Home | History | Annotate | Line # | Download | only in uvm
uvm_fault.c revision 1.199.6.4
      1 /*	$NetBSD: uvm_fault.c,v 1.199.6.4 2019/04/22 08:05:51 martin Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  *
     27  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
     28  */
     29 
     30 /*
     31  * uvm_fault.c: fault handler
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.199.6.4 2019/04/22 08:05:51 martin Exp $");
     36 
     37 #include "opt_uvmhist.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/kernel.h>
     42 #include <sys/mman.h>
     43 
     44 #include <uvm/uvm.h>
     45 
     46 /*
     47  *
     48  * a word on page faults:
     49  *
     50  * types of page faults we handle:
     51  *
     52  * CASE 1: upper layer faults                   CASE 2: lower layer faults
     53  *
     54  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
     55  *    read/write1     write>1                  read/write   +-cow_write/zero
     56  *         |             |                         |        |
     57  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
     58  * amap |  V  |       |  ---------> new |          |        | |  ^  |
     59  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
     60  *                                                 |        |    |
     61  *      +-----+       +-----+                   +--|--+     | +--|--+
     62  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
     63  *      +-----+       +-----+                   +-----+       +-----+
     64  *
     65  * d/c = don't care
     66  *
     67  *   case [0]: layerless fault
     68  *	no amap or uobj is present.   this is an error.
     69  *
     70  *   case [1]: upper layer fault [anon active]
     71  *     1A: [read] or [write with anon->an_ref == 1]
     72  *		I/O takes place in upper level anon and uobj is not touched.
     73  *     1B: [write with anon->an_ref > 1]
     74  *		new anon is alloc'd and data is copied off ["COW"]
     75  *
     76  *   case [2]: lower layer fault [uobj]
     77  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
     78  *		I/O takes place directly in object.
     79  *     2B: [write to copy_on_write] or [read on NULL uobj]
     80  *		data is "promoted" from uobj to a new anon.
     81  *		if uobj is null, then we zero fill.
     82  *
     83  * we follow the standard UVM locking protocol ordering:
     84  *
     85  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
     86  * we hold a PG_BUSY page if we unlock for I/O
     87  *
     88  *
     89  * the code is structured as follows:
     90  *
     91  *     - init the "IN" params in the ufi structure
     92  *   ReFault: (ERESTART returned to the loop in uvm_fault_internal)
     93  *     - do lookups [locks maps], check protection, handle needs_copy
     94  *     - check for case 0 fault (error)
     95  *     - establish "range" of fault
     96  *     - if we have an amap lock it and extract the anons
     97  *     - if sequential advice deactivate pages behind us
     98  *     - at the same time check pmap for unmapped areas and anon for pages
     99  *	 that we could map in (and do map it if found)
    100  *     - check object for resident pages that we could map in
    101  *     - if (case 2) goto Case2
    102  *     - >>> handle case 1
    103  *           - ensure source anon is resident in RAM
    104  *           - if case 1B alloc new anon and copy from source
    105  *           - map the correct page in
    106  *   Case2:
    107  *     - >>> handle case 2
    108  *           - ensure source page is resident (if uobj)
    109  *           - if case 2B alloc new anon and copy from source (could be zero
    110  *		fill if uobj == NULL)
    111  *           - map the correct page in
    112  *     - done!
    113  *
    114  * note on paging:
    115  *   if we have to do I/O we place a PG_BUSY page in the correct object,
    116  * unlock everything, and do the I/O.   when I/O is done we must reverify
    117  * the state of the world before assuming that our data structures are
    118  * valid.   [because mappings could change while the map is unlocked]
    119  *
    120  *  alternative 1: unbusy the page in question and restart the page fault
    121  *    from the top (ReFault).   this is easy but does not take advantage
    122  *    of the information that we already have from our previous lookup,
    123  *    although it is possible that the "hints" in the vm_map will help here.
    124  *
    125  * alternative 2: the system already keeps track of a "version" number of
    126  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
    127  *    mapping) you bump the version number up by one...]   so, we can save
    128  *    the version number of the map before we release the lock and start I/O.
    129  *    then when I/O is done we can relock and check the version numbers
    130  *    to see if anything changed.    this might save us some over 1 because
    131  *    we don't have to unbusy the page and may be less compares(?).
    132  *
    133  * alternative 3: put in backpointers or a way to "hold" part of a map
    134  *    in place while I/O is in progress.   this could be complex to
    135  *    implement (especially with structures like amap that can be referenced
    136  *    by multiple map entries, and figuring out what should wait could be
    137  *    complex as well...).
    138  *
    139  * we use alternative 2.  given that we are multi-threaded now we may want
    140  * to reconsider the choice.
    141  */
    142 
    143 /*
    144  * local data structures
    145  */
    146 
    147 struct uvm_advice {
    148 	int advice;
    149 	int nback;
    150 	int nforw;
    151 };
    152 
    153 /*
    154  * page range array:
    155  * note: index in array must match "advice" value
    156  * XXX: borrowed numbers from freebsd.   do they work well for us?
    157  */
    158 
    159 static const struct uvm_advice uvmadvice[] = {
    160 	{ UVM_ADV_NORMAL, 3, 4 },
    161 	{ UVM_ADV_RANDOM, 0, 0 },
    162 	{ UVM_ADV_SEQUENTIAL, 8, 7},
    163 };
    164 
    165 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
    166 
    167 /*
    168  * private prototypes
    169  */
    170 
    171 /*
    172  * externs from other modules
    173  */
    174 
    175 extern int start_init_exec;	/* Is init_main() done / init running? */
    176 
    177 /*
    178  * inline functions
    179  */
    180 
    181 /*
    182  * uvmfault_anonflush: try and deactivate pages in specified anons
    183  *
    184  * => does not have to deactivate page if it is busy
    185  */
    186 
    187 static inline void
    188 uvmfault_anonflush(struct vm_anon **anons, int n)
    189 {
    190 	int lcv;
    191 	struct vm_page *pg;
    192 
    193 	for (lcv = 0; lcv < n; lcv++) {
    194 		if (anons[lcv] == NULL)
    195 			continue;
    196 		KASSERT(mutex_owned(anons[lcv]->an_lock));
    197 		pg = anons[lcv]->an_page;
    198 		if (pg && (pg->flags & PG_BUSY) == 0) {
    199 			mutex_enter(&uvm_pageqlock);
    200 			if (pg->wire_count == 0) {
    201 				uvm_pagedeactivate(pg);
    202 			}
    203 			mutex_exit(&uvm_pageqlock);
    204 		}
    205 	}
    206 }
    207 
    208 /*
    209  * normal functions
    210  */
    211 
    212 /*
    213  * uvmfault_amapcopy: clear "needs_copy" in a map.
    214  *
    215  * => called with VM data structures unlocked (usually, see below)
    216  * => we get a write lock on the maps and clear needs_copy for a VA
    217  * => if we are out of RAM we sleep (waiting for more)
    218  */
    219 
    220 static void
    221 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
    222 {
    223 	for (;;) {
    224 
    225 		/*
    226 		 * no mapping?  give up.
    227 		 */
    228 
    229 		if (uvmfault_lookup(ufi, true) == false)
    230 			return;
    231 
    232 		/*
    233 		 * copy if needed.
    234 		 */
    235 
    236 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
    237 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
    238 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
    239 
    240 		/*
    241 		 * didn't work?  must be out of RAM.   unlock and sleep.
    242 		 */
    243 
    244 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
    245 			uvmfault_unlockmaps(ufi, true);
    246 			uvm_wait("fltamapcopy");
    247 			continue;
    248 		}
    249 
    250 		/*
    251 		 * got it!   unlock and return.
    252 		 */
    253 
    254 		uvmfault_unlockmaps(ufi, true);
    255 		return;
    256 	}
    257 	/*NOTREACHED*/
    258 }
    259 
    260 /*
    261  * uvmfault_anonget: get data in an anon into a non-busy, non-released
    262  * page in that anon.
    263  *
    264  * => Map, amap and thus anon should be locked by caller.
    265  * => If we fail, we unlock everything and error is returned.
    266  * => If we are successful, return with everything still locked.
    267  * => We do not move the page on the queues [gets moved later].  If we
    268  *    allocate a new page [we_own], it gets put on the queues.  Either way,
    269  *    the result is that the page is on the queues at return time
    270  * => For pages which are on loan from a uvm_object (and thus are not owned
    271  *    by the anon): if successful, return with the owning object locked.
    272  *    The caller must unlock this object when it unlocks everything else.
    273  */
    274 
    275 int
    276 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
    277     struct vm_anon *anon)
    278 {
    279 	struct vm_page *pg;
    280 	int error;
    281 
    282 	UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
    283 	KASSERT(mutex_owned(anon->an_lock));
    284 	KASSERT(anon->an_lock == amap->am_lock);
    285 
    286 	/* Increment the counters.*/
    287 	uvmexp.fltanget++;
    288 	if (anon->an_page) {
    289 		curlwp->l_ru.ru_minflt++;
    290 	} else {
    291 		curlwp->l_ru.ru_majflt++;
    292 	}
    293 	error = 0;
    294 
    295 	/*
    296 	 * Loop until we get the anon data, or fail.
    297 	 */
    298 
    299 	for (;;) {
    300 		bool we_own, locked;
    301 		/*
    302 		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
    303 		 */
    304 		we_own = false;
    305 		pg = anon->an_page;
    306 
    307 		/*
    308 		 * If there is a resident page and it is loaned, then anon
    309 		 * may not own it.  Call out to uvm_anon_lockloanpg() to
    310 		 * identify and lock the real owner of the page.
    311 		 */
    312 
    313 		if (pg && pg->loan_count)
    314 			pg = uvm_anon_lockloanpg(anon);
    315 
    316 		/*
    317 		 * Is page resident?  Make sure it is not busy/released.
    318 		 */
    319 
    320 		if (pg) {
    321 
    322 			/*
    323 			 * at this point, if the page has a uobject [meaning
    324 			 * we have it on loan], then that uobject is locked
    325 			 * by us!   if the page is busy, we drop all the
    326 			 * locks (including uobject) and try again.
    327 			 */
    328 
    329 			if ((pg->flags & PG_BUSY) == 0) {
    330 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
    331 				return 0;
    332 			}
    333 			pg->flags |= PG_WANTED;
    334 			uvmexp.fltpgwait++;
    335 
    336 			/*
    337 			 * The last unlock must be an atomic unlock and wait
    338 			 * on the owner of page.
