uvm_fault.c revision 1.204 1 /* $NetBSD: uvm_fault.c,v 1.204 2018/05/08 19:33:57 christos Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 */
29
30 /*
31 * uvm_fault.c: fault handler
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.204 2018/05/08 19:33:57 christos Exp $");
36
37 #include "opt_uvmhist.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/mman.h>
43
44 #include <uvm/uvm.h>
45
46 /*
47 *
48 * a word on page faults:
49 *
50 * types of page faults we handle:
51 *
52 * CASE 1: upper layer faults CASE 2: lower layer faults
53 *
54 * CASE 1A CASE 1B CASE 2A CASE 2B
55 * read/write1 write>1 read/write +-cow_write/zero
56 * | | | |
57 * +--|--+ +--|--+ +-----+ + | + | +-----+
58 * amap | V | | ---------> new | | | | ^ |
59 * +-----+ +-----+ +-----+ + | + | +--|--+
60 * | | |
61 * +-----+ +-----+ +--|--+ | +--|--+
62 * uobj | d/c | | d/c | | V | +----+ |
63 * +-----+ +-----+ +-----+ +-----+
64 *
65 * d/c = don't care
66 *
67 * case [0]: layerless fault
68 * no amap or uobj is present. this is an error.
69 *
70 * case [1]: upper layer fault [anon active]
71 * 1A: [read] or [write with anon->an_ref == 1]
72 * I/O takes place in upper level anon and uobj is not touched.
73 * 1B: [write with anon->an_ref > 1]
74 * new anon is alloc'd and data is copied off ["COW"]
75 *
76 * case [2]: lower layer fault [uobj]
77 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78 * I/O takes place directly in object.
79 * 2B: [write to copy_on_write] or [read on NULL uobj]
80 * data is "promoted" from uobj to a new anon.
81 * if uobj is null, then we zero fill.
82 *
83 * we follow the standard UVM locking protocol ordering:
84 *
85 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86 * we hold a PG_BUSY page if we unlock for I/O
87 *
88 *
89 * the code is structured as follows:
90 *
91 * - init the "IN" params in the ufi structure
92 * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
93 * - do lookups [locks maps], check protection, handle needs_copy
94 * - check for case 0 fault (error)
95 * - establish "range" of fault
96 * - if we have an amap lock it and extract the anons
97 * - if sequential advice deactivate pages behind us
98 * - at the same time check pmap for unmapped areas and anon for pages
99 * that we could map in (and do map it if found)
100 * - check object for resident pages that we could map in
101 * - if (case 2) goto Case2
102 * - >>> handle case 1
103 * - ensure source anon is resident in RAM
104 * - if case 1B alloc new anon and copy from source
105 * - map the correct page in
106 * Case2:
107 * - >>> handle case 2
108 * - ensure source page is resident (if uobj)
109 * - if case 2B alloc new anon and copy from source (could be zero
110 * fill if uobj == NULL)
111 * - map the correct page in
112 * - done!
113 *
114 * note on paging:
115 * if we have to do I/O we place a PG_BUSY page in the correct object,
116 * unlock everything, and do the I/O. when I/O is done we must reverify
117 * the state of the world before assuming that our data structures are
118 * valid. [because mappings could change while the map is unlocked]
119 *
120 * alternative 1: unbusy the page in question and restart the page fault
121 * from the top (ReFault). this is easy but does not take advantage
122 * of the information that we already have from our previous lookup,
123 * although it is possible that the "hints" in the vm_map will help here.
124 *
125 * alternative 2: the system already keeps track of a "version" number of
126 * a map. [i.e. every time you write-lock a map (e.g. to change a
127 * mapping) you bump the version number up by one...] so, we can save
128 * the version number of the map before we release the lock and start I/O.
129 * then when I/O is done we can relock and check the version numbers
130 * to see if anything changed. this might save us some over 1 because
131 * we don't have to unbusy the page and may be less compares(?).
132 *
133 * alternative 3: put in backpointers or a way to "hold" part of a map
134 * in place while I/O is in progress. this could be complex to
135 * implement (especially with structures like amap that can be referenced
136 * by multiple map entries, and figuring out what should wait could be
137 * complex as well...).
138 *
139 * we use alternative 2. given that we are multi-threaded now we may want
140 * to reconsider the choice.
141 */
142
143 /*
144 * local data structures
145 */
146
147 struct uvm_advice {
148 int advice;
149 int nback;
150 int nforw;
151 };
152
153 /*
154 * page range array:
155 * note: index in array must match "advice" value
156 * XXX: borrowed numbers from freebsd. do they work well for us?
157 */
158
159 static const struct uvm_advice uvmadvice[] = {
160 { UVM_ADV_NORMAL, 3, 4 },
161 { UVM_ADV_RANDOM, 0, 0 },
162 { UVM_ADV_SEQUENTIAL, 8, 7},
163 };
164
165 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
166
167 /*
168 * private prototypes
169 */
170
171 /*
172 * externs from other modules
173 */
174
175 extern int start_init_exec; /* Is init_main() done / init running? */
176
177 /*
178 * inline functions
179 */
180
181 /*
182 * uvmfault_anonflush: try and deactivate pages in specified anons
183 *
184 * => does not have to deactivate page if it is busy
185 */
186
187 static inline void
188 uvmfault_anonflush(struct vm_anon **anons, int n)
189 {
190 int lcv;
191 struct vm_page *pg;
192
193 for (lcv = 0; lcv < n; lcv++) {
194 if (anons[lcv] == NULL)
195 continue;
196 KASSERT(mutex_owned(anons[lcv]->an_lock));
197 pg = anons[lcv]->an_page;
198 if (pg && (pg->flags & PG_BUSY) == 0) {
199 mutex_enter(&uvm_pageqlock);
200 if (pg->wire_count == 0) {
201 uvm_pagedeactivate(pg);
202 }
203 mutex_exit(&uvm_pageqlock);
204 }
205 }
206 }
207
208 /*
209 * normal functions
210 */
211
212 /*
213 * uvmfault_amapcopy: clear "needs_copy" in a map.
214 *
215 * => called with VM data structures unlocked (usually, see below)
216 * => we get a write lock on the maps and clear needs_copy for a VA
217 * => if we are out of RAM we sleep (waiting for more)
218 */
219
220 static void
221 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
222 {
223 for (;;) {
224
225 /*
226 * no mapping? give up.
227 */
228
229 if (uvmfault_lookup(ufi, true) == false)
230 return;
231
232 /*
233 * copy if needed.
234 */
235
236 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
237 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
238 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
239
240 /*
241 * didn't work? must be out of RAM. unlock and sleep.
242 */
243
244 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
245 uvmfault_unlockmaps(ufi, true);
246 uvm_wait("fltamapcopy");
247 continue;
248 }
249
250 /*
251 * got it! unlock and return.
252 */
253
254 uvmfault_unlockmaps(ufi, true);
255 return;
256 }
257 /*NOTREACHED*/
258 }
259
260 /*
261 * uvmfault_anonget: get data in an anon into a non-busy, non-released
262 * page in that anon.
263 *
264 * => Map, amap and thus anon should be locked by caller.
265 * => If we fail, we unlock everything and error is returned.
266 * => If we are successful, return with everything still locked.
267 * => We do not move the page on the queues [gets moved later]. If we
268 * allocate a new page [we_own], it gets put on the queues. Either way,
269 * the result is that the page is on the queues at return time
270 * => For pages which are on loan from a uvm_object (and thus are not owned
271 * by the anon): if successful, return with the owning object locked.
272 * The caller must unlock this object when it unlocks everything else.
273 */
274
275 int
276 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
277 struct vm_anon *anon)
278 {
279 struct vm_page *pg;
280 int error;
281
282 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
283 KASSERT(mutex_owned(anon->an_lock));
284 KASSERT(anon->an_lock == amap->am_lock);
285
286 /* Increment the counters.*/
287 uvmexp.fltanget++;
288 if (anon->an_page) {
289 curlwp->l_ru.ru_minflt++;
290 } else {
291 curlwp->l_ru.ru_majflt++;
292 }
293 error = 0;
294
295 /*
296 * Loop until we get the anon data, or fail.
297 */
298
299 for (;;) {
300 bool we_own, locked;
301 /*
302 * Note: 'we_own' will become true if we set PG_BUSY on a page.
303 */
304 we_own = false;
305 pg = anon->an_page;
306
307 /*
308 * If there is a resident page and it is loaned, then anon
309 * may not own it. Call out to uvm_anon_lockloanpg() to
310 * identify and lock the real owner of the page.
311 */
312
313 if (pg && pg->loan_count)
314 pg = uvm_anon_lockloanpg(anon);
315
316 /*
317 * Is page resident? Make sure it is not busy/released.
318 */
319
320 if (pg) {
321
322 /*
323 * at this point, if the page has a uobject [meaning
324 * we have it on loan], then that uobject is locked
325 * by us! if the page is busy, we drop all the
326 * locks (including uobject) and try again.
