uvm_fault.c revision 1.204.2.1 1 /* $NetBSD: uvm_fault.c,v 1.204.2.1 2019/06/10 22:09:58 christos Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 */
29
30 /*
31 * uvm_fault.c: fault handler
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.204.2.1 2019/06/10 22:09:58 christos Exp $");
36
37 #include "opt_uvmhist.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/mman.h>
43
44 #include <uvm/uvm.h>
45
46 /*
47 *
48 * a word on page faults:
49 *
50 * types of page faults we handle:
51 *
52 * CASE 1: upper layer faults CASE 2: lower layer faults
53 *
54 * CASE 1A CASE 1B CASE 2A CASE 2B
55 * read/write1 write>1 read/write +-cow_write/zero
56 * | | | |
57 * +--|--+ +--|--+ +-----+ + | + | +-----+
58 * amap | V | | ---------> new | | | | ^ |
59 * +-----+ +-----+ +-----+ + | + | +--|--+
60 * | | |
61 * +-----+ +-----+ +--|--+ | +--|--+
62 * uobj | d/c | | d/c | | V | +----+ |
63 * +-----+ +-----+ +-----+ +-----+
64 *
65 * d/c = don't care
66 *
67 * case [0]: layerless fault
68 * no amap or uobj is present. this is an error.
69 *
70 * case [1]: upper layer fault [anon active]
71 * 1A: [read] or [write with anon->an_ref == 1]
72 * I/O takes place in upper level anon and uobj is not touched.
73 * 1B: [write with anon->an_ref > 1]
74 * new anon is alloc'd and data is copied off ["COW"]
75 *
76 * case [2]: lower layer fault [uobj]
77 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78 * I/O takes place directly in object.
79 * 2B: [write to copy_on_write] or [read on NULL uobj]
80 * data is "promoted" from uobj to a new anon.
81 * if uobj is null, then we zero fill.
82 *
83 * we follow the standard UVM locking protocol ordering:
84 *
85 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86 * we hold a PG_BUSY page if we unlock for I/O
87 *
88 *
89 * the code is structured as follows:
90 *
91 * - init the "IN" params in the ufi structure
92 * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
93 * - do lookups [locks maps], check protection, handle needs_copy
94 * - check for case 0 fault (error)
95 * - establish "range" of fault
96 * - if we have an amap lock it and extract the anons
97 * - if sequential advice deactivate pages behind us
98 * - at the same time check pmap for unmapped areas and anon for pages
99 * that we could map in (and do map it if found)
100 * - check object for resident pages that we could map in
101 * - if (case 2) goto Case2
102 * - >>> handle case 1
103 * - ensure source anon is resident in RAM
104 * - if case 1B alloc new anon and copy from source
105 * - map the correct page in
106 * Case2:
107 * - >>> handle case 2
108 * - ensure source page is resident (if uobj)
109 * - if case 2B alloc new anon and copy from source (could be zero
110 * fill if uobj == NULL)
111 * - map the correct page in
112 * - done!
113 *
114 * note on paging:
115 * if we have to do I/O we place a PG_BUSY page in the correct object,
116 * unlock everything, and do the I/O. when I/O is done we must reverify
117 * the state of the world before assuming that our data structures are
118 * valid. [because mappings could change while the map is unlocked]
119 *
120 * alternative 1: unbusy the page in question and restart the page fault
121 * from the top (ReFault). this is easy but does not take advantage
122 * of the information that we already have from our previous lookup,
123 * although it is possible that the "hints" in the vm_map will help here.
124 *
125 * alternative 2: the system already keeps track of a "version" number of
126 * a map. [i.e. every time you write-lock a map (e.g. to change a
127 * mapping) you bump the version number up by one...] so, we can save
128 * the version number of the map before we release the lock and start I/O.
129 * then when I/O is done we can relock and check the version numbers
130 * to see if anything changed. this might save us some over 1 because
131 * we don't have to unbusy the page and may be less compares(?).
132 *
133 * alternative 3: put in backpointers or a way to "hold" part of a map
134 * in place while I/O is in progress. this could be complex to
135 * implement (especially with structures like amap that can be referenced
136 * by multiple map entries, and figuring out what should wait could be
137 * complex as well...).
138 *
139 * we use alternative 2. given that we are multi-threaded now we may want
140 * to reconsider the choice.
141 */
142
143 /*
144 * local data structures
145 */
146
147 struct uvm_advice {
148 int advice;
149 int nback;
150 int nforw;
151 };
152
153 /*
154 * page range array:
155 * note: index in array must match "advice" value
156 * XXX: borrowed numbers from freebsd. do they work well for us?
157 */
158
159 static const struct uvm_advice uvmadvice[] = {
160 { UVM_ADV_NORMAL, 3, 4 },
161 { UVM_ADV_RANDOM, 0, 0 },
162 { UVM_ADV_SEQUENTIAL, 8, 7},
163 };
164
165 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
166
167 /*
168 * private prototypes
169 */
170
171 /*
172 * externs from other modules
173 */
174
175 extern int start_init_exec; /* Is init_main() done / init running? */
176
177 /*
178 * inline functions
179 */
180
181 /*
182 * uvmfault_anonflush: try and deactivate pages in specified anons
183 *
184 * => does not have to deactivate page if it is busy
185 */
186
187 static inline void
188 uvmfault_anonflush(struct vm_anon **anons, int n)
189 {
190 int lcv;
191 struct vm_page *pg;
192
193 for (lcv = 0; lcv < n; lcv++) {
194 if (anons[lcv] == NULL)
195 continue;
196 KASSERT(mutex_owned(anons[lcv]->an_lock));
197 pg = anons[lcv]->an_page;
198 if (pg && (pg->flags & PG_BUSY) == 0) {
199 mutex_enter(&uvm_pageqlock);
200 if (pg->wire_count == 0) {
201 uvm_pagedeactivate(pg);
202 }
203 mutex_exit(&uvm_pageqlock);
204 }
205 }
206 }
207
208 /*
209 * normal functions
210 */
211
212 /*
213 * uvmfault_amapcopy: clear "needs_copy" in a map.