    339 			 */
    340 
    341 			if (pg->uobject) {
    342 				/* Owner of page is UVM object. */
    343 				uvmfault_unlockall(ufi, amap, NULL);
    344 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
    345 				    0,0,0);
    346 				UVM_UNLOCK_AND_WAIT(pg,
    347 				    pg->uobject->vmobjlock,
    348 				    false, "anonget1", 0);
    349 			} else {
    350 				/* Owner of page is anon. */
    351 				uvmfault_unlockall(ufi, NULL, NULL);
    352 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
    353 				    0,0,0);
    354 				UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
    355 				    false, "anonget2", 0);
    356 			}
    357 		} else {
    358 #if defined(VMSWAP)
    359 			/*
    360 			 * No page, therefore allocate one.
    361 			 */
    362 
    363 			pg = uvm_pagealloc(NULL,
    364 			    ufi != NULL ? ufi->orig_rvaddr : 0,
    365 			    anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
    366 			if (pg == NULL) {
    367 				/* Out of memory.  Wait a little. */
    368 				uvmfault_unlockall(ufi, amap, NULL);
    369 				uvmexp.fltnoram++;
    370 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
    371 				    0,0,0);
    372 				if (!uvm_reclaimable()) {
    373 					return ENOMEM;
    374 				}
    375 				uvm_wait("flt_noram1");
    376 			} else {
    377 				/* PG_BUSY bit is set. */
    378 				we_own = true;
    379 				uvmfault_unlockall(ufi, amap, NULL);
    380 
    381 				/*
    382 				 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
    383 				 * the uvm_swap_get() function with all data
    384 				 * structures unlocked.  Note that it is OK
    385 				 * to read an_swslot here, because we hold
    386 				 * PG_BUSY on the page.
    387 				 */
    388 				uvmexp.pageins++;
    389 				error = uvm_swap_get(pg, anon->an_swslot,
    390 				    PGO_SYNCIO);
    391 
    392 				/*
    393 				 * We clean up after the I/O below in the
    394 				 * 'we_own' case.
    395 				 */
    396 			}
    397 #else
    398 			panic("%s: no page", __func__);
    399 #endif /* defined(VMSWAP) */
    400 		}
    401 
    402 		/*
    403 		 * Re-lock the map and anon.
    404 		 */
    405 
    406 		locked = uvmfault_relock(ufi);
    407 		if (locked || we_own) {
    408 			mutex_enter(anon->an_lock);
    409 		}
    410 
    411 		/*
    412 		 * If we own the page (i.e. we set PG_BUSY), then we need
    413 		 * to clean up after the I/O.  There are three cases to
    414 		 * consider:
    415 		 *
    416 		 * 1) Page was released during I/O: free anon and ReFault.
    417 		 * 2) I/O not OK.  Free the page and cause the fault to fail.
    418 		 * 3) I/O OK!  Activate the page and sync with the non-we_own
    419 		 *    case (i.e. drop anon lock if not locked).
    420 		 */
    421 
    422 		if (we_own) {
    423 #if defined(VMSWAP)
    424 			if (pg->flags & PG_WANTED) {
    425 				wakeup(pg);
    426 			}
    427 			if (error) {
    428 
    429 				/*
    430 				 * Remove the swap slot from the anon and
    431 				 * mark the anon as having no real slot.
    432 				 * Do not free the swap slot, thus preventing
    433 				 * it from being used again.
    434 				 */
    435 
    436 				if (anon->an_swslot > 0) {
    437 					uvm_swap_markbad(anon->an_swslot, 1);
    438 				}
    439 				anon->an_swslot = SWSLOT_BAD;
    440 
    441 				if ((pg->flags & PG_RELEASED) != 0) {
    442 					goto released;
    443 				}
    444 
    445 				/*
    446 				 * Note: page was never !PG_BUSY, so it
    447 				 * cannot be mapped and thus no need to
    448 				 * pmap_page_protect() it.
    449 				 */
    450 
    451 				mutex_enter(&uvm_pageqlock);
    452 				uvm_pagefree(pg);
    453 				mutex_exit(&uvm_pageqlock);
    454 
    455 				if (locked) {
    456 					uvmfault_unlockall(ufi, NULL, NULL);
    457 				}
    458 				mutex_exit(anon->an_lock);
    459 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
    460 				return error;
    461 			}
    462 
    463 			if ((pg->flags & PG_RELEASED) != 0) {
    464 released:
    465 				KASSERT(anon->an_ref == 0);
    466 
    467 				/*
    468 				 * Released while we had unlocked amap.
    469 				 */
    470 
    471 				if (locked) {
    472 					uvmfault_unlockall(ufi, NULL, NULL);
    473 				}
    474 				uvm_anon_release(anon);
    475 
    476 				if (error) {
    477 					UVMHIST_LOG(maphist,
    478 					    "<- ERROR/RELEASED", 0,0,0,0);
    479 					return error;
    480 				}
    481 
    482 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
    483 				return ERESTART;
    484 			}
    485 
    486 			/*
    487 			 * We have successfully read the page, activate it.
    488 			 */
    489 
    490 			mutex_enter(&uvm_pageqlock);
    491 			uvm_pageactivate(pg);
    492 			mutex_exit(&uvm_pageqlock);
    493 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    494 			UVM_PAGE_OWN(pg, NULL);
    495 #else
    496 			panic("%s: we_own", __func__);
    497 #endif /* defined(VMSWAP) */
    498 		}
    499 
    500 		/*
    501 		 * We were not able to re-lock the map - restart the fault.
    502 		 */
    503 
    504 		if (!locked) {
    505 			if (we_own) {
    506 				mutex_exit(anon->an_lock);
    507 			}
    508 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    509 			return ERESTART;
    510 		}
    511 
    512 		/*
    513 		 * Verify that no one has touched the amap and moved
    514 		 * the anon on us.
    515 		 */
    516 
    517 		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
    518 		    ufi->orig_rvaddr - ufi->entry->start) != anon) {
    519 
    520 			uvmfault_unlockall(ufi, amap, NULL);
    521 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    522 			return ERESTART;
    523 		}
    524 
    525 		/*
    526 		 * Retry..
    527 		 */
    528 
    529 		uvmexp.fltanretry++;
    530 		continue;
    531 	}
    532 	/*NOTREACHED*/
    533 }
    534 
    535 /*
    536  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
    537  *
    538  *	1. allocate an anon and a page.
    539  *	2. fill its contents.
    540  *	3. put it into amap.
    541  *
    542  * => if we fail (result != 0) we unlock everything.
    543  * => on success, return a new locked anon via 'nanon'.
    544  *    (*nanon)->an_page will be a resident, locked, dirty page.
    545  * => it's caller's responsibility to put the promoted nanon->an_page to the
    546  *    page queue.
    547  */
    548 
    549 static int
    550 uvmfault_promote(struct uvm_faultinfo *ufi,
    551     struct vm_anon *oanon,
    552     struct vm_page *uobjpage,
    553     struct vm_anon **nanon, /* OUT: allocated anon */
    554     struct vm_anon **spare)
    555 {
    556 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
    557 	struct uvm_object *uobj;
    558 	struct vm_anon *anon;
    559 	struct vm_page *pg;
    560 	struct vm_page *opg;
    561 	int error;
    562 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    563 
    564 	if (oanon) {
    565 		/* anon COW */
    566 		opg = oanon->an_page;
    567 		KASSERT(opg != NULL);
    568 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
    569 	} else if (uobjpage != PGO_DONTCARE) {
    570 		/* object-backed COW */
    571 		opg = uobjpage;
    572 	} else {
    573 		/* ZFOD */
    574 		opg = NULL;
    575 	}
    576 	if (opg != NULL) {
    577 		uobj = opg->uobject;
    578 	} else {
    579 		uobj = NULL;
    580 	}
    581 
    582 	KASSERT(amap != NULL);
    583 	KASSERT(uobjpage != NULL);
    584 	KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
    585 	KASSERT(mutex_owned(amap->am_lock));
    586 	KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
    587 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
    588 
    589 	if (*spare != NULL) {
    590 		anon = *spare;
    591 		*spare = NULL;
    592 	} else {
    593 		anon = uvm_analloc();
    594 	}
    595 	if (anon) {
    596 
    597 		/*
    598 		 * The new anon is locked.
    599 		 *
    600 		 * if opg == NULL, we want a zero'd, dirty page,
    601 		 * so have uvm_pagealloc() do that for us.
    602 		 */
    603 
    604 		KASSERT(anon->an_lock == NULL);
    605 		anon->an_lock = amap->am_lock;
    606 		pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
    607 		    UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
    608 		if (pg == NULL) {
    609 			anon->an_lock = NULL;
    610 		}
    611 	} else {
    612 		pg = NULL;
    613 	}
    614 
    615 	/*
    616 	 * out of memory resources?
    617 	 */
    618 
    619 	if (pg == NULL) {
    620 		/* save anon for the next try. */
    621 		if (anon != NULL) {
    622 			*spare = anon;
    623 		}
    624 
    625 		/* unlock and fail ... */
    626 		uvm_page_unbusy(&uobjpage, 1);
    627 		uvmfault_unlockall(ufi, amap, uobj);
    628 		if (!uvm_reclaimable()) {
    629 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
    630 			uvmexp.fltnoanon++;
    631 			error = ENOMEM;
    632 			goto done;
    633 		}
    634 
    635 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
    636 		uvmexp.fltnoram++;
    637 		uvm_wait("flt_noram5");
    638 		error = ERESTART;
    639 		goto done;
    640 	}
    641 
    642 	/* copy page [pg now dirty] */
    643 	if (opg) {
    644 		uvm_pagecopy(opg, pg);
    645 	}
    646 
    647 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
    648 	    oanon != NULL);
    649 
    650 	*nanon = anon;
    651 	error = 0;
    652 done:
    653 	return error;
    654 }
    655 
    656 
    657 /*
    658  *   F A U L T   -   m a i n   e n t r y   p o i n t
    659  */
    660 
    661 /*
    662  * uvm_fault: page fault handler
    663  *
    664  * => called from MD code to resolve a page fault
    665  * => VM data structures usually should be unlocked.   however, it is
    666  *	possible to call here with the main map locked if the caller
    667  *	gets a write lock, sets it recusive, and then calls us (c.f.