327 */
328
329 if ((pg->flags & PG_BUSY) == 0) {
330 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
331 return 0;
332 }
333 pg->flags |= PG_WANTED;
334 uvmexp.fltpgwait++;
335
336 /*
337 * The last unlock must be an atomic unlock and wait
338 * on the owner of page.
339 */
340
341 if (pg->uobject) {
342 /* Owner of page is UVM object. */
343 uvmfault_unlockall(ufi, amap, NULL);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 pg->uobject->vmobjlock,
348 false, "anonget1", 0);
349 } else {
350 /* Owner of page is anon. */
351 uvmfault_unlockall(ufi, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
355 false, "anonget2", 0);
356 }
357 } else {
358 #if defined(VMSWAP)
359 /*
360 * No page, therefore allocate one.
361 */
362
363 pg = uvm_pagealloc(NULL,
364 ufi != NULL ? ufi->orig_rvaddr : 0,
365 anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
366 if (pg == NULL) {
367 /* Out of memory. Wait a little. */
368 uvmfault_unlockall(ufi, amap, NULL);
369 uvmexp.fltnoram++;
370 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
371 0,0,0);
372 if (!uvm_reclaimable()) {
373 return ENOMEM;
374 }
375 uvm_wait("flt_noram1");
376 } else {
377 /* PG_BUSY bit is set. */
378 we_own = true;
379 uvmfault_unlockall(ufi, amap, NULL);
380
381 /*
382 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
383 * the uvm_swap_get() function with all data
384 * structures unlocked. Note that it is OK
385 * to read an_swslot here, because we hold
386 * PG_BUSY on the page.
387 */
388 uvmexp.pageins++;
389 error = uvm_swap_get(pg, anon->an_swslot,
390 PGO_SYNCIO);
391
392 /*
393 * We clean up after the I/O below in the
394 * 'we_own' case.
395 */
396 }
397 #else
398 panic("%s: no page", __func__);
399 #endif /* defined(VMSWAP) */
400 }
401
402 /*
403 * Re-lock the map and anon.
404 */
405
406 locked = uvmfault_relock(ufi);
407 if (locked || we_own) {
408 mutex_enter(anon->an_lock);
409 }
410
411 /*
412 * If we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. There are three cases to
414 * consider:
415 *
416 * 1) Page was released during I/O: free anon and ReFault.
417 * 2) I/O not OK. Free the page and cause the fault to fail.
418 * 3) I/O OK! Activate the page and sync with the non-we_own
419 * case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * Remove the swap slot from the anon and
431 * mark the anon as having no real slot.
432 * Do not free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0) {
437 uvm_swap_markbad(anon->an_swslot, 1);
438 }
439 anon->an_swslot = SWSLOT_BAD;
440
441 if ((pg->flags & PG_RELEASED) != 0) {
442 goto released;
443 }
444
445 /*
446 * Note: page was never !PG_BUSY, so it
447 * cannot be mapped and thus no need to
448 * pmap_page_protect() it.
449 */
450
451 mutex_enter(&uvm_pageqlock);
452 uvm_pagefree(pg);
453 mutex_exit(&uvm_pageqlock);
454
455 if (locked) {
456 uvmfault_unlockall(ufi, NULL, NULL);
457 }
458 mutex_exit(anon->an_lock);
459 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
460 return error;
461 }
462
463 if ((pg->flags & PG_RELEASED) != 0) {
464 released:
465 KASSERT(anon->an_ref == 0);
466
467 /*
468 * Released while we had unlocked amap.
469 */
470
471 if (locked) {
472 uvmfault_unlockall(ufi, NULL, NULL);
473 }
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * We have successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 #else
496 panic("%s: we_own", __func__);
497 #endif /* defined(VMSWAP) */
498 }
499
500 /*
501 * We were not able to re-lock the map - restart the fault.
502 */
503
504 if (!locked) {
505 if (we_own) {
506 mutex_exit(anon->an_lock);
507 }
508 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
509 return ERESTART;
510 }
511
512 /*
513 * Verify that no one has touched the amap and moved
514 * the anon on us.
515 */
516
517 if (ufi != NULL && amap_lookup(&ufi->entry->aref,
518 ufi->orig_rvaddr - ufi->entry->start) != anon) {
519
520 uvmfault_unlockall(ufi, amap, NULL);
521 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
522 return ERESTART;
523 }
524
525 /*
526 * Retry..
527 */
528
529 uvmexp.fltanretry++;
530 continue;
531 }
532 /*NOTREACHED*/
533 }
534
535 /*
536 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
537 *
538 * 1. allocate an anon and a page.
539 * 2. fill its contents.
540 * 3. put it into amap.
541 *
542 * => if we fail (result != 0) we unlock everything.
543 * => on success, return a new locked anon via 'nanon'.
544 * (*nanon)->an_page will be a resident, locked, dirty page.
545 * => it's caller's responsibility to put the promoted nanon->an_page to the
546 * page queue.
547 */
548
549 static int
550 uvmfault_promote(struct uvm_faultinfo *ufi,
551 struct vm_anon *oanon,
552 struct vm_page *uobjpage,
553 struct vm_anon **nanon, /* OUT: allocated anon */
554 struct vm_anon **spare)
555 {
556 struct vm_amap *amap = ufi->entry->aref.ar_amap;
557 struct uvm_object *uobj;
558 struct vm_anon *anon;
559 struct vm_page *pg;
560 struct vm_page *opg;
561 int error;
562 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
563
564 if (oanon) {
565 /* anon COW */
566 opg = oanon->an_page;
567 KASSERT(opg != NULL);
568 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
569 } else if (uobjpage != PGO_DONTCARE) {
570 /* object-backed COW */
571 opg = uobjpage;
572 } else {
573 /* ZFOD */
574 opg = NULL;
575 }
576 if (opg != NULL) {
577 uobj = opg->uobject;
578 } else {
579 uobj = NULL;
580 }
581
582 KASSERT(amap != NULL);
583 KASSERT(uobjpage != NULL);
584 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
585 KASSERT(mutex_owned(amap->am_lock));
586 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
587 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 } else {
593 anon = uvm_analloc();
594 }
595 if (anon) {
596
597 /*
598 * The new anon is locked.
599 *
600 * if opg == NULL, we want a zero'd, dirty page,
601 * so have uvm_pagealloc() do that for us.
602 */
603
604 KASSERT(anon->an_lock == NULL);
605 anon->an_lock = amap->am_lock;
606 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
607 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
608 if (pg == NULL) {
609 anon->an_lock = NULL;
610 }
611 } else {
612 pg = NULL;
613 }
614
615 /*
616 * out of memory resources?
617 */
618
619 if (pg == NULL) {
620 /* save anon for the next try. */
621 if (anon != NULL) {
622 *spare = anon;
623 }
624
625 /* unlock and fail ... */
626 uvm_page_unbusy(&uobjpage, 1);
627 uvmfault_unlockall(ufi, amap, uobj);
628 if (!uvm_reclaimable()) {
629 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
630 uvmexp.fltnoanon++;
631 error = ENOMEM;
632 goto done;
633 }
634
635 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
636 uvmexp.fltnoram++;
637 uvm_wait("flt_noram5");
638 error = ERESTART;
639 goto done;
640 }
641
642 /* copy page [pg now dirty] */
643 if (opg) {
644 uvm_pagecopy(opg, pg);
645 }
646
647 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
648 oanon != NULL);
649
650 *nanon = anon;
651 error = 0;
652 done:
653 return error;
654 }
655
656 /*
657 * Update statistics after fault resolution.
658 * - maxrss
659 */
660 void
661 uvmfault_update_stats(struct uvm_faultinfo *ufi)
662 {
663 struct vm_map *map;
664 struct vmspace *vm;
665 struct proc *p;
666 vsize_t res;
667
668 map = ufi->orig_map;
669
670 p = curproc;
671 KASSERT(p != NULL);
672 vm = p->p_vmspace;
673
674 if (&vm->vm_map != map)
675 return;
676
677 res = pmap_resident_count(map->pmap);
678 if (vm->vm_rssmax < res)
679 vm->vm_rssmax = res;
680 }
681
682 /*
683 * F A U L T - m a i n e n t r y p o i n t
684 */
685
686 /*
687 * uvm_fault: page fault handler
688 *
689 * => called from MD code to resolve a page fault
690 * => VM data structures usually should be unlocked. however, it is
691 * possible to call here with the main map locked if the caller
692 * gets a write lock, sets it recusive, and then calls us (c.f.
693 * uvm_map_pageable). this should be avoided because it keeps
694 * the map locked off during I/O.
695 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
696 */
697
698 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
699 ~VM_PROT_WRITE : VM_PROT_ALL)
700
701 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
702 #define UVM_FAULT_WIRE (1 << 0)
703 #define UVM_FAULT_MAXPROT (1 << 1)
704
705 struct uvm_faultctx {
706
707 /*
708 * the following members are set up by uvm_fault_check() and
709 * read-only after that.