214 *
215 * => called with VM data structures unlocked (usually, see below)
216 * => we get a write lock on the maps and clear needs_copy for a VA
217 * => if we are out of RAM we sleep (waiting for more)
218 */
219
220 static void
221 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
222 {
223 for (;;) {
224
225 /*
226 * no mapping? give up.
227 */
228
229 if (uvmfault_lookup(ufi, true) == false)
230 return;
231
232 /*
233 * copy if needed.
234 */
235
236 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
237 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
238 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
239
240 /*
241 * didn't work? must be out of RAM. unlock and sleep.
242 */
243
244 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
245 uvmfault_unlockmaps(ufi, true);
246 uvm_wait("fltamapcopy");
247 continue;
248 }
249
250 /*
251 * got it! unlock and return.
252 */
253
254 uvmfault_unlockmaps(ufi, true);
255 return;
256 }
257 /*NOTREACHED*/
258 }
259
260 /*
261 * uvmfault_anonget: get data in an anon into a non-busy, non-released
262 * page in that anon.
263 *
264 * => Map, amap and thus anon should be locked by caller.
265 * => If we fail, we unlock everything and error is returned.
266 * => If we are successful, return with everything still locked.
267 * => We do not move the page on the queues [gets moved later]. If we
268 * allocate a new page [we_own], it gets put on the queues. Either way,
269 * the result is that the page is on the queues at return time
270 * => For pages which are on loan from a uvm_object (and thus are not owned
271 * by the anon): if successful, return with the owning object locked.
272 * The caller must unlock this object when it unlocks everything else.
273 */
274
275 int
276 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
277 struct vm_anon *anon)
278 {
279 struct vm_page *pg;
280 int error;
281
282 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
283 KASSERT(mutex_owned(anon->an_lock));
284 KASSERT(anon->an_lock == amap->am_lock);
285
286 /* Increment the counters.*/
287 uvmexp.fltanget++;
288 if (anon->an_page) {
289 curlwp->l_ru.ru_minflt++;
290 } else {
291 curlwp->l_ru.ru_majflt++;
292 }
293 error = 0;
294
295 /*
296 * Loop until we get the anon data, or fail.
297 */
298
299 for (;;) {
300 bool we_own, locked;
301 /*
302 * Note: 'we_own' will become true if we set PG_BUSY on a page.
303 */
304 we_own = false;
305 pg = anon->an_page;
306
307 /*
308 * If there is a resident page and it is loaned, then anon
309 * may not own it. Call out to uvm_anon_lockloanpg() to
310 * identify and lock the real owner of the page.
311 */
312
313 if (pg && pg->loan_count)
314 pg = uvm_anon_lockloanpg(anon);
315
316 /*
317 * Is page resident? Make sure it is not busy/released.
318 */
319
320 if (pg) {
321
322 /*
323 * at this point, if the page has a uobject [meaning
324 * we have it on loan], then that uobject is locked
325 * by us! if the page is busy, we drop all the
326 * locks (including uobject) and try again.
327 */
328
329 if ((pg->flags & PG_BUSY) == 0) {
330 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
331 return 0;
332 }
333 pg->flags |= PG_WANTED;
334 uvmexp.fltpgwait++;
335
336 /*
337 * The last unlock must be an atomic unlock and wait
338 * on the owner of page.
339 */
340
341 if (pg->uobject) {
342 /* Owner of page is UVM object. */
343 uvmfault_unlockall(ufi, amap, NULL);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 pg->uobject->vmobjlock,
348 false, "anonget1", 0);
349 } else {
350 /* Owner of page is anon. */
351 uvmfault_unlockall(ufi, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
355 false, "anonget2", 0);
356 }
357 } else {
358 #if defined(VMSWAP)
359 /*
360 * No page, therefore allocate one.
361 */
362
363 pg = uvm_pagealloc(NULL,
364 ufi != NULL ? ufi->orig_rvaddr : 0,
365 anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
366 if (pg == NULL) {
367 /* Out of memory. Wait a little. */
368 uvmfault_unlockall(ufi, amap, NULL);
369 uvmexp.fltnoram++;
370 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
371 0,0,0);
372 if (!uvm_reclaimable()) {
373 return ENOMEM;
374 }
375 uvm_wait("flt_noram1");
376 } else {
377 /* PG_BUSY bit is set. */
378 we_own = true;
379 uvmfault_unlockall(ufi, amap, NULL);
380
381 /*
382 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
383 * the uvm_swap_get() function with all data
384 * structures unlocked. Note that it is OK
385 * to read an_swslot here, because we hold
386 * PG_BUSY on the page.
387 */
388 uvmexp.pageins++;
389 error = uvm_swap_get(pg, anon->an_swslot,
390 PGO_SYNCIO);
391
392 /*
393 * We clean up after the I/O below in the
394 * 'we_own' case.
395 */
396 }
397 #else
398 panic("%s: no page", __func__);
399 #endif /* defined(VMSWAP) */
400 }
401
402 /*
403 * Re-lock the map and anon.
404 */
405
406 locked = uvmfault_relock(ufi);
407 if (locked || we_own) {
408 mutex_enter(anon->an_lock);
409 }
410
411 /*
412 * If we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. There are three cases to
414 * consider:
415 *
416 * 1) Page was released during I/O: free anon and ReFault.
417 * 2) I/O not OK. Free the page and cause the fault to fail.
418 * 3) I/O OK! Activate the page and sync with the non-we_own
419 * case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * Remove the swap slot from the anon and
431 * mark the anon as having no real slot.
432 * Do not free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0) {
437 uvm_swap_markbad(anon->an_swslot, 1);
438 }
439 anon->an_swslot = SWSLOT_BAD;
440
441 if ((pg->flags & PG_RELEASED) != 0) {
442 goto released;
443 }
444
445 /*
446 * Note: page was never !PG_BUSY, so it
447 * cannot be mapped and thus no need to
448 * pmap_page_protect() it.