    668  *	uvm_map_pageable).   this should be avoided because it keeps
    669  *	the map locked off during I/O.
    670  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
    671  */
    672 
    673 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
    674 			 ~VM_PROT_WRITE : VM_PROT_ALL)
    675 
    676 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
    677 #define UVM_FAULT_WIRE		(1 << 0)
    678 #define UVM_FAULT_MAXPROT	(1 << 1)
    679 
    680 struct uvm_faultctx {
    681 
    682 	/*
    683 	 * the following members are set up by uvm_fault_check() and
    684 	 * read-only after that.
    685 	 *
    686 	 * note that narrow is used by uvm_fault_check() to change
    687 	 * the behaviour after ERESTART.
    688 	 *
    689 	 * most of them might change after RESTART if the underlying
    690 	 * map entry has been changed behind us.  an exception is
    691 	 * wire_paging, which does never change.
    692 	 */
    693 	vm_prot_t access_type;
    694 	vaddr_t startva;
    695 	int npages;
    696 	int centeridx;
    697 	bool narrow;		/* work on a single requested page only */
    698 	bool wire_mapping;	/* request a PMAP_WIRED mapping
    699 				   (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
    700 	bool wire_paging;	/* request uvm_pagewire
    701 				   (true for UVM_FAULT_WIRE) */
    702 	bool cow_now;		/* VM_PROT_WRITE is actually requested
    703 				   (ie. should break COW and page loaning) */
    704 
    705 	/*
    706 	 * enter_prot is set up by uvm_fault_check() and clamped
    707 	 * (ie. drop the VM_PROT_WRITE bit) in various places in case
    708 	 * of !cow_now.
    709 	 */
    710 	vm_prot_t enter_prot;	/* prot at which we want to enter pages in */
    711 
    712 	/*
    713 	 * the following member is for uvmfault_promote() and ERESTART.
    714 	 */
    715 	struct vm_anon *anon_spare;
    716 
    717 	/*
    718 	 * the folloing is actually a uvm_fault_lower() internal.
    719 	 * it's here merely for debugging.
    720 	 * (or due to the mechanical separation of the function?)
    721 	 */
    722 	bool promote;
    723 };
    724 
    725 static inline int	uvm_fault_check(
    726 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    727 			    struct vm_anon ***, bool);
    728 
    729 static int		uvm_fault_upper(
    730 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    731 			    struct vm_anon **);
    732 static inline int	uvm_fault_upper_lookup(
    733 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    734 			    struct vm_anon **, struct vm_page **);
    735 static inline void	uvm_fault_upper_neighbor(
    736 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    737 			    vaddr_t, struct vm_page *, bool);
    738 static inline int	uvm_fault_upper_loan(
    739 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    740 			    struct vm_anon *, struct uvm_object **);
    741 static inline int	uvm_fault_upper_promote(
    742 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    743 			    struct uvm_object *, struct vm_anon *);
    744 static inline int	uvm_fault_upper_direct(
    745 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    746 			    struct uvm_object *, struct vm_anon *);
    747 static int		uvm_fault_upper_enter(
    748 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    749 			    struct uvm_object *, struct vm_anon *,
    750 			    struct vm_page *, struct vm_anon *);
    751 static inline void	uvm_fault_upper_done(
    752 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    753 			    struct vm_anon *, struct vm_page *);
    754 
    755 static int		uvm_fault_lower(
    756 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    757 			    struct vm_page **);
    758 static inline void	uvm_fault_lower_lookup(
    759 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    760 			    struct vm_page **);
    761 static inline void	uvm_fault_lower_neighbor(
    762 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    763 			    vaddr_t, struct vm_page *, bool);
    764 static inline int	uvm_fault_lower_io(
    765 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    766 			    struct uvm_object **, struct vm_page **);
    767 static inline int	uvm_fault_lower_direct(
    768 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    769 			    struct uvm_object *, struct vm_page *);
    770 static inline int	uvm_fault_lower_direct_loan(
    771 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    772 			    struct uvm_object *, struct vm_page **,
    773 			    struct vm_page **);
    774 static inline int	uvm_fault_lower_promote(
    775 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    776 			    struct uvm_object *, struct vm_page *);
    777 static int		uvm_fault_lower_enter(
    778 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    779 			    struct uvm_object *,
    780 			    struct vm_anon *, struct vm_page *);
    781 static inline void	uvm_fault_lower_done(
    782 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    783 			    struct uvm_object *, struct vm_page *);
    784 
    785 int
    786 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
    787     vm_prot_t access_type, int fault_flag)
    788 {
    789 	struct cpu_data *cd;
    790 	struct uvm_cpu *ucpu;
    791 	struct uvm_faultinfo ufi;
    792 	struct uvm_faultctx flt = {
    793 		.access_type = access_type,
    794 
    795 		/* don't look for neighborhood * pages on "wire" fault */
    796 		.narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
    797 
    798 		/* "wire" fault causes wiring of both mapping and paging */
    799 		.wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
    800 		.wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
    801 	};
    802 	const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
    803 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
    804 	struct vm_page *pages_store[UVM_MAXRANGE], **pages;
    805 	int error;
    806 
    807 	UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
    808 
    809 	UVMHIST_LOG(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)",
    810 	      (uintptr_t)orig_map, vaddr, access_type, fault_flag);
    811 
    812 	cd = &(curcpu()->ci_data);
    813 	cd->cpu_nfault++;
    814 	ucpu = cd->cpu_uvm;
    815 
    816 	/* Don't flood RNG subsystem with samples. */
    817 	if (cd->cpu_nfault % 503)
    818 		goto norng;
    819 
    820 	/* Don't count anything until user interaction is possible */
    821 	if (__predict_true(start_init_exec)) {
    822 		kpreempt_disable();
    823 		rnd_add_uint32(&ucpu->rs,
    824 			       sizeof(vaddr_t) == sizeof(uint32_t) ?
    825 			       (uint32_t)vaddr : sizeof(vaddr_t) ==
    826 			       sizeof(uint64_t) ?
    827 			       (uint32_t)(vaddr & 0x00000000ffffffff) :
    828 			       (uint32_t)(cd->cpu_nfault & 0x00000000ffffffff));
    829 		kpreempt_enable();
    830 	}
    831 norng:
    832 	/*
    833 	 * init the IN parameters in the ufi
    834 	 */
    835 
    836 	ufi.orig_map = orig_map;
    837 	ufi.orig_rvaddr = trunc_page(vaddr);
    838 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
    839 
    840 	error = ERESTART;
    841 	while (error == ERESTART) { /* ReFault: */
    842 		anons = anons_store;
    843 		pages = pages_store;
    844 
    845 		error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
    846 		if (error != 0)
    847 			continue;
    848 
    849 		error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
    850 		if (error != 0)
    851 			continue;
    852 
    853 		if (pages[flt.centeridx] == PGO_DONTCARE)
    854 			error = uvm_fault_upper(&ufi, &flt, anons);
    855 		else {
    856 			struct uvm_object * const uobj =
    857 			    ufi.entry->object.uvm_obj;
    858 
    859 			if (uobj && uobj->pgops->pgo_fault != NULL) {
    860 				/*
    861 				 * invoke "special" fault routine.
    862 				 */
    863 				mutex_enter(uobj->vmobjlock);
    864 				/* locked: maps(read), amap(if there), uobj */
    865 				error = uobj->pgops->pgo_fault(&ufi,
    866 				    flt.startva, pages, flt.npages,
    867 				    flt.centeridx, flt.access_type,
    868 				    PGO_LOCKED|PGO_SYNCIO);
    869 
    870 				/*
    871 				 * locked: nothing, pgo_fault has unlocked
    872 				 * everything
    873 				 */
    874 
    875 				/*
    876 				 * object fault routine responsible for
    877 				 * pmap_update().
    878 				 */
    879 
    880 				/*
    881 				 * Wake up the pagedaemon if the fault method
    882 				 * failed for lack of memory but some can be
    883 				 * reclaimed.
    884 				 */
    885 				if (error == ENOMEM && uvm_reclaimable()) {
    886 					uvm_wait("pgo_fault");
    887 					error = ERESTART;
    888 				}
    889 			} else {
    890 				error = uvm_fault_lower(&ufi, &flt, pages);
    891 			}
    892 		}
    893 	}
    894 
    895 	if (flt.anon_spare != NULL) {
    896 		flt.anon_spare->an_ref--;
    897 		KASSERT(flt.anon_spare->an_ref == 0);
    898 		KASSERT(flt.anon_spare->an_lock == NULL);
    899 		uvm_anon_free(flt.anon_spare);
    900 	}
    901 	return error;
    902 }
    903 
    904 /*
    905  * uvm_fault_check: check prot, handle needs-copy, etc.
    906  *
    907  *	1. lookup entry.
    908  *	2. check protection.
    909  *	3. adjust fault condition (mainly for simulated fault).
    910  *	4. handle needs-copy (lazy amap copy).
    911  *	5. establish range of interest for neighbor fault (aka pre-fault).
    912  *	6. look up anons (if amap exists).
    913  *	7. flush pages (if MADV_SEQUENTIAL)
    914  *
    915  * => called with nothing locked.
    916  * => if we fail (result != 0) we unlock everything.
    917  * => initialize/adjust many members of flt.
    918  */
    919 
    920 static int
    921 uvm_fault_check(
    922 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
    923 	struct vm_anon ***ranons, bool maxprot)
    924 {
    925 	struct vm_amap *amap;
    926 	struct uvm_object *uobj;
    927 	vm_prot_t check_prot;
    928 	int nback, nforw;
    929 	UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
    930 
    931 	/*
    932 	 * lookup and lock the maps
    933 	 */
    934 
    935 	if (uvmfault_lookup(ufi, false) == false) {
    936 		UVMHIST_LOG(maphist, "<- no mapping @ 0x%#jx", ufi->orig_rvaddr,
    937 		    0,0,0);
    938 		return EFAULT;
    939 	}
    940 	/* locked: maps(read) */
    941 
    942 #ifdef DIAGNOSTIC
    943 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
    944 		printf("Page fault on non-pageable map:\n");
    945 		printf("ufi->map = %p\n", ufi->map);
    946 		printf("ufi->orig_map = %p\n", ufi->orig_map);
    947 		printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
    948 		panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
    949 	}
    950 #endif
    951 
    952 	/*
    953 	 * check protection
    954 	 */
    955 
    956 	check_prot = maxprot ?