710 *
711 * note that narrow is used by uvm_fault_check() to change
712 * the behaviour after ERESTART.
713 *
714 * most of them might change after RESTART if the underlying
715 * map entry has been changed behind us. an exception is
716 * wire_paging, which does never change.
717 */
718 vm_prot_t access_type;
719 vaddr_t startva;
720 int npages;
721 int centeridx;
722 bool narrow; /* work on a single requested page only */
723 bool wire_mapping; /* request a PMAP_WIRED mapping
724 (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
725 bool wire_paging; /* request uvm_pagewire
726 (true for UVM_FAULT_WIRE) */
727 bool cow_now; /* VM_PROT_WRITE is actually requested
728 (ie. should break COW and page loaning) */
729
730 /*
731 * enter_prot is set up by uvm_fault_check() and clamped
732 * (ie. drop the VM_PROT_WRITE bit) in various places in case
733 * of !cow_now.
734 */
735 vm_prot_t enter_prot; /* prot at which we want to enter pages in */
736
737 /*
738 * the following member is for uvmfault_promote() and ERESTART.
739 */
740 struct vm_anon *anon_spare;
741
742 /*
743 * the folloing is actually a uvm_fault_lower() internal.
744 * it's here merely for debugging.
745 * (or due to the mechanical separation of the function?)
746 */
747 bool promote;
748 };
749
750 static inline int uvm_fault_check(
751 struct uvm_faultinfo *, struct uvm_faultctx *,
752 struct vm_anon ***, bool);
753
754 static int uvm_fault_upper(
755 struct uvm_faultinfo *, struct uvm_faultctx *,
756 struct vm_anon **);
757 static inline int uvm_fault_upper_lookup(
758 struct uvm_faultinfo *, const struct uvm_faultctx *,
759 struct vm_anon **, struct vm_page **);
760 static inline void uvm_fault_upper_neighbor(
761 struct uvm_faultinfo *, const struct uvm_faultctx *,
762 vaddr_t, struct vm_page *, bool);
763 static inline int uvm_fault_upper_loan(
764 struct uvm_faultinfo *, struct uvm_faultctx *,
765 struct vm_anon *, struct uvm_object **);
766 static inline int uvm_fault_upper_promote(
767 struct uvm_faultinfo *, struct uvm_faultctx *,
768 struct uvm_object *, struct vm_anon *);
769 static inline int uvm_fault_upper_direct(
770 struct uvm_faultinfo *, struct uvm_faultctx *,
771 struct uvm_object *, struct vm_anon *);
772 static int uvm_fault_upper_enter(
773 struct uvm_faultinfo *, const struct uvm_faultctx *,
774 struct uvm_object *, struct vm_anon *,
775 struct vm_page *, struct vm_anon *);
776 static inline void uvm_fault_upper_done(
777 struct uvm_faultinfo *, const struct uvm_faultctx *,
778 struct vm_anon *, struct vm_page *);
779
780 static int uvm_fault_lower(
781 struct uvm_faultinfo *, struct uvm_faultctx *,
782 struct vm_page **);
783 static inline void uvm_fault_lower_lookup(
784 struct uvm_faultinfo *, const struct uvm_faultctx *,
785 struct vm_page **);
786 static inline void uvm_fault_lower_neighbor(
787 struct uvm_faultinfo *, const struct uvm_faultctx *,
788 vaddr_t, struct vm_page *, bool);
789 static inline int uvm_fault_lower_io(
790 struct uvm_faultinfo *, const struct uvm_faultctx *,
791 struct uvm_object **, struct vm_page **);
792 static inline int uvm_fault_lower_direct(
793 struct uvm_faultinfo *, struct uvm_faultctx *,
794 struct uvm_object *, struct vm_page *);
795 static inline int uvm_fault_lower_direct_loan(
796 struct uvm_faultinfo *, struct uvm_faultctx *,
797 struct uvm_object *, struct vm_page **,
798 struct vm_page **);
799 static inline int uvm_fault_lower_promote(
800 struct uvm_faultinfo *, struct uvm_faultctx *,
801 struct uvm_object *, struct vm_page *);
802 static int uvm_fault_lower_enter(
803 struct uvm_faultinfo *, const struct uvm_faultctx *,
804 struct uvm_object *,
805 struct vm_anon *, struct vm_page *);
806 static inline void uvm_fault_lower_done(
807 struct uvm_faultinfo *, const struct uvm_faultctx *,
808 struct uvm_object *, struct vm_page *);
809
810 int
811 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
812 vm_prot_t access_type, int fault_flag)
813 {
814 struct cpu_data *cd;
815 struct uvm_cpu *ucpu;
816 struct uvm_faultinfo ufi;
817 struct uvm_faultctx flt = {
818 .access_type = access_type,
819
820 /* don't look for neighborhood * pages on "wire" fault */
821 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
822
823 /* "wire" fault causes wiring of both mapping and paging */
824 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
825 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
826 };
827 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
828 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
829 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
830 int error;
831
832 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
833
834 UVMHIST_LOG(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)",
835 (uintptr_t)orig_map, vaddr, access_type, fault_flag);
836
837 cd = &(curcpu()->ci_data);
838 cd->cpu_nfault++;
839 ucpu = cd->cpu_uvm;
840
841 /* Don't flood RNG subsystem with samples. */
842 if (cd->cpu_nfault % 503)
843 goto norng;
844
845 /* Don't count anything until user interaction is possible */
846 if (__predict_true(start_init_exec)) {
847 kpreempt_disable();
848 rnd_add_uint32(&ucpu->rs,
849 sizeof(vaddr_t) == sizeof(uint32_t) ?
850 (uint32_t)vaddr : sizeof(vaddr_t) ==
851 sizeof(uint64_t) ?
852 (uint32_t)(vaddr & 0x00000000ffffffff) :
853 (uint32_t)(cd->cpu_nfault & 0x00000000ffffffff));
854 kpreempt_enable();
855 }
856 norng:
857 /*
858 * init the IN parameters in the ufi
859 */
860
861 ufi.orig_map = orig_map;
862 ufi.orig_rvaddr = trunc_page(vaddr);
863 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
864
865 error = ERESTART;
866 while (error == ERESTART) { /* ReFault: */
867 anons = anons_store;
868 pages = pages_store;
869
870 error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
871 if (error != 0)
872 continue;
873
874 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
875 if (error != 0)
876 continue;
877
878 if (pages[flt.centeridx] == PGO_DONTCARE)
879 error = uvm_fault_upper(&ufi, &flt, anons);
880 else {
881 struct uvm_object * const uobj =
882 ufi.entry->object.uvm_obj;
883
884 if (uobj && uobj->pgops->pgo_fault != NULL) {
885 /*
886 * invoke "special" fault routine.
887 */
888 mutex_enter(uobj->vmobjlock);
889 /* locked: maps(read), amap(if there), uobj */
890 error = uobj->pgops->pgo_fault(&ufi,
891 flt.startva, pages, flt.npages,
892 flt.centeridx, flt.access_type,
893 PGO_LOCKED|PGO_SYNCIO);
894
895 /*
896 * locked: nothing, pgo_fault has unlocked
897 * everything
898 */
899
900 /*
901 * object fault routine responsible for
902 * pmap_update().
903 */
904 } else {
905 error = uvm_fault_lower(&ufi, &flt, pages);
906 }
907 }
908 }
909
910 if (flt.anon_spare != NULL) {
911 flt.anon_spare->an_ref--;
912 KASSERT(flt.anon_spare->an_ref == 0);
913 KASSERT(flt.anon_spare->an_lock == NULL);
914 uvm_anon_free(flt.anon_spare);
915 }
916 return error;
917 }
918
919 /*
920 * uvm_fault_check: check prot, handle needs-copy, etc.
921 *
922 * 1. lookup entry.
923 * 2. check protection.
924 * 3. adjust fault condition (mainly for simulated fault).
925 * 4. handle needs-copy (lazy amap copy).
926 * 5. establish range of interest for neighbor fault (aka pre-fault).
927 * 6. look up anons (if amap exists).
928 * 7. flush pages (if MADV_SEQUENTIAL)
929 *
930 * => called with nothing locked.
931 * => if we fail (result != 0) we unlock everything.
932 * => initialize/adjust many members of flt.
933 */
934
935 static int
936 uvm_fault_check(
937 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
938 struct vm_anon ***ranons, bool maxprot)
939 {
940 struct vm_amap *amap;
941 struct uvm_object *uobj;
942 vm_prot_t check_prot;
943 int nback, nforw;
944 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
945
946 /*
947 * lookup and lock the maps
948 */
949
950 if (uvmfault_lookup(ufi, false) == false) {
951 UVMHIST_LOG(maphist, "<- no mapping @ 0x%#jx", ufi->orig_rvaddr,
952 0,0,0);
953 return EFAULT;
954 }
955 /* locked: maps(read) */
956
957 #ifdef DIAGNOSTIC
958 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
959 printf("Page fault on non-pageable map:\n");
960 printf("ufi->map = %p\n", ufi->map);
961 printf("ufi->orig_map = %p\n", ufi->orig_map);
962 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
963 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
964 }
965 #endif
966
967 /*
968 * check protection
969 */
970
971 check_prot = maxprot ?