449 */
450
451 mutex_enter(&uvm_pageqlock);
452 uvm_pagefree(pg);
453 mutex_exit(&uvm_pageqlock);
454
455 if (locked) {
456 uvmfault_unlockall(ufi, NULL, NULL);
457 }
458 mutex_exit(anon->an_lock);
459 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
460 return error;
461 }
462
463 if ((pg->flags & PG_RELEASED) != 0) {
464 released:
465 KASSERT(anon->an_ref == 0);
466
467 /*
468 * Released while we had unlocked amap.
469 */
470
471 if (locked) {
472 uvmfault_unlockall(ufi, NULL, NULL);
473 }
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * We have successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 #else
496 panic("%s: we_own", __func__);
497 #endif /* defined(VMSWAP) */
498 }
499
500 /*
501 * We were not able to re-lock the map - restart the fault.
502 */
503
504 if (!locked) {
505 if (we_own) {
506 mutex_exit(anon->an_lock);
507 }
508 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
509 return ERESTART;
510 }
511
512 /*
513 * Verify that no one has touched the amap and moved
514 * the anon on us.
515 */
516
517 if (ufi != NULL && amap_lookup(&ufi->entry->aref,
518 ufi->orig_rvaddr - ufi->entry->start) != anon) {
519
520 uvmfault_unlockall(ufi, amap, NULL);
521 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
522 return ERESTART;
523 }
524
525 /*
526 * Retry..
527 */
528
529 uvmexp.fltanretry++;
530 continue;
531 }
532 /*NOTREACHED*/
533 }
534
535 /*
536 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
537 *
538 * 1. allocate an anon and a page.
539 * 2. fill its contents.
540 * 3. put it into amap.
541 *
542 * => if we fail (result != 0) we unlock everything.
543 * => on success, return a new locked anon via 'nanon'.
544 * (*nanon)->an_page will be a resident, locked, dirty page.
545 * => it's caller's responsibility to put the promoted nanon->an_page to the
546 * page queue.
547 */
548
549 static int
550 uvmfault_promote(struct uvm_faultinfo *ufi,
551 struct vm_anon *oanon,
552 struct vm_page *uobjpage,
553 struct vm_anon **nanon, /* OUT: allocated anon */
554 struct vm_anon **spare)
555 {
556 struct vm_amap *amap = ufi->entry->aref.ar_amap;
557 struct uvm_object *uobj;
558 struct vm_anon *anon;
559 struct vm_page *pg;
560 struct vm_page *opg;
561 int error;
562 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
563
564 if (oanon) {
565 /* anon COW */
566 opg = oanon->an_page;
567 KASSERT(opg != NULL);
568 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
569 } else if (uobjpage != PGO_DONTCARE) {
570 /* object-backed COW */
571 opg = uobjpage;
572 } else {
573 /* ZFOD */
574 opg = NULL;
575 }
576 if (opg != NULL) {
577 uobj = opg->uobject;
578 } else {
579 uobj = NULL;
580 }
581
582 KASSERT(amap != NULL);
583 KASSERT(uobjpage != NULL);
584 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
585 KASSERT(mutex_owned(amap->am_lock));
586 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
587 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 } else {
593 anon = uvm_analloc();
594 }
595 if (anon) {
596
597 /*
598 * The new anon is locked.
599 *
600 * if opg == NULL, we want a zero'd, dirty page,
601 * so have uvm_pagealloc() do that for us.
602 */
603
604 KASSERT(anon->an_lock == NULL);
605 anon->an_lock = amap->am_lock;
606 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
607 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
608 if (pg == NULL) {
609 anon->an_lock = NULL;
610 }
611 } else {
612 pg = NULL;
613 }
614
615 /*
616 * out of memory resources?
617 */
618
619 if (pg == NULL) {
620 /* save anon for the next try. */
621 if (anon != NULL) {
622 *spare = anon;
623 }
624
625 /* unlock and fail ... */
626 uvm_page_unbusy(&uobjpage, 1);
627 uvmfault_unlockall(ufi, amap, uobj);
628 if (!uvm_reclaimable()) {
629 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
630 uvmexp.fltnoanon++;
631 error = ENOMEM;
632 goto done;
633 }
634
635 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
636 uvmexp.fltnoram++;
637 uvm_wait("flt_noram5");
638 error = ERESTART;
639 goto done;
640 }
641
642 /* copy page [pg now dirty] */
643 if (opg) {
644 uvm_pagecopy(opg, pg);
645 }
646
647 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
648 oanon != NULL);
649
650 *nanon = anon;
651 error = 0;
652 done:
653 return error;
654 }
655
656 /*
657 * Update statistics after fault resolution.
658 * - maxrss
659 */
660 void
661 uvmfault_update_stats(struct uvm_faultinfo *ufi)
662 {
663 struct vm_map *map;
664 struct vmspace *vm;
665 struct proc *p;
666 vsize_t res;
667
668 map = ufi->orig_map;
669
670 p = curproc;
671 KASSERT(p != NULL);
672 vm = p->p_vmspace;
673
674 if (&vm->vm_map != map)
675 return;
676
677 res = pmap_resident_count(map->pmap);
678 if (vm->vm_rssmax < res)
679 vm->vm_rssmax = res;
680 }
681
682 /*
683 * F A U L T - m a i n e n t r y p o i n t
684 */
685
686 /*
687 * uvm_fault: page fault handler
688 *
689 * => called from MD code to resolve a page fault
690 * => VM data structures usually should be unlocked. however, it is
691 * possible to call here with the main map locked if the caller
692 * gets a write lock, sets it recusive, and then calls us (c.f.
693 * uvm_map_pageable). this should be avoided because it keeps
694 * the map locked off during I/O.
695 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
696 */
697
698 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
699 ~VM_PROT_WRITE : VM_PROT_ALL)
700
701 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
702 #define UVM_FAULT_WIRE (1 << 0)
703 #define UVM_FAULT_MAXPROT (1 << 1)
704
705 struct uvm_faultctx {
706
707 /*
708 * the following members are set up by uvm_fault_check() and
709 * read-only after that.