    957 	    ufi->entry->max_protection : ufi->entry->protection;
    958 	if ((check_prot & flt->access_type) != flt->access_type) {
    959 		UVMHIST_LOG(maphist,
    960 		    "<- protection failure (prot=%#jx, access=%#jx)",
    961 		    ufi->entry->protection, flt->access_type, 0, 0);
    962 		uvmfault_unlockmaps(ufi, false);
    963 		return EFAULT;
    964 	}
    965 
    966 	/*
    967 	 * "enter_prot" is the protection we want to enter the page in at.
    968 	 * for certain pages (e.g. copy-on-write pages) this protection can
    969 	 * be more strict than ufi->entry->protection.  "wired" means either
    970 	 * the entry is wired or we are fault-wiring the pg.
    971 	 */
    972 
    973 	flt->enter_prot = ufi->entry->protection;
    974 	if (VM_MAPENT_ISWIRED(ufi->entry))
    975 		flt->wire_mapping = true;
    976 
    977 	if (flt->wire_mapping) {
    978 		flt->access_type = flt->enter_prot; /* full access for wired */
    979 		flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
    980 	} else {
    981 		flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
    982 	}
    983 
    984 	flt->promote = false;
    985 
    986 	/*
    987 	 * handle "needs_copy" case.   if we need to copy the amap we will
    988 	 * have to drop our readlock and relock it with a write lock.  (we
    989 	 * need a write lock to change anything in a map entry [e.g.
    990 	 * needs_copy]).
    991 	 */
    992 
    993 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
    994 		if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
    995 			KASSERT(!maxprot);
    996 			/* need to clear */
    997 			UVMHIST_LOG(maphist,
    998 			    "  need to clear needs_copy and refault",0,0,0,0);
    999 			uvmfault_unlockmaps(ufi, false);
   1000 			uvmfault_amapcopy(ufi);
   1001 			uvmexp.fltamcopy++;
   1002 			return ERESTART;
   1003 
   1004 		} else {
   1005 
   1006 			/*
   1007 			 * ensure that we pmap_enter page R/O since
   1008 			 * needs_copy is still true
   1009 			 */
   1010 
   1011 			flt->enter_prot &= ~VM_PROT_WRITE;
   1012 		}
   1013 	}
   1014 
   1015 	/*
   1016 	 * identify the players
   1017 	 */
   1018 
   1019 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
   1020 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
   1021 
   1022 	/*
   1023 	 * check for a case 0 fault.  if nothing backing the entry then
   1024 	 * error now.
   1025 	 */
   1026 
   1027 	if (amap == NULL && uobj == NULL) {
   1028 		uvmfault_unlockmaps(ufi, false);
   1029 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
   1030 		return EFAULT;
   1031 	}
   1032 
   1033 	/*
   1034 	 * establish range of interest based on advice from mapper
   1035 	 * and then clip to fit map entry.   note that we only want
   1036 	 * to do this the first time through the fault.   if we
   1037 	 * ReFault we will disable this by setting "narrow" to true.
   1038 	 */
   1039 
   1040 	if (flt->narrow == false) {
   1041 
   1042 		/* wide fault (!narrow) */
   1043 		KASSERT(uvmadvice[ufi->entry->advice].advice ==
   1044 			 ufi->entry->advice);
   1045 		nback = MIN(uvmadvice[ufi->entry->advice].nback,
   1046 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
   1047 		flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
   1048 		/*
   1049 		 * note: "-1" because we don't want to count the
   1050 		 * faulting page as forw
   1051 		 */
   1052 		nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
   1053 			    ((ufi->entry->end - ufi->orig_rvaddr) >>
   1054 			     PAGE_SHIFT) - 1);
   1055 		flt->npages = nback + nforw + 1;
   1056 		flt->centeridx = nback;
   1057 
   1058 		flt->narrow = true;	/* ensure only once per-fault */
   1059 
   1060 	} else {
   1061 
   1062 		/* narrow fault! */
   1063 		nback = nforw = 0;
   1064 		flt->startva = ufi->orig_rvaddr;
   1065 		flt->npages = 1;
   1066 		flt->centeridx = 0;
   1067 
   1068 	}
   1069 	/* offset from entry's start to pgs' start */
   1070 	const voff_t eoff = flt->startva - ufi->entry->start;
   1071 
   1072 	/* locked: maps(read) */
   1073 	UVMHIST_LOG(maphist, "  narrow=%jd, back=%jd, forw=%jd, startva=%#jx",
   1074 		    flt->narrow, nback, nforw, flt->startva);
   1075 	UVMHIST_LOG(maphist, "  entry=%#jx, amap=%#jx, obj=%#jx",
   1076 	    (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0);
   1077 
   1078 	/*
   1079 	 * if we've got an amap, lock it and extract current anons.
   1080 	 */
   1081 
   1082 	if (amap) {
   1083 		amap_lock(amap);
   1084 		amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
   1085 	} else {
   1086 		*ranons = NULL;	/* to be safe */
   1087 	}
   1088 
   1089 	/* locked: maps(read), amap(if there) */
   1090 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1091 
   1092 	/*
   1093 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
   1094 	 * now and then forget about them (for the rest of the fault).
   1095 	 */
   1096 
   1097 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
   1098 
   1099 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
   1100 		    0,0,0,0);
   1101 		/* flush back-page anons? */
   1102 		if (amap)
   1103 			uvmfault_anonflush(*ranons, nback);
   1104 
   1105 		/* flush object? */
   1106 		if (uobj) {
   1107 			voff_t uoff;
   1108 
   1109 			uoff = ufi->entry->offset + eoff;
   1110 			mutex_enter(uobj->vmobjlock);
   1111 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
   1112 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
   1113 		}
   1114 
   1115 		/* now forget about the backpages */
   1116 		if (amap)
   1117 			*ranons += nback;
   1118 		flt->startva += (nback << PAGE_SHIFT);
   1119 		flt->npages -= nback;
   1120 		flt->centeridx = 0;
   1121 	}
   1122 	/*
   1123 	 * => startva is fixed
   1124 	 * => npages is fixed
   1125 	 */
   1126 	KASSERT(flt->startva <= ufi->orig_rvaddr);
   1127 	KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
   1128 	    flt->startva + (flt->npages << PAGE_SHIFT));
   1129 	return 0;
   1130 }
   1131 
   1132 /*
   1133  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
   1134  *
   1135  * iterate range of interest:
   1136  *	1. check if h/w mapping exists.  if yes, we don't care
   1137  *	2. check if anon exists.  if not, page is lower.
   1138  *	3. if anon exists, enter h/w mapping for neighbors.
   1139  *
   1140  * => called with amap locked (if exists).
   1141  */
   1142 
   1143 static int
   1144 uvm_fault_upper_lookup(
   1145 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1146 	struct vm_anon **anons, struct vm_page **pages)
   1147 {
   1148 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1149 	int lcv;
   1150 	vaddr_t currva;
   1151 	bool shadowed __unused;
   1152 	UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
   1153 
   1154 	/* locked: maps(read), amap(if there) */
   1155 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1156 
   1157 	/*
   1158 	 * map in the backpages and frontpages we found in the amap in hopes
   1159 	 * of preventing future faults.    we also init the pages[] array as
   1160 	 * we go.
   1161 	 */
   1162 
   1163 	currva = flt->startva;
   1164 	shadowed = false;
   1165 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1166 		/*
   1167 		 * don't play with VAs that are already mapped
   1168 		 * (except for center)
   1169 		 */
   1170 		if (lcv != flt->centeridx &&
   1171 		    pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
   1172 			pages[lcv] = PGO_DONTCARE;
   1173 			continue;
   1174 		}
   1175 
   1176 		/*
   1177 		 * unmapped or center page.   check if any anon at this level.
   1178 		 */
   1179 		if (amap == NULL || anons[lcv] == NULL) {
   1180 			pages[lcv] = NULL;
   1181 			continue;
   1182 		}
   1183 
   1184 		/*
   1185 		 * check for present page and map if possible.   re-activate it.
   1186 		 */
   1187 
   1188 		pages[lcv] = PGO_DONTCARE;
   1189 		if (lcv == flt->centeridx) {	/* save center for later! */
   1190 			shadowed = true;
   1191 			continue;
   1192 		}
   1193 
   1194 		struct vm_anon *anon = anons[lcv];
   1195 		struct vm_page *pg = anon->an_page;
   1196 
   1197 		KASSERT(anon->an_lock == amap->am_lock);
   1198 
   1199 		/* Ignore loaned and busy pages. */
   1200 		if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
   1201 			uvm_fault_upper_neighbor(ufi, flt, currva,
   1202 			    pg, anon->an_ref > 1);
   1203 		}
   1204 	}
   1205 
   1206 	/* locked: maps(read), amap(if there) */
   1207 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1208 	/* (shadowed == true) if there is an anon at the faulting address */
   1209 	UVMHIST_LOG(maphist, "  shadowed=%jd, will_get=%jd", shadowed,
   1210 	    (ufi->entry->object.uvm_obj && shadowed != false),0,0);
   1211 
   1212 	/*
   1213 	 * note that if we are really short of RAM we could sleep in the above
   1214 	 * call to pmap_enter with everything locked.   bad?
   1215 	 *
   1216 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
   1217 	 * XXX case.  --thorpej
   1218 	 */
   1219 
   1220 	return 0;
   1221 }
   1222 
   1223 /*
   1224  * uvm_fault_upper_neighbor: enter single upper neighbor page.
   1225  *
   1226  * => called with amap and anon locked.
   1227  */
   1228 
   1229 static void
   1230 uvm_fault_upper_neighbor(
   1231 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1232 	vaddr_t currva, struct vm_page *pg, bool readonly)
   1233 {
   1234 	UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
   1235 
   1236 	/* locked: amap, anon */
   1237 
   1238 	mutex_enter(&uvm_pageqlock);
   1239 	uvm_pageenqueue(pg);
   1240 	mutex_exit(&uvm_pageqlock);
   1241 	UVMHIST_LOG(maphist,
   1242 	    "  MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx",
   1243 	    (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
   1244 	uvmexp.fltnamap++;
   1245 
   1246 	/*
   1247 	 * Since this page isn't the page that's actually faulting,
   1248 	 * ignore pmap_enter() failures; it's not critical that we
   1249 	 * enter these right now.
