614 /* save anon for the next try. */
615 if (anon != NULL) {
616 *spare = anon;
617 }
618
619 /* unlock and fail ... */
620 uvm_page_unbusy(&uobjpage, 1);
621 uvmfault_unlockall(ufi, amap, uobj);
622 if (!uvm_reclaimable()) {
623 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
624 uvmexp.fltnoanon++;
625 error = ENOMEM;
626 goto done;
627 }
628
629 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
630 uvmexp.fltnoram++;
631 uvm_wait("flt_noram5");
632 error = ERESTART;
633 goto done;
634 }
635
636 /* copy page [pg now dirty] */
637 if (opg) {
638 uvm_pagecopy(opg, pg);
639 }
640
641 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
642 oanon != NULL);
643
644 *nanon = anon;
645 error = 0;
646 done:
647 return error;
648 }
649
650
651 /*
652 * F A U L T - m a i n e n t r y p o i n t
653 */
654
655 /*
656 * uvm_fault: page fault handler
657 *
658 * => called from MD code to resolve a page fault
659 * => VM data structures usually should be unlocked. however, it is
660 * possible to call here with the main map locked if the caller
661 * gets a write lock, sets it recusive, and then calls us (c.f.
662 * uvm_map_pageable). this should be avoided because it keeps
663 * the map locked off during I/O.
664 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
665 */
666
667 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
668 ~VM_PROT_WRITE : VM_PROT_ALL)
669
670 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
671 #define UVM_FAULT_WIRE (1 << 0)
672 #define UVM_FAULT_MAXPROT (1 << 1)
673
674 struct uvm_faultctx {
675
676 /*
677 * the following members are set up by uvm_fault_check() and
678 * read-only after that.
679 *
680 * note that narrow is used by uvm_fault_check() to change
681 * the behaviour after ERESTART.
682 *
683 * most of them might change after RESTART if the underlying
684 * map entry has been changed behind us. an exception is
685 * wire_paging, which does never change.
686 */
687 vm_prot_t access_type;
688 vaddr_t startva;
689 int npages;
690 int centeridx;
691 bool narrow; /* work on a single requested page only */
692 bool wire_mapping; /* request a PMAP_WIRED mapping
693 (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
694 bool wire_paging; /* request uvm_pagewire
695 (true for UVM_FAULT_WIRE) */
696 bool cow_now; /* VM_PROT_WRITE is actually requested
697 (ie. should break COW and page loaning) */
698
699 /*
700 * enter_prot is set up by uvm_fault_check() and clamped
701 * (ie. drop the VM_PROT_WRITE bit) in various places in case
702 * of !cow_now.
703 */
704 vm_prot_t enter_prot; /* prot at which we want to enter pages in */
705
706 /*
707 * the following member is for uvmfault_promote() and ERESTART.
708 */
709 struct vm_anon *anon_spare;
710
711 /*
712 * the folloing is actually a uvm_fault_lower() internal.
713 * it's here merely for debugging.
714 * (or due to the mechanical separation of the function?)
715 */
716 bool promote;
717 };
718
719 static inline int uvm_fault_check(
720 struct uvm_faultinfo *, struct uvm_faultctx *,
721 struct vm_anon ***, bool);
722
723 static int uvm_fault_upper(
724 struct uvm_faultinfo *, struct uvm_faultctx *,
725 struct vm_anon **);
726 static inline int uvm_fault_upper_lookup(
727 struct uvm_faultinfo *, const struct uvm_faultctx *,
728 struct vm_anon **, struct vm_page **);
729 static inline void uvm_fault_upper_neighbor(
730 struct uvm_faultinfo *, const struct uvm_faultctx *,
731 vaddr_t, struct vm_page *, bool);
732 static inline int uvm_fault_upper_loan(
733 struct uvm_faultinfo *, struct uvm_faultctx *,
734 struct vm_anon *, struct uvm_object **);
735 static inline int uvm_fault_upper_promote(
736 struct uvm_faultinfo *, struct uvm_faultctx *,
737 struct uvm_object *, struct vm_anon *);
738 static inline int uvm_fault_upper_direct(
739 struct uvm_faultinfo *, struct uvm_faultctx *,
740 struct uvm_object *, struct vm_anon *);
741 static int uvm_fault_upper_enter(
742 struct uvm_faultinfo *, const struct uvm_faultctx *,
743 struct uvm_object *, struct vm_anon *,
744 struct vm_page *, struct vm_anon *);
745 static inline void uvm_fault_upper_done(
746 struct uvm_faultinfo *, const struct uvm_faultctx *,
747 struct vm_anon *, struct vm_page *);
748
749 static int uvm_fault_lower(
750 struct uvm_faultinfo *, struct uvm_faultctx *,
751 struct vm_page **);
752 static inline void uvm_fault_lower_lookup(
753 struct uvm_faultinfo *, const struct uvm_faultctx *,
754 struct vm_page **);
755 static inline void uvm_fault_lower_neighbor(
756 struct uvm_faultinfo *, const struct uvm_faultctx *,
757 vaddr_t, struct vm_page *, bool);
758 static inline int uvm_fault_lower_io(
759 struct uvm_faultinfo *, const struct uvm_faultctx *,
760 struct uvm_object **, struct vm_page **);
761 static inline int uvm_fault_lower_direct(
762 struct uvm_faultinfo *, struct uvm_faultctx *,
763 struct uvm_object *, struct vm_page *);
764 static inline int uvm_fault_lower_direct_loan(
765 struct uvm_faultinfo *, struct uvm_faultctx *,
766 struct uvm_object *, struct vm_page **,
767 struct vm_page **);
768 static inline int uvm_fault_lower_promote(
769 struct uvm_faultinfo *, struct uvm_faultctx *,
770 struct uvm_object *, struct vm_page *);
771 static int uvm_fault_lower_enter(
772 struct uvm_faultinfo *, const struct uvm_faultctx *,
773 struct uvm_object *,
774 struct vm_anon *, struct vm_page *);
775 static inline void uvm_fault_lower_done(
776 struct uvm_faultinfo *, const struct uvm_faultctx *,
777 struct uvm_object *, struct vm_page *);
778
779 int
780 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
781 vm_prot_t access_type, int fault_flag)
782 {
783 struct uvm_faultinfo ufi;
784 struct uvm_faultctx flt = {
785 .access_type = access_type,
786
787 /* don't look for neighborhood * pages on "wire" fault */
788 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
789
790 /* "wire" fault causes wiring of both mapping and paging */
791 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
792 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
793 };
794 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
795 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
796 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
797 int error;
798 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
799
800 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
801 orig_map, vaddr, access_type, fault_flag);
802
803 curcpu()->ci_data.cpu_nfault++;
804
805 /*
806 * init the IN parameters in the ufi
807 */
808
809 ufi.orig_map = orig_map;
810 ufi.orig_rvaddr = trunc_page(vaddr);
811 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
812
813 error = ERESTART;
814 while (error == ERESTART) { /* ReFault: */
815 anons = anons_store;
816 pages = pages_store;
817
818 error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
819 if (error != 0)
820 continue;
821
822 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
823 if (error != 0)
824 continue;
825
826 if (pages[flt.centeridx] == PGO_DONTCARE)
827 error = uvm_fault_upper(&ufi, &flt, anons);
828 else {
829 struct uvm_object * const uobj =
830 ufi.entry->object.uvm_obj;
831
832 if (uobj && uobj->pgops->pgo_fault != NULL) {
833 /*
834 * invoke "special" fault routine.