710 *
711 * note that narrow is used by uvm_fault_check() to change
712 * the behaviour after ERESTART.
713 *
714 * most of them might change after RESTART if the underlying
715 * map entry has been changed behind us. an exception is
716 * wire_paging, which does never change.
717 */
718 vm_prot_t access_type;
719 vaddr_t startva;
720 int npages;
721 int centeridx;
722 bool narrow; /* work on a single requested page only */
723 bool wire_mapping; /* request a PMAP_WIRED mapping
724 (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
725 bool wire_paging; /* request uvm_pagewire
726 (true for UVM_FAULT_WIRE) */
727 bool cow_now; /* VM_PROT_WRITE is actually requested
728 (ie. should break COW and page loaning) */
729
730 /*
731 * enter_prot is set up by uvm_fault_check() and clamped
732 * (ie. drop the VM_PROT_WRITE bit) in various places in case
733 * of !cow_now.
734 */
735 vm_prot_t enter_prot; /* prot at which we want to enter pages in */
736
737 /*
738 * the following member is for uvmfault_promote() and ERESTART.
739 */
740 struct vm_anon *anon_spare;
741
742 /*
743 * the folloing is actually a uvm_fault_lower() internal.
744 * it's here merely for debugging.
745 * (or due to the mechanical separation of the function?)
746 */
747 bool promote;
748 };
749
750 static inline int uvm_fault_check(
751 struct uvm_faultinfo *, struct uvm_faultctx *,
752 struct vm_anon ***, bool);
753
754 static int uvm_fault_upper(
755 struct uvm_faultinfo *, struct uvm_faultctx *,
756 struct vm_anon **);
757 static inline int uvm_fault_upper_lookup(
758 struct uvm_faultinfo *, const struct uvm_faultctx *,
759 struct vm_anon **, struct vm_page **);
760 static inline void uvm_fault_upper_neighbor(
761 struct uvm_faultinfo *, const struct uvm_faultctx *,
762 vaddr_t, struct vm_page *, bool);
763 static inline int uvm_fault_upper_loan(
764 struct uvm_faultinfo *, struct uvm_faultctx *,
765 struct vm_anon *, struct uvm_object **);
766 static inline int uvm_fault_upper_promote(
767 struct uvm_faultinfo *, struct uvm_faultctx *,
768 struct uvm_object *, struct vm_anon *);
769 static inline int uvm_fault_upper_direct(
770 struct uvm_faultinfo *, struct uvm_faultctx *,
771 struct uvm_object *, struct vm_anon *);
772 static int uvm_fault_upper_enter(
773 struct uvm_faultinfo *, const struct uvm_faultctx *,
774 struct uvm_object *, struct vm_anon *,
775 struct vm_page *, struct vm_anon *);
776 static inline void uvm_fault_upper_done(
777 struct uvm_faultinfo *, const struct uvm_faultctx *,
778 struct vm_anon *, struct vm_page *);
779
780 static int uvm_fault_lower(
781 struct uvm_faultinfo *, struct uvm_faultctx *,
782 struct vm_page **);
783 static inline void uvm_fault_lower_lookup(
784 struct uvm_faultinfo *, const struct uvm_faultctx *,
785 struct vm_page **);
786 static inline void uvm_fault_lower_neighbor(
787 struct uvm_faultinfo *, const struct uvm_faultctx *,
788 vaddr_t, struct vm_page *, bool);
789 static inline int uvm_fault_lower_io(
790 struct uvm_faultinfo *, const struct uvm_faultctx *,
791 struct uvm_object **, struct vm_page **);
792 static inline int uvm_fault_lower_direct(
793 struct uvm_faultinfo *, struct uvm_faultctx *,
794 struct uvm_object *, struct vm_page *);
795 static inline int uvm_fault_lower_direct_loan(
796 struct uvm_faultinfo *, struct uvm_faultctx *,
797 struct uvm_object *, struct vm_page **,
798 struct vm_page **);
799 static inline int uvm_fault_lower_promote(
800 struct uvm_faultinfo *, struct uvm_faultctx *,
801 struct uvm_object *, struct vm_page *);
802 static int uvm_fault_lower_enter(
803 struct uvm_faultinfo *, const struct uvm_faultctx *,
804 struct uvm_object *,
805 struct vm_anon *, struct vm_page *);
806 static inline void uvm_fault_lower_done(
807 struct uvm_faultinfo *, const struct uvm_faultctx *,
808 struct uvm_object *, struct vm_page *);
809
810 int
811 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
812 vm_prot_t access_type, int fault_flag)
813 {
814 struct cpu_data *cd;
815 struct uvm_cpu *ucpu;
816 struct uvm_faultinfo ufi;
817 struct uvm_faultctx flt = {
818 .access_type = access_type,
819
820 /* don't look for neighborhood * pages on "wire" fault */
821 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
822
823 /* "wire" fault causes wiring of both mapping and paging */
824 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
825 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
826 };
827 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
828 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
829 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
830 int error;
831
832 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
833
834 UVMHIST_LOG(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)",
835 (uintptr_t)orig_map, vaddr, access_type, fault_flag);
836
837 cd = &(curcpu()->ci_data);
838 cd->cpu_nfault++;
839 ucpu = cd->cpu_uvm;
840
841 /* Don't flood RNG subsystem with samples. */
842 if (cd->cpu_nfault % 503)
843 goto norng;
844
845 /* Don't count anything until user interaction is possible */
846 if (__predict_true(start_init_exec)) {
847 kpreempt_disable();
848 rnd_add_uint32(&ucpu->rs,
849 sizeof(vaddr_t) == sizeof(uint32_t) ?
850 (uint32_t)vaddr : sizeof(vaddr_t) ==
851 sizeof(uint64_t) ?