972 ufi->entry->max_protection : ufi->entry->protection;
973 if ((check_prot & flt->access_type) != flt->access_type) {
974 UVMHIST_LOG(maphist,
975 "<- protection failure (prot=%#jx, access=%#jx)",
976 ufi->entry->protection, flt->access_type, 0, 0);
977 uvmfault_unlockmaps(ufi, false);
978 return EFAULT;
979 }
980
981 /*
982 * "enter_prot" is the protection we want to enter the page in at.
983 * for certain pages (e.g. copy-on-write pages) this protection can
984 * be more strict than ufi->entry->protection. "wired" means either
985 * the entry is wired or we are fault-wiring the pg.
986 */
987
988 flt->enter_prot = ufi->entry->protection;
989 if (VM_MAPENT_ISWIRED(ufi->entry))
990 flt->wire_mapping = true;
991
992 if (flt->wire_mapping) {
993 flt->access_type = flt->enter_prot; /* full access for wired */
994 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
995 } else {
996 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
997 }
998
999 flt->promote = false;
1000
1001 /*
1002 * handle "needs_copy" case. if we need to copy the amap we will
1003 * have to drop our readlock and relock it with a write lock. (we
1004 * need a write lock to change anything in a map entry [e.g.
1005 * needs_copy]).
1006 */
1007
1008 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
1009 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
1010 KASSERT(!maxprot);
1011 /* need to clear */
1012 UVMHIST_LOG(maphist,
1013 " need to clear needs_copy and refault",0,0,0,0);
1014 uvmfault_unlockmaps(ufi, false);
1015 uvmfault_amapcopy(ufi);
1016 uvmexp.fltamcopy++;
1017 return ERESTART;
1018
1019 } else {
1020
1021 /*
1022 * ensure that we pmap_enter page R/O since
1023 * needs_copy is still true
1024 */
1025
1026 flt->enter_prot &= ~VM_PROT_WRITE;
1027 }
1028 }
1029
1030 /*
1031 * identify the players
1032 */
1033
1034 amap = ufi->entry->aref.ar_amap; /* upper layer */
1035 uobj = ufi->entry->object.uvm_obj; /* lower layer */
1036
1037 /*
1038 * check for a case 0 fault. if nothing backing the entry then
1039 * error now.
1040 */
1041
1042 if (amap == NULL && uobj == NULL) {
1043 uvmfault_unlockmaps(ufi, false);
1044 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
1045 return EFAULT;
1046 }
1047
1048 /*
1049 * establish range of interest based on advice from mapper
1050 * and then clip to fit map entry. note that we only want
1051 * to do this the first time through the fault. if we
1052 * ReFault we will disable this by setting "narrow" to true.
1053 */
1054
1055 if (flt->narrow == false) {
1056
1057 /* wide fault (!narrow) */
1058 KASSERT(uvmadvice[ufi->entry->advice].advice ==
1059 ufi->entry->advice);
1060 nback = MIN(uvmadvice[ufi->entry->advice].nback,
1061 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1062 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1063 /*
1064 * note: "-1" because we don't want to count the
1065 * faulting page as forw
1066 */
1067 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1068 ((ufi->entry->end - ufi->orig_rvaddr) >>
1069 PAGE_SHIFT) - 1);
1070 flt->npages = nback + nforw + 1;
1071 flt->centeridx = nback;
1072
1073 flt->narrow = true; /* ensure only once per-fault */
1074
1075 } else {
1076
1077 /* narrow fault! */
1078 nback = nforw = 0;
1079 flt->startva = ufi->orig_rvaddr;
1080 flt->npages = 1;
1081 flt->centeridx = 0;
1082
1083 }
1084 /* offset from entry's start to pgs' start */
1085 const voff_t eoff = flt->startva - ufi->entry->start;
1086
1087 /* locked: maps(read) */
1088 UVMHIST_LOG(maphist, " narrow=%jd, back=%jd, forw=%jd, startva=%#jx",
1089 flt->narrow, nback, nforw, flt->startva);
1090 UVMHIST_LOG(maphist, " entry=%#jx, amap=%#jx, obj=%#jx",
1091 (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0);
1092
1093 /*
1094 * if we've got an amap, lock it and extract current anons.
1095 */
1096
1097 if (amap) {
1098 amap_lock(amap);
1099 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1100 } else {
1101 *ranons = NULL; /* to be safe */
1102 }
1103
1104 /* locked: maps(read), amap(if there) */
1105 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1106
1107 /*
1108 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1109 * now and then forget about them (for the rest of the fault).
1110 */
1111
1112 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1113
1114 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1115 0,0,0,0);
1116 /* flush back-page anons? */
1117 if (amap)
1118 uvmfault_anonflush(*ranons, nback);
1119
1120 /* flush object? */
1121 if (uobj) {
1122 voff_t uoff;
1123
1124 uoff = ufi->entry->offset + eoff;
1125 mutex_enter(uobj->vmobjlock);
1126 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1127 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1128 }
1129
1130 /* now forget about the backpages */
1131 if (amap)
1132 *ranons += nback;
1133 flt->startva += (nback << PAGE_SHIFT);
1134 flt->npages -= nback;
1135 flt->centeridx = 0;
1136 }
1137 /*
1138 * => startva is fixed
1139 * => npages is fixed
1140 */
1141 KASSERT(flt->startva <= ufi->orig_rvaddr);
1142 KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1143 flt->startva + (flt->npages << PAGE_SHIFT));
1144 return 0;
1145 }
1146
1147 /*
1148 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1149 *
1150 * iterate range of interest:
1151 * 1. check if h/w mapping exists. if yes, we don't care
1152 * 2. check if anon exists. if not, page is lower.
1153 * 3. if anon exists, enter h/w mapping for neighbors.
1154 *
1155 * => called with amap locked (if exists).
1156 */
1157
1158 static int
1159 uvm_fault_upper_lookup(
1160 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1161 struct vm_anon **anons, struct vm_page **pages)
1162 {
1163 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1164 int lcv;
1165 vaddr_t currva;
1166 bool shadowed __unused;
1167 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1168
1169 /* locked: maps(read), amap(if there) */
1170 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1171
1172 /*
1173 * map in the backpages and frontpages we found in the amap in hopes
1174 * of preventing future faults. we also init the pages[] array as
1175 * we go.
1176 */
1177
1178 currva = flt->startva;
1179 shadowed = false;
1180 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1181 /*
1182 * don't play with VAs that are already mapped
1183 * (except for center)
1184 */
1185 if (lcv != flt->centeridx &&
1186 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1187 pages[lcv] = PGO_DONTCARE;
1188 continue;
1189 }
1190
1191 /*
1192 * unmapped or center page. check if any anon at this level.
1193 */
1194 if (amap == NULL || anons[lcv] == NULL) {
1195 pages[lcv] = NULL;
1196 continue;
1197 }
1198
1199 /*
1200 * check for present page and map if possible. re-activate it.
1201 */
1202
1203 pages[lcv] = PGO_DONTCARE;
1204 if (lcv == flt->centeridx) { /* save center for later! */
1205 shadowed = true;
1206 continue;
1207 }
1208
1209 struct vm_anon *anon = anons[lcv];
1210 struct vm_page *pg = anon->an_page;
1211
1212 KASSERT(anon->an_lock == amap->am_lock);
1213
1214 /* Ignore loaned and busy pages. */
1215 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
1216 uvm_fault_upper_neighbor(ufi, flt, currva,
1217 pg, anon->an_ref > 1);
1218 }
1219 }
1220
1221 /* locked: maps(read), amap(if there) */
1222 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1223 /* (shadowed == true) if there is an anon at the faulting address */
1224 UVMHIST_LOG(maphist, " shadowed=%jd, will_get=%jd", shadowed,
1225 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1226
1227 /*
1228 * note that if we are really short of RAM we could sleep in the above
1229 * call to pmap_enter with everything locked. bad?
1230 *
1231 * XXX Actually, that is bad; pmap_enter() should just fail in that
1232 * XXX case. --thorpej
1233 */
1234
1235 return 0;
1236 }
1237
1238 /*
1239 * uvm_fault_upper_neighbor: enter single upper neighbor page.
1240 *
1241 * => called with amap and anon locked.