   1250 	 */
   1251 
   1252 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1253 	    VM_PAGE_TO_PHYS(pg),
   1254 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1255 	    flt->enter_prot,
   1256 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
   1257 
   1258 	pmap_update(ufi->orig_map->pmap);
   1259 }
   1260 
   1261 /*
   1262  * uvm_fault_upper: handle upper fault.
   1263  *
   1264  *	1. acquire anon lock.
   1265  *	2. get anon.  let uvmfault_anonget do the dirty work.
   1266  *	3. handle loan.
   1267  *	4. dispatch direct or promote handlers.
   1268  */
   1269 
   1270 static int
   1271 uvm_fault_upper(
   1272 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1273 	struct vm_anon **anons)
   1274 {
   1275 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1276 	struct vm_anon * const anon = anons[flt->centeridx];
   1277 	struct uvm_object *uobj;
   1278 	int error;
   1279 	UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
   1280 
   1281 	/* locked: maps(read), amap, anon */
   1282 	KASSERT(mutex_owned(amap->am_lock));
   1283 	KASSERT(anon->an_lock == amap->am_lock);
   1284 
   1285 	/*
   1286 	 * handle case 1: fault on an anon in our amap
   1287 	 */
   1288 
   1289 	UVMHIST_LOG(maphist, "  case 1 fault: anon=%#jx",
   1290 	    (uintptr_t)anon, 0, 0, 0);
   1291 
   1292 	/*
   1293 	 * no matter if we have case 1A or case 1B we are going to need to
   1294 	 * have the anon's memory resident.   ensure that now.
   1295 	 */
   1296 
   1297 	/*
   1298 	 * let uvmfault_anonget do the dirty work.
   1299 	 * if it fails (!OK) it will unlock everything for us.
   1300 	 * if it succeeds, locks are still valid and locked.
   1301 	 * also, if it is OK, then the anon's page is on the queues.
   1302 	 * if the page is on loan from a uvm_object, then anonget will
   1303 	 * lock that object for us if it does not fail.
   1304 	 */
   1305 
   1306 	error = uvmfault_anonget(ufi, amap, anon);
   1307 	switch (error) {
   1308 	case 0:
   1309 		break;
   1310 
   1311 	case ERESTART:
   1312 		return ERESTART;
   1313 
   1314 	case EAGAIN:
   1315 		kpause("fltagain1", false, hz/2, NULL);
   1316 		return ERESTART;
   1317 
   1318 	default:
   1319 		return error;
   1320 	}
   1321 
   1322 	/*
   1323 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
   1324 	 */
   1325 
   1326 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
   1327 
   1328 	/* locked: maps(read), amap, anon, uobj(if one) */
   1329 	KASSERT(mutex_owned(amap->am_lock));
   1330 	KASSERT(anon->an_lock == amap->am_lock);
   1331 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1332 
   1333 	/*
   1334 	 * special handling for loaned pages
   1335 	 */
   1336 
   1337 	if (anon->an_page->loan_count) {
   1338 		error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
   1339 		if (error != 0)
   1340 			return error;
   1341 	}
   1342 
   1343 	/*
   1344 	 * if we are case 1B then we will need to allocate a new blank
   1345 	 * anon to transfer the data into.   note that we have a lock
   1346 	 * on anon, so no one can busy or release the page until we are done.
   1347 	 * also note that the ref count can't drop to zero here because
   1348 	 * it is > 1 and we are only dropping one ref.
   1349 	 *
   1350 	 * in the (hopefully very rare) case that we are out of RAM we
   1351 	 * will unlock, wait for more RAM, and refault.
   1352 	 *
   1353 	 * if we are out of anon VM we kill the process (XXX: could wait?).
   1354 	 */
   1355 
   1356 	if (flt->cow_now && anon->an_ref > 1) {
   1357 		flt->promote = true;
   1358 		error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
   1359 	} else {
   1360 		error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
   1361 	}
   1362 	return error;
   1363 }
   1364 
   1365 /*
   1366  * uvm_fault_upper_loan: handle loaned upper page.
   1367  *
   1368  *	1. if not cow'ing now, simply adjust flt->enter_prot.
   1369  *	2. if cow'ing now, and if ref count is 1, break loan.
   1370  */
   1371 
   1372 static int
   1373 uvm_fault_upper_loan(
   1374 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1375 	struct vm_anon *anon, struct uvm_object **ruobj)
   1376 {
   1377 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1378 	int error = 0;
   1379 	UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
   1380 
   1381 	if (!flt->cow_now) {
   1382 
   1383 		/*
   1384 		 * for read faults on loaned pages we just cap the
   1385 		 * protection at read-only.
   1386 		 */
   1387 
   1388 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1389 
   1390 	} else {
   1391 		/*
   1392 		 * note that we can't allow writes into a loaned page!
   1393 		 *
   1394 		 * if we have a write fault on a loaned page in an
   1395 		 * anon then we need to look at the anon's ref count.
   1396 		 * if it is greater than one then we are going to do
   1397 		 * a normal copy-on-write fault into a new anon (this
   1398 		 * is not a problem).  however, if the reference count
   1399 		 * is one (a case where we would normally allow a
   1400 		 * write directly to the page) then we need to kill
   1401 		 * the loan before we continue.
   1402 		 */
   1403 
   1404 		/* >1 case is already ok */
   1405 		if (anon->an_ref == 1) {
   1406 			error = uvm_loanbreak_anon(anon, *ruobj);
   1407 			if (error != 0) {
   1408 				uvmfault_unlockall(ufi, amap, *ruobj);
   1409 				uvm_wait("flt_noram2");
   1410 				return ERESTART;
   1411 			}
   1412 			/* if we were a loan reciever uobj is gone */
   1413 			if (*ruobj)
   1414 				*ruobj = NULL;
   1415 		}
   1416 	}
   1417 	return error;
   1418 }
   1419 
   1420 /*
   1421  * uvm_fault_upper_promote: promote upper page.
   1422  *
   1423  *	1. call uvmfault_promote.
   1424  *	2. enqueue page.
   1425  *	3. deref.
   1426  *	4. pass page to uvm_fault_upper_enter.
   1427  */
   1428 
   1429 static int
   1430 uvm_fault_upper_promote(
   1431 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1432 	struct uvm_object *uobj, struct vm_anon *anon)
   1433 {
   1434 	struct vm_anon * const oanon = anon;
   1435 	struct vm_page *pg;
   1436 	int error;
   1437 	UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
   1438 
   1439 	UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
   1440 	uvmexp.flt_acow++;
   1441 
   1442 	error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
   1443 	    &flt->anon_spare);
   1444 	switch (error) {
   1445 	case 0:
   1446 		break;
   1447 	case ERESTART:
   1448 		return ERESTART;
   1449 	default:
   1450 		return error;
   1451 	}
   1452 
   1453 	KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
   1454 
   1455 	pg = anon->an_page;
   1456 	mutex_enter(&uvm_pageqlock);
   1457 	uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
   1458 	mutex_exit(&uvm_pageqlock);
   1459 	pg->flags &= ~(PG_BUSY|PG_FAKE);
   1460 	UVM_PAGE_OWN(pg, NULL);
   1461 
   1462 	/* deref: can not drop to zero here by defn! */
   1463 	KASSERT(oanon->an_ref > 1);
   1464 	oanon->an_ref--;
   1465 
   1466 	/*
   1467 	 * note: oanon is still locked, as is the new anon.  we
   1468 	 * need to check for this later when we unlock oanon; if
   1469 	 * oanon != anon, we'll have to unlock anon, too.
   1470 	 */
   1471 
   1472 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1473 }
   1474 
   1475 /*
   1476  * uvm_fault_upper_direct: handle direct fault.
   1477  */
   1478 
   1479 static int
   1480 uvm_fault_upper_direct(
   1481 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1482 	struct uvm_object *uobj, struct vm_anon *anon)
   1483 {
   1484 	struct vm_anon * const oanon = anon;
   1485 	struct vm_page *pg;
   1486 	UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
   1487 
   1488 	uvmexp.flt_anon++;
   1489 	pg = anon->an_page;
   1490 	if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
   1491 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1492 
   1493 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1494 }
   1495 
   1496 /*
   1497  * uvm_fault_upper_enter: enter h/w mapping of upper page.
   1498  */
   1499 
   1500 static int
   1501 uvm_fault_upper_enter(
   1502 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1503 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
   1504 	struct vm_anon *oanon)
   1505 {
   1506 	struct pmap *pmap = ufi->orig_map->pmap;
   1507 	vaddr_t va = ufi->orig_rvaddr;
   1508 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1509 	UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
   1510 
   1511 	/* locked: maps(read), amap, oanon, anon(if different from oanon) */
   1512 	KASSERT(mutex_owned(amap->am_lock));
   1513 	KASSERT(anon->an_lock == amap->am_lock);
   1514 	KASSERT(oanon->an_lock == amap->am_lock);
   1515 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1516 
   1517 	/*
   1518 	 * now map the page in.
   1519 	 */
   1520 
   1521 	UVMHIST_LOG(maphist,
   1522 	    "  MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
   1523 	    (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote);
   1524 	if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg),
   1525 	    flt->enter_prot, flt->access_type | PMAP_CANFAIL |
   1526 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   1527 
   1528 		/*
   1529 		 * If pmap_enter() fails, it must not leave behind an existing
   1530 		 * pmap entry.  In particular, a now-stale entry for a different
   1531 		 * page would leave the pmap inconsistent with the vm_map.
   1532 		 * This is not to imply that pmap_enter() should remove an
   1533 		 * existing mapping in such a situation (since that could create
   1534 		 * different problems, eg. if the existing mapping is wired),
   1535 		 * but rather that the pmap should be designed such that it
   1536 		 * never needs to fail when the new mapping is replacing an
   1537 		 * existing mapping and the new page has no existing mappings.
   1538 		 */
   1539 
   1540 		KASSERT(!pmap_extract(pmap, va, NULL));
   1541 
   1542 		/*
   1543 		 * No need to undo what we did; we can simply think of
   1544 		 * this as the pmap throwing away the mapping information.
   1545 		 *
   1546 		 * We do, however, have to go through the ReFault path,
   1547 		 * as the map may change while we're asleep.
