uvm_fault.c revision 1.194.2.2 1 /* $NetBSD: uvm_fault.c,v 1.194.2.2 2017/12/03 11:39:22 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 */
29
30 /*
31 * uvm_fault.c: fault handler
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.194.2.2 2017/12/03 11:39:22 jdolecek Exp $");
36
37 #include "opt_uvmhist.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/mman.h>
43
44 #include <uvm/uvm.h>
45
46 /*
47 *
48 * a word on page faults:
49 *
50 * types of page faults we handle:
51 *
52 * CASE 1: upper layer faults CASE 2: lower layer faults
53 *
54 * CASE 1A CASE 1B CASE 2A CASE 2B
55 * read/write1 write>1 read/write +-cow_write/zero
56 * | | | |
57 * +--|--+ +--|--+ +-----+ + | + | +-----+
58 * amap | V | | ---------> new | | | | ^ |
59 * +-----+ +-----+ +-----+ + | + | +--|--+
60 * | | |
61 * +-----+ +-----+ +--|--+ | +--|--+
62 * uobj | d/c | | d/c | | V | +----+ |
63 * +-----+ +-----+ +-----+ +-----+
64 *
65 * d/c = don't care
66 *
67 * case [0]: layerless fault
68 * no amap or uobj is present. this is an error.
69 *
70 * case [1]: upper layer fault [anon active]
71 * 1A: [read] or [write with anon->an_ref == 1]
72 * I/O takes place in upper level anon and uobj is not touched.
73 * 1B: [write with anon->an_ref > 1]
74 * new anon is alloc'd and data is copied off ["COW"]
75 *
76 * case [2]: lower layer fault [uobj]
77 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78 * I/O takes place directly in object.
79 * 2B: [write to copy_on_write] or [read on NULL uobj]
80 * data is "promoted" from uobj to a new anon.
81 * if uobj is null, then we zero fill.
82 *
83 * we follow the standard UVM locking protocol ordering:
84 *
85 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86 * we hold a PG_BUSY page if we unlock for I/O
87 *
88 *
89 * the code is structured as follows:
90 *
91 * - init the "IN" params in the ufi structure
92 * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
93 * - do lookups [locks maps], check protection, handle needs_copy
94 * - check for case 0 fault (error)
95 * - establish "range" of fault
96 * - if we have an amap lock it and extract the anons
97 * - if sequential advice deactivate pages behind us
98 * - at the same time check pmap for unmapped areas and anon for pages
99 * that we could map in (and do map it if found)
100 * - check object for resident pages that we could map in
101 * - if (case 2) goto Case2
102 * - >>> handle case 1
103 * - ensure source anon is resident in RAM
104 * - if case 1B alloc new anon and copy from source
105 * - map the correct page in
106 * Case2:
107 * - >>> handle case 2
108 * - ensure source page is resident (if uobj)
109 * - if case 2B alloc new anon and copy from source (could be zero
110 * fill if uobj == NULL)
111 * - map the correct page in
112 * - done!
113 *
114 * note on paging:
115 * if we have to do I/O we place a PG_BUSY page in the correct object,
116 * unlock everything, and do the I/O. when I/O is done we must reverify
117 * the state of the world before assuming that our data structures are
118 * valid. [because mappings could change while the map is unlocked]
119 *
120 * alternative 1: unbusy the page in question and restart the page fault
121 * from the top (ReFault). this is easy but does not take advantage
122 * of the information that we already have from our previous lookup,
123 * although it is possible that the "hints" in the vm_map will help here.
124 *
125 * alternative 2: the system already keeps track of a "version" number of
126 * a map. [i.e. every time you write-lock a map (e.g. to change a
127 * mapping) you bump the version number up by one...] so, we can save
128 * the version number of the map before we release the lock and start I/O.
129 * then when I/O is done we can relock and check the version numbers
130 * to see if anything changed. this might save us some over 1 because
131 * we don't have to unbusy the page and may be less compares(?).
132 *
133 * alternative 3: put in backpointers or a way to "hold" part of a map
134 * in place while I/O is in progress. this could be complex to
135 * implement (especially with structures like amap that can be referenced
136 * by multiple map entries, and figuring out what should wait could be
137 * complex as well...).
138 *
139 * we use alternative 2. given that we are multi-threaded now we may want
140 * to reconsider the choice.
141 */
142
143 /*
144 * local data structures
145 */
146
147 struct uvm_advice {
148 int advice;
149 int nback;
150 int nforw;
151 };
152
153 /*
154 * page range array:
155 * note: index in array must match "advice" value
156 * XXX: borrowed numbers from freebsd. do they work well for us?
157 */
158
159 static const struct uvm_advice uvmadvice[] = {
160 { UVM_ADV_NORMAL, 3, 4 },
161 { UVM_ADV_RANDOM, 0, 0 },
162 { UVM_ADV_SEQUENTIAL, 8, 7},
163 };
164
165 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
166
167 /*
168 * private prototypes
169 */
170
171 /*
172 * externs from other modules
173 */
174
175 extern int start_init_exec; /* Is init_main() done / init running? */
176
177 /*
178 * inline functions
179 */
180
181 /*
182 * uvmfault_anonflush: try and deactivate pages in specified anons
183 *
184 * => does not have to deactivate page if it is busy
185 */
186
187 static inline void
188 uvmfault_anonflush(struct vm_anon **anons, int n)
189 {
190 int lcv;
191 struct vm_page *pg;
192
193 for (lcv = 0; lcv < n; lcv++) {
194 if (anons[lcv] == NULL)
195 continue;
196 KASSERT(mutex_owned(anons[lcv]->an_lock));
197 pg = anons[lcv]->an_page;
198 if (pg && (pg->flags & PG_BUSY) == 0) {
199 mutex_enter(&uvm_pageqlock);
200 if (pg->wire_count == 0) {
201 uvm_pagedeactivate(pg);
202 }
203 mutex_exit(&uvm_pageqlock);
204 }
205 }
206 }
207
208 /*
209 * normal functions
210 */
211
212 /*
213 * uvmfault_amapcopy: clear "needs_copy" in a map.
214 *
215 * => called with VM data structures unlocked (usually, see below)
216 * => we get a write lock on the maps and clear needs_copy for a VA
217 * => if we are out of RAM we sleep (waiting for more)
218 */
219
220 static void
221 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
222 {
223 for (;;) {
224
225 /*
226 * no mapping? give up.
227 */
228
229 if (uvmfault_lookup(ufi, true) == false)
230 return;
231
232 /*
233 * copy if needed.
234 */
235
236 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
237 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
238 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
239
240 /*
241 * didn't work? must be out of RAM. unlock and sleep.
242 */
243
244 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
245 uvmfault_unlockmaps(ufi, true);
246 uvm_wait("fltamapcopy");
247 continue;
248 }
249
250 /*
251 * got it! unlock and return.
252 */
253
254 uvmfault_unlockmaps(ufi, true);
255 return;
256 }
257 /*NOTREACHED*/
258 }
259
260 /*
261 * uvmfault_anonget: get data in an anon into a non-busy, non-released
262 * page in that anon.
263 *
264 * => Map, amap and thus anon should be locked by caller.
265 * => If we fail, we unlock everything and error is returned.
266 * => If we are successful, return with everything still locked.
267 * => We do not move the page on the queues [gets moved later]. If we
268 * allocate a new page [we_own], it gets put on the queues. Either way,
269 * the result is that the page is on the queues at return time
270 * => For pages which are on loan from a uvm_object (and thus are not owned
271 * by the anon): if successful, return with the owning object locked.
272 * The caller must unlock this object when it unlocks everything else.
273 */
274
275 int
276 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
277 struct vm_anon *anon)
278 {
279 struct vm_page *pg;
280 int error;
281
282 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
283 KASSERT(mutex_owned(anon->an_lock));
284 KASSERT(anon->an_lock == amap->am_lock);
285
286 /* Increment the counters.*/
287 uvmexp.fltanget++;
288 if (anon->an_page) {
289 curlwp->l_ru.ru_minflt++;
290 } else {
291 curlwp->l_ru.ru_majflt++;
292 }
293 error = 0;
294
295 /*
296 * Loop until we get the anon data, or fail.
297 */
298
299 for (;;) {
300 bool we_own, locked;
301 /*
302 * Note: 'we_own' will become true if we set PG_BUSY on a page.
303 */
304 we_own = false;
305 pg = anon->an_page;
306
307 /*
308 * If there is a resident page and it is loaned, then anon
309 * may not own it. Call out to uvm_anon_lockloanpg() to
310 * identify and lock the real owner of the page.
311 */
312
313 if (pg && pg->loan_count)
314 pg = uvm_anon_lockloanpg(anon);
315
316 /*
317 * Is page resident? Make sure it is not busy/released.