852 (uint32_t)(vaddr & 0x00000000ffffffff) :
853 (uint32_t)(cd->cpu_nfault & 0x00000000ffffffff));
854 kpreempt_enable();
855 }
856 norng:
857 /*
858 * init the IN parameters in the ufi
859 */
860
861 ufi.orig_map = orig_map;
862 ufi.orig_rvaddr = trunc_page(vaddr);
863 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
864
865 error = ERESTART;
866 while (error == ERESTART) { /* ReFault: */
867 anons = anons_store;
868 pages = pages_store;
869
870 error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
871 if (error != 0)
872 continue;
873
874 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
875 if (error != 0)
876 continue;
877
878 if (pages[flt.centeridx] == PGO_DONTCARE)
879 error = uvm_fault_upper(&ufi, &flt, anons);
880 else {
881 struct uvm_object * const uobj =
882 ufi.entry->object.uvm_obj;
883
884 if (uobj && uobj->pgops->pgo_fault != NULL) {
885 /*
886 * invoke "special" fault routine.
887 */
888 mutex_enter(uobj->vmobjlock);
889 /* locked: maps(read), amap(if there), uobj */
890 error = uobj->pgops->pgo_fault(&ufi,
891 flt.startva, pages, flt.npages,
892 flt.centeridx, flt.access_type,
893 PGO_LOCKED|PGO_SYNCIO);
894
895 /*
896 * locked: nothing, pgo_fault has unlocked
897 * everything
898 */
899
900 /*
901 * object fault routine responsible for
902 * pmap_update().
903 */
904
905 /*
906 * Wake up the pagedaemon if the fault method
907 * failed for lack of memory but some can be
908 * reclaimed.
909 */
910 if (error == ENOMEM && uvm_reclaimable()) {
911 uvm_wait("pgo_fault");
912 error = ERESTART;
913 }
914 } else {
915 error = uvm_fault_lower(&ufi, &flt, pages);
916 }
917 }
918 }
919
920 if (flt.anon_spare != NULL) {
921 flt.anon_spare->an_ref--;
922 KASSERT(flt.anon_spare->an_ref == 0);
923 KASSERT(flt.anon_spare->an_lock == NULL);
924 uvm_anon_free(flt.anon_spare);
925 }
926 return error;
927 }
928
929 /*
930 * uvm_fault_check: check prot, handle needs-copy, etc.
931 *
932 * 1. lookup entry.
933 * 2. check protection.
934 * 3. adjust fault condition (mainly for simulated fault).
935 * 4. handle needs-copy (lazy amap copy).
936 * 5. establish range of interest for neighbor fault (aka pre-fault).
937 * 6. look up anons (if amap exists).
938 * 7. flush pages (if MADV_SEQUENTIAL)
939 *
940 * => called with nothing locked.
941 * => if we fail (result != 0) we unlock everything.
942 * => initialize/adjust many members of flt.
943 */
944
945 static int
946 uvm_fault_check(
947 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
948 struct vm_anon ***ranons, bool maxprot)
949 {
950 struct vm_amap *amap;
951 struct uvm_object *uobj;
952 vm_prot_t check_prot;
953 int nback, nforw;
954 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
955
956 /*
957 * lookup and lock the maps
958 */
959
960 if (uvmfault_lookup(ufi, false) == false) {
961 UVMHIST_LOG(maphist, "<- no mapping @ 0x%#jx", ufi->orig_rvaddr,
962 0,0,0);
963 return EFAULT;
964 }
965 /* locked: maps(read) */
966
967 #ifdef DIAGNOSTIC
968 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
969 printf("Page fault on non-pageable map:\n");
970 printf("ufi->map = %p\n", ufi->map);
971 printf("ufi->orig_map = %p\n", ufi->orig_map);
972 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
973 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
974 }
975 #endif
976
977 /*
978 * check protection
979 */
980
981 check_prot = maxprot ?
982 ufi->entry->max_protection : ufi->entry->protection;
983 if ((check_prot & flt->access_type) != flt->access_type) {
984 UVMHIST_LOG(maphist,
985 "<- protection failure (prot=%#jx, access=%#jx)",
986 ufi->entry->protection, flt->access_type, 0, 0);
987 uvmfault_unlockmaps(ufi, false);
988 return EFAULT;
989 }
990
991 /*
992 * "enter_prot" is the protection we want to enter the page in at.
993 * for certain pages (e.g. copy-on-write pages) this protection can
994 * be more strict than ufi->entry->protection. "wired" means either
995 * the entry is wired or we are fault-wiring the pg.
996 */
997
998 flt->enter_prot = ufi->entry->protection;
999 if (VM_MAPENT_ISWIRED(ufi->entry))
1000 flt->wire_mapping = true;
1001
1002 if (flt->wire_mapping) {
1003 flt->access_type = flt->enter_prot; /* full access for wired */
1004 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
1005 } else {
1006 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
1007 }
1008
1009 flt->promote = false;
1010
1011 /*
1012 * handle "needs_copy" case. if we need to copy the amap we will
1013 * have to drop our readlock and relock it with a write lock. (we
1014 * need a write lock to change anything in a map entry [e.g.
1015 * needs_copy]).
1016 */
1017
1018 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
1019 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
1020 KASSERT(!maxprot);
1021 /* need to clear */
1022 UVMHIST_LOG(maphist,
1023 " need to clear needs_copy and refault",0,0,0,0);
1024 uvmfault_unlockmaps(ufi, false);
1025 uvmfault_amapcopy(ufi);
1026 uvmexp.fltamcopy++;
1027 return ERESTART;
1028
1029 } else {
1030
1031 /*
1032 * ensure that we pmap_enter page R/O since
1033 * needs_copy is still true
1034 */
1035
1036 flt->enter_prot &= ~VM_PROT_WRITE;
1037 }
1038 }
1039
1040 /*
1041 * identify the players
1042 */
1043
1044 amap = ufi->entry->aref.ar_amap; /* upper layer */
1045 uobj = ufi->entry->object.uvm_obj; /* lower layer */
1046
1047 /*
1048 * check for a case 0 fault. if nothing backing the entry then
1049 * error now.
1050 */
1051
1052 if (amap == NULL && uobj == NULL) {
1053 uvmfault_unlockmaps(ufi, false);
1054 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
1055 return EFAULT;
1056 }
1057
1058 /*
1059 * establish range of interest based on advice from mapper
1060 * and then clip to fit map entry. note that we only want
1061 * to do this the first time through the fault. if we
1062 * ReFault we will disable this by setting "narrow" to true.