   1548 		 */
   1549 
   1550 		uvmfault_unlockall(ufi, amap, uobj);
   1551 		if (!uvm_reclaimable()) {
   1552 			UVMHIST_LOG(maphist,
   1553 			    "<- failed.  out of VM",0,0,0,0);
   1554 			/* XXX instrumentation */
   1555 			return ENOMEM;
   1556 		}
   1557 		/* XXX instrumentation */
   1558 		uvm_wait("flt_pmfail1");
   1559 		return ERESTART;
   1560 	}
   1561 
   1562 	uvm_fault_upper_done(ufi, flt, anon, pg);
   1563 
   1564 	/*
   1565 	 * done case 1!  finish up by unlocking everything and returning success
   1566 	 */
   1567 
   1568 	pmap_update(pmap);
   1569 	uvmfault_unlockall(ufi, amap, uobj);
   1570 	return 0;
   1571 }
   1572 
   1573 /*
   1574  * uvm_fault_upper_done: queue upper center page.
   1575  */
   1576 
   1577 static void
   1578 uvm_fault_upper_done(
   1579 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1580 	struct vm_anon *anon, struct vm_page *pg)
   1581 {
   1582 	const bool wire_paging = flt->wire_paging;
   1583 
   1584 	UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
   1585 
   1586 	/*
   1587 	 * ... update the page queues.
   1588 	 */
   1589 
   1590 	mutex_enter(&uvm_pageqlock);
   1591 	if (wire_paging) {
   1592 		uvm_pagewire(pg);
   1593 
   1594 		/*
   1595 		 * since the now-wired page cannot be paged out,
   1596 		 * release its swap resources for others to use.
   1597 		 * since an anon with no swap cannot be PG_CLEAN,
   1598 		 * clear its clean flag now.
   1599 		 */
   1600 
   1601 		pg->flags &= ~(PG_CLEAN);
   1602 
   1603 	} else {
   1604 		uvm_pageactivate(pg);
   1605 	}
   1606 	mutex_exit(&uvm_pageqlock);
   1607 
   1608 	if (wire_paging) {
   1609 		uvm_anon_dropswap(anon);
   1610 	}
   1611 }
   1612 
   1613 /*
   1614  * uvm_fault_lower: handle lower fault.
   1615  *
   1616  *	1. check uobj
   1617  *	1.1. if null, ZFOD.
   1618  *	1.2. if not null, look up unnmapped neighbor pages.
   1619  *	2. for center page, check if promote.
   1620  *	2.1. ZFOD always needs promotion.
   1621  *	2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
   1622  *	3. if uobj is not ZFOD and page is not found, do i/o.
   1623  *	4. dispatch either direct / promote fault.
   1624  */
   1625 
   1626 static int
   1627 uvm_fault_lower(
   1628 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1629 	struct vm_page **pages)
   1630 {
   1631 	struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap;
   1632 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1633 	struct vm_page *uobjpage;
   1634 	int error;
   1635 	UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
   1636 
   1637 	/*
   1638 	 * now, if the desired page is not shadowed by the amap and we have
   1639 	 * a backing object that does not have a special fault routine, then
   1640 	 * we ask (with pgo_get) the object for resident pages that we care
   1641 	 * about and attempt to map them in.  we do not let pgo_get block
   1642 	 * (PGO_LOCKED).
   1643 	 */
   1644 
   1645 	if (uobj == NULL) {
   1646 		/* zero fill; don't care neighbor pages */
   1647 		uobjpage = NULL;
   1648 	} else {
   1649 		uvm_fault_lower_lookup(ufi, flt, pages);
   1650 		uobjpage = pages[flt->centeridx];
   1651 	}
   1652 
   1653 	/*
   1654 	 * note that at this point we are done with any front or back pages.
   1655 	 * we are now going to focus on the center page (i.e. the one we've
   1656 	 * faulted on).  if we have faulted on the upper (anon) layer
   1657 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
   1658 	 * not touched it yet).  if we have faulted on the bottom (uobj)
   1659 	 * layer [i.e. case 2] and the page was both present and available,
   1660 	 * then we've got a pointer to it as "uobjpage" and we've already
   1661 	 * made it BUSY.
   1662 	 */
   1663 
   1664 	/*
   1665 	 * locked:
   1666 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
   1667 	 */
   1668 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1669 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1670 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1671 
   1672 	/*
   1673 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
   1674 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
   1675 	 * have a backing object, check and see if we are going to promote
   1676 	 * the data up to an anon during the fault.
   1677 	 */
   1678 
   1679 	if (uobj == NULL) {
   1680 		uobjpage = PGO_DONTCARE;
   1681 		flt->promote = true;		/* always need anon here */
   1682 	} else {
   1683 		KASSERT(uobjpage != PGO_DONTCARE);
   1684 		flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
   1685 	}
   1686 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%jd, zfill=%jd",
   1687 	    flt->promote, (uobj == NULL), 0,0);
   1688 
   1689 	/*
   1690 	 * if uobjpage is not null then we do not need to do I/O to get the
   1691 	 * uobjpage.
   1692 	 *
   1693 	 * if uobjpage is null, then we need to unlock and ask the pager to
   1694 	 * get the data for us.   once we have the data, we need to reverify
   1695 	 * the state the world.   we are currently not holding any resources.
   1696 	 */
   1697 
   1698 	if (uobjpage) {
   1699 		/* update rusage counters */
   1700 		curlwp->l_ru.ru_minflt++;
   1701 	} else {
   1702 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
   1703 		if (error != 0)
   1704 			return error;
   1705 	}
   1706 
   1707 	/*
   1708 	 * locked:
   1709 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
   1710 	 */
   1711 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1712 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1713 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1714 
   1715 	/*
   1716 	 * notes:
   1717 	 *  - at this point uobjpage can not be NULL
   1718 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
   1719 	 *  for it above)
   1720 	 *  - at this point uobjpage could be PG_WANTED (handle later)
   1721 	 */
   1722 
   1723 	KASSERT(uobjpage != NULL);
   1724 	KASSERT(uobj == NULL || uobj == uobjpage->uobject);
   1725 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
   1726 	    (uobjpage->flags & PG_CLEAN) != 0);
   1727 
   1728 	if (!flt->promote) {
   1729 		error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
   1730 	} else {
   1731 		error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
   1732 	}
   1733 	return error;
   1734 }
   1735 
   1736 /*
   1737  * uvm_fault_lower_lookup: look up on-memory uobj pages.
   1738  *
   1739  *	1. get on-memory pages.
   1740  *	2. if failed, give up (get only center page later).
   1741  *	3. if succeeded, enter h/w mapping of neighbor pages.
   1742  */
   1743 
   1744 static void
   1745 uvm_fault_lower_lookup(
   1746 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1747 	struct vm_page **pages)
   1748 {
   1749 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1750 	int lcv, gotpages;
   1751 	vaddr_t currva;
   1752 	UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
   1753 
   1754 	mutex_enter(uobj->vmobjlock);
   1755 	/* Locked: maps(read), amap(if there), uobj */
   1756 
   1757 	uvmexp.fltlget++;
   1758 	gotpages = flt->npages;
   1759 	(void) uobj->pgops->pgo_get(uobj,
   1760 	    ufi->entry->offset + flt->startva - ufi->entry->start,
   1761 	    pages, &gotpages, flt->centeridx,
   1762 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
   1763 
   1764 	KASSERT(mutex_owned(uobj->vmobjlock));
   1765 
   1766 	/*
   1767 	 * check for pages to map, if we got any
   1768 	 */
   1769 
   1770 	if (gotpages == 0) {
   1771 		pages[flt->centeridx] = NULL;
   1772 		return;
   1773 	}
   1774 
   1775 	currva = flt->startva;
   1776 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1777 		struct vm_page *curpg;
   1778 
   1779 		curpg = pages[lcv];
   1780 		if (curpg == NULL || curpg == PGO_DONTCARE) {
   1781 			continue;
   1782 		}
   1783 		KASSERT(curpg->uobject == uobj);
   1784 
   1785 		/*
   1786 		 * if center page is resident and not PG_BUSY|PG_RELEASED
   1787 		 * then pgo_get made it PG_BUSY for us and gave us a handle
   1788 		 * to it.
   1789 		 */
   1790 
   1791 		if (lcv == flt->centeridx) {
   1792 			UVMHIST_LOG(maphist, "  got uobjpage (0x%#jx) "
   1793 			    "with locked get", (uintptr_t)curpg, 0, 0, 0);
   1794 		} else {
   1795 			bool readonly = (curpg->flags & PG_RDONLY)
   1796 			    || (curpg->loan_count > 0)
   1797 			    || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
   1798 
   1799 			uvm_fault_lower_neighbor(ufi, flt,
   1800 			    currva, curpg, readonly);
   1801 		}
   1802 	}
   1803 	pmap_update(ufi->orig_map->pmap);
   1804 }
   1805 
   1806 /*
   1807  * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
   1808  */
   1809 
   1810 static void
   1811 uvm_fault_lower_neighbor(
   1812 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1813 	vaddr_t currva, struct vm_page *pg, bool readonly)
   1814 {
   1815 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1816 
   1817 	/* locked: maps(read), amap(if there), uobj */
   1818 
   1819 	/*
   1820 	 * calling pgo_get with PGO_LOCKED returns us pages which
   1821 	 * are neither busy nor released, so we don't need to check
   1822 	 * for this.  we can just directly enter the pages.
   1823 	 */
   1824 
   1825 	mutex_enter(&uvm_pageqlock);
   1826 	uvm_pageenqueue(pg);
   1827 	mutex_exit(&uvm_pageqlock);
   1828 	UVMHIST_LOG(maphist,
   1829 	    "  MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx",
   1830 	    (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
   1831 	uvmexp.fltnomap++;
   1832 
   1833 	/*
   1834 	 * Since this page isn't the page that's actually faulting,
   1835 	 * ignore pmap_enter() failures; it's not critical that we
   1836 	 * enter these right now.
   1837 	 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
   1838 	 * held the lock the whole time we've had the handle.
   1839 	 */
   1840 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1841 	KASSERT((pg->flags & PG_RELEASED) == 0);
   1842 	KASSERT((pg->flags & PG_WANTED) == 0);
   1843 	KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
   1844 	pg->flags &= ~(PG_BUSY);
   1845 	UVM_PAGE_OWN(pg, NULL);
   1846 
   1847 	KASSERT(mutex_owned(pg->uobject->vmobjlock));
   1848 
   1849 	const vm_prot_t mapprot =
   1850 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1851 	    flt->enter_prot & MASK(ufi->entry);
   1852 	const u_int mapflags =
   1853 	    PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0);
   1854 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1855 	    VM_PAGE_TO_PHYS(pg), mapprot, mapflags);
   1856 }
   1857 
   1858 /*
   1859  * uvm_fault_lower_io: get lower page from backing store.