318 */
319
320 if (pg) {
321
322 /*
323 * at this point, if the page has a uobject [meaning
324 * we have it on loan], then that uobject is locked
325 * by us! if the page is busy, we drop all the
326 * locks (including uobject) and try again.
327 */
328
329 if ((pg->flags & PG_BUSY) == 0) {
330 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
331 return 0;
332 }
333 pg->flags |= PG_WANTED;
334 uvmexp.fltpgwait++;
335
336 /*
337 * The last unlock must be an atomic unlock and wait
338 * on the owner of page.
339 */
340
341 if (pg->uobject) {
342 /* Owner of page is UVM object. */
343 uvmfault_unlockall(ufi, amap, NULL);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 pg->uobject->vmobjlock,
348 false, "anonget1", 0);
349 } else {
350 /* Owner of page is anon. */
351 uvmfault_unlockall(ufi, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
355 false, "anonget2", 0);
356 }
357 } else {
358 #if defined(VMSWAP)
359 /*
360 * No page, therefore allocate one.
361 */
362
363 pg = uvm_pagealloc(NULL,
364 ufi != NULL ? ufi->orig_rvaddr : 0,
365 anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
366 if (pg == NULL) {
367 /* Out of memory. Wait a little. */
368 uvmfault_unlockall(ufi, amap, NULL);
369 uvmexp.fltnoram++;
370 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
371 0,0,0);
372 if (!uvm_reclaimable()) {
373 return ENOMEM;
374 }
375 uvm_wait("flt_noram1");
376 } else {
377 /* PG_BUSY bit is set. */
378 we_own = true;
379 uvmfault_unlockall(ufi, amap, NULL);
380
381 /*
382 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
383 * the uvm_swap_get() function with all data
384 * structures unlocked. Note that it is OK
385 * to read an_swslot here, because we hold
386 * PG_BUSY on the page.
387 */
388 uvmexp.pageins++;
389 error = uvm_swap_get(pg, anon->an_swslot,
390 PGO_SYNCIO);
391
392 /*
393 * We clean up after the I/O below in the
394 * 'we_own' case.
395 */
396 }
397 #else
398 panic("%s: no page", __func__);
399 #endif /* defined(VMSWAP) */
400 }
401
402 /*
403 * Re-lock the map and anon.
404 */
405
406 locked = uvmfault_relock(ufi);
407 if (locked || we_own) {
408 mutex_enter(anon->an_lock);
409 }
410
411 /*
412 * If we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. There are three cases to
414 * consider:
415 *
416 * 1) Page was released during I/O: free anon and ReFault.
417 * 2) I/O not OK. Free the page and cause the fault to fail.
418 * 3) I/O OK! Activate the page and sync with the non-we_own
419 * case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * Remove the swap slot from the anon and
431 * mark the anon as having no real slot.
432 * Do not free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0) {
437 uvm_swap_markbad(anon->an_swslot, 1);
438 }
439 anon->an_swslot = SWSLOT_BAD;
440
441 if ((pg->flags & PG_RELEASED) != 0) {
442 goto released;
443 }
444
445 /*
446 * Note: page was never !PG_BUSY, so it
447 * cannot be mapped and thus no need to
448 * pmap_page_protect() it.
449 */
450
451 mutex_enter(&uvm_pageqlock);
452 uvm_pagefree(pg);
453 mutex_exit(&uvm_pageqlock);
454
455 if (locked) {
456 uvmfault_unlockall(ufi, NULL, NULL);
457 }
458 mutex_exit(anon->an_lock);
459 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
460 return error;
461 }
462
463 if ((pg->flags & PG_RELEASED) != 0) {
464 released:
465 KASSERT(anon->an_ref == 0);
466
467 /*
468 * Released while we had unlocked amap.
469 */
470
471 if (locked) {
472 uvmfault_unlockall(ufi, NULL, NULL);
473 }
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * We have successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 #else
496 panic("%s: we_own", __func__);
497 #endif /* defined(VMSWAP) */
498 }
499
500 /*
501 * We were not able to re-lock the map - restart the fault.
502 */
503
504 if (!locked) {
505 if (we_own) {
506 mutex_exit(anon->an_lock);
507 }
508 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
509 return ERESTART;
510 }
511
512 /*
513 * Verify that no one has touched the amap and moved
514 * the anon on us.
515 */
516
517 if (ufi != NULL && amap_lookup(&ufi->entry->aref,
518 ufi->orig_rvaddr - ufi->entry->start) != anon) {
519
520 uvmfault_unlockall(ufi, amap, NULL);
521 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
522 return ERESTART;
523 }
524
525 /*
526 * Retry..
527 */
528
529 uvmexp.fltanretry++;
530 continue;
531 }
532 /*NOTREACHED*/
533 }
534
535 /*
536 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
537 *
538 * 1. allocate an anon and a page.
539 * 2. fill its contents.
540 * 3. put it into amap.
541 *
542 * => if we fail (result != 0) we unlock everything.
543 * => on success, return a new locked anon via 'nanon'.
544 * (*nanon)->an_page will be a resident, locked, dirty page.
545 * => it's caller's responsibility to put the promoted nanon->an_page to the
546 * page queue.
547 */
548
549 static int
550 uvmfault_promote(struct uvm_faultinfo *ufi,
551 struct vm_anon *oanon,
552 struct vm_page *uobjpage,
553 struct vm_anon **nanon, /* OUT: allocated anon */
554 struct vm_anon **spare)
555 {
556 struct vm_amap *amap = ufi->entry->aref.ar_amap;
557 struct uvm_object *uobj;
558 struct vm_anon *anon;
559 struct vm_page *pg;
560 struct vm_page *opg;
561 int error;
562 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
563
564 if (oanon) {
565 /* anon COW */
566 opg = oanon->an_page;
567 KASSERT(opg != NULL);
568 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
569 } else if (uobjpage != PGO_DONTCARE) {
570 /* object-backed COW */
571 opg = uobjpage;
572 } else {
573 /* ZFOD */
574 opg = NULL;
575 }
576 if (opg != NULL) {
577 uobj = opg->uobject;
578 } else {
579 uobj = NULL;
580 }
581
582 KASSERT(amap != NULL);
583 KASSERT(uobjpage != NULL);
584 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
585 KASSERT(mutex_owned(amap->am_lock));
586 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
587 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 } else {
593 anon = uvm_analloc();
594 }
595 if (anon) {
596
597 /*
598 * The new anon is locked.
599 *
600 * if opg == NULL, we want a zero'd, dirty page,
601 * so have uvm_pagealloc() do that for us.
602 */
603
604 KASSERT(anon->an_lock == NULL);
605 anon->an_lock = amap->am_lock;
606 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
607 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
608 if (pg == NULL) {
609 anon->an_lock = NULL;
610 }
611 } else {
612 pg = NULL;
613 }
614
615 /*
616 * out of memory resources?
617 */
618
619 if (pg == NULL) {
620 /* save anon for the next try. */
621 if (anon != NULL) {
622 *spare = anon;
623 }
624
625 /* unlock and fail ... */
626 uvm_page_unbusy(&uobjpage, 1);
627 uvmfault_unlockall(ufi, amap, uobj);
628 if (!uvm_reclaimable()) {
629 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
630 uvmexp.fltnoanon++;
631 error = ENOMEM;
632 goto done;
633 }
634
635 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
636 uvmexp.fltnoram++;
637 uvm_wait("flt_noram5");
638 error = ERESTART;
639 goto done;
640 }
641
642 /* copy page [pg now dirty] */
643 if (opg) {
644 uvm_pagecopy(opg, pg);
645 }
646
647 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
648 oanon != NULL);
649
650 *nanon = anon;
651 error = 0;
652 done:
653 return error;
654 }
655
656
657 /*
658 * F A U L T - m a i n e n t r y p o i n t
659 */
660
661 /*
662 * uvm_fault: page fault handler
663 *
664 * => called from MD code to resolve a page fault
665 * => VM data structures usually should be unlocked. however, it is
666 * possible to call here with the main map locked if the caller
667 * gets a write lock, sets it recusive, and then calls us (c.f.
668 * uvm_map_pageable). this should be avoided because it keeps
669 * the map locked off during I/O.
670 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
671 */
672
673 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
674 ~VM_PROT_WRITE : VM_PROT_ALL)
675
676 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
677 #define UVM_FAULT_WIRE (1 << 0)
678 #define UVM_FAULT_MAXPROT (1 << 1)
679
680 struct uvm_faultctx {
681
682 /*
683 * the following members are set up by uvm_fault_check() and
684 * read-only after that.
685 *
686 * note that narrow is used by uvm_fault_check() to change
687 * the behaviour after ERESTART.
688 *
689 * most of them might change after RESTART if the underlying
690 * map entry has been changed behind us. an exception is
691 * wire_paging, which does never change.