1242 */
1243
1244 static void
1245 uvm_fault_upper_neighbor(
1246 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1247 vaddr_t currva, struct vm_page *pg, bool readonly)
1248 {
1249 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1250
1251 /* locked: amap, anon */
1252
1253 mutex_enter(&uvm_pageqlock);
1254 uvm_pageenqueue(pg);
1255 mutex_exit(&uvm_pageqlock);
1256 UVMHIST_LOG(maphist,
1257 " MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx",
1258 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1259 uvmexp.fltnamap++;
1260
1261 /*
1262 * Since this page isn't the page that's actually faulting,
1263 * ignore pmap_enter() failures; it's not critical that we
1264 * enter these right now.
1265 */
1266
1267 (void) pmap_enter(ufi->orig_map->pmap, currva,
1268 VM_PAGE_TO_PHYS(pg),
1269 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1270 flt->enter_prot,
1271 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1272
1273 pmap_update(ufi->orig_map->pmap);
1274 }
1275
1276 /*
1277 * uvm_fault_upper: handle upper fault.
1278 *
1279 * 1. acquire anon lock.
1280 * 2. get anon. let uvmfault_anonget do the dirty work.
1281 * 3. handle loan.
1282 * 4. dispatch direct or promote handlers.
1283 */
1284
1285 static int
1286 uvm_fault_upper(
1287 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1288 struct vm_anon **anons)
1289 {
1290 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1291 struct vm_anon * const anon = anons[flt->centeridx];
1292 struct uvm_object *uobj;
1293 int error;
1294 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1295
1296 /* locked: maps(read), amap, anon */
1297 KASSERT(mutex_owned(amap->am_lock));
1298 KASSERT(anon->an_lock == amap->am_lock);
1299
1300 /*
1301 * handle case 1: fault on an anon in our amap
1302 */
1303
1304 UVMHIST_LOG(maphist, " case 1 fault: anon=%#jx",
1305 (uintptr_t)anon, 0, 0, 0);
1306
1307 /*
1308 * no matter if we have case 1A or case 1B we are going to need to
1309 * have the anon's memory resident. ensure that now.
1310 */
1311
1312 /*
1313 * let uvmfault_anonget do the dirty work.
1314 * if it fails (!OK) it will unlock everything for us.
1315 * if it succeeds, locks are still valid and locked.
1316 * also, if it is OK, then the anon's page is on the queues.
1317 * if the page is on loan from a uvm_object, then anonget will
1318 * lock that object for us if it does not fail.
1319 */
1320
1321 error = uvmfault_anonget(ufi, amap, anon);
1322 switch (error) {
1323 case 0:
1324 break;
1325
1326 case ERESTART:
1327 return ERESTART;
1328
1329 case EAGAIN:
1330 kpause("fltagain1", false, hz/2, NULL);
1331 return ERESTART;
1332
1333 default:
1334 return error;
1335 }
1336
1337 /*
1338 * uobj is non null if the page is on loan from an object (i.e. uobj)
1339 */
1340
1341 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1342
1343 /* locked: maps(read), amap, anon, uobj(if one) */
1344 KASSERT(mutex_owned(amap->am_lock));
1345 KASSERT(anon->an_lock == amap->am_lock);
1346 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1347
1348 /*
1349 * special handling for loaned pages
1350 */
1351
1352 if (anon->an_page->loan_count) {
1353 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1354 if (error != 0)
1355 return error;
1356 }
1357
1358 /*
1359 * if we are case 1B then we will need to allocate a new blank
1360 * anon to transfer the data into. note that we have a lock
1361 * on anon, so no one can busy or release the page until we are done.
1362 * also note that the ref count can't drop to zero here because
1363 * it is > 1 and we are only dropping one ref.
1364 *
1365 * in the (hopefully very rare) case that we are out of RAM we
1366 * will unlock, wait for more RAM, and refault.
1367 *
1368 * if we are out of anon VM we kill the process (XXX: could wait?).
1369 */
1370
1371 if (flt->cow_now && anon->an_ref > 1) {
1372 flt->promote = true;
1373 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1374 } else {
1375 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1376 }
1377 return error;
1378 }
1379
1380 /*
1381 * uvm_fault_upper_loan: handle loaned upper page.
1382 *
1383 * 1. if not cow'ing now, simply adjust flt->enter_prot.
1384 * 2. if cow'ing now, and if ref count is 1, break loan.
1385 */
1386
1387 static int
1388 uvm_fault_upper_loan(
1389 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1390 struct vm_anon *anon, struct uvm_object **ruobj)
1391 {
1392 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1393 int error = 0;
1394 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1395
1396 if (!flt->cow_now) {
1397
1398 /*
1399 * for read faults on loaned pages we just cap the
1400 * protection at read-only.
1401 */
1402
1403 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1404
1405 } else {
1406 /*
1407 * note that we can't allow writes into a loaned page!
1408 *
1409 * if we have a write fault on a loaned page in an
1410 * anon then we need to look at the anon's ref count.
1411 * if it is greater than one then we are going to do
1412 * a normal copy-on-write fault into a new anon (this
1413 * is not a problem). however, if the reference count
1414 * is one (a case where we would normally allow a
1415 * write directly to the page) then we need to kill
1416 * the loan before we continue.
1417 */
1418
1419 /* >1 case is already ok */
1420 if (anon->an_ref == 1) {
1421 error = uvm_loanbreak_anon(anon, *ruobj);
1422 if (error != 0) {
1423 uvmfault_unlockall(ufi, amap, *ruobj);
1424 uvm_wait("flt_noram2");
1425 return ERESTART;
1426 }
1427 /* if we were a loan reciever uobj is gone */
1428 if (*ruobj)
1429 *ruobj = NULL;
1430 }
1431 }
1432 return error;
1433 }
1434
1435 /*
1436 * uvm_fault_upper_promote: promote upper page.
1437 *
1438 * 1. call uvmfault_promote.
1439 * 2. enqueue page.
1440 * 3. deref.
1441 * 4. pass page to uvm_fault_upper_enter.
1442 */
1443
1444 static int
1445 uvm_fault_upper_promote(
1446 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1447 struct uvm_object *uobj, struct vm_anon *anon)
1448 {
1449 struct vm_anon * const oanon = anon;
1450 struct vm_page *pg;
1451 int error;
1452 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1453
1454 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1455 uvmexp.flt_acow++;
1456
1457 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1458 &flt->anon_spare);
1459 switch (error) {
1460 case 0:
1461 break;
1462 case ERESTART:
1463 return ERESTART;
1464 default:
1465 return error;
1466 }
1467
1468 KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
1469
1470 pg = anon->an_page;
1471 mutex_enter(&uvm_pageqlock);
1472 uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
1473 mutex_exit(&uvm_pageqlock);
1474 pg->flags &= ~(PG_BUSY|PG_FAKE);
1475 UVM_PAGE_OWN(pg, NULL);
1476
1477 /* deref: can not drop to zero here by defn! */
1478 KASSERT(oanon->an_ref > 1);
1479 oanon->an_ref--;
1480
1481 /*
1482 * note: oanon is still locked, as is the new anon. we
1483 * need to check for this later when we unlock oanon; if
1484 * oanon != anon, we'll have to unlock anon, too.
1485 */
1486
1487 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1488 }
1489
1490 /*
1491 * uvm_fault_upper_direct: handle direct fault.
1492 */
1493
1494 static int
1495 uvm_fault_upper_direct(
1496 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1497 struct uvm_object *uobj, struct vm_anon *anon)
1498 {
1499 struct vm_anon * const oanon = anon;
1500 struct vm_page *pg;
1501 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1502
1503 uvmexp.flt_anon++;
1504 pg = anon->an_page;
1505 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1506 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1507
1508 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1509 }
1510
1511 /*
1512 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1513 */
1514
1515 static int
1516 uvm_fault_upper_enter(
1517 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1518 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1519 struct vm_anon *oanon)
1520 {
1521 struct pmap *pmap = ufi->orig_map->pmap;
1522 vaddr_t va = ufi->orig_rvaddr;
1523 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1524 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1525
1526 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1527 KASSERT(mutex_owned(amap->am_lock));
1528 KASSERT(anon->an_lock == amap->am_lock);
1529 KASSERT(oanon->an_lock == amap->am_lock);
1530 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1531
1532 /*
1533 * now map the page in.
1534 */
1535
1536 UVMHIST_LOG(maphist,
1537 " MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
1538 (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote);
1539 if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg),
1540 flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1541 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1542
1543 /*
1544 * If pmap_enter() fails, it must not leave behind an existing
1545 * pmap entry. In particular, a now-stale entry for a different
1546 * page would leave the pmap inconsistent with the vm_map.
1547 * This is not to imply that pmap_enter() should remove an
1548 * existing mapping in such a situation (since that could create
1549 * different problems, eg. if the existing mapping is wired),
1550 * but rather that the pmap should be designed such that it
1551 * never needs to fail when the new mapping is replacing an
1552 * existing mapping and the new page has no existing mappings.
1553 */
1554
1555 KASSERT(!pmap_extract(pmap, va, NULL));
1556
1557 /*
1558 * No need to undo what we did; we can simply think of
1559 * this as the pmap throwing away the mapping information.