835 */
836 mutex_enter(uobj->vmobjlock);
837 /* locked: maps(read), amap(if there), uobj */
838 error = uobj->pgops->pgo_fault(&ufi,
839 flt.startva, pages, flt.npages,
840 flt.centeridx, flt.access_type,
841 PGO_LOCKED|PGO_SYNCIO);
842
843 /*
844 * locked: nothing, pgo_fault has unlocked
845 * everything
846 */
847
848 /*
849 * object fault routine responsible for
850 * pmap_update().
851 */
852 } else {
853 error = uvm_fault_lower(&ufi, &flt, pages);
854 }
855 }
856 }
857
858 if (flt.anon_spare != NULL) {
859 flt.anon_spare->an_ref--;
860 KASSERT(flt.anon_spare->an_ref == 0);
861 KASSERT(flt.anon_spare->an_lock == NULL);
862 uvm_anon_free(flt.anon_spare);
863 }
864 return error;
865 }
866
867 /*
868 * uvm_fault_check: check prot, handle needs-copy, etc.
869 *
870 * 1. lookup entry.
871 * 2. check protection.
872 * 3. adjust fault condition (mainly for simulated fault).
873 * 4. handle needs-copy (lazy amap copy).
874 * 5. establish range of interest for neighbor fault (aka pre-fault).
875 * 6. look up anons (if amap exists).
876 * 7. flush pages (if MADV_SEQUENTIAL)
877 *
878 * => called with nothing locked.
879 * => if we fail (result != 0) we unlock everything.
880 * => initialize/adjust many members of flt.
881 */
882
883 static int
884 uvm_fault_check(
885 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
886 struct vm_anon ***ranons, bool maxprot)
887 {
888 struct vm_amap *amap;
889 struct uvm_object *uobj;
890 vm_prot_t check_prot;
891 int nback, nforw;
892 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
893
894 /*
895 * lookup and lock the maps
896 */
897
898 if (uvmfault_lookup(ufi, false) == false) {
899 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr,
900 0,0,0);
901 return EFAULT;
902 }
903 /* locked: maps(read) */
904
905 #ifdef DIAGNOSTIC
906 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
907 printf("Page fault on non-pageable map:\n");
908 printf("ufi->map = %p\n", ufi->map);
909 printf("ufi->orig_map = %p\n", ufi->orig_map);
910 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
911 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
912 }
913 #endif
914
915 /*
916 * check protection
917 */
918
919 check_prot = maxprot ?
920 ufi->entry->max_protection : ufi->entry->protection;
921 if ((check_prot & flt->access_type) != flt->access_type) {
922 UVMHIST_LOG(maphist,
923 "<- protection failure (prot=0x%x, access=0x%x)",
924 ufi->entry->protection, flt->access_type, 0, 0);
925 uvmfault_unlockmaps(ufi, false);
926 return EACCES;
927 }
928
929 /*
930 * "enter_prot" is the protection we want to enter the page in at.
931 * for certain pages (e.g. copy-on-write pages) this protection can
932 * be more strict than ufi->entry->protection. "wired" means either
933 * the entry is wired or we are fault-wiring the pg.
934 */
935
936 flt->enter_prot = ufi->entry->protection;
937 if (VM_MAPENT_ISWIRED(ufi->entry))
938 flt->wire_mapping = true;
939
940 if (flt->wire_mapping) {
941 flt->access_type = flt->enter_prot; /* full access for wired */
942 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
943 } else {
944 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
945 }
946
947 flt->promote = false;
948
949 /*
950 * handle "needs_copy" case. if we need to copy the amap we will
951 * have to drop our readlock and relock it with a write lock. (we
952 * need a write lock to change anything in a map entry [e.g.
953 * needs_copy]).
954 */
955
956 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
957 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
958 KASSERT(!maxprot);
959 /* need to clear */
960 UVMHIST_LOG(maphist,
961 " need to clear needs_copy and refault",0,0,0,0);
962 uvmfault_unlockmaps(ufi, false);
963 uvmfault_amapcopy(ufi);
964 uvmexp.fltamcopy++;
965 return ERESTART;
966
967 } else {
968
969 /*
970 * ensure that we pmap_enter page R/O since
971 * needs_copy is still true
972 */
973
974 flt->enter_prot &= ~VM_PROT_WRITE;
975 }
976 }
977
978 /*
979 * identify the players
980 */
981
982 amap = ufi->entry->aref.ar_amap; /* upper layer */
983 uobj = ufi->entry->object.uvm_obj; /* lower layer */
984
985 /*
986 * check for a case 0 fault. if nothing backing the entry then
987 * error now.
988 */
989
990 if (amap == NULL && uobj == NULL) {
991 uvmfault_unlockmaps(ufi, false);
992 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
993 return EFAULT;
994 }
995
996 /*
997 * establish range of interest based on advice from mapper
998 * and then clip to fit map entry. note that we only want
999 * to do this the first time through the fault. if we
1000 * ReFault we will disable this by setting "narrow" to true.
1001 */
1002
1003 if (flt->narrow == false) {
1004
1005 /* wide fault (!narrow) */
1006 KASSERT(uvmadvice[ufi->entry->advice].advice ==
1007 ufi->entry->advice);
1008 nback = MIN(uvmadvice[ufi->entry->advice].nback,
1009 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1010 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1011 /*
1012 * note: "-1" because we don't want to count the
1013 * faulting page as forw
1014 */
1015 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1016 ((ufi->entry->end - ufi->orig_rvaddr) >>
1017 PAGE_SHIFT) - 1);
1018 flt->npages = nback + nforw + 1;
1019 flt->centeridx = nback;
1020
1021 flt->narrow = true; /* ensure only once per-fault */
1022
1023 } else {
1024
1025 /* narrow fault! */
1026 nback = nforw = 0;
1027 flt->startva = ufi->orig_rvaddr;
1028 flt->npages = 1;
1029 flt->centeridx = 0;
1030
1031 }
1032 /* offset from entry's start to pgs' start */
1033 const voff_t eoff = flt->startva - ufi->entry->start;
1034
1035 /* locked: maps(read) */
1036 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
1037 flt->narrow, nback, nforw, flt->startva);
1038 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1039 amap, uobj, 0);
1040
1041 /*
1042 * if we've got an amap, lock it and extract current anons.