692 */
693 vm_prot_t access_type;
694 vaddr_t startva;
695 int npages;
696 int centeridx;
697 bool narrow; /* work on a single requested page only */
698 bool wire_mapping; /* request a PMAP_WIRED mapping
699 (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
700 bool wire_paging; /* request uvm_pagewire
701 (true for UVM_FAULT_WIRE) */
702 bool cow_now; /* VM_PROT_WRITE is actually requested
703 (ie. should break COW and page loaning) */
704
705 /*
706 * enter_prot is set up by uvm_fault_check() and clamped
707 * (ie. drop the VM_PROT_WRITE bit) in various places in case
708 * of !cow_now.
709 */
710 vm_prot_t enter_prot; /* prot at which we want to enter pages in */
711
712 /*
713 * the following member is for uvmfault_promote() and ERESTART.
714 */
715 struct vm_anon *anon_spare;
716
717 /*
718 * the folloing is actually a uvm_fault_lower() internal.
719 * it's here merely for debugging.
720 * (or due to the mechanical separation of the function?)
721 */
722 bool promote;
723 };
724
725 static inline int uvm_fault_check(
726 struct uvm_faultinfo *, struct uvm_faultctx *,
727 struct vm_anon ***, bool);
728
729 static int uvm_fault_upper(
730 struct uvm_faultinfo *, struct uvm_faultctx *,
731 struct vm_anon **);
732 static inline int uvm_fault_upper_lookup(
733 struct uvm_faultinfo *, const struct uvm_faultctx *,
734 struct vm_anon **, struct vm_page **);
735 static inline void uvm_fault_upper_neighbor(
736 struct uvm_faultinfo *, const struct uvm_faultctx *,
737 vaddr_t, struct vm_page *, bool);
738 static inline int uvm_fault_upper_loan(
739 struct uvm_faultinfo *, struct uvm_faultctx *,
740 struct vm_anon *, struct uvm_object **);
741 static inline int uvm_fault_upper_promote(
742 struct uvm_faultinfo *, struct uvm_faultctx *,
743 struct uvm_object *, struct vm_anon *);
744 static inline int uvm_fault_upper_direct(
745 struct uvm_faultinfo *, struct uvm_faultctx *,
746 struct uvm_object *, struct vm_anon *);
747 static int uvm_fault_upper_enter(
748 struct uvm_faultinfo *, const struct uvm_faultctx *,
749 struct uvm_object *, struct vm_anon *,
750 struct vm_page *, struct vm_anon *);
751 static inline void uvm_fault_upper_done(
752 struct uvm_faultinfo *, const struct uvm_faultctx *,
753 struct vm_anon *, struct vm_page *);
754
755 static int uvm_fault_lower(
756 struct uvm_faultinfo *, struct uvm_faultctx *,
757 struct vm_page **);
758 static inline void uvm_fault_lower_lookup(
759 struct uvm_faultinfo *, const struct uvm_faultctx *,
760 struct vm_page **);
761 static inline void uvm_fault_lower_neighbor(
762 struct uvm_faultinfo *, const struct uvm_faultctx *,
763 vaddr_t, struct vm_page *, bool);
764 static inline int uvm_fault_lower_io(
765 struct uvm_faultinfo *, const struct uvm_faultctx *,
766 struct uvm_object **, struct vm_page **);
767 static inline int uvm_fault_lower_direct(
768 struct uvm_faultinfo *, struct uvm_faultctx *,
769 struct uvm_object *, struct vm_page *);
770 static inline int uvm_fault_lower_direct_loan(
771 struct uvm_faultinfo *, struct uvm_faultctx *,
772 struct uvm_object *, struct vm_page **,
773 struct vm_page **);
774 static inline int uvm_fault_lower_promote(
775 struct uvm_faultinfo *, struct uvm_faultctx *,
776 struct uvm_object *, struct vm_page *);
777 static int uvm_fault_lower_enter(
778 struct uvm_faultinfo *, const struct uvm_faultctx *,
779 struct uvm_object *,
780 struct vm_anon *, struct vm_page *);
781 static inline void uvm_fault_lower_done(
782 struct uvm_faultinfo *, const struct uvm_faultctx *,
783 struct uvm_object *, struct vm_page *);
784
785 int
786 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
787 vm_prot_t access_type, int fault_flag)
788 {
789 struct cpu_data *cd;
790 struct uvm_cpu *ucpu;
791 struct uvm_faultinfo ufi;
792 struct uvm_faultctx flt = {
793 .access_type = access_type,
794
795 /* don't look for neighborhood * pages on "wire" fault */
796 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
797
798 /* "wire" fault causes wiring of both mapping and paging */
799 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
800 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
801 };
802 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
803 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
804 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
805 int error;
806
807 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
808
809 UVMHIST_LOG(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)",
810 (uintptr_t)orig_map, vaddr, access_type, fault_flag);
811
812 cd = &(curcpu()->ci_data);
813 cd->cpu_nfault++;
814 ucpu = cd->cpu_uvm;
815
816 /* Don't flood RNG subsystem with samples. */
817 if (cd->cpu_nfault % 503)
818 goto norng;
819
820 /* Don't count anything until user interaction is possible */
821 if (__predict_true(start_init_exec)) {
822 kpreempt_disable();
823 rnd_add_uint32(&ucpu->rs,
824 sizeof(vaddr_t) == sizeof(uint32_t) ?
825 (uint32_t)vaddr : sizeof(vaddr_t) ==
826 sizeof(uint64_t) ?
827 (uint32_t)(vaddr & 0x00000000ffffffff) :
828 (uint32_t)(cd->cpu_nfault & 0x00000000ffffffff));
829 kpreempt_enable();
830 }
831 norng:
832 /*
833 * init the IN parameters in the ufi
834 */
835
836 ufi.orig_map = orig_map;
837 ufi.orig_rvaddr = trunc_page(vaddr);
838 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
839
840 error = ERESTART;
841 while (error == ERESTART) { /* ReFault: */
842 anons = anons_store;
843 pages = pages_store;
844
845 error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
846 if (error != 0)
847 continue;
848
849 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
850 if (error != 0)
851 continue;
852
853 if (pages[flt.centeridx] == PGO_DONTCARE)
854 error = uvm_fault_upper(&ufi, &flt, anons);
855 else {
856 struct uvm_object * const uobj =
857 ufi.entry->object.uvm_obj;
858
859 if (uobj && uobj->pgops->pgo_fault != NULL) {
860 /*
861 * invoke "special" fault routine.
862 */
863 mutex_enter(uobj->vmobjlock);
864 /* locked: maps(read), amap(if there), uobj */
865 error = uobj->pgops->pgo_fault(&ufi,
866 flt.startva, pages, flt.npages,
867 flt.centeridx, flt.access_type,
868 PGO_LOCKED|PGO_SYNCIO);
869
870 /*
871 * locked: nothing, pgo_fault has unlocked
872 * everything
873 */
874
875 /*
876 * object fault routine responsible for
877 * pmap_update().
878 */
879 } else {
880 error = uvm_fault_lower(&ufi, &flt, pages);
881 }
882 }
883 }
884
885 if (flt.anon_spare != NULL) {
886 flt.anon_spare->an_ref--;
887 KASSERT(flt.anon_spare->an_ref == 0);
888 KASSERT(flt.anon_spare->an_lock == NULL);
889 uvm_anon_free(flt.anon_spare);
890 }
891 return error;
892 }
893
894 /*
895 * uvm_fault_check: check prot, handle needs-copy, etc.
896 *
897 * 1. lookup entry.
898 * 2. check protection.
899 * 3. adjust fault condition (mainly for simulated fault).
900 * 4. handle needs-copy (lazy amap copy).
901 * 5. establish range of interest for neighbor fault (aka pre-fault).
902 * 6. look up anons (if amap exists).
903 * 7. flush pages (if MADV_SEQUENTIAL)
904 *
905 * => called with nothing locked.
906 * => if we fail (result != 0) we unlock everything.
907 * => initialize/adjust many members of flt.
908 */
909
910 static int
911 uvm_fault_check(
912 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
913 struct vm_anon ***ranons, bool maxprot)
914 {
915 struct vm_amap *amap;
916 struct uvm_object *uobj;
917 vm_prot_t check_prot;
918 int nback, nforw;
919 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
920
921 /*
922 * lookup and lock the maps
923 */
924
925 if (uvmfault_lookup(ufi, false) == false) {
926 UVMHIST_LOG(maphist, "<- no mapping @ 0x%#jx", ufi->orig_rvaddr,
927 0,0,0);
928 return EFAULT;
929 }
930 /* locked: maps(read) */
931
932 #ifdef DIAGNOSTIC
933 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
934 printf("Page fault on non-pageable map:\n");
935 printf("ufi->map = %p\n", ufi->map);
936 printf("ufi->orig_map = %p\n", ufi->orig_map);
937 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
938 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
939 }
940 #endif
941
942 /*
943 * check protection
944 */
945
946 check_prot = maxprot ?