1063 */
1064
1065 if (flt->narrow == false) {
1066
1067 /* wide fault (!narrow) */
1068 KASSERT(uvmadvice[ufi->entry->advice].advice ==
1069 ufi->entry->advice);
1070 nback = MIN(uvmadvice[ufi->entry->advice].nback,
1071 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1072 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1073 /*
1074 * note: "-1" because we don't want to count the
1075 * faulting page as forw
1076 */
1077 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1078 ((ufi->entry->end - ufi->orig_rvaddr) >>
1079 PAGE_SHIFT) - 1);
1080 flt->npages = nback + nforw + 1;
1081 flt->centeridx = nback;
1082
1083 flt->narrow = true; /* ensure only once per-fault */
1084
1085 } else {
1086
1087 /* narrow fault! */
1088 nback = nforw = 0;
1089 flt->startva = ufi->orig_rvaddr;
1090 flt->npages = 1;
1091 flt->centeridx = 0;
1092
1093 }
1094 /* offset from entry's start to pgs' start */
1095 const voff_t eoff = flt->startva - ufi->entry->start;
1096
1097 /* locked: maps(read) */
1098 UVMHIST_LOG(maphist, " narrow=%jd, back=%jd, forw=%jd, startva=%#jx",
1099 flt->narrow, nback, nforw, flt->startva);
1100 UVMHIST_LOG(maphist, " entry=%#jx, amap=%#jx, obj=%#jx",
1101 (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0);
1102
1103 /*
1104 * if we've got an amap, lock it and extract current anons.
1105 */
1106
1107 if (amap) {
1108 amap_lock(amap);
1109 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1110 } else {
1111 *ranons = NULL; /* to be safe */
1112 }
1113
1114 /* locked: maps(read), amap(if there) */
1115 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1116
1117 /*
1118 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1119 * now and then forget about them (for the rest of the fault).
1120 */
1121
1122 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1123
1124 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1125 0,0,0,0);
1126 /* flush back-page anons? */
1127 if (amap)
1128 uvmfault_anonflush(*ranons, nback);
1129
1130 /* flush object? */
1131 if (uobj) {
1132 voff_t uoff;
1133
1134 uoff = ufi->entry->offset + eoff;
1135 mutex_enter(uobj->vmobjlock);
1136 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1137 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1138 }
1139
1140 /* now forget about the backpages */
1141 if (amap)
1142 *ranons += nback;
1143 flt->startva += (nback << PAGE_SHIFT);
1144 flt->npages -= nback;
1145 flt->centeridx = 0;
1146 }
1147 /*
1148 * => startva is fixed
1149 * => npages is fixed
1150 */
1151 KASSERT(flt->startva <= ufi->orig_rvaddr);
1152 KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1153 flt->startva + (flt->npages << PAGE_SHIFT));
1154 return 0;
1155 }
1156
1157 /*
1158 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1159 *
1160 * iterate range of interest:
1161 * 1. check if h/w mapping exists. if yes, we don't care
1162 * 2. check if anon exists. if not, page is lower.
1163 * 3. if anon exists, enter h/w mapping for neighbors.
1164 *
1165 * => called with amap locked (if exists).
1166 */
1167
1168 static int
1169 uvm_fault_upper_lookup(
1170 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1171 struct vm_anon **anons, struct vm_page **pages)
1172 {
1173 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1174 int lcv;
1175 vaddr_t currva;
1176 bool shadowed __unused;
1177 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1178
1179 /* locked: maps(read), amap(if there) */
1180 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1181
1182 /*
1183 * map in the backpages and frontpages we found in the amap in hopes
1184 * of preventing future faults. we also init the pages[] array as
1185 * we go.
1186 */
1187
1188 currva = flt->startva;
1189 shadowed = false;
1190 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1191 /*
1192 * don't play with VAs that are already mapped
1193 * (except for center)
1194 */
1195 if (lcv != flt->centeridx &&
1196 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1197 pages[lcv] = PGO_DONTCARE;
1198 continue;
1199 }
1200
1201 /*
1202 * unmapped or center page. check if any anon at this level.
1203 */
1204 if (amap == NULL || anons[lcv] == NULL) {
1205 pages[lcv] = NULL;
1206 continue;
1207 }
1208
1209 /*
1210 * check for present page and map if possible. re-activate it.
1211 */
1212
1213 pages[lcv] = PGO_DONTCARE;
1214 if (lcv == flt->centeridx) { /* save center for later! */
1215 shadowed = true;
1216 continue;
1217 }
1218
1219 struct vm_anon *anon = anons[lcv];
1220 struct vm_page *pg = anon->an_page;
1221
1222 KASSERT(anon->an_lock == amap->am_lock);
1223
1224 /* Ignore loaned and busy pages. */
1225 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
1226 uvm_fault_upper_neighbor(ufi, flt, currva,
1227 pg, anon->an_ref > 1);
1228 }
1229 }
1230
1231 /* locked: maps(read), amap(if there) */
1232 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1233 /* (shadowed == true) if there is an anon at the faulting address */
1234 UVMHIST_LOG(maphist, " shadowed=%jd, will_get=%jd", shadowed,
1235 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1236
1237 /*
1238 * note that if we are really short of RAM we could sleep in the above
1239 * call to pmap_enter with everything locked. bad?
1240 *
1241 * XXX Actually, that is bad; pmap_enter() should just fail in that
1242 * XXX case. --thorpej
1243 */
1244
1245 return 0;
1246 }
1247
1248 /*
1249 * uvm_fault_upper_neighbor: enter single upper neighbor page.
1250 *
1251 * => called with amap and anon locked.