1043 */
1044
1045 if (amap) {
1046 amap_lock(amap);
1047 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1048 } else {
1049 *ranons = NULL; /* to be safe */
1050 }
1051
1052 /* locked: maps(read), amap(if there) */
1053 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1054
1055 /*
1056 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1057 * now and then forget about them (for the rest of the fault).
1058 */
1059
1060 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1061
1062 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1063 0,0,0,0);
1064 /* flush back-page anons? */
1065 if (amap)
1066 uvmfault_anonflush(*ranons, nback);
1067
1068 /* flush object? */
1069 if (uobj) {
1070 voff_t uoff;
1071
1072 uoff = ufi->entry->offset + eoff;
1073 mutex_enter(uobj->vmobjlock);
1074 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1075 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1076 }
1077
1078 /* now forget about the backpages */
1079 if (amap)
1080 *ranons += nback;
1081 flt->startva += (nback << PAGE_SHIFT);
1082 flt->npages -= nback;
1083 flt->centeridx = 0;
1084 }
1085 /*
1086 * => startva is fixed
1087 * => npages is fixed
1088 */
1089 KASSERT(flt->startva <= ufi->orig_rvaddr);
1090 KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1091 flt->startva + (flt->npages << PAGE_SHIFT));
1092 return 0;
1093 }
1094
1095 /*
1096 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1097 *
1098 * iterate range of interest:
1099 * 1. check if h/w mapping exists. if yes, we don't care
1100 * 2. check if anon exists. if not, page is lower.
1101 * 3. if anon exists, enter h/w mapping for neighbors.
1102 *
1103 * => called with amap locked (if exists).
1104 */
1105
1106 static int
1107 uvm_fault_upper_lookup(
1108 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1109 struct vm_anon **anons, struct vm_page **pages)
1110 {
1111 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1112 int lcv;
1113 vaddr_t currva;
1114 bool shadowed;
1115 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1116
1117 /* locked: maps(read), amap(if there) */
1118 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1119
1120 /*
1121 * map in the backpages and frontpages we found in the amap in hopes
1122 * of preventing future faults. we also init the pages[] array as
1123 * we go.
1124 */
1125
1126 currva = flt->startva;
1127 shadowed = false;
1128 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1129 /*
1130 * don't play with VAs that are already mapped
1131 * (except for center)
1132 */
1133 if (lcv != flt->centeridx &&
1134 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1135 pages[lcv] = PGO_DONTCARE;
1136 continue;
1137 }
1138
1139 /*
1140 * unmapped or center page. check if any anon at this level.
1141 */
1142 if (amap == NULL || anons[lcv] == NULL) {
1143 pages[lcv] = NULL;
1144 continue;
1145 }
1146
1147 /*
1148 * check for present page and map if possible. re-activate it.
1149 */
1150
1151 pages[lcv] = PGO_DONTCARE;
1152 if (lcv == flt->centeridx) { /* save center for later! */
1153 shadowed = true;
1154 continue;
1155 }
1156
1157 struct vm_anon *anon = anons[lcv];
1158 struct vm_page *pg = anon->an_page;
1159
1160 KASSERT(anon->an_lock == amap->am_lock);
1161
1162 /* Ignore loaned and busy pages. */
1163 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
1164 uvm_fault_upper_neighbor(ufi, flt, currva,
1165 pg, anon->an_ref > 1);
1166 }
1167 }
1168
1169 /* locked: maps(read), amap(if there) */
1170 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1171 /* (shadowed == true) if there is an anon at the faulting address */
1172 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1173 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1174
1175 /*
1176 * note that if we are really short of RAM we could sleep in the above
1177 * call to pmap_enter with everything locked. bad?
1178 *
1179 * XXX Actually, that is bad; pmap_enter() should just fail in that
1180 * XXX case. --thorpej
1181 */
1182
1183 return 0;
1184 }
1185
1186 /*
1187 * uvm_fault_upper_neighbor: enter single lower neighbor page.
1188 *
1189 * => called with amap and anon locked.
1190 */
1191
1192 static void
1193 uvm_fault_upper_neighbor(
1194 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1195 vaddr_t currva, struct vm_page *pg, bool readonly)
1196 {
1197 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1198
1199 /* locked: amap, anon */
1200
1201 mutex_enter(&uvm_pageqlock);
1202 uvm_pageenqueue(pg);
1203 mutex_exit(&uvm_pageqlock);
1204 UVMHIST_LOG(maphist,
1205 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1206 ufi->orig_map->pmap, currva, pg, 0);
1207 uvmexp.fltnamap++;
1208
1209 /*
1210 * Since this page isn't the page that's actually faulting,
1211 * ignore pmap_enter() failures; it's not critical that we
1212 * enter these right now.
1213 */
1214
1215 (void) pmap_enter(ufi->orig_map->pmap, currva,
1216 VM_PAGE_TO_PHYS(pg),
1217 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1218 flt->enter_prot,
1219 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1220
1221 pmap_update(ufi->orig_map->pmap);
1222 }
1223
1224 /*
1225 * uvm_fault_upper: handle upper fault.
1226 *
1227 * 1. acquire anon lock.
1228 * 2. get anon. let uvmfault_anonget do the dirty work.
1229 * 3. handle loan.
1230 * 4. dispatch direct or promote handlers.
1231 */
1232
1233 static int
1234 uvm_fault_upper(
1235 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1236 struct vm_anon **anons)
1237 {
1238 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1239 struct vm_anon * const anon = anons[flt->centeridx];
1240 struct uvm_object *uobj;
1241 int error;
1242 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1243
1244 /* locked: maps(read), amap, anon */
1245 KASSERT(mutex_owned(amap->am_lock));
1246 KASSERT(anon->an_lock == amap->am_lock);
1247
1248 /*
1249 * handle case 1: fault on an anon in our amap
1250 */
1251
1252 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1253
1254 /*
1255 * no matter if we have case 1A or case 1B we are going to need to
1256 * have the anon's memory resident. ensure that now.