947 ufi->entry->max_protection : ufi->entry->protection;
948 if ((check_prot & flt->access_type) != flt->access_type) {
949 UVMHIST_LOG(maphist,
950 "<- protection failure (prot=%#jx, access=%#jx)",
951 ufi->entry->protection, flt->access_type, 0, 0);
952 uvmfault_unlockmaps(ufi, false);
953 return EFAULT;
954 }
955
956 /*
957 * "enter_prot" is the protection we want to enter the page in at.
958 * for certain pages (e.g. copy-on-write pages) this protection can
959 * be more strict than ufi->entry->protection. "wired" means either
960 * the entry is wired or we are fault-wiring the pg.
961 */
962
963 flt->enter_prot = ufi->entry->protection;
964 if (VM_MAPENT_ISWIRED(ufi->entry))
965 flt->wire_mapping = true;
966
967 if (flt->wire_mapping) {
968 flt->access_type = flt->enter_prot; /* full access for wired */
969 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
970 } else {
971 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
972 }
973
974 flt->promote = false;
975
976 /*
977 * handle "needs_copy" case. if we need to copy the amap we will
978 * have to drop our readlock and relock it with a write lock. (we
979 * need a write lock to change anything in a map entry [e.g.
980 * needs_copy]).
981 */
982
983 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
984 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
985 KASSERT(!maxprot);
986 /* need to clear */
987 UVMHIST_LOG(maphist,
988 " need to clear needs_copy and refault",0,0,0,0);
989 uvmfault_unlockmaps(ufi, false);
990 uvmfault_amapcopy(ufi);
991 uvmexp.fltamcopy++;
992 return ERESTART;
993
994 } else {
995
996 /*
997 * ensure that we pmap_enter page R/O since
998 * needs_copy is still true
999 */
1000
1001 flt->enter_prot &= ~VM_PROT_WRITE;
1002 }
1003 }
1004
1005 /*
1006 * identify the players
1007 */
1008
1009 amap = ufi->entry->aref.ar_amap; /* upper layer */
1010 uobj = ufi->entry->object.uvm_obj; /* lower layer */
1011
1012 /*
1013 * check for a case 0 fault. if nothing backing the entry then
1014 * error now.
1015 */
1016
1017 if (amap == NULL && uobj == NULL) {
1018 uvmfault_unlockmaps(ufi, false);
1019 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
1020 return EFAULT;
1021 }
1022
1023 /*
1024 * establish range of interest based on advice from mapper
1025 * and then clip to fit map entry. note that we only want
1026 * to do this the first time through the fault. if we
1027 * ReFault we will disable this by setting "narrow" to true.
1028 */
1029
1030 if (flt->narrow == false) {
1031
1032 /* wide fault (!narrow) */
1033 KASSERT(uvmadvice[ufi->entry->advice].advice ==
1034 ufi->entry->advice);
1035 nback = MIN(uvmadvice[ufi->entry->advice].nback,
1036 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1037 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1038 /*
1039 * note: "-1" because we don't want to count the
1040 * faulting page as forw
1041 */
1042 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1043 ((ufi->entry->end - ufi->orig_rvaddr) >>
1044 PAGE_SHIFT) - 1);
1045 flt->npages = nback + nforw + 1;
1046 flt->centeridx = nback;
1047
1048 flt->narrow = true; /* ensure only once per-fault */
1049
1050 } else {
1051
1052 /* narrow fault! */
1053 nback = nforw = 0;
1054 flt->startva = ufi->orig_rvaddr;
1055 flt->npages = 1;
1056 flt->centeridx = 0;
1057
1058 }
1059 /* offset from entry's start to pgs' start */
1060 const voff_t eoff = flt->startva - ufi->entry->start;
1061
1062 /* locked: maps(read) */
1063 UVMHIST_LOG(maphist, " narrow=%jd, back=%jd, forw=%jd, startva=%#jx",
1064 flt->narrow, nback, nforw, flt->startva);
1065 UVMHIST_LOG(maphist, " entry=%#jx, amap=%#jx, obj=%#jx",
1066 (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0);
1067
1068 /*
1069 * if we've got an amap, lock it and extract current anons.
1070 */
1071
1072 if (amap) {
1073 amap_lock(amap);
1074 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1075 } else {
1076 *ranons = NULL; /* to be safe */
1077 }
1078
1079 /* locked: maps(read), amap(if there) */
1080 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1081
1082 /*
1083 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1084 * now and then forget about them (for the rest of the fault).
1085 */
1086
1087 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1088
1089 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1090 0,0,0,0);
1091 /* flush back-page anons? */
1092 if (amap)
1093 uvmfault_anonflush(*ranons, nback);
1094
1095 /* flush object? */
1096 if (uobj) {
1097 voff_t uoff;
1098
1099 uoff = ufi->entry->offset + eoff;
1100 mutex_enter(uobj->vmobjlock);
1101 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1102 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1103 }
1104
1105 /* now forget about the backpages */
1106 if (amap)
1107 *ranons += nback;
1108 flt->startva += (nback << PAGE_SHIFT);
1109 flt->npages -= nback;
1110 flt->centeridx = 0;
1111 }
1112 /*
1113 * => startva is fixed
1114 * => npages is fixed
1115 */
1116 KASSERT(flt->startva <= ufi->orig_rvaddr);
1117 KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1118 flt->startva + (flt->npages << PAGE_SHIFT));
1119 return 0;
1120 }
1121
1122 /*
1123 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1124 *
1125 * iterate range of interest:
1126 * 1. check if h/w mapping exists. if yes, we don't care
1127 * 2. check if anon exists. if not, page is lower.
1128 * 3. if anon exists, enter h/w mapping for neighbors.
1129 *
1130 * => called with amap locked (if exists).
1131 */
1132
1133 static int
1134 uvm_fault_upper_lookup(
1135 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1136 struct vm_anon **anons, struct vm_page **pages)
1137 {
1138 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1139 int lcv;
1140 vaddr_t currva;
1141 bool shadowed __unused;
1142 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1143
1144 /* locked: maps(read), amap(if there) */
1145 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1146
1147 /*
1148 * map in the backpages and frontpages we found in the amap in hopes
1149 * of preventing future faults. we also init the pages[] array as
1150 * we go.
1151 */
1152
1153 currva = flt->startva;
1154 shadowed = false;
1155 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1156 /*
1157 * don't play with VAs that are already mapped
1158 * (except for center)
1159 */
1160 if (lcv != flt->centeridx &&
1161 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1162 pages[lcv] = PGO_DONTCARE;
1163 continue;
1164 }
1165
1166 /*
1167 * unmapped or center page. check if any anon at this level.
1168 */
1169 if (amap == NULL || anons[lcv] == NULL) {
1170 pages[lcv] = NULL;
1171 continue;
1172 }
1173
1174 /*
1175 * check for present page and map if possible. re-activate it.
1176 */
1177
1178 pages[lcv] = PGO_DONTCARE;
1179 if (lcv == flt->centeridx) { /* save center for later! */
1180 shadowed = true;
1181 continue;
1182 }
1183
1184 struct vm_anon *anon = anons[lcv];
1185 struct vm_page *pg = anon->an_page;
1186
1187 KASSERT(anon->an_lock == amap->am_lock);
1188
1189 /* Ignore loaned and busy pages. */
1190 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
1191 uvm_fault_upper_neighbor(ufi, flt, currva,
1192 pg, anon->an_ref > 1);
1193 }
1194 }
1195
1196 /* locked: maps(read), amap(if there) */
1197 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1198 /* (shadowed == true) if there is an anon at the faulting address */
1199 UVMHIST_LOG(maphist, " shadowed=%jd, will_get=%jd", shadowed,
1200 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1201
1202 /*
1203 * note that if we are really short of RAM we could sleep in the above
1204 * call to pmap_enter with everything locked. bad?
1205 *
1206 * XXX Actually, that is bad; pmap_enter() should just fail in that
1207 * XXX case. --thorpej
1208 */
1209
1210 return 0;
1211 }
1212
1213 /*
1214 * uvm_fault_upper_neighbor: enter single upper neighbor page.
1215 *
1216 * => called with amap and anon locked.
1217 */
1218
1219 static void
1220 uvm_fault_upper_neighbor(
1221 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1222 vaddr_t currva, struct vm_page *pg, bool readonly)
1223 {
1224 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1225
1226 /* locked: amap, anon */
1227
1228 mutex_enter(&uvm_pageqlock);
1229 uvm_pageenqueue(pg);
1230 mutex_exit(&uvm_pageqlock);
1231 UVMHIST_LOG(maphist,
1232 " MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx",
1233 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1234 uvmexp.fltnamap++;
1235
1236 /*
1237 * Since this page isn't the page that's actually faulting,
1238 * ignore pmap_enter() failures; it's not critical that we
1239 * enter these right now.