   1860  *
   1861  *	1. unlock everything, because i/o will block.
   1862  *	2. call pgo_get.
   1863  *	3. if failed, recover.
   1864  *	4. if succeeded, relock everything and verify things.
   1865  */
   1866 
   1867 static int
   1868 uvm_fault_lower_io(
   1869 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1870 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
   1871 {
   1872 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1873 	struct uvm_object *uobj = *ruobj;
   1874 	struct vm_page *pg;
   1875 	bool locked;
   1876 	int gotpages;
   1877 	int error;
   1878 	voff_t uoff;
   1879 	UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
   1880 
   1881 	/* update rusage counters */
   1882 	curlwp->l_ru.ru_majflt++;
   1883 
   1884 	/* Locked: maps(read), amap(if there), uobj */
   1885 	uvmfault_unlockall(ufi, amap, NULL);
   1886 
   1887 	/* Locked: uobj */
   1888 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1889 
   1890 	uvmexp.fltget++;
   1891 	gotpages = 1;
   1892 	pg = NULL;
   1893 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
   1894 	error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
   1895 	    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
   1896 	    PGO_SYNCIO);
   1897 	/* locked: pg(if no error) */
   1898 
   1899 	/*
   1900 	 * recover from I/O
   1901 	 */
   1902 
   1903 	if (error) {
   1904 		if (error == EAGAIN) {
   1905 			UVMHIST_LOG(maphist,
   1906 			    "  pgo_get says TRY AGAIN!",0,0,0,0);
   1907 			kpause("fltagain2", false, hz/2, NULL);
   1908 			return ERESTART;
   1909 		}
   1910 
   1911 #if 0
   1912 		KASSERT(error != ERESTART);
   1913 #else
   1914 		/* XXXUEBS don't re-fault? */
   1915 		if (error == ERESTART)
   1916 			error = EIO;
   1917 #endif
   1918 
   1919 		UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)",
   1920 		    error, 0,0,0);
   1921 		return error;
   1922 	}
   1923 
   1924 	/*
   1925 	 * re-verify the state of the world by first trying to relock
   1926 	 * the maps.  always relock the object.
   1927 	 */
   1928 
   1929 	locked = uvmfault_relock(ufi);
   1930 	if (locked && amap)
   1931 		amap_lock(amap);
   1932 
   1933 	/* might be changed */
   1934 	uobj = pg->uobject;
   1935 
   1936 	mutex_enter(uobj->vmobjlock);
   1937 	KASSERT((pg->flags & PG_BUSY) != 0);
   1938 
   1939 	mutex_enter(&uvm_pageqlock);
   1940 	uvm_pageactivate(pg);
   1941 	mutex_exit(&uvm_pageqlock);
   1942 
   1943 	/* locked(locked): maps(read), amap(if !null), uobj, pg */
   1944 	/* locked(!locked): uobj, pg */
   1945 
   1946 	/*
   1947 	 * verify that the page has not be released and re-verify
   1948 	 * that amap slot is still free.   if there is a problem,
   1949 	 * we unlock and clean up.
   1950 	 */
   1951 
   1952 	if ((pg->flags & PG_RELEASED) != 0 ||
   1953 	    (locked && amap && amap_lookup(&ufi->entry->aref,
   1954 	      ufi->orig_rvaddr - ufi->entry->start))) {
   1955 		if (locked)
   1956 			uvmfault_unlockall(ufi, amap, NULL);
   1957 		locked = false;
   1958 	}
   1959 
   1960 	/*
   1961 	 * didn't get the lock?   release the page and retry.
   1962 	 */
   1963 
   1964 	if (locked == false) {
   1965 		UVMHIST_LOG(maphist,
   1966 		    "  wasn't able to relock after fault: retry",
   1967 		    0,0,0,0);
   1968 		if (pg->flags & PG_WANTED) {
   1969 			wakeup(pg);
   1970 		}
   1971 		if ((pg->flags & PG_RELEASED) == 0) {
   1972 			pg->flags &= ~(PG_BUSY | PG_WANTED);
   1973 			UVM_PAGE_OWN(pg, NULL);
   1974 		} else {
   1975 			uvmexp.fltpgrele++;
   1976 			uvm_pagefree(pg);
   1977 		}
   1978 		mutex_exit(uobj->vmobjlock);
   1979 		return ERESTART;
   1980 	}
   1981 
   1982 	/*
   1983 	 * we have the data in pg which is busy and
   1984 	 * not released.  we are holding object lock (so the page
   1985 	 * can't be released on us).
   1986 	 */
   1987 
   1988 	/* locked: maps(read), amap(if !null), uobj, pg */
   1989 
   1990 	*ruobj = uobj;
   1991 	*ruobjpage = pg;
   1992 	return 0;
   1993 }
   1994 
   1995 /*
   1996  * uvm_fault_lower_direct: fault lower center page
   1997  *
   1998  *	1. adjust flt->enter_prot.
   1999  *	2. if page is loaned, resolve.
   2000  */
   2001 
   2002 int
   2003 uvm_fault_lower_direct(
   2004 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2005 	struct uvm_object *uobj, struct vm_page *uobjpage)
   2006 {
   2007 	struct vm_page *pg;
   2008 	UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
   2009 
   2010 	/*
   2011 	 * we are not promoting.   if the mapping is COW ensure that we
   2012 	 * don't give more access than we should (e.g. when doing a read
   2013 	 * fault on a COPYONWRITE mapping we want to map the COW page in
   2014 	 * R/O even though the entry protection could be R/W).
   2015 	 *
   2016 	 * set "pg" to the page we want to map in (uobjpage, usually)
   2017 	 */
   2018 
   2019 	uvmexp.flt_obj++;
   2020 	if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
   2021 	    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
   2022 		flt->enter_prot &= ~VM_PROT_WRITE;
   2023 	pg = uobjpage;		/* map in the actual object */
   2024 
   2025 	KASSERT(uobjpage != PGO_DONTCARE);
   2026 
   2027 	/*
   2028 	 * we are faulting directly on the page.   be careful
   2029 	 * about writing to loaned pages...
   2030 	 */
   2031 
   2032 	if (uobjpage->loan_count) {
   2033 		uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
   2034 	}
   2035 	KASSERT(pg == uobjpage);
   2036 
   2037 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   2038 	return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
   2039 }
   2040 
   2041 /*
   2042  * uvm_fault_lower_direct_loan: resolve loaned page.
   2043  *
   2044  *	1. if not cow'ing, adjust flt->enter_prot.
   2045  *	2. if cow'ing, break loan.
   2046  */
   2047 
   2048 static int
   2049 uvm_fault_lower_direct_loan(
   2050 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2051 	struct uvm_object *uobj, struct vm_page **rpg,
   2052 	struct vm_page **ruobjpage)
   2053 {
   2054 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2055 	struct vm_page *pg;
   2056 	struct vm_page *uobjpage = *ruobjpage;
   2057 	UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
   2058 
   2059 	if (!flt->cow_now) {
   2060 		/* read fault: cap the protection at readonly */
   2061 		/* cap! */
   2062 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   2063 	} else {
   2064 		/* write fault: must break the loan here */
   2065 
   2066 		pg = uvm_loanbreak(uobjpage);
   2067 		if (pg == NULL) {
   2068 
   2069 			/*
   2070 			 * drop ownership of page, it can't be released
   2071 			 */
   2072 
   2073 			if (uobjpage->flags & PG_WANTED)
   2074 				wakeup(uobjpage);
   2075 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   2076 			UVM_PAGE_OWN(uobjpage, NULL);
   2077 
   2078 			uvmfault_unlockall(ufi, amap, uobj);
   2079 			UVMHIST_LOG(maphist,
   2080 			  "  out of RAM breaking loan, waiting",
   2081 			  0,0,0,0);
   2082 			uvmexp.fltnoram++;
   2083 			uvm_wait("flt_noram4");
   2084 			return ERESTART;
   2085 		}
   2086 		*rpg = pg;
   2087 		*ruobjpage = pg;
   2088 	}
   2089 	return 0;
   2090 }
   2091 
   2092 /*
   2093  * uvm_fault_lower_promote: promote lower page.
   2094  *
   2095  *	1. call uvmfault_promote.
   2096  *	2. fill in data.
   2097  *	3. if not ZFOD, dispose old page.
   2098  */
   2099 
   2100 int
   2101 uvm_fault_lower_promote(
   2102 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2103 	struct uvm_object *uobj, struct vm_page *uobjpage)
   2104 {
   2105 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2106 	struct vm_anon *anon;
   2107 	struct vm_page *pg;
   2108 	int error;
   2109 	UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
   2110 
   2111 	KASSERT(amap != NULL);
   2112 
   2113 	/*
   2114 	 * If we are going to promote the data to an anon we
   2115 	 * allocate a blank anon here and plug it into our amap.
   2116 	 */
   2117 	error = uvmfault_promote(ufi, NULL, uobjpage,
   2118 	    &anon, &flt->anon_spare);
   2119 	switch (error) {
   2120 	case 0:
   2121 		break;
   2122 	case ERESTART:
   2123 		return ERESTART;
   2124 	default:
   2125 		return error;
   2126 	}
   2127 
   2128 	pg = anon->an_page;
   2129 
   2130 	/*
   2131 	 * Fill in the data.
   2132 	 */
   2133 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   2134 
   2135 	if (uobjpage != PGO_DONTCARE) {
   2136 		uvmexp.flt_prcopy++;
   2137 
   2138 		/*
   2139 		 * promote to shared amap?  make sure all sharing
   2140 		 * procs see it
   2141 		 */
   2142 
   2143 		if ((amap_flags(amap) & AMAP_SHARED) != 0) {
   2144 			pmap_page_protect(uobjpage, VM_PROT_NONE);
   2145 			/*
   2146 			 * XXX: PAGE MIGHT BE WIRED!
   2147 			 */
   2148 		}
   2149 
   2150 		/*
   2151 		 * dispose of uobjpage.  it can't be PG_RELEASED
   2152 		 * since we still hold the object lock.