1257 */
1258
1259 /*
1260 * let uvmfault_anonget do the dirty work.
1261 * if it fails (!OK) it will unlock everything for us.
1262 * if it succeeds, locks are still valid and locked.
1263 * also, if it is OK, then the anon's page is on the queues.
1264 * if the page is on loan from a uvm_object, then anonget will
1265 * lock that object for us if it does not fail.
1266 */
1267
1268 error = uvmfault_anonget(ufi, amap, anon);
1269 switch (error) {
1270 case 0:
1271 break;
1272
1273 case ERESTART:
1274 return ERESTART;
1275
1276 case EAGAIN:
1277 kpause("fltagain1", false, hz/2, NULL);
1278 return ERESTART;
1279
1280 default:
1281 return error;
1282 }
1283
1284 /*
1285 * uobj is non null if the page is on loan from an object (i.e. uobj)
1286 */
1287
1288 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1289
1290 /* locked: maps(read), amap, anon, uobj(if one) */
1291 KASSERT(mutex_owned(amap->am_lock));
1292 KASSERT(anon->an_lock == amap->am_lock);
1293 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1294
1295 /*
1296 * special handling for loaned pages
1297 */
1298
1299 if (anon->an_page->loan_count) {
1300 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1301 if (error != 0)
1302 return error;
1303 }
1304
1305 /*
1306 * if we are case 1B then we will need to allocate a new blank
1307 * anon to transfer the data into. note that we have a lock
1308 * on anon, so no one can busy or release the page until we are done.
1309 * also note that the ref count can't drop to zero here because
1310 * it is > 1 and we are only dropping one ref.
1311 *
1312 * in the (hopefully very rare) case that we are out of RAM we
1313 * will unlock, wait for more RAM, and refault.
1314 *
1315 * if we are out of anon VM we kill the process (XXX: could wait?).
1316 */
1317
1318 if (flt->cow_now && anon->an_ref > 1) {
1319 flt->promote = true;
1320 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1321 } else {
1322 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1323 }
1324 return error;
1325 }
1326
1327 /*
1328 * uvm_fault_upper_loan: handle loaned upper page.
1329 *
1330 * 1. if not cow'ing now, simply adjust flt->enter_prot.
1331 * 2. if cow'ing now, and if ref count is 1, break loan.
1332 */
1333
1334 static int
1335 uvm_fault_upper_loan(
1336 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1337 struct vm_anon *anon, struct uvm_object **ruobj)
1338 {
1339 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1340 int error = 0;
1341 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1342
1343 if (!flt->cow_now) {
1344
1345 /*
1346 * for read faults on loaned pages we just cap the
1347 * protection at read-only.
1348 */
1349
1350 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1351
1352 } else {
1353 /*
1354 * note that we can't allow writes into a loaned page!
1355 *
1356 * if we have a write fault on a loaned page in an
1357 * anon then we need to look at the anon's ref count.
1358 * if it is greater than one then we are going to do
1359 * a normal copy-on-write fault into a new anon (this
1360 * is not a problem). however, if the reference count
1361 * is one (a case where we would normally allow a
1362 * write directly to the page) then we need to kill
1363 * the loan before we continue.
1364 */
1365
1366 /* >1 case is already ok */
1367 if (anon->an_ref == 1) {
1368 error = uvm_loanbreak_anon(anon, *ruobj);
1369 if (error != 0) {
1370 uvmfault_unlockall(ufi, amap, *ruobj);
1371 uvm_wait("flt_noram2");
1372 return ERESTART;
1373 }
1374 /* if we were a loan reciever uobj is gone */
1375 if (*ruobj)
1376 *ruobj = NULL;
1377 }
1378 }
1379 return error;
1380 }
1381
1382 /*
1383 * uvm_fault_upper_promote: promote upper page.
1384 *
1385 * 1. call uvmfault_promote.
1386 * 2. enqueue page.
1387 * 3. deref.
1388 * 4. pass page to uvm_fault_upper_enter.
1389 */
1390
1391 static int
1392 uvm_fault_upper_promote(
1393 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1394 struct uvm_object *uobj, struct vm_anon *anon)
1395 {
1396 struct vm_anon * const oanon = anon;
1397 struct vm_page *pg;
1398 int error;
1399 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1400
1401 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1402 uvmexp.flt_acow++;
1403
1404 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1405 &flt->anon_spare);
1406 switch (error) {
1407 case 0:
1408 break;
1409 case ERESTART:
1410 return ERESTART;
1411 default:
1412 return error;
1413 }
1414
1415 KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
1416
1417 pg = anon->an_page;
1418 mutex_enter(&uvm_pageqlock);
1419 uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
1420 mutex_exit(&uvm_pageqlock);
1421 pg->flags &= ~(PG_BUSY|PG_FAKE);
1422 UVM_PAGE_OWN(pg, NULL);
1423
1424 /* deref: can not drop to zero here by defn! */
1425 KASSERT(oanon->an_ref > 1);
1426 oanon->an_ref--;
1427
1428 /*
1429 * note: oanon is still locked, as is the new anon. we
1430 * need to check for this later when we unlock oanon; if
1431 * oanon != anon, we'll have to unlock anon, too.
1432 */
1433
1434 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1435 }
1436
1437 /*
1438 * uvm_fault_upper_direct: handle direct fault.
1439 */
1440
1441 static int
1442 uvm_fault_upper_direct(
1443 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1444 struct uvm_object *uobj, struct vm_anon *anon)
1445 {
1446 struct vm_anon * const oanon = anon;
1447 struct vm_page *pg;
1448 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1449
1450 uvmexp.flt_anon++;
1451 pg = anon->an_page;
1452 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1453 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1454
1455 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1456 }
1457
1458 /*
1459 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1460 */
1461
1462 static int
1463 uvm_fault_upper_enter(
1464 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1465 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1466 struct vm_anon *oanon)
1467 {
1468 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1469 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1470
1471 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1472 KASSERT(mutex_owned(amap->am_lock));
1473 KASSERT(anon->an_lock == amap->am_lock);
1474 KASSERT(oanon->an_lock == amap->am_lock);
1475 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1476
1477 /*
1478 * now map the page in.
1479 */
1480
1481 UVMHIST_LOG(maphist,
1482 " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1483 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1484 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1485 VM_PAGE_TO_PHYS(pg),
1486 flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1487 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1488
1489 /*
1490 * No need to undo what we did; we can simply think of
1491 * this as the pmap throwing away the mapping information.
1492 *
1493 * We do, however, have to go through the ReFault path,
1494 * as the map may change while we're asleep.