1240 */
1241
1242 (void) pmap_enter(ufi->orig_map->pmap, currva,
1243 VM_PAGE_TO_PHYS(pg),
1244 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1245 flt->enter_prot,
1246 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1247
1248 pmap_update(ufi->orig_map->pmap);
1249 }
1250
1251 /*
1252 * uvm_fault_upper: handle upper fault.
1253 *
1254 * 1. acquire anon lock.
1255 * 2. get anon. let uvmfault_anonget do the dirty work.
1256 * 3. handle loan.
1257 * 4. dispatch direct or promote handlers.
1258 */
1259
1260 static int
1261 uvm_fault_upper(
1262 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1263 struct vm_anon **anons)
1264 {
1265 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1266 struct vm_anon * const anon = anons[flt->centeridx];
1267 struct uvm_object *uobj;
1268 int error;
1269 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1270
1271 /* locked: maps(read), amap, anon */
1272 KASSERT(mutex_owned(amap->am_lock));
1273 KASSERT(anon->an_lock == amap->am_lock);
1274
1275 /*
1276 * handle case 1: fault on an anon in our amap
1277 */
1278
1279 UVMHIST_LOG(maphist, " case 1 fault: anon=%#jx",
1280 (uintptr_t)anon, 0, 0, 0);
1281
1282 /*
1283 * no matter if we have case 1A or case 1B we are going to need to
1284 * have the anon's memory resident. ensure that now.
1285 */
1286
1287 /*
1288 * let uvmfault_anonget do the dirty work.
1289 * if it fails (!OK) it will unlock everything for us.
1290 * if it succeeds, locks are still valid and locked.
1291 * also, if it is OK, then the anon's page is on the queues.
1292 * if the page is on loan from a uvm_object, then anonget will
1293 * lock that object for us if it does not fail.
1294 */
1295
1296 error = uvmfault_anonget(ufi, amap, anon);
1297 switch (error) {
1298 case 0:
1299 break;
1300
1301 case ERESTART:
1302 return ERESTART;
1303
1304 case EAGAIN:
1305 kpause("fltagain1", false, hz/2, NULL);
1306 return ERESTART;
1307
1308 default:
1309 return error;
1310 }
1311
1312 /*
1313 * uobj is non null if the page is on loan from an object (i.e. uobj)
1314 */
1315
1316 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1317
1318 /* locked: maps(read), amap, anon, uobj(if one) */
1319 KASSERT(mutex_owned(amap->am_lock));
1320 KASSERT(anon->an_lock == amap->am_lock);
1321 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1322
1323 /*
1324 * special handling for loaned pages
1325 */
1326
1327 if (anon->an_page->loan_count) {
1328 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1329 if (error != 0)
1330 return error;
1331 }
1332
1333 /*
1334 * if we are case 1B then we will need to allocate a new blank
1335 * anon to transfer the data into. note that we have a lock
1336 * on anon, so no one can busy or release the page until we are done.
1337 * also note that the ref count can't drop to zero here because
1338 * it is > 1 and we are only dropping one ref.
1339 *
1340 * in the (hopefully very rare) case that we are out of RAM we
1341 * will unlock, wait for more RAM, and refault.
1342 *
1343 * if we are out of anon VM we kill the process (XXX: could wait?).
1344 */
1345
1346 if (flt->cow_now && anon->an_ref > 1) {
1347 flt->promote = true;
1348 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1349 } else {
1350 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1351 }
1352 return error;
1353 }
1354
1355 /*
1356 * uvm_fault_upper_loan: handle loaned upper page.
1357 *
1358 * 1. if not cow'ing now, simply adjust flt->enter_prot.
1359 * 2. if cow'ing now, and if ref count is 1, break loan.
1360 */
1361
1362 static int
1363 uvm_fault_upper_loan(
1364 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1365 struct vm_anon *anon, struct uvm_object **ruobj)
1366 {
1367 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1368 int error = 0;
1369 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1370
1371 if (!flt->cow_now) {
1372
1373 /*
1374 * for read faults on loaned pages we just cap the
1375 * protection at read-only.
1376 */
1377
1378 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1379
1380 } else {
1381 /*
1382 * note that we can't allow writes into a loaned page!
1383 *
1384 * if we have a write fault on a loaned page in an
1385 * anon then we need to look at the anon's ref count.
1386 * if it is greater than one then we are going to do
1387 * a normal copy-on-write fault into a new anon (this
1388 * is not a problem). however, if the reference count
1389 * is one (a case where we would normally allow a
1390 * write directly to the page) then we need to kill
1391 * the loan before we continue.
1392 */
1393
1394 /* >1 case is already ok */
1395 if (anon->an_ref == 1) {
1396 error = uvm_loanbreak_anon(anon, *ruobj);
1397 if (error != 0) {
1398 uvmfault_unlockall(ufi, amap, *ruobj);
1399 uvm_wait("flt_noram2");
1400 return ERESTART;
1401 }
1402 /* if we were a loan reciever uobj is gone */
1403 if (*ruobj)
1404 *ruobj = NULL;
1405 }
1406 }
1407 return error;
1408 }
1409
1410 /*
1411 * uvm_fault_upper_promote: promote upper page.
1412 *
1413 * 1. call uvmfault_promote.
1414 * 2. enqueue page.
1415 * 3. deref.
1416 * 4. pass page to uvm_fault_upper_enter.
1417 */
1418
1419 static int
1420 uvm_fault_upper_promote(
1421 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1422 struct uvm_object *uobj, struct vm_anon *anon)
1423 {
1424 struct vm_anon * const oanon = anon;
1425 struct vm_page *pg;
1426 int error;
1427 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1428
1429 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1430 uvmexp.flt_acow++;
1431
1432 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1433 &flt->anon_spare);
1434 switch (error) {
1435 case 0:
1436 break;
1437 case ERESTART:
1438 return ERESTART;
1439 default:
1440 return error;
1441 }
1442
1443 KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
1444
1445 pg = anon->an_page;
1446 mutex_enter(&uvm_pageqlock);
1447 uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
1448 mutex_exit(&uvm_pageqlock);
1449 pg->flags &= ~(PG_BUSY|PG_FAKE);
1450 UVM_PAGE_OWN(pg, NULL);
1451
1452 /* deref: can not drop to zero here by defn! */
1453 KASSERT(oanon->an_ref > 1);
1454 oanon->an_ref--;
1455
1456 /*
1457 * note: oanon is still locked, as is the new anon. we
1458 * need to check for this later when we unlock oanon; if
1459 * oanon != anon, we'll have to unlock anon, too.
1460 */
1461
1462 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1463 }
1464
1465 /*
1466 * uvm_fault_upper_direct: handle direct fault.
1467 */
1468
1469 static int
1470 uvm_fault_upper_direct(
1471 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1472 struct uvm_object *uobj, struct vm_anon *anon)
1473 {
1474 struct vm_anon * const oanon = anon;
1475 struct vm_page *pg;
1476 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1477
1478 uvmexp.flt_anon++;
1479 pg = anon->an_page;
1480 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1481 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1482
1483 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1484 }
1485
1486 /*
1487 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1488 */
1489
1490 static int
1491 uvm_fault_upper_enter(
1492 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1493 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1494 struct vm_anon *oanon)
1495 {
1496 struct pmap *pmap = ufi->orig_map->pmap;
1497 vaddr_t va = ufi->orig_rvaddr;
1498 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1499 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1500
1501 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1502 KASSERT(mutex_owned(amap->am_lock));
1503 KASSERT(anon->an_lock == amap->am_lock);
1504 KASSERT(oanon->an_lock == amap->am_lock);
1505 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1506
1507 /*
1508 * now map the page in.
1509 */
1510
1511 UVMHIST_LOG(maphist,
1512 " MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
1513 (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote);
1514 if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg),
1515 flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1516 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1517
1518 /*
1519 * If pmap_enter() fails, it must not leave behind an existing
1520 * pmap entry. In particular, a now-stale entry for a different
1521 * page would leave the pmap inconsistent with the vm_map.
1522 * This is not to imply that pmap_enter() should remove an
1523 * existing mapping in such a situation (since that could create
1524 * different problems, eg. if the existing mapping is wired),
1525 * but rather that the pmap should be designed such that it
1526 * never needs to fail when the new mapping is replacing an
1527 * existing mapping and the new page has no existing mappings.
1528 */
1529
1530 KASSERT(!pmap_extract(pmap, va, NULL));
1531
1532 /*
1533 * No need to undo what we did; we can simply think of
1534 * this as the pmap throwing away the mapping information.
1535 *
1536 * We do, however, have to go through the ReFault path,
1537 * as the map may change while we're asleep.