1252 */
1253
1254 static void
1255 uvm_fault_upper_neighbor(
1256 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1257 vaddr_t currva, struct vm_page *pg, bool readonly)
1258 {
1259 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1260
1261 /* locked: amap, anon */
1262
1263 mutex_enter(&uvm_pageqlock);
1264 uvm_pageenqueue(pg);
1265 mutex_exit(&uvm_pageqlock);
1266 UVMHIST_LOG(maphist,
1267 " MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx",
1268 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1269 uvmexp.fltnamap++;
1270
1271 /*
1272 * Since this page isn't the page that's actually faulting,
1273 * ignore pmap_enter() failures; it's not critical that we
1274 * enter these right now.
1275 */
1276
1277 (void) pmap_enter(ufi->orig_map->pmap, currva,
1278 VM_PAGE_TO_PHYS(pg),
1279 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1280 flt->enter_prot,
1281 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1282
1283 pmap_update(ufi->orig_map->pmap);
1284 }
1285
1286 /*
1287 * uvm_fault_upper: handle upper fault.
1288 *
1289 * 1. acquire anon lock.
1290 * 2. get anon. let uvmfault_anonget do the dirty work.
1291 * 3. handle loan.
1292 * 4. dispatch direct or promote handlers.
1293 */
1294
1295 static int
1296 uvm_fault_upper(
1297 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1298 struct vm_anon **anons)
1299 {
1300 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1301 struct vm_anon * const anon = anons[flt->centeridx];
1302 struct uvm_object *uobj;
1303 int error;
1304 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1305
1306 /* locked: maps(read), amap, anon */
1307 KASSERT(mutex_owned(amap->am_lock));
1308 KASSERT(anon->an_lock == amap->am_lock);
1309
1310 /*
1311 * handle case 1: fault on an anon in our amap
1312 */
1313
1314 UVMHIST_LOG(maphist, " case 1 fault: anon=%#jx",
1315 (uintptr_t)anon, 0, 0, 0);
1316
1317 /*
1318 * no matter if we have case 1A or case 1B we are going to need to
1319 * have the anon's memory resident. ensure that now.
1320 */
1321
1322 /*
1323 * let uvmfault_anonget do the dirty work.
1324 * if it fails (!OK) it will unlock everything for us.
1325 * if it succeeds, locks are still valid and locked.
1326 * also, if it is OK, then the anon's page is on the queues.
1327 * if the page is on loan from a uvm_object, then anonget will
1328 * lock that object for us if it does not fail.
1329 */
1330
1331 error = uvmfault_anonget(ufi, amap, anon);
1332 switch (error) {
1333 case 0:
1334 break;
1335
1336 case ERESTART:
1337 return ERESTART;
1338
1339 case EAGAIN:
1340 kpause("fltagain1", false, hz/2, NULL);
1341 return ERESTART;
1342
1343 default:
1344 return error;
1345 }
1346
1347 /*
1348 * uobj is non null if the page is on loan from an object (i.e. uobj)
1349 */
1350
1351 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1352
1353 /* locked: maps(read), amap, anon, uobj(if one) */
1354 KASSERT(mutex_owned(amap->am_lock));
1355 KASSERT(anon->an_lock == amap->am_lock);
1356 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1357
1358 /*
1359 * special handling for loaned pages
1360 */
1361
1362 if (anon->an_page->loan_count) {
1363 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1364 if (error != 0)
1365 return error;
1366 }
1367
1368 /*
1369 * if we are case 1B then we will need to allocate a new blank
1370 * anon to transfer the data into. note that we have a lock
1371 * on anon, so no one can busy or release the page until we are done.
1372 * also note that the ref count can't drop to zero here because
1373 * it is > 1 and we are only dropping one ref.
1374 *
1375 * in the (hopefully very rare) case that we are out of RAM we
1376 * will unlock, wait for more RAM, and refault.
1377 *
1378 * if we are out of anon VM we kill the process (XXX: could wait?).
1379 */
1380
1381 if (flt->cow_now && anon->an_ref > 1) {
1382 flt->promote = true;
1383 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1384 } else {
1385 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1386 }
1387 return error;
1388 }
1389
1390 /*
1391 * uvm_fault_upper_loan: handle loaned upper page.
1392 *
1393 * 1. if not cow'ing now, simply adjust flt->enter_prot.
1394 * 2. if cow'ing now, and if ref count is 1, break loan.
1395 */
1396
1397 static int
1398 uvm_fault_upper_loan(
1399 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1400 struct vm_anon *anon, struct uvm_object **ruobj)
1401 {
1402 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1403 int error = 0;
1404 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1405
1406 if (!flt->cow_now) {
1407
1408 /*
1409 * for read faults on loaned pages we just cap the
1410 * protection at read-only.
1411 */
1412
1413 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1414
1415 } else {
1416 /*
1417 * note that we can't allow writes into a loaned page!
1418 *
1419 * if we have a write fault on a loaned page in an
1420 * anon then we need to look at the anon's ref count.
1421 * if it is greater than one then we are going to do
1422 * a normal copy-on-write fault into a new anon (this
1423 * is not a problem). however, if the reference count
1424 * is one (a case where we would normally allow a
1425 * write directly to the page) then we need to kill
1426 * the loan before we continue.
1427 */
1428
1429 /* >1 case is already ok */
1430 if (anon->an_ref == 1) {
1431 error = uvm_loanbreak_anon(anon, *ruobj);
1432 if (error != 0) {
1433 uvmfault_unlockall(ufi, amap, *ruobj);
1434 uvm_wait("flt_noram2");
1435 return ERESTART;
1436 }
1437 /* if we were a loan receiver uobj is gone */
1438 if (*ruobj)
1439 *ruobj = NULL;
1440 }
1441 }
1442 return error;
1443 }
1444
1445 /*
1446 * uvm_fault_upper_promote: promote upper page.
1447 *
1448 * 1. call uvmfault_promote.
1449 * 2. enqueue page.
1450 * 3. deref.
1451 * 4. pass page to uvm_fault_upper_enter.