1495 */
1496
1497 uvmfault_unlockall(ufi, amap, uobj);
1498 if (!uvm_reclaimable()) {
1499 UVMHIST_LOG(maphist,
1500 "<- failed. out of VM",0,0,0,0);
1501 /* XXX instrumentation */
1502 return ENOMEM;
1503 }
1504 /* XXX instrumentation */
1505 uvm_wait("flt_pmfail1");
1506 return ERESTART;
1507 }
1508
1509 uvm_fault_upper_done(ufi, flt, anon, pg);
1510
1511 /*
1512 * done case 1! finish up by unlocking everything and returning success
1513 */
1514
1515 pmap_update(ufi->orig_map->pmap);
1516 uvmfault_unlockall(ufi, amap, uobj);
1517 return 0;
1518 }
1519
1520 /*
1521 * uvm_fault_upper_done: queue upper center page.
1522 */
1523
1524 static void
1525 uvm_fault_upper_done(
1526 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1527 struct vm_anon *anon, struct vm_page *pg)
1528 {
1529 const bool wire_paging = flt->wire_paging;
1530
1531 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1532
1533 /*
1534 * ... update the page queues.
1535 */
1536
1537 mutex_enter(&uvm_pageqlock);
1538 if (wire_paging) {
1539 uvm_pagewire(pg);
1540
1541 /*
1542 * since the now-wired page cannot be paged out,
1543 * release its swap resources for others to use.
1544 * since an anon with no swap cannot be PG_CLEAN,
1545 * clear its clean flag now.
1546 */
1547
1548 pg->flags &= ~(PG_CLEAN);
1549
1550 } else {
1551 uvm_pageactivate(pg);
1552 }
1553 mutex_exit(&uvm_pageqlock);
1554
1555 if (wire_paging) {
1556 uvm_anon_dropswap(anon);
1557 }
1558 }
1559
1560 /*
1561 * uvm_fault_lower: handle lower fault.
1562 *
1563 * 1. check uobj
1564 * 1.1. if null, ZFOD.
1565 * 1.2. if not null, look up unnmapped neighbor pages.
1566 * 2. for center page, check if promote.
1567 * 2.1. ZFOD always needs promotion.
1568 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1569 * 3. if uobj is not ZFOD and page is not found, do i/o.
1570 * 4. dispatch either direct / promote fault.
1571 */
1572
1573 static int
1574 uvm_fault_lower(
1575 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1576 struct vm_page **pages)
1577 {
1578 #ifdef DIAGNOSTIC
1579 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1580 #endif
1581 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1582 struct vm_page *uobjpage;
1583 int error;
1584 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1585
1586 /*
1587 * now, if the desired page is not shadowed by the amap and we have
1588 * a backing object that does not have a special fault routine, then
1589 * we ask (with pgo_get) the object for resident pages that we care
1590 * about and attempt to map them in. we do not let pgo_get block
1591 * (PGO_LOCKED).
1592 */
1593
1594 if (uobj == NULL) {
1595 /* zero fill; don't care neighbor pages */
1596 uobjpage = NULL;
1597 } else {
1598 uvm_fault_lower_lookup(ufi, flt, pages);
1599 uobjpage = pages[flt->centeridx];
1600 }
1601
1602 /*
1603 * note that at this point we are done with any front or back pages.
1604 * we are now going to focus on the center page (i.e. the one we've
1605 * faulted on). if we have faulted on the upper (anon) layer
1606 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1607 * not touched it yet). if we have faulted on the bottom (uobj)
1608 * layer [i.e. case 2] and the page was both present and available,
1609 * then we've got a pointer to it as "uobjpage" and we've already
1610 * made it BUSY.
1611 */
1612
1613 /*
1614 * locked:
1615 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1616 */
1617 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1618 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1619 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1620
1621 /*
1622 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1623 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1624 * have a backing object, check and see if we are going to promote
1625 * the data up to an anon during the fault.
1626 */
1627
1628 if (uobj == NULL) {
1629 uobjpage = PGO_DONTCARE;
1630 flt->promote = true; /* always need anon here */
1631 } else {
1632 KASSERT(uobjpage != PGO_DONTCARE);
1633 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1634 }
1635 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1636 flt->promote, (uobj == NULL), 0,0);
1637
1638 /*
1639 * if uobjpage is not null then we do not need to do I/O to get the
1640 * uobjpage.
1641 *
1642 * if uobjpage is null, then we need to unlock and ask the pager to
1643 * get the data for us. once we have the data, we need to reverify
1644 * the state the world. we are currently not holding any resources.
1645 */
1646
1647 if (uobjpage) {
1648 /* update rusage counters */
1649 curlwp->l_ru.ru_minflt++;
1650 } else {
1651 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1652 if (error != 0)
1653 return error;
1654 }
1655
1656 /*
1657 * locked:
1658 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1659 */
1660 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1661 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1662 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1663
1664 /*
1665 * notes:
1666 * - at this point uobjpage can not be NULL
1667 * - at this point uobjpage can not be PG_RELEASED (since we checked
1668 * for it above)
1669 * - at this point uobjpage could be PG_WANTED (handle later)
1670 */
1671
1672 KASSERT(uobjpage != NULL);
1673 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1674 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1675 (uobjpage->flags & PG_CLEAN) != 0);
1676
1677 if (!flt->promote) {
1678 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1679 } else {
1680 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1681 }
1682 return error;
1683 }
1684
1685 /*
1686 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1687 *
1688 * 1. get on-memory pages.
1689 * 2. if failed, give up (get only center page later).
1690 * 3. if succeeded, enter h/w mapping of neighbor pages.
1691 */
1692
1693 static void
1694 uvm_fault_lower_lookup(
1695 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1696 struct vm_page **pages)
1697 {
1698 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1699 int lcv, gotpages;
1700 vaddr_t currva;
1701 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1702
1703 mutex_enter(uobj->vmobjlock);
1704 /* Locked: maps(read), amap(if there), uobj */
1705
1706 uvmexp.fltlget++;
1707 gotpages = flt->npages;
1708 (void) uobj->pgops->pgo_get(uobj,
1709 ufi->entry->offset + flt->startva - ufi->entry->start,
1710 pages, &gotpages, flt->centeridx,
1711 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1712
1713 KASSERT(mutex_owned(uobj->vmobjlock));
1714
1715 /*
1716 * check for pages to map, if we got any
1717 */
1718
1719 if (gotpages == 0) {
1720 pages[flt->centeridx] = NULL;
1721 return;
1722 }
1723
1724 currva = flt->startva;
1725 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1726 struct vm_page *curpg;
1727
1728 curpg = pages[lcv];
1729 if (curpg == NULL || curpg == PGO_DONTCARE) {
1730 continue;
1731 }
1732 KASSERT(curpg->uobject == uobj);
1733
1734 /*
1735 * if center page is resident and not PG_BUSY|PG_RELEASED
1736 * then pgo_get made it PG_BUSY for us and gave us a handle
1737 * to it.