1538 */
1539
1540 uvmfault_unlockall(ufi, amap, uobj);
1541 if (!uvm_reclaimable()) {
1542 UVMHIST_LOG(maphist,
1543 "<- failed. out of VM",0,0,0,0);
1544 /* XXX instrumentation */
1545 return ENOMEM;
1546 }
1547 /* XXX instrumentation */
1548 uvm_wait("flt_pmfail1");
1549 return ERESTART;
1550 }
1551
1552 uvm_fault_upper_done(ufi, flt, anon, pg);
1553
1554 /*
1555 * done case 1! finish up by unlocking everything and returning success
1556 */
1557
1558 pmap_update(pmap);
1559 uvmfault_unlockall(ufi, amap, uobj);
1560 return 0;
1561 }
1562
1563 /*
1564 * uvm_fault_upper_done: queue upper center page.
1565 */
1566
1567 static void
1568 uvm_fault_upper_done(
1569 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1570 struct vm_anon *anon, struct vm_page *pg)
1571 {
1572 const bool wire_paging = flt->wire_paging;
1573
1574 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1575
1576 /*
1577 * ... update the page queues.
1578 */
1579
1580 mutex_enter(&uvm_pageqlock);
1581 if (wire_paging) {
1582 uvm_pagewire(pg);
1583
1584 /*
1585 * since the now-wired page cannot be paged out,
1586 * release its swap resources for others to use.
1587 * since an anon with no swap cannot be PG_CLEAN,
1588 * clear its clean flag now.
1589 */
1590
1591 pg->flags &= ~(PG_CLEAN);
1592
1593 } else {
1594 uvm_pageactivate(pg);
1595 }
1596 mutex_exit(&uvm_pageqlock);
1597
1598 if (wire_paging) {
1599 uvm_anon_dropswap(anon);
1600 }
1601 }
1602
1603 /*
1604 * uvm_fault_lower: handle lower fault.
1605 *
1606 * 1. check uobj
1607 * 1.1. if null, ZFOD.
1608 * 1.2. if not null, look up unnmapped neighbor pages.
1609 * 2. for center page, check if promote.
1610 * 2.1. ZFOD always needs promotion.
1611 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1612 * 3. if uobj is not ZFOD and page is not found, do i/o.
1613 * 4. dispatch either direct / promote fault.
1614 */
1615
1616 static int
1617 uvm_fault_lower(
1618 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1619 struct vm_page **pages)
1620 {
1621 struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap;
1622 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1623 struct vm_page *uobjpage;
1624 int error;
1625 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1626
1627 /*
1628 * now, if the desired page is not shadowed by the amap and we have
1629 * a backing object that does not have a special fault routine, then
1630 * we ask (with pgo_get) the object for resident pages that we care
1631 * about and attempt to map them in. we do not let pgo_get block
1632 * (PGO_LOCKED).
1633 */
1634
1635 if (uobj == NULL) {
1636 /* zero fill; don't care neighbor pages */
1637 uobjpage = NULL;
1638 } else {
1639 uvm_fault_lower_lookup(ufi, flt, pages);
1640 uobjpage = pages[flt->centeridx];
1641 }
1642
1643 /*
1644 * note that at this point we are done with any front or back pages.
1645 * we are now going to focus on the center page (i.e. the one we've
1646 * faulted on). if we have faulted on the upper (anon) layer
1647 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1648 * not touched it yet). if we have faulted on the bottom (uobj)
1649 * layer [i.e. case 2] and the page was both present and available,
1650 * then we've got a pointer to it as "uobjpage" and we've already
1651 * made it BUSY.
1652 */
1653
1654 /*
1655 * locked:
1656 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1657 */
1658 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1659 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1660 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1661
1662 /*
1663 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1664 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1665 * have a backing object, check and see if we are going to promote
1666 * the data up to an anon during the fault.
1667 */
1668
1669 if (uobj == NULL) {
1670 uobjpage = PGO_DONTCARE;
1671 flt->promote = true; /* always need anon here */
1672 } else {
1673 KASSERT(uobjpage != PGO_DONTCARE);
1674 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1675 }
1676 UVMHIST_LOG(maphist, " case 2 fault: promote=%jd, zfill=%jd",
1677 flt->promote, (uobj == NULL), 0,0);
1678
1679 /*
1680 * if uobjpage is not null then we do not need to do I/O to get the
1681 * uobjpage.
1682 *
1683 * if uobjpage is null, then we need to unlock and ask the pager to
1684 * get the data for us. once we have the data, we need to reverify
1685 * the state the world. we are currently not holding any resources.
1686 */
1687
1688 if (uobjpage) {
1689 /* update rusage counters */
1690 curlwp->l_ru.ru_minflt++;
1691 } else {
1692 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1693 if (error != 0)
1694 return error;
1695 }
1696
1697 /*
1698 * locked:
1699 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1700 */
1701 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1702 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1703 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1704
1705 /*
1706 * notes:
1707 * - at this point uobjpage can not be NULL
1708 * - at this point uobjpage can not be PG_RELEASED (since we checked
1709 * for it above)
1710 * - at this point uobjpage could be PG_WANTED (handle later)
1711 */
1712
1713 KASSERT(uobjpage != NULL);
1714 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1715 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1716 (uobjpage->flags & PG_CLEAN) != 0);
1717
1718 if (!flt->promote) {
1719 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1720 } else {
1721 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1722 }
1723 return error;
1724 }
1725
1726 /*
1727 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1728 *
1729 * 1. get on-memory pages.
1730 * 2. if failed, give up (get only center page later).
1731 * 3. if succeeded, enter h/w mapping of neighbor pages.
1732 */
1733
1734 static void
1735 uvm_fault_lower_lookup(
1736 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1737 struct vm_page **pages)
1738 {
1739 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1740 int lcv, gotpages;
1741 vaddr_t currva;
1742 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1743
1744 mutex_enter(uobj->vmobjlock);
1745 /* Locked: maps(read), amap(if there), uobj */
1746
1747 uvmexp.fltlget++;
1748 gotpages = flt->npages;
1749 (void) uobj->pgops->pgo_get(uobj,
1750 ufi->entry->offset + flt->startva - ufi->entry->start,
1751 pages, &gotpages, flt->centeridx,
1752 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1753
1754 KASSERT(mutex_owned(uobj->vmobjlock));
1755
1756 /*
1757 * check for pages to map, if we got any
1758 */
1759
1760 if (gotpages == 0) {
1761 pages[flt->centeridx] = NULL;
1762 return;
1763 }
1764
1765 currva = flt->startva;
1766 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1767 struct vm_page *curpg;
1768
1769 curpg = pages[lcv];
1770 if (curpg == NULL || curpg == PGO_DONTCARE) {
1771 continue;
1772 }
1773 KASSERT(curpg->uobject == uobj);
1774
1775 /*
1776 * if center page is resident and not PG_BUSY|PG_RELEASED
1777 * then pgo_get made it PG_BUSY for us and gave us a handle
1778 * to it.
1779 */
1780
1781 if (lcv == flt->centeridx) {
1782 UVMHIST_LOG(maphist, " got uobjpage (0x%#jx) "
1783 "with locked get", (uintptr_t)curpg, 0, 0, 0);
1784 } else {
1785 bool readonly = (curpg->flags & PG_RDONLY)
1786 || (curpg->loan_count > 0)
1787 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1788
1789 uvm_fault_lower_neighbor(ufi, flt,
1790 currva, curpg, readonly);
1791 }
1792 }
1793 pmap_update(ufi->orig_map->pmap);
1794 }
1795
1796 /*
1797 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1798 */
1799
1800 static void
1801 uvm_fault_lower_neighbor(
1802 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1803 vaddr_t currva, struct vm_page *pg, bool readonly)
1804 {
1805 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1806
1807 /* locked: maps(read), amap(if there), uobj */
1808
1809 /*
1810 * calling pgo_get with PGO_LOCKED returns us pages which
1811 * are neither busy nor released, so we don't need to check
1812 * for this. we can just directly enter the pages.
1813 */
1814
1815 mutex_enter(&uvm_pageqlock);
1816 uvm_pageenqueue(pg);
1817 mutex_exit(&uvm_pageqlock);
1818 UVMHIST_LOG(maphist,
1819 " MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx",
1820 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1821 uvmexp.fltnomap++;
1822
1823 /*
1824 * Since this page isn't the page that's actually faulting,
1825 * ignore pmap_enter() failures; it's not critical that we
1826 * enter these right now.
1827 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1828 * held the lock the whole time we've had the handle.