1560 *
1561 * We do, however, have to go through the ReFault path,
1562 * as the map may change while we're asleep.
1563 */
1564
1565 uvmfault_unlockall(ufi, amap, uobj);
1566 if (!uvm_reclaimable()) {
1567 UVMHIST_LOG(maphist,
1568 "<- failed. out of VM",0,0,0,0);
1569 /* XXX instrumentation */
1570 return ENOMEM;
1571 }
1572 /* XXX instrumentation */
1573 uvm_wait("flt_pmfail1");
1574 return ERESTART;
1575 }
1576
1577 uvm_fault_upper_done(ufi, flt, anon, pg);
1578
1579 /*
1580 * done case 1! finish up by unlocking everything and returning success
1581 */
1582
1583 pmap_update(pmap);
1584 uvmfault_unlockall(ufi, amap, uobj);
1585 return 0;
1586 }
1587
1588 /*
1589 * uvm_fault_upper_done: queue upper center page.
1590 */
1591
1592 static void
1593 uvm_fault_upper_done(
1594 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1595 struct vm_anon *anon, struct vm_page *pg)
1596 {
1597 const bool wire_paging = flt->wire_paging;
1598
1599 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1600
1601 /*
1602 * ... update the page queues.
1603 */
1604
1605 mutex_enter(&uvm_pageqlock);
1606 if (wire_paging) {
1607 uvm_pagewire(pg);
1608
1609 /*
1610 * since the now-wired page cannot be paged out,
1611 * release its swap resources for others to use.
1612 * since an anon with no swap cannot be PG_CLEAN,
1613 * clear its clean flag now.
1614 */
1615
1616 pg->flags &= ~(PG_CLEAN);
1617
1618 } else {
1619 uvm_pageactivate(pg);
1620 }
1621 mutex_exit(&uvm_pageqlock);
1622
1623 if (wire_paging) {
1624 uvm_anon_dropswap(anon);
1625 }
1626 }
1627
1628 /*
1629 * uvm_fault_lower: handle lower fault.
1630 *
1631 * 1. check uobj
1632 * 1.1. if null, ZFOD.
1633 * 1.2. if not null, look up unnmapped neighbor pages.
1634 * 2. for center page, check if promote.
1635 * 2.1. ZFOD always needs promotion.
1636 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1637 * 3. if uobj is not ZFOD and page is not found, do i/o.
1638 * 4. dispatch either direct / promote fault.
1639 */
1640
1641 static int
1642 uvm_fault_lower(
1643 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1644 struct vm_page **pages)
1645 {
1646 struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap;
1647 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1648 struct vm_page *uobjpage;
1649 int error;
1650 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1651
1652 /*
1653 * now, if the desired page is not shadowed by the amap and we have
1654 * a backing object that does not have a special fault routine, then
1655 * we ask (with pgo_get) the object for resident pages that we care
1656 * about and attempt to map them in. we do not let pgo_get block
1657 * (PGO_LOCKED).
1658 */
1659
1660 if (uobj == NULL) {
1661 /* zero fill; don't care neighbor pages */
1662 uobjpage = NULL;
1663 } else {
1664 uvm_fault_lower_lookup(ufi, flt, pages);
1665 uobjpage = pages[flt->centeridx];
1666 }
1667
1668 /*
1669 * note that at this point we are done with any front or back pages.
1670 * we are now going to focus on the center page (i.e. the one we've
1671 * faulted on). if we have faulted on the upper (anon) layer
1672 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1673 * not touched it yet). if we have faulted on the bottom (uobj)
1674 * layer [i.e. case 2] and the page was both present and available,
1675 * then we've got a pointer to it as "uobjpage" and we've already
1676 * made it BUSY.
1677 */
1678
1679 /*
1680 * locked:
1681 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1682 */
1683 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1684 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1685 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1686
1687 /*
1688 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1689 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1690 * have a backing object, check and see if we are going to promote
1691 * the data up to an anon during the fault.
1692 */
1693
1694 if (uobj == NULL) {
1695 uobjpage = PGO_DONTCARE;
1696 flt->promote = true; /* always need anon here */
1697 } else {
1698 KASSERT(uobjpage != PGO_DONTCARE);
1699 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1700 }
1701 UVMHIST_LOG(maphist, " case 2 fault: promote=%jd, zfill=%jd",
1702 flt->promote, (uobj == NULL), 0,0);
1703
1704 /*
1705 * if uobjpage is not null then we do not need to do I/O to get the
1706 * uobjpage.
1707 *
1708 * if uobjpage is null, then we need to unlock and ask the pager to
1709 * get the data for us. once we have the data, we need to reverify
1710 * the state the world. we are currently not holding any resources.
1711 */
1712
1713 if (uobjpage) {
1714 /* update rusage counters */
1715 curlwp->l_ru.ru_minflt++;
1716 } else {
1717 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1718 if (error != 0)
1719 return error;
1720 }
1721
1722 /*
1723 * locked:
1724 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1725 */
1726 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1727 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1728 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1729
1730 /*
1731 * notes:
1732 * - at this point uobjpage can not be NULL
1733 * - at this point uobjpage can not be PG_RELEASED (since we checked
1734 * for it above)
1735 * - at this point uobjpage could be PG_WANTED (handle later)
1736 */
1737
1738 KASSERT(uobjpage != NULL);
1739 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1740 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1741 (uobjpage->flags & PG_CLEAN) != 0);
1742
1743 if (!flt->promote) {
1744 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1745 } else {
1746 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1747 }
1748 return error;
1749 }
1750
1751 /*
1752 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1753 *
1754 * 1. get on-memory pages.
1755 * 2. if failed, give up (get only center page later).
1756 * 3. if succeeded, enter h/w mapping of neighbor pages.
1757 */
1758
1759 static void
1760 uvm_fault_lower_lookup(
1761 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1762 struct vm_page **pages)
1763 {
1764 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1765 int lcv, gotpages;
1766 vaddr_t currva;
1767 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1768
1769 mutex_enter(uobj->vmobjlock);
1770 /* Locked: maps(read), amap(if there), uobj */
1771
1772 uvmexp.fltlget++;
1773 gotpages = flt->npages;
1774 (void) uobj->pgops->pgo_get(uobj,
1775 ufi->entry->offset + flt->startva - ufi->entry->start,
1776 pages, &gotpages, flt->centeridx,
1777 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1778
1779 KASSERT(mutex_owned(uobj->vmobjlock));
1780
1781 /*
1782 * check for pages to map, if we got any
1783 */
1784
1785 if (gotpages == 0) {
1786 pages[flt->centeridx] = NULL;
1787 return;
1788 }
1789
1790 currva = flt->startva;
1791 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1792 struct vm_page *curpg;
1793
1794 curpg = pages[lcv];
1795 if (curpg == NULL || curpg == PGO_DONTCARE) {
1796 continue;
1797 }
1798 KASSERT(curpg->uobject == uobj);
1799
1800 /*
1801 * if center page is resident and not PG_BUSY|PG_RELEASED
1802 * then pgo_get made it PG_BUSY for us and gave us a handle
1803 * to it.
1804 */
1805
1806 if (lcv == flt->centeridx) {
1807 UVMHIST_LOG(maphist, " got uobjpage (0x%#jx) "
1808 "with locked get", (uintptr_t)curpg, 0, 0, 0);
1809 } else {
1810 bool readonly = (curpg->flags & PG_RDONLY)
1811 || (curpg->loan_count > 0)
1812 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1813
1814 uvm_fault_lower_neighbor(ufi, flt,
1815 currva, curpg, readonly);
1816 }
1817 }
1818 pmap_update(ufi->orig_map->pmap);
1819 }
1820
1821 /*
1822 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1823 */
1824
1825 static void
1826 uvm_fault_lower_neighbor(
1827 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1828 vaddr_t currva, struct vm_page *pg, bool readonly)
1829 {
1830 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1831
1832 /* locked: maps(read), amap(if there), uobj */
1833
1834 /*
1835 * calling pgo_get with PGO_LOCKED returns us pages which
1836 * are neither busy nor released, so we don't need to check
1837 * for this. we can just directly enter the pages.
1838 */
1839
1840 mutex_enter(&uvm_pageqlock);
1841 uvm_pageenqueue(pg);
1842 mutex_exit(&uvm_pageqlock);
1843 UVMHIST_LOG(maphist,
1844 " MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx",
1845 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1846 uvmexp.fltnomap++;
1847
1848 /*
1849 * Since this page isn't the page that's actually faulting,
1850 * ignore pmap_enter() failures; it's not critical that we
1851 * enter these right now.
1852 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1853 * held the lock the whole time we've had the handle.