1738 */
1739
1740 if (lcv == flt->centeridx) {
1741 UVMHIST_LOG(maphist, " got uobjpage "
1742 "(0x%x) with locked get",
1743 curpg, 0,0,0);
1744 } else {
1745 bool readonly = (curpg->flags & PG_RDONLY)
1746 || (curpg->loan_count > 0)
1747 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1748
1749 uvm_fault_lower_neighbor(ufi, flt,
1750 currva, curpg, readonly);
1751 }
1752 }
1753 pmap_update(ufi->orig_map->pmap);
1754 }
1755
1756 /*
1757 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1758 */
1759
1760 static void
1761 uvm_fault_lower_neighbor(
1762 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1763 vaddr_t currva, struct vm_page *pg, bool readonly)
1764 {
1765 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1766
1767 /* locked: maps(read), amap(if there), uobj */
1768
1769 /*
1770 * calling pgo_get with PGO_LOCKED returns us pages which
1771 * are neither busy nor released, so we don't need to check
1772 * for this. we can just directly enter the pages.
1773 */
1774
1775 mutex_enter(&uvm_pageqlock);
1776 uvm_pageenqueue(pg);
1777 mutex_exit(&uvm_pageqlock);
1778 UVMHIST_LOG(maphist,
1779 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1780 ufi->orig_map->pmap, currva, pg, 0);
1781 uvmexp.fltnomap++;
1782
1783 /*
1784 * Since this page isn't the page that's actually faulting,
1785 * ignore pmap_enter() failures; it's not critical that we
1786 * enter these right now.
1787 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1788 * held the lock the whole time we've had the handle.
1789 */
1790 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1791 KASSERT((pg->flags & PG_RELEASED) == 0);
1792 KASSERT((pg->flags & PG_WANTED) == 0);
1793 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
1794 pg->flags &= ~(PG_BUSY);
1795 UVM_PAGE_OWN(pg, NULL);
1796
1797 KASSERT(mutex_owned(pg->uobject->vmobjlock));
1798 (void) pmap_enter(ufi->orig_map->pmap, currva,
1799 VM_PAGE_TO_PHYS(pg),
1800 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1801 flt->enter_prot & MASK(ufi->entry),
1802 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1803 }
1804
1805 /*
1806 * uvm_fault_lower_io: get lower page from backing store.
1807 *
1808 * 1. unlock everything, because i/o will block.
1809 * 2. call pgo_get.
1810 * 3. if failed, recover.
1811 * 4. if succeeded, relock everything and verify things.
1812 */
1813
1814 static int
1815 uvm_fault_lower_io(
1816 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1817 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1818 {
1819 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1820 struct uvm_object *uobj = *ruobj;
1821 struct vm_page *pg;
1822 bool locked;
1823 int gotpages;
1824 int error;
1825 voff_t uoff;
1826 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1827
1828 /* update rusage counters */
1829 curlwp->l_ru.ru_majflt++;
1830
1831 /* Locked: maps(read), amap(if there), uobj */
1832 uvmfault_unlockall(ufi, amap, NULL);
1833
1834 /* Locked: uobj */
1835 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1836
1837 uvmexp.fltget++;
1838 gotpages = 1;
1839 pg = NULL;
1840 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1841 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1842 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1843 PGO_SYNCIO);
1844 /* locked: pg(if no error) */
1845
1846 /*
1847 * recover from I/O
1848 */
1849
1850 if (error) {
1851 if (error == EAGAIN) {
1852 UVMHIST_LOG(maphist,
1853 " pgo_get says TRY AGAIN!",0,0,0,0);
1854 kpause("fltagain2", false, hz/2, NULL);
1855 return ERESTART;
1856 }
1857
1858 #if 0
1859 KASSERT(error != ERESTART);
1860 #else
1861 /* XXXUEBS don't re-fault? */
1862 if (error == ERESTART)
1863 error = EIO;
1864 #endif
1865
1866 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1867 error, 0,0,0);
1868 return error;
1869 }
1870
1871 /*
1872 * re-verify the state of the world by first trying to relock
1873 * the maps. always relock the object.
1874 */
1875
1876 locked = uvmfault_relock(ufi);
1877 if (locked && amap)
1878 amap_lock(amap);
1879
1880 /* might be changed */
1881 uobj = pg->uobject;
1882
1883 mutex_enter(uobj->vmobjlock);
1884 KASSERT((pg->flags & PG_BUSY) != 0);
1885
1886 mutex_enter(&uvm_pageqlock);
1887 uvm_pageactivate(pg);
1888 mutex_exit(&uvm_pageqlock);
1889
1890 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1891 /* locked(!locked): uobj, pg */
1892
1893 /*
1894 * verify that the page has not be released and re-verify
1895 * that amap slot is still free. if there is a problem,
1896 * we unlock and clean up.
1897 */
1898
1899 if ((pg->flags & PG_RELEASED) != 0 ||
1900 (locked && amap && amap_lookup(&ufi->entry->aref,
1901 ufi->orig_rvaddr - ufi->entry->start))) {
1902 if (locked)
1903 uvmfault_unlockall(ufi, amap, NULL);
1904 locked = false;
1905 }
1906
1907 /*
1908 * didn't get the lock? release the page and retry.
1909 */
1910
1911 if (locked == false) {
1912 UVMHIST_LOG(maphist,
1913 " wasn't able to relock after fault: retry",
1914 0,0,0,0);
1915 if (pg->flags & PG_WANTED) {
1916 wakeup(pg);
1917 }
1918 if ((pg->flags & PG_RELEASED) == 0) {
1919 pg->flags &= ~(PG_BUSY | PG_WANTED);
1920 UVM_PAGE_OWN(pg, NULL);
1921 } else {
1922 uvmexp.fltpgrele++;
1923 uvm_pagefree(pg);
1924 }
1925 mutex_exit(uobj->vmobjlock);
1926 return ERESTART;
1927 }
1928
1929 /*
1930 * we have the data in pg which is busy and
1931 * not released. we are holding object lock (so the page
1932 * can't be released on us).