1829 */
1830 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1831 KASSERT((pg->flags & PG_RELEASED) == 0);
1832 KASSERT((pg->flags & PG_WANTED) == 0);
1833 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
1834 pg->flags &= ~(PG_BUSY);
1835 UVM_PAGE_OWN(pg, NULL);
1836
1837 KASSERT(mutex_owned(pg->uobject->vmobjlock));
1838
1839 const vm_prot_t mapprot =
1840 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1841 flt->enter_prot & MASK(ufi->entry);
1842 const u_int mapflags =
1843 PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0);
1844 (void) pmap_enter(ufi->orig_map->pmap, currva,
1845 VM_PAGE_TO_PHYS(pg), mapprot, mapflags);
1846 }
1847
1848 /*
1849 * uvm_fault_lower_io: get lower page from backing store.
1850 *
1851 * 1. unlock everything, because i/o will block.
1852 * 2. call pgo_get.
1853 * 3. if failed, recover.
1854 * 4. if succeeded, relock everything and verify things.
1855 */
1856
1857 static int
1858 uvm_fault_lower_io(
1859 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1860 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1861 {
1862 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1863 struct uvm_object *uobj = *ruobj;
1864 struct vm_page *pg;
1865 bool locked;
1866 int gotpages;
1867 int error;
1868 voff_t uoff;
1869 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1870
1871 /* update rusage counters */
1872 curlwp->l_ru.ru_majflt++;
1873
1874 /* Locked: maps(read), amap(if there), uobj */
1875 uvmfault_unlockall(ufi, amap, NULL);
1876
1877 /* Locked: uobj */
1878 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1879
1880 uvmexp.fltget++;
1881 gotpages = 1;
1882 pg = NULL;
1883 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1884 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1885 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1886 PGO_SYNCIO);
1887 /* locked: pg(if no error) */
1888
1889 /*
1890 * recover from I/O
1891 */
1892
1893 if (error) {
1894 if (error == EAGAIN) {
1895 UVMHIST_LOG(maphist,
1896 " pgo_get says TRY AGAIN!",0,0,0,0);
1897 kpause("fltagain2", false, hz/2, NULL);
1898 return ERESTART;
1899 }
1900
1901 #if 0
1902 KASSERT(error != ERESTART);
1903 #else
1904 /* XXXUEBS don't re-fault? */
1905 if (error == ERESTART)
1906 error = EIO;
1907 #endif
1908
1909 UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)",
1910 error, 0,0,0);
1911 return error;
1912 }
1913
1914 /*
1915 * re-verify the state of the world by first trying to relock
1916 * the maps. always relock the object.
1917 */
1918
1919 locked = uvmfault_relock(ufi);
1920 if (locked && amap)
1921 amap_lock(amap);
1922
1923 /* might be changed */
1924 uobj = pg->uobject;
1925
1926 mutex_enter(uobj->vmobjlock);
1927 KASSERT((pg->flags & PG_BUSY) != 0);
1928
1929 mutex_enter(&uvm_pageqlock);
1930 uvm_pageactivate(pg);
1931 mutex_exit(&uvm_pageqlock);
1932
1933 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1934 /* locked(!locked): uobj, pg */
1935
1936 /*
1937 * verify that the page has not be released and re-verify
1938 * that amap slot is still free. if there is a problem,
1939 * we unlock and clean up.
1940 */
1941
1942 if ((pg->flags & PG_RELEASED) != 0 ||
1943 (locked && amap && amap_lookup(&ufi->entry->aref,
1944 ufi->orig_rvaddr - ufi->entry->start))) {
1945 if (locked)
1946 uvmfault_unlockall(ufi, amap, NULL);
1947 locked = false;
1948 }
1949
1950 /*
1951 * didn't get the lock? release the page and retry.
1952 */
1953
1954 if (locked == false) {
1955 UVMHIST_LOG(maphist,
1956 " wasn't able to relock after fault: retry",
1957 0,0,0,0);
1958 if (pg->flags & PG_WANTED) {
1959 wakeup(pg);
1960 }
1961 if ((pg->flags & PG_RELEASED) == 0) {
1962 pg->flags &= ~(PG_BUSY | PG_WANTED);
1963 UVM_PAGE_OWN(pg, NULL);
1964 } else {
1965 uvmexp.fltpgrele++;
1966 uvm_pagefree(pg);
1967 }
1968 mutex_exit(uobj->vmobjlock);
1969 return ERESTART;
1970 }
1971
1972 /*
1973 * we have the data in pg which is busy and
1974 * not released. we are holding object lock (so the page
1975 * can't be released on us).
1976 */
1977
1978 /* locked: maps(read), amap(if !null), uobj, pg */
1979
1980 *ruobj = uobj;
1981 *ruobjpage = pg;
1982 return 0;
1983 }
1984
1985 /*
1986 * uvm_fault_lower_direct: fault lower center page
1987 *
1988 * 1. adjust flt->enter_prot.
1989 * 2. if page is loaned, resolve.
1990 */
1991
1992 int
1993 uvm_fault_lower_direct(
1994 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1995 struct uvm_object *uobj, struct vm_page *uobjpage)
1996 {
1997 struct vm_page *pg;
1998 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1999
2000 /*
2001 * we are not promoting. if the mapping is COW ensure that we
2002 * don't give more access than we should (e.g. when doing a read
2003 * fault on a COPYONWRITE mapping we want to map the COW page in
2004 * R/O even though the entry protection could be R/W).
2005 *
2006 * set "pg" to the page we want to map in (uobjpage, usually)
2007 */
2008
2009 uvmexp.flt_obj++;
2010 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
2011 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
2012 flt->enter_prot &= ~VM_PROT_WRITE;
2013 pg = uobjpage; /* map in the actual object */
2014
2015 KASSERT(uobjpage != PGO_DONTCARE);
2016
2017 /*
2018 * we are faulting directly on the page. be careful
2019 * about writing to loaned pages...
2020 */
2021
2022 if (uobjpage->loan_count) {
2023 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
2024 }
2025 KASSERT(pg == uobjpage);
2026
2027 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2028 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
2029 }
2030
2031 /*
2032 * uvm_fault_lower_direct_loan: resolve loaned page.
2033 *
2034 * 1. if not cow'ing, adjust flt->enter_prot.
2035 * 2. if cow'ing, break loan.
2036 */
2037
2038 static int
2039 uvm_fault_lower_direct_loan(
2040 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2041 struct uvm_object *uobj, struct vm_page **rpg,
2042 struct vm_page **ruobjpage)
2043 {
2044 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2045 struct vm_page *pg;
2046 struct vm_page *uobjpage = *ruobjpage;
2047 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
2048
2049 if (!flt->cow_now) {
2050 /* read fault: cap the protection at readonly */
2051 /* cap! */
2052 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2053 } else {
2054 /* write fault: must break the loan here */
2055
2056 pg = uvm_loanbreak(uobjpage);
2057 if (pg == NULL) {
2058
2059 /*
2060 * drop ownership of page, it can't be released
2061 */
2062
2063 if (uobjpage->flags & PG_WANTED)
2064 wakeup(uobjpage);
2065 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2066 UVM_PAGE_OWN(uobjpage, NULL);
2067
2068 uvmfault_unlockall(ufi, amap, uobj);
2069 UVMHIST_LOG(maphist,
2070 " out of RAM breaking loan, waiting",
2071 0,0,0,0);
2072 uvmexp.fltnoram++;
2073 uvm_wait("flt_noram4");
2074 return ERESTART;
2075 }
2076 *rpg = pg;
2077 *ruobjpage = pg;
2078 }
2079 return 0;
2080 }
2081
2082 /*
2083 * uvm_fault_lower_promote: promote lower page.
2084 *
2085 * 1. call uvmfault_promote.
2086 * 2. fill in data.
2087 * 3. if not ZFOD, dispose old page.
2088 */
2089
2090 int
2091 uvm_fault_lower_promote(
2092 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2093 struct uvm_object *uobj, struct vm_page *uobjpage)
2094 {
2095 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2096 struct vm_anon *anon;
2097 struct vm_page *pg;
2098 int error;
2099 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2100
2101 KASSERT(amap != NULL);
2102
2103 /*
2104 * If we are going to promote the data to an anon we
2105 * allocate a blank anon here and plug it into our amap.
2106 */
2107 error = uvmfault_promote(ufi, NULL, uobjpage,
2108 &anon, &flt->anon_spare);
2109 switch (error) {
2110 case 0:
2111 break;
2112 case ERESTART:
2113 return ERESTART;
2114 default:
2115 return error;
2116 }
2117
2118 pg = anon->an_page;
2119
2120 /*
2121 * Fill in the data.
2122 */
2123 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2124
2125 if (uobjpage != PGO_DONTCARE) {
2126 uvmexp.flt_prcopy++;
2127
2128 /*
2129 * promote to shared amap? make sure all sharing
2130 * procs see it
2131 */
2132
2133 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2134 pmap_page_protect(uobjpage, VM_PROT_NONE);
2135 /*
2136 * XXX: PAGE MIGHT BE WIRED!
2137 */
2138 }
2139
2140 /*
2141 * dispose of uobjpage. it can't be PG_RELEASED
2142 * since we still hold the object lock.