1854 */
1855 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1856 KASSERT((pg->flags & PG_RELEASED) == 0);
1857 KASSERT((pg->flags & PG_WANTED) == 0);
1858 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
1859 pg->flags &= ~(PG_BUSY);
1860 UVM_PAGE_OWN(pg, NULL);
1861
1862 KASSERT(mutex_owned(pg->uobject->vmobjlock));
1863
1864 const vm_prot_t mapprot =
1865 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1866 flt->enter_prot & MASK(ufi->entry);
1867 const u_int mapflags =
1868 PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0);
1869 (void) pmap_enter(ufi->orig_map->pmap, currva,
1870 VM_PAGE_TO_PHYS(pg), mapprot, mapflags);
1871 }
1872
1873 /*
1874 * uvm_fault_lower_io: get lower page from backing store.
1875 *
1876 * 1. unlock everything, because i/o will block.
1877 * 2. call pgo_get.
1878 * 3. if failed, recover.
1879 * 4. if succeeded, relock everything and verify things.
1880 */
1881
1882 static int
1883 uvm_fault_lower_io(
1884 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1885 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1886 {
1887 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1888 struct uvm_object *uobj = *ruobj;
1889 struct vm_page *pg;
1890 bool locked;
1891 int gotpages;
1892 int error;
1893 voff_t uoff;
1894 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1895
1896 /* update rusage counters */
1897 curlwp->l_ru.ru_majflt++;
1898
1899 /* Locked: maps(read), amap(if there), uobj */
1900 uvmfault_unlockall(ufi, amap, NULL);
1901
1902 /* Locked: uobj */
1903 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1904
1905 uvmexp.fltget++;
1906 gotpages = 1;
1907 pg = NULL;
1908 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1909 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1910 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1911 PGO_SYNCIO);
1912 /* locked: pg(if no error) */
1913
1914 /*
1915 * recover from I/O
1916 */
1917
1918 if (error) {
1919 if (error == EAGAIN) {
1920 UVMHIST_LOG(maphist,
1921 " pgo_get says TRY AGAIN!",0,0,0,0);
1922 kpause("fltagain2", false, hz/2, NULL);
1923 return ERESTART;
1924 }
1925
1926 #if 0
1927 KASSERT(error != ERESTART);
1928 #else
1929 /* XXXUEBS don't re-fault? */
1930 if (error == ERESTART)
1931 error = EIO;
1932 #endif
1933
1934 UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)",
1935 error, 0,0,0);
1936 return error;
1937 }
1938
1939 /*
1940 * re-verify the state of the world by first trying to relock
1941 * the maps. always relock the object.
1942 */
1943
1944 locked = uvmfault_relock(ufi);
1945 if (locked && amap)
1946 amap_lock(amap);
1947
1948 /* might be changed */
1949 uobj = pg->uobject;
1950
1951 mutex_enter(uobj->vmobjlock);
1952 KASSERT((pg->flags & PG_BUSY) != 0);
1953
1954 mutex_enter(&uvm_pageqlock);
1955 uvm_pageactivate(pg);
1956 mutex_exit(&uvm_pageqlock);
1957
1958 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1959 /* locked(!locked): uobj, pg */
1960
1961 /*
1962 * verify that the page has not be released and re-verify
1963 * that amap slot is still free. if there is a problem,
1964 * we unlock and clean up.
1965 */
1966
1967 if ((pg->flags & PG_RELEASED) != 0 ||
1968 (locked && amap && amap_lookup(&ufi->entry->aref,
1969 ufi->orig_rvaddr - ufi->entry->start))) {
1970 if (locked)
1971 uvmfault_unlockall(ufi, amap, NULL);
1972 locked = false;
1973 }
1974
1975 /*
1976 * didn't get the lock? release the page and retry.
1977 */
1978
1979 if (locked == false) {
1980 UVMHIST_LOG(maphist,
1981 " wasn't able to relock after fault: retry",
1982 0,0,0,0);
1983 if (pg->flags & PG_WANTED) {
1984 wakeup(pg);
1985 }
1986 if ((pg->flags & PG_RELEASED) == 0) {
1987 pg->flags &= ~(PG_BUSY | PG_WANTED);
1988 UVM_PAGE_OWN(pg, NULL);
1989 } else {
1990 uvmexp.fltpgrele++;
1991 uvm_pagefree(pg);
1992 }
1993 mutex_exit(uobj->vmobjlock);
1994 return ERESTART;
1995 }
1996
1997 /*
1998 * we have the data in pg which is busy and
1999 * not released. we are holding object lock (so the page
2000 * can't be released on us).
2001 */
2002
2003 /* locked: maps(read), amap(if !null), uobj, pg */
2004
2005 *ruobj = uobj;
2006 *ruobjpage = pg;
2007 return 0;
2008 }
2009
2010 /*
2011 * uvm_fault_lower_direct: fault lower center page
2012 *
2013 * 1. adjust flt->enter_prot.
2014 * 2. if page is loaned, resolve.
2015 */
2016
2017 int
2018 uvm_fault_lower_direct(
2019 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2020 struct uvm_object *uobj, struct vm_page *uobjpage)
2021 {
2022 struct vm_page *pg;
2023 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
2024
2025 /*
2026 * we are not promoting. if the mapping is COW ensure that we
2027 * don't give more access than we should (e.g. when doing a read
2028 * fault on a COPYONWRITE mapping we want to map the COW page in
2029 * R/O even though the entry protection could be R/W).
2030 *
2031 * set "pg" to the page we want to map in (uobjpage, usually)
2032 */
2033
2034 uvmexp.flt_obj++;
2035 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
2036 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
2037 flt->enter_prot &= ~VM_PROT_WRITE;
2038 pg = uobjpage; /* map in the actual object */
2039
2040 KASSERT(uobjpage != PGO_DONTCARE);
2041
2042 /*
2043 * we are faulting directly on the page. be careful
2044 * about writing to loaned pages...
2045 */
2046
2047 if (uobjpage->loan_count) {
2048 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
2049 }
2050 KASSERT(pg == uobjpage);
2051
2052 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2053 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
2054 }
2055
2056 /*
2057 * uvm_fault_lower_direct_loan: resolve loaned page.
2058 *
2059 * 1. if not cow'ing, adjust flt->enter_prot.
2060 * 2. if cow'ing, break loan.
2061 */
2062
2063 static int
2064 uvm_fault_lower_direct_loan(
2065 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2066 struct uvm_object *uobj, struct vm_page **rpg,
2067 struct vm_page **ruobjpage)
2068 {
2069 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2070 struct vm_page *pg;
2071 struct vm_page *uobjpage = *ruobjpage;
2072 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
2073
2074 if (!flt->cow_now) {
2075 /* read fault: cap the protection at readonly */
2076 /* cap! */
2077 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2078 } else {
2079 /* write fault: must break the loan here */
2080
2081 pg = uvm_loanbreak(uobjpage);
2082 if (pg == NULL) {
2083
2084 /*
2085 * drop ownership of page, it can't be released
2086 */
2087
2088 if (uobjpage->flags & PG_WANTED)
2089 wakeup(uobjpage);
2090 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2091 UVM_PAGE_OWN(uobjpage, NULL);
2092
2093 uvmfault_unlockall(ufi, amap, uobj);
2094 UVMHIST_LOG(maphist,
2095 " out of RAM breaking loan, waiting",
2096 0,0,0,0);
2097 uvmexp.fltnoram++;
2098 uvm_wait("flt_noram4");
2099 return ERESTART;
2100 }
2101 *rpg = pg;
2102 *ruobjpage = pg;
2103 }
2104 return 0;
2105 }
2106
2107 /*
2108 * uvm_fault_lower_promote: promote lower page.
2109 *
2110 * 1. call uvmfault_promote.
2111 * 2. fill in data.
2112 * 3. if not ZFOD, dispose old page.
2113 */
2114
2115 int
2116 uvm_fault_lower_promote(
2117 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2118 struct uvm_object *uobj, struct vm_page *uobjpage)
2119 {
2120 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2121 struct vm_anon *anon;
2122 struct vm_page *pg;
2123 int error;
2124 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2125
2126 KASSERT(amap != NULL);
2127
2128 /*
2129 * If we are going to promote the data to an anon we
2130 * allocate a blank anon here and plug it into our amap.
2131 */
2132 error = uvmfault_promote(ufi, NULL, uobjpage,
2133 &anon, &flt->anon_spare);
2134 switch (error) {
2135 case 0:
2136 break;
2137 case ERESTART:
2138 return ERESTART;
2139 default:
2140 return error;
2141 }
2142
2143 pg = anon->an_page;
2144
2145 /*
2146 * Fill in the data.
2147 */
2148 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2149
2150 if (uobjpage != PGO_DONTCARE) {
2151 uvmexp.flt_prcopy++;
2152
2153 /*
2154 * promote to shared amap? make sure all sharing
2155 * procs see it
2156 */
2157
2158 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2159 pmap_page_protect(uobjpage, VM_PROT_NONE);
2160 /*
2161 * XXX: PAGE MIGHT BE WIRED!