   2153 		 */
   2154 
   2155 		if (uobjpage->flags & PG_WANTED) {
   2156 			/* still have the obj lock */
   2157 			wakeup(uobjpage);
   2158 		}
   2159 		uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   2160 		UVM_PAGE_OWN(uobjpage, NULL);
   2161 
   2162 		UVMHIST_LOG(maphist,
   2163 		    "  promote uobjpage 0x%#jx to anon/page 0x%#jx/0x%#jx",
   2164 		    (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0);
   2165 
   2166 	} else {
   2167 		uvmexp.flt_przero++;
   2168 
   2169 		/*
   2170 		 * Page is zero'd and marked dirty by
   2171 		 * uvmfault_promote().
   2172 		 */
   2173 
   2174 		UVMHIST_LOG(maphist,"  zero fill anon/page 0x%#jx/0%#jx",
   2175 		    (uintptr_t)anon, (uintptr_t)pg, 0, 0);
   2176 	}
   2177 
   2178 	return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
   2179 }
   2180 
   2181 /*
   2182  * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
   2183  * from the lower page.
   2184  */
   2185 
   2186 int
   2187 uvm_fault_lower_enter(
   2188 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2189 	struct uvm_object *uobj,
   2190 	struct vm_anon *anon, struct vm_page *pg)
   2191 {
   2192 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2193 	int error;
   2194 	UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
   2195 
   2196 	/*
   2197 	 * Locked:
   2198 	 *
   2199 	 *	maps(read), amap(if !null), uobj(if !null),
   2200 	 *	anon(if !null), pg(if anon), unlock_uobj(if !null)
   2201 	 *
   2202 	 * Note: pg is either the uobjpage or the new page in the new anon.
   2203 	 */
   2204 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   2205 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   2206 	KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
   2207 	KASSERT((pg->flags & PG_BUSY) != 0);
   2208 
   2209 	/*
   2210 	 * all resources are present.   we can now map it in and free our
   2211 	 * resources.
   2212 	 */
   2213 
   2214 	UVMHIST_LOG(maphist,
   2215 	    "  MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
   2216 	    (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr,
   2217 	    (uintptr_t)pg, flt->promote);
   2218 	KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
   2219 		(pg->flags & PG_RDONLY) == 0);
   2220 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
   2221 	    VM_PAGE_TO_PHYS(pg),
   2222 	    (pg->flags & PG_RDONLY) != 0 ?
   2223 	    flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
   2224 	    flt->access_type | PMAP_CANFAIL |
   2225 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   2226 
   2227 		/*
   2228 		 * No need to undo what we did; we can simply think of
   2229 		 * this as the pmap throwing away the mapping information.
   2230 		 *
   2231 		 * We do, however, have to go through the ReFault path,
   2232 		 * as the map may change while we're asleep.
   2233 		 */
   2234 
   2235 		/*
   2236 		 * ensure that the page is queued in the case that
   2237 		 * we just promoted the page.
   2238 		 */
   2239 
   2240 		mutex_enter(&uvm_pageqlock);
   2241 		uvm_pageenqueue(pg);
   2242 		mutex_exit(&uvm_pageqlock);
   2243 
   2244 		if (pg->flags & PG_WANTED)
   2245 			wakeup(pg);
   2246 
   2247 		/*
   2248 		 * note that pg can't be PG_RELEASED since we did not drop
   2249 		 * the object lock since the last time we checked.
   2250 		 */
   2251 		KASSERT((pg->flags & PG_RELEASED) == 0);
   2252 
   2253 		pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2254 		UVM_PAGE_OWN(pg, NULL);
   2255 
   2256 		uvmfault_unlockall(ufi, amap, uobj);
   2257 		if (!uvm_reclaimable()) {
   2258 			UVMHIST_LOG(maphist,
   2259 			    "<- failed.  out of VM",0,0,0,0);
   2260 			/* XXX instrumentation */
   2261 			error = ENOMEM;
   2262 			return error;
   2263 		}
   2264 		/* XXX instrumentation */
   2265 		uvm_wait("flt_pmfail2");
   2266 		return ERESTART;
   2267 	}
   2268 
   2269 	uvm_fault_lower_done(ufi, flt, uobj, pg);
   2270 
   2271 	/*
   2272 	 * note that pg can't be PG_RELEASED since we did not drop the object
   2273 	 * lock since the last time we checked.
   2274 	 */
   2275 	KASSERT((pg->flags & PG_RELEASED) == 0);
   2276 	if (pg->flags & PG_WANTED)
   2277 		wakeup(pg);
   2278 	pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2279 	UVM_PAGE_OWN(pg, NULL);
   2280 
   2281 	pmap_update(ufi->orig_map->pmap);
   2282 	uvmfault_unlockall(ufi, amap, uobj);
   2283 
   2284 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
   2285 	return 0;
   2286 }
   2287 
   2288 /*
   2289  * uvm_fault_lower_done: queue lower center page.
   2290  */
   2291 
   2292 void
   2293 uvm_fault_lower_done(
   2294 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2295 	struct uvm_object *uobj, struct vm_page *pg)
   2296 {
   2297 	bool dropswap = false;
   2298 
   2299 	UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
   2300 
   2301 	mutex_enter(&uvm_pageqlock);
   2302 	if (flt->wire_paging) {
   2303 		uvm_pagewire(pg);
   2304 		if (pg->pqflags & PQ_AOBJ) {
   2305 
   2306 			/*
   2307 			 * since the now-wired page cannot be paged out,
   2308 			 * release its swap resources for others to use.
   2309 			 * since an aobj page with no swap cannot be PG_CLEAN,
   2310 			 * clear its clean flag now.
   2311 			 */
   2312 
   2313 			KASSERT(uobj != NULL);
   2314 			pg->flags &= ~(PG_CLEAN);
   2315 			dropswap = true;
   2316 		}
   2317 	} else {
   2318 		uvm_pageactivate(pg);
   2319 	}
   2320 	mutex_exit(&uvm_pageqlock);
   2321 
   2322 	if (dropswap) {
   2323 		uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
   2324 	}
   2325 }
   2326 
   2327 
   2328 /*
   2329  * uvm_fault_wire: wire down a range of virtual addresses in a map.
   2330  *
   2331  * => map may be read-locked by caller, but MUST NOT be write-locked.
   2332  * => if map is read-locked, any operations which may cause map to
   2333  *	be write-locked in uvm_fault() must be taken care of by
   2334  *	the caller.  See uvm_map_pageable().
   2335  */
   2336 
   2337 int
   2338 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
   2339     vm_prot_t access_type, int maxprot)
   2340 {
   2341 	vaddr_t va;
   2342 	int error;
   2343 
   2344 	/*
   2345 	 * now fault it in a page at a time.   if the fault fails then we have
   2346 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
   2347 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
   2348 	 */
   2349 
   2350 	/*
   2351 	 * XXX work around overflowing a vaddr_t.  this prevents us from
   2352 	 * wiring the last page in the address space, though.
   2353 	 */
   2354 	if (start > end) {
   2355 		return EFAULT;
   2356 	}
   2357 
   2358 	for (va = start; va < end; va += PAGE_SIZE) {
   2359 		error = uvm_fault_internal(map, va, access_type,
   2360 		    (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
   2361 		if (error) {
   2362 			if (va != start) {
   2363 				uvm_fault_unwire(map, start, va);
   2364 			}
   2365 			return error;
   2366 		}
   2367 	}
   2368 	return 0;
   2369 }
   2370 
   2371 /*
   2372  * uvm_fault_unwire(): unwire range of virtual space.
   2373  */
   2374 
   2375 void
   2376 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
   2377 {
   2378 	vm_map_lock_read(map);
   2379 	uvm_fault_unwire_locked(map, start, end);
   2380 	vm_map_unlock_read(map);
   2381 }
   2382 
   2383 /*
   2384  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
   2385  *
   2386  * => map must be at least read-locked.
   2387  */
   2388 
   2389 void
   2390 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
   2391 {
   2392 	struct vm_map_entry *entry, *oentry;
   2393 	pmap_t pmap = vm_map_pmap(map);
   2394 	vaddr_t va;
   2395 	paddr_t pa;
   2396 	struct vm_page *pg;
   2397 
   2398 	/*
   2399 	 * we assume that the area we are unwiring has actually been wired
   2400 	 * in the first place.   this means that we should be able to extract
   2401 	 * the PAs from the pmap.   we also lock out the page daemon so that
   2402 	 * we can call uvm_pageunwire.
   2403 	 */
   2404 
   2405 	/*
   2406 	 * find the beginning map entry for the region.
   2407 	 */
   2408 
   2409 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
   2410 	if (uvm_map_lookup_entry(map, start, &entry) == false)
   2411 		panic("uvm_fault_unwire_locked: address not in map");
   2412 
   2413 	oentry = NULL;
   2414 	for (va = start; va < end; va += PAGE_SIZE) {
   2415 		if (pmap_extract(pmap, va, &pa) == false)
   2416 			continue;
   2417 
   2418 		/*
   2419 		 * find the map entry for the current address.
   2420 		 */
   2421 
   2422 		KASSERT(va >= entry->start);
   2423 		while (va >= entry->end) {
   2424 			KASSERT(entry->next != &map->header &&
   2425 				entry->next->start <= entry->end);
   2426 			entry = entry->next;
   2427 		}
   2428 
   2429 		/*
   2430 		 * lock it.
   2431 		 */
   2432 
   2433 		if (entry != oentry) {
   2434 			if (oentry != NULL) {
   2435 				mutex_exit(&uvm_pageqlock);
   2436 				uvm_map_unlock_entry(oentry);
   2437 			}
   2438 			uvm_map_lock_entry(entry);
   2439 			mutex_enter(&uvm_pageqlock);
   2440 			oentry = entry;
   2441 		}
   2442 
   2443 		/*
   2444 		 * if the entry is no longer wired, tell the pmap.
   2445 		 */
   2446 
   2447 		if (VM_MAPENT_ISWIRED(entry) == 0)
   2448 			pmap_unwire(pmap, va);
   2449 
   2450 		pg = PHYS_TO_VM_PAGE(pa);
   2451 		if (pg)
   2452 			uvm_pageunwire(pg);
   2453 	}
   2454 
   2455 	if (oentry != NULL) {
   2456 		mutex_exit(&uvm_pageqlock);
   2457 		uvm_map_unlock_entry(entry);
   2458 	}
   2459 }
   2460