2143 */
2144
2145 if (uobjpage->flags & PG_WANTED) {
2146 /* still have the obj lock */
2147 wakeup(uobjpage);
2148 }
2149 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2150 UVM_PAGE_OWN(uobjpage, NULL);
2151
2152 UVMHIST_LOG(maphist,
2153 " promote uobjpage 0x%#jx to anon/page 0x%#jx/0x%#jx",
2154 (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0);
2155
2156 } else {
2157 uvmexp.flt_przero++;
2158
2159 /*
2160 * Page is zero'd and marked dirty by
2161 * uvmfault_promote().
2162 */
2163
2164 UVMHIST_LOG(maphist," zero fill anon/page 0x%#jx/0%#jx",
2165 (uintptr_t)anon, (uintptr_t)pg, 0, 0);
2166 }
2167
2168 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2169 }
2170
2171 /*
2172 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2173 * from the lower page.
2174 */
2175
2176 int
2177 uvm_fault_lower_enter(
2178 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2179 struct uvm_object *uobj,
2180 struct vm_anon *anon, struct vm_page *pg)
2181 {
2182 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2183 int error;
2184 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2185
2186 /*
2187 * Locked:
2188 *
2189 * maps(read), amap(if !null), uobj(if !null),
2190 * anon(if !null), pg(if anon), unlock_uobj(if !null)
2191 *
2192 * Note: pg is either the uobjpage or the new page in the new anon.
2193 */
2194 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
2195 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
2196 KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2197 KASSERT((pg->flags & PG_BUSY) != 0);
2198
2199 /*
2200 * all resources are present. we can now map it in and free our
2201 * resources.
2202 */
2203
2204 UVMHIST_LOG(maphist,
2205 " MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
2206 (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr,
2207 (uintptr_t)pg, flt->promote);
2208 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2209 (pg->flags & PG_RDONLY) == 0);
2210 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2211 VM_PAGE_TO_PHYS(pg),
2212 (pg->flags & PG_RDONLY) != 0 ?
2213 flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2214 flt->access_type | PMAP_CANFAIL |
2215 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2216
2217 /*
2218 * No need to undo what we did; we can simply think of
2219 * this as the pmap throwing away the mapping information.
2220 *
2221 * We do, however, have to go through the ReFault path,
2222 * as the map may change while we're asleep.
2223 */
2224
2225 /*
2226 * ensure that the page is queued in the case that
2227 * we just promoted the page.
2228 */
2229
2230 mutex_enter(&uvm_pageqlock);
2231 uvm_pageenqueue(pg);
2232 mutex_exit(&uvm_pageqlock);
2233
2234 if (pg->flags & PG_WANTED)
2235 wakeup(pg);
2236
2237 /*
2238 * note that pg can't be PG_RELEASED since we did not drop
2239 * the object lock since the last time we checked.
2240 */
2241 KASSERT((pg->flags & PG_RELEASED) == 0);
2242
2243 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2244 UVM_PAGE_OWN(pg, NULL);
2245
2246 uvmfault_unlockall(ufi, amap, uobj);
2247 if (!uvm_reclaimable()) {
2248 UVMHIST_LOG(maphist,
2249 "<- failed. out of VM",0,0,0,0);
2250 /* XXX instrumentation */
2251 error = ENOMEM;
2252 return error;
2253 }
2254 /* XXX instrumentation */
2255 uvm_wait("flt_pmfail2");
2256 return ERESTART;
2257 }
2258
2259 uvm_fault_lower_done(ufi, flt, uobj, pg);
2260
2261 /*
2262 * note that pg can't be PG_RELEASED since we did not drop the object
2263 * lock since the last time we checked.
2264 */
2265 KASSERT((pg->flags & PG_RELEASED) == 0);
2266 if (pg->flags & PG_WANTED)
2267 wakeup(pg);
2268 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2269 UVM_PAGE_OWN(pg, NULL);
2270
2271 pmap_update(ufi->orig_map->pmap);
2272 uvmfault_unlockall(ufi, amap, uobj);
2273
2274 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2275 return 0;
2276 }
2277
2278 /*
2279 * uvm_fault_lower_done: queue lower center page.
2280 */
2281
2282 void
2283 uvm_fault_lower_done(
2284 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2285 struct uvm_object *uobj, struct vm_page *pg)
2286 {
2287 bool dropswap = false;
2288
2289 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2290
2291 mutex_enter(&uvm_pageqlock);
2292 if (flt->wire_paging) {
2293 uvm_pagewire(pg);
2294 if (pg->pqflags & PQ_AOBJ) {
2295
2296 /*
2297 * since the now-wired page cannot be paged out,
2298 * release its swap resources for others to use.
2299 * since an aobj page with no swap cannot be PG_CLEAN,
2300 * clear its clean flag now.
2301 */
2302
2303 KASSERT(uobj != NULL);
2304 pg->flags &= ~(PG_CLEAN);
2305 dropswap = true;
2306 }
2307 } else {
2308 uvm_pageactivate(pg);
2309 }
2310 mutex_exit(&uvm_pageqlock);
2311
2312 if (dropswap) {
2313 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2314 }
2315 }
2316
2317
2318 /*
2319 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2320 *
2321 * => map may be read-locked by caller, but MUST NOT be write-locked.
2322 * => if map is read-locked, any operations which may cause map to
2323 * be write-locked in uvm_fault() must be taken care of by
2324 * the caller. See uvm_map_pageable().
2325 */
2326
2327 int
2328 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2329 vm_prot_t access_type, int maxprot)
2330 {
2331 vaddr_t va;
2332 int error;
2333
2334 /*
2335 * now fault it in a page at a time. if the fault fails then we have
2336 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2337 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2338 */
2339
2340 /*
2341 * XXX work around overflowing a vaddr_t. this prevents us from
2342 * wiring the last page in the address space, though.
2343 */
2344 if (start > end) {
2345 return EFAULT;
2346 }
2347
2348 for (va = start; va < end; va += PAGE_SIZE) {
2349 error = uvm_fault_internal(map, va, access_type,
2350 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2351 if (error) {
2352 if (va != start) {
2353 uvm_fault_unwire(map, start, va);
2354 }
2355 return error;
2356 }
2357 }
2358 return 0;
2359 }
2360
2361 /*
2362 * uvm_fault_unwire(): unwire range of virtual space.
2363 */
2364
2365 void
2366 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2367 {
2368 vm_map_lock_read(map);
2369 uvm_fault_unwire_locked(map, start, end);
2370 vm_map_unlock_read(map);
2371 }
2372
2373 /*
2374 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2375 *
2376 * => map must be at least read-locked.
2377 */
2378
2379 void
2380 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2381 {
2382 struct vm_map_entry *entry, *oentry;
2383 pmap_t pmap = vm_map_pmap(map);
2384 vaddr_t va;
2385 paddr_t pa;
2386 struct vm_page *pg;
2387
2388 /*
2389 * we assume that the area we are unwiring has actually been wired
2390 * in the first place. this means that we should be able to extract
2391 * the PAs from the pmap. we also lock out the page daemon so that
2392 * we can call uvm_pageunwire.
2393 */
2394
2395 /*
2396 * find the beginning map entry for the region.
2397 */
2398
2399 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2400 if (uvm_map_lookup_entry(map, start, &entry) == false)
2401 panic("uvm_fault_unwire_locked: address not in map");
2402
2403 oentry = NULL;
2404 for (va = start; va < end; va += PAGE_SIZE) {
2405 if (pmap_extract(pmap, va, &pa) == false)
2406 continue;
2407
2408 /*
2409 * find the map entry for the current address.
2410 */
2411
2412 KASSERT(va >= entry->start);
2413 while (va >= entry->end) {
2414 KASSERT(entry->next != &map->header &&
2415 entry->next->start <= entry->end);
2416 entry = entry->next;
2417 }
2418
2419 /*
2420 * lock it.
2421 */
2422
2423 if (entry != oentry) {
2424 if (oentry != NULL) {
2425 mutex_exit(&uvm_pageqlock);
2426 uvm_map_unlock_entry(oentry);
2427 }
2428 uvm_map_lock_entry(entry);
2429 mutex_enter(&uvm_pageqlock);
2430 oentry = entry;
2431 }
2432
2433 /*
2434 * if the entry is no longer wired, tell the pmap.
2435 */
2436
2437 if (VM_MAPENT_ISWIRED(entry) == 0)
2438 pmap_unwire(pmap, va);
2439
2440 pg = PHYS_TO_VM_PAGE(pa);
2441 if (pg)
2442 uvm_pageunwire(pg);
2443 }
2444
2445 if (oentry != NULL) {
2446 mutex_exit(&uvm_pageqlock);
2447 uvm_map_unlock_entry(entry);
2448 }
2449 }
2450