1933 */
1934
1935 /* locked: maps(read), amap(if !null), uobj, pg */
1936
1937 *ruobj = uobj;
1938 *ruobjpage = pg;
1939 return 0;
1940 }
1941
1942 /*
1943 * uvm_fault_lower_direct: fault lower center page
1944 *
1945 * 1. adjust flt->enter_prot.
1946 * 2. if page is loaned, resolve.
1947 */
1948
1949 int
1950 uvm_fault_lower_direct(
1951 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1952 struct uvm_object *uobj, struct vm_page *uobjpage)
1953 {
1954 struct vm_page *pg;
1955 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1956
1957 /*
1958 * we are not promoting. if the mapping is COW ensure that we
1959 * don't give more access than we should (e.g. when doing a read
1960 * fault on a COPYONWRITE mapping we want to map the COW page in
1961 * R/O even though the entry protection could be R/W).
1962 *
1963 * set "pg" to the page we want to map in (uobjpage, usually)
1964 */
1965
1966 uvmexp.flt_obj++;
1967 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1968 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1969 flt->enter_prot &= ~VM_PROT_WRITE;
1970 pg = uobjpage; /* map in the actual object */
1971
1972 KASSERT(uobjpage != PGO_DONTCARE);
1973
1974 /*
1975 * we are faulting directly on the page. be careful
1976 * about writing to loaned pages...
1977 */
1978
1979 if (uobjpage->loan_count) {
1980 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1981 }
1982 KASSERT(pg == uobjpage);
1983
1984 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1985 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
1986 }
1987
1988 /*
1989 * uvm_fault_lower_direct_loan: resolve loaned page.
1990 *
1991 * 1. if not cow'ing, adjust flt->enter_prot.
1992 * 2. if cow'ing, break loan.
1993 */
1994
1995 static int
1996 uvm_fault_lower_direct_loan(
1997 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1998 struct uvm_object *uobj, struct vm_page **rpg,
1999 struct vm_page **ruobjpage)
2000 {
2001 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2002 struct vm_page *pg;
2003 struct vm_page *uobjpage = *ruobjpage;
2004 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
2005
2006 if (!flt->cow_now) {
2007 /* read fault: cap the protection at readonly */
2008 /* cap! */
2009 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2010 } else {
2011 /* write fault: must break the loan here */
2012
2013 pg = uvm_loanbreak(uobjpage);
2014 if (pg == NULL) {
2015
2016 /*
2017 * drop ownership of page, it can't be released
2018 */
2019
2020 if (uobjpage->flags & PG_WANTED)
2021 wakeup(uobjpage);
2022 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2023 UVM_PAGE_OWN(uobjpage, NULL);
2024
2025 uvmfault_unlockall(ufi, amap, uobj);
2026 UVMHIST_LOG(maphist,
2027 " out of RAM breaking loan, waiting",
2028 0,0,0,0);
2029 uvmexp.fltnoram++;
2030 uvm_wait("flt_noram4");
2031 return ERESTART;
2032 }
2033 *rpg = pg;
2034 *ruobjpage = pg;
2035 }
2036 return 0;
2037 }
2038
2039 /*
2040 * uvm_fault_lower_promote: promote lower page.
2041 *
2042 * 1. call uvmfault_promote.
2043 * 2. fill in data.
2044 * 3. if not ZFOD, dispose old page.
2045 */
2046
2047 int
2048 uvm_fault_lower_promote(
2049 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2050 struct uvm_object *uobj, struct vm_page *uobjpage)
2051 {
2052 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2053 struct vm_anon *anon;
2054 struct vm_page *pg;
2055 int error;
2056 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2057
2058 KASSERT(amap != NULL);
2059
2060 /*
2061 * If we are going to promote the data to an anon we
2062 * allocate a blank anon here and plug it into our amap.
2063 */
2064 error = uvmfault_promote(ufi, NULL, uobjpage,
2065 &anon, &flt->anon_spare);
2066 switch (error) {
2067 case 0:
2068 break;
2069 case ERESTART:
2070 return ERESTART;
2071 default:
2072 return error;
2073 }
2074
2075 pg = anon->an_page;
2076
2077 /*
2078 * Fill in the data.
2079 */
2080 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2081
2082 if (uobjpage != PGO_DONTCARE) {
2083 uvmexp.flt_prcopy++;
2084
2085 /*
2086 * promote to shared amap? make sure all sharing
2087 * procs see it
2088 */
2089
2090 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2091 pmap_page_protect(uobjpage, VM_PROT_NONE);
2092 /*
2093 * XXX: PAGE MIGHT BE WIRED!
2094 */
2095 }
2096
2097 /*
2098 * dispose of uobjpage. it can't be PG_RELEASED
2099 * since we still hold the object lock.
2100 */
2101
2102 if (uobjpage->flags & PG_WANTED) {
2103 /* still have the obj lock */
2104 wakeup(uobjpage);
2105 }
2106 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2107 UVM_PAGE_OWN(uobjpage, NULL);
2108
2109 UVMHIST_LOG(maphist,
2110 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2111 uobjpage, anon, pg, 0);
2112
2113 } else {
2114 uvmexp.flt_przero++;
2115
2116 /*
2117 * Page is zero'd and marked dirty by
2118 * uvmfault_promote().
2119 */
2120
2121 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2122 anon, pg, 0, 0);
2123 }
2124
2125 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2126 }
2127
2128 /*
2129 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2130 * from the lower page.
2131 */
2132
2133 int
2134 uvm_fault_lower_enter(
2135 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2136 struct uvm_object *uobj,
2137 struct vm_anon *anon, struct vm_page *pg)
2138 {
2139 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2140 int error;
2141 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2142
2143 /*
2144 * Locked:
2145 *
2146 * maps(read), amap(if !null), uobj(if !null),
2147 * anon(if !null), pg(if anon), unlock_uobj(if !null)
2148 *
2149 * Note: pg is either the uobjpage or the new page in the new anon.
2150 */
2151 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
2152 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
2153 KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2154 KASSERT((pg->flags & PG_BUSY) != 0);
2155
2156 /*
2157 * all resources are present. we can now map it in and free our
2158 * resources.
2159 */
2160
2161 UVMHIST_LOG(maphist,
2162 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2163 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2164 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2165 (pg->flags & PG_RDONLY) == 0);
2166 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2167 VM_PAGE_TO_PHYS(pg),
2168 (pg->flags & PG_RDONLY) != 0 ?
2169 flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2170 flt->access_type | PMAP_CANFAIL |
2171 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2172
2173 /*
2174 * No need to undo what we did; we can simply think of
2175 * this as the pmap throwing away the mapping information.
2176 *
2177 * We do, however, have to go through the ReFault path,
2178 * as the map may change while we're asleep.