2162 */
2163 }
2164
2165 /*
2166 * dispose of uobjpage. it can't be PG_RELEASED
2167 * since we still hold the object lock.
2168 */
2169
2170 if (uobjpage->flags & PG_WANTED) {
2171 /* still have the obj lock */
2172 wakeup(uobjpage);
2173 }
2174 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2175 UVM_PAGE_OWN(uobjpage, NULL);
2176
2177 UVMHIST_LOG(maphist,
2178 " promote uobjpage 0x%#jx to anon/page 0x%#jx/0x%#jx",
2179 (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0);
2180
2181 } else {
2182 uvmexp.flt_przero++;
2183
2184 /*
2185 * Page is zero'd and marked dirty by
2186 * uvmfault_promote().
2187 */
2188
2189 UVMHIST_LOG(maphist," zero fill anon/page 0x%#jx/0%#jx",
2190 (uintptr_t)anon, (uintptr_t)pg, 0, 0);
2191 }
2192
2193 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2194 }
2195
2196 /*
2197 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2198 * from the lower page.
2199 */
2200
2201 int
2202 uvm_fault_lower_enter(
2203 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2204 struct uvm_object *uobj,
2205 struct vm_anon *anon, struct vm_page *pg)
2206 {
2207 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2208 int error;
2209 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2210
2211 /*
2212 * Locked:
2213 *
2214 * maps(read), amap(if !null), uobj(if !null),
2215 * anon(if !null), pg(if anon), unlock_uobj(if !null)
2216 *
2217 * Note: pg is either the uobjpage or the new page in the new anon.
2218 */
2219 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
2220 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
2221 KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2222 KASSERT((pg->flags & PG_BUSY) != 0);
2223
2224 /*
2225 * all resources are present. we can now map it in and free our
2226 * resources.
2227 */
2228
2229 UVMHIST_LOG(maphist,
2230 " MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
2231 (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr,
2232 (uintptr_t)pg, flt->promote);
2233 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2234 (pg->flags & PG_RDONLY) == 0);
2235 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2236 VM_PAGE_TO_PHYS(pg),
2237 (pg->flags & PG_RDONLY) != 0 ?
2238 flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2239 flt->access_type | PMAP_CANFAIL |
2240 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2241
2242 /*
2243 * No need to undo what we did; we can simply think of
2244 * this as the pmap throwing away the mapping information.
2245 *
2246 * We do, however, have to go through the ReFault path,
2247 * as the map may change while we're asleep.
2248 */
2249
2250 /*
2251 * ensure that the page is queued in the case that
2252 * we just promoted the page.
2253 */
2254
2255 mutex_enter(&uvm_pageqlock);
2256 uvm_pageenqueue(pg);
2257 mutex_exit(&uvm_pageqlock);
2258
2259 if (pg->flags & PG_WANTED)
2260 wakeup(pg);
2261
2262 /*
2263 * note that pg can't be PG_RELEASED since we did not drop
2264 * the object lock since the last time we checked.
2265 */
2266 KASSERT((pg->flags & PG_RELEASED) == 0);
2267
2268 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2269 UVM_PAGE_OWN(pg, NULL);
2270
2271 uvmfault_unlockall(ufi, amap, uobj);
2272 if (!uvm_reclaimable()) {
2273 UVMHIST_LOG(maphist,
2274 "<- failed. out of VM",0,0,0,0);
2275 /* XXX instrumentation */
2276 error = ENOMEM;
2277 return error;
2278 }
2279 /* XXX instrumentation */
2280 uvm_wait("flt_pmfail2");
2281 return ERESTART;
2282 }
2283
2284 uvm_fault_lower_done(ufi, flt, uobj, pg);
2285
2286 /*
2287 * note that pg can't be PG_RELEASED since we did not drop the object
2288 * lock since the last time we checked.
2289 */
2290 KASSERT((pg->flags & PG_RELEASED) == 0);
2291 if (pg->flags & PG_WANTED)
2292 wakeup(pg);
2293 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2294 UVM_PAGE_OWN(pg, NULL);
2295
2296 pmap_update(ufi->orig_map->pmap);
2297 uvmfault_unlockall(ufi, amap, uobj);
2298
2299 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2300 return 0;
2301 }
2302
2303 /*
2304 * uvm_fault_lower_done: queue lower center page.
2305 */
2306
2307 void
2308 uvm_fault_lower_done(
2309 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2310 struct uvm_object *uobj, struct vm_page *pg)
2311 {
2312 bool dropswap = false;
2313
2314 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2315
2316 mutex_enter(&uvm_pageqlock);
2317 if (flt->wire_paging) {
2318 uvm_pagewire(pg);
2319 if (pg->pqflags & PQ_AOBJ) {
2320
2321 /*
2322 * since the now-wired page cannot be paged out,
2323 * release its swap resources for others to use.
2324 * since an aobj page with no swap cannot be PG_CLEAN,
2325 * clear its clean flag now.
2326 */
2327
2328 KASSERT(uobj != NULL);
2329 pg->flags &= ~(PG_CLEAN);
2330 dropswap = true;
2331 }
2332 } else {
2333 uvm_pageactivate(pg);
2334 }
2335 mutex_exit(&uvm_pageqlock);
2336
2337 if (dropswap) {
2338 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2339 }
2340 }
2341
2342
2343 /*
2344 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2345 *
2346 * => map may be read-locked by caller, but MUST NOT be write-locked.
2347 * => if map is read-locked, any operations which may cause map to
2348 * be write-locked in uvm_fault() must be taken care of by
2349 * the caller. See uvm_map_pageable().
2350 */
2351
2352 int
2353 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2354 vm_prot_t access_type, int maxprot)
2355 {
2356 vaddr_t va;
2357 int error;
2358
2359 /*
2360 * now fault it in a page at a time. if the fault fails then we have
2361 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2362 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2363 */
2364
2365 /*
2366 * XXX work around overflowing a vaddr_t. this prevents us from
2367 * wiring the last page in the address space, though.
2368 */
2369 if (start > end) {
2370 return EFAULT;
2371 }
2372
2373 for (va = start; va < end; va += PAGE_SIZE) {
2374 error = uvm_fault_internal(map, va, access_type,
2375 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2376 if (error) {
2377 if (va != start) {
2378 uvm_fault_unwire(map, start, va);
2379 }
2380 return error;
2381 }
2382 }
2383 return 0;
2384 }
2385
2386 /*
2387 * uvm_fault_unwire(): unwire range of virtual space.
2388 */
2389
2390 void
2391 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2392 {
2393 vm_map_lock_read(map);
2394 uvm_fault_unwire_locked(map, start, end);
2395 vm_map_unlock_read(map);
2396 }
2397
2398 /*
2399 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2400 *
2401 * => map must be at least read-locked.
2402 */
2403
2404 void
2405 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2406 {
2407 struct vm_map_entry *entry, *oentry;
2408 pmap_t pmap = vm_map_pmap(map);
2409 vaddr_t va;
2410 paddr_t pa;
2411 struct vm_page *pg;
2412
2413 /*
2414 * we assume that the area we are unwiring has actually been wired
2415 * in the first place. this means that we should be able to extract
2416 * the PAs from the pmap. we also lock out the page daemon so that
2417 * we can call uvm_pageunwire.
2418 */
2419
2420 /*
2421 * find the beginning map entry for the region.
2422 */
2423
2424 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2425 if (uvm_map_lookup_entry(map, start, &entry) == false)
2426 panic("uvm_fault_unwire_locked: address not in map");
2427
2428 oentry = NULL;
2429 for (va = start; va < end; va += PAGE_SIZE) {
2430 if (pmap_extract(pmap, va, &pa) == false)
2431 continue;
2432
2433 /*
2434 * find the map entry for the current address.
2435 */
2436
2437 KASSERT(va >= entry->start);
2438 while (va >= entry->end) {
2439 KASSERT(entry->next != &map->header &&
2440 entry->next->start <= entry->end);
2441 entry = entry->next;
2442 }
2443
2444 /*
2445 * lock it.
2446 */
2447
2448 if (entry != oentry) {
2449 if (oentry != NULL) {
2450 mutex_exit(&uvm_pageqlock);
2451 uvm_map_unlock_entry(oentry);
2452 }
2453 uvm_map_lock_entry(entry);
2454 mutex_enter(&uvm_pageqlock);
2455 oentry = entry;
2456 }
2457
2458 /*
2459 * if the entry is no longer wired, tell the pmap.
2460 */
2461
2462 if (VM_MAPENT_ISWIRED(entry) == 0)
2463 pmap_unwire(pmap, va);
2464
2465 pg = PHYS_TO_VM_PAGE(pa);
2466 if (pg)
2467 uvm_pageunwire(pg);
2468 }
2469
2470 if (oentry != NULL) {
2471 mutex_exit(&uvm_pageqlock);
2472 uvm_map_unlock_entry(entry);
2473 }
2474 }
2475