2179 */
2180
2181 /*
2182 * ensure that the page is queued in the case that
2183 * we just promoted the page.
2184 */
2185
2186 mutex_enter(&uvm_pageqlock);
2187 uvm_pageenqueue(pg);
2188 mutex_exit(&uvm_pageqlock);
2189
2190 if (pg->flags & PG_WANTED)
2191 wakeup(pg);
2192
2193 /*
2194 * note that pg can't be PG_RELEASED since we did not drop
2195 * the object lock since the last time we checked.
2196 */
2197 KASSERT((pg->flags & PG_RELEASED) == 0);
2198
2199 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2200 UVM_PAGE_OWN(pg, NULL);
2201
2202 uvmfault_unlockall(ufi, amap, uobj);
2203 if (!uvm_reclaimable()) {
2204 UVMHIST_LOG(maphist,
2205 "<- failed. out of VM",0,0,0,0);
2206 /* XXX instrumentation */
2207 error = ENOMEM;
2208 return error;
2209 }
2210 /* XXX instrumentation */
2211 uvm_wait("flt_pmfail2");
2212 return ERESTART;
2213 }
2214
2215 uvm_fault_lower_done(ufi, flt, uobj, pg);
2216
2217 /*
2218 * note that pg can't be PG_RELEASED since we did not drop the object
2219 * lock since the last time we checked.
2220 */
2221 KASSERT((pg->flags & PG_RELEASED) == 0);
2222 if (pg->flags & PG_WANTED)
2223 wakeup(pg);
2224 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2225 UVM_PAGE_OWN(pg, NULL);
2226
2227 pmap_update(ufi->orig_map->pmap);
2228 uvmfault_unlockall(ufi, amap, uobj);
2229
2230 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2231 return 0;
2232 }
2233
2234 /*
2235 * uvm_fault_lower_done: queue lower center page.
2236 */
2237
2238 void
2239 uvm_fault_lower_done(
2240 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2241 struct uvm_object *uobj, struct vm_page *pg)
2242 {
2243 bool dropswap = false;
2244
2245 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2246
2247 mutex_enter(&uvm_pageqlock);
2248 if (flt->wire_paging) {
2249 uvm_pagewire(pg);
2250 if (pg->pqflags & PQ_AOBJ) {
2251
2252 /*
2253 * since the now-wired page cannot be paged out,
2254 * release its swap resources for others to use.
2255 * since an aobj page with no swap cannot be PG_CLEAN,
2256 * clear its clean flag now.
2257 */
2258
2259 KASSERT(uobj != NULL);
2260 pg->flags &= ~(PG_CLEAN);
2261 dropswap = true;
2262 }
2263 } else {
2264 uvm_pageactivate(pg);
2265 }
2266 mutex_exit(&uvm_pageqlock);
2267
2268 if (dropswap) {
2269 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2270 }
2271 }
2272
2273
2274 /*
2275 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2276 *
2277 * => map may be read-locked by caller, but MUST NOT be write-locked.
2278 * => if map is read-locked, any operations which may cause map to
2279 * be write-locked in uvm_fault() must be taken care of by
2280 * the caller. See uvm_map_pageable().
2281 */
2282
2283 int
2284 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2285 vm_prot_t access_type, int maxprot)
2286 {
2287 vaddr_t va;
2288 int error;
2289
2290 /*
2291 * now fault it in a page at a time. if the fault fails then we have
2292 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2293 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2294 */
2295
2296 /*
2297 * XXX work around overflowing a vaddr_t. this prevents us from
2298 * wiring the last page in the address space, though.
2299 */
2300 if (start > end) {
2301 return EFAULT;
2302 }
2303
2304 for (va = start; va < end; va += PAGE_SIZE) {
2305 error = uvm_fault_internal(map, va, access_type,
2306 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2307 if (error) {
2308 if (va != start) {
2309 uvm_fault_unwire(map, start, va);
2310 }
2311 return error;
2312 }
2313 }
2314 return 0;
2315 }
2316
2317 /*
2318 * uvm_fault_unwire(): unwire range of virtual space.
2319 */
2320
2321 void
2322 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2323 {
2324 vm_map_lock_read(map);
2325 uvm_fault_unwire_locked(map, start, end);
2326 vm_map_unlock_read(map);
2327 }
2328
2329 /*
2330 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2331 *
2332 * => map must be at least read-locked.
2333 */
2334
2335 void
2336 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2337 {
2338 struct vm_map_entry *entry, *oentry;
2339 pmap_t pmap = vm_map_pmap(map);
2340 vaddr_t va;
2341 paddr_t pa;
2342 struct vm_page *pg;
2343
2344 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2345
2346 /*
2347 * we assume that the area we are unwiring has actually been wired
2348 * in the first place. this means that we should be able to extract
2349 * the PAs from the pmap. we also lock out the page daemon so that
2350 * we can call uvm_pageunwire.
2351 */
2352
2353 /*
2354 * find the beginning map entry for the region.
2355 */
2356
2357 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2358 if (uvm_map_lookup_entry(map, start, &entry) == false)
2359 panic("uvm_fault_unwire_locked: address not in map");
2360
2361 oentry = NULL;
2362 for (va = start; va < end; va += PAGE_SIZE) {
2363 if (pmap_extract(pmap, va, &pa) == false)
2364 continue;
2365
2366 /*
2367 * find the map entry for the current address.
2368 */
2369
2370 KASSERT(va >= entry->start);
2371 while (va >= entry->end) {
2372 KASSERT(entry->next != &map->header &&
2373 entry->next->start <= entry->end);
2374 entry = entry->next;
2375 }
2376
2377 /*
2378 * lock it.
2379 */
2380
2381 if (entry != oentry) {
2382 if (oentry != NULL) {
2383 mutex_exit(&uvm_pageqlock);
2384 uvm_map_unlock_entry(oentry);
2385 }
2386 uvm_map_lock_entry(entry);
2387 mutex_enter(&uvm_pageqlock);
2388 oentry = entry;
2389 }
2390
2391 /*
2392 * if the entry is no longer wired, tell the pmap.
2393 */
2394
2395 if (VM_MAPENT_ISWIRED(entry) == 0)
2396 pmap_unwire(pmap, va);
2397
2398 pg = PHYS_TO_VM_PAGE(pa);
2399 if (pg)
2400 uvm_pageunwire(pg);
2401 }
2402
2403 if (oentry != NULL) {
2404 mutex_exit(&uvm_pageqlock);
2405 uvm_map_unlock_entry(entry);
2406 }
2407 }
2408