1452 */
1453
1454 static int
1455 uvm_fault_upper_promote(
1456 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1457 struct uvm_object *uobj, struct vm_anon *anon)
1458 {
1459 struct vm_anon * const oanon = anon;
1460 struct vm_page *pg;
1461 int error;
1462 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1463
1464 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1465 uvmexp.flt_acow++;
1466
1467 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1468 &flt->anon_spare);
1469 switch (error) {
1470 case 0:
1471 break;
1472 case ERESTART:
1473 return ERESTART;
1474 default:
1475 return error;
1476 }
1477
1478 KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
1479
1480 pg = anon->an_page;
1481 mutex_enter(&uvm_pageqlock);
1482 uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
1483 mutex_exit(&uvm_pageqlock);
1484 pg->flags &= ~(PG_BUSY|PG_FAKE);
1485 UVM_PAGE_OWN(pg, NULL);
1486
1487 /* deref: can not drop to zero here by defn! */
1488 KASSERT(oanon->an_ref > 1);
1489 oanon->an_ref--;
1490
1491 /*
1492 * note: oanon is still locked, as is the new anon. we
1493 * need to check for this later when we unlock oanon; if
1494 * oanon != anon, we'll have to unlock anon, too.
1495 */
1496
1497 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1498 }
1499
1500 /*
1501 * uvm_fault_upper_direct: handle direct fault.
1502 */
1503
1504 static int
1505 uvm_fault_upper_direct(
1506 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1507 struct uvm_object *uobj, struct vm_anon *anon)
1508 {
1509 struct vm_anon * const oanon = anon;
1510 struct vm_page *pg;
1511 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1512
1513 uvmexp.flt_anon++;
1514 pg = anon->an_page;
1515 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1516 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1517
1518 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1519 }
1520
1521 /*
1522 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1523 */
1524
1525 static int
1526 uvm_fault_upper_enter(
1527 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1528 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1529 struct vm_anon *oanon)
1530 {
1531 struct pmap *pmap = ufi->orig_map->pmap;
1532 vaddr_t va = ufi->orig_rvaddr;
1533 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1534 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1535
1536 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1537 KASSERT(mutex_owned(amap->am_lock));
1538 KASSERT(anon->an_lock == amap->am_lock);
1539 KASSERT(oanon->an_lock == amap->am_lock);
1540 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1541
1542 /*
1543 * now map the page in.
1544 */
1545
1546 UVMHIST_LOG(maphist,
1547 " MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
1548 (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote);
1549 if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg),
1550 flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1551 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1552
1553 /*
1554 * If pmap_enter() fails, it must not leave behind an existing
1555 * pmap entry. In particular, a now-stale entry for a different
1556 * page would leave the pmap inconsistent with the vm_map.
1557 * This is not to imply that pmap_enter() should remove an
1558 * existing mapping in such a situation (since that could create
1559 * different problems, eg. if the existing mapping is wired),
1560 * but rather that the pmap should be designed such that it
1561 * never needs to fail when the new mapping is replacing an
1562 * existing mapping and the new page has no existing mappings.
1563 */
1564
1565 KASSERT(!pmap_extract(pmap, va, NULL));
1566
1567 /*
1568 * No need to undo what we did; we can simply think of
1569 * this as the pmap throwing away the mapping information.
1570 *
1571 * We do, however, have to go through the ReFault path,
1572 * as the map may change while we're asleep.
1573 */
1574
1575 uvmfault_unlockall(ufi, amap, uobj);
1576 if (!uvm_reclaimable()) {
1577 UVMHIST_LOG(maphist,
1578 "<- failed. out of VM",0,0,0,0);
1579 /* XXX instrumentation */
1580 return ENOMEM;
1581 }
1582 /* XXX instrumentation */
1583 uvm_wait("flt_pmfail1");
1584 return ERESTART;
1585 }
1586
1587 uvm_fault_upper_done(ufi, flt, anon, pg);
1588
1589 /*
1590 * done case 1! finish up by unlocking everything and returning success
1591 */
1592
1593 pmap_update(pmap);
1594 uvmfault_unlockall(ufi, amap, uobj);
1595 return 0;
1596 }
1597
1598 /*
1599 * uvm_fault_upper_done: queue upper center page.
1600 */
1601
1602 static void
1603 uvm_fault_upper_done(
1604 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1605 struct vm_anon *anon, struct vm_page *pg)
1606 {
1607 const bool wire_paging = flt->wire_paging;
1608
1609 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1610
1611 /*
1612 * ... update the page queues.
1613 */
1614
1615 mutex_enter(&uvm_pageqlock);
1616 if (wire_paging) {
1617 uvm_pagewire(pg);
1618
1619 /*
1620 * since the now-wired page cannot be paged out,
1621 * release its swap resources for others to use.
1622 * since an anon with no swap cannot be PG_CLEAN,
1623 * clear its clean flag now.
1624 */
1625
1626 pg->flags &= ~(PG_CLEAN);
1627
1628 } else {
1629 uvm_pageactivate(pg);
1630 }
1631 mutex_exit(&uvm_pageqlock);
1632
1633 if (wire_paging) {
1634 uvm_anon_dropswap(anon);
1635 }
1636 }
1637
1638 /*
1639 * uvm_fault_lower: handle lower fault.
1640 *
1641 * 1. check uobj
1642 * 1.1. if null, ZFOD.
1643 * 1.2. if not null, look up unnmapped neighbor pages.
1644 * 2. for center page, check if promote.
1645 * 2.1. ZFOD always needs promotion.
1646 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1647 * 3. if uobj is not ZFOD and page is not found, do i/o.
1648 * 4. dispatch either direct / promote fault.
1649 */
1650
1651 static int
1652 uvm_fault_lower(
1653 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1654 struct vm_page **pages)
1655 {
1656 struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap;
1657 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1658 struct vm_page *uobjpage;
1659 int error;
1660 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1661
1662 /*
1663 * now, if the desired page is not shadowed by the amap and we have
1664 * a backing object that does not have a special fault routine, then
1665 * we ask (with pgo_get) the object for resident pages that we care
1666 * about and attempt to map them in. we do not let pgo_get block
1667 * (PGO_LOCKED).
1668 */
1669
1670 if (uobj == NULL) {
1671 /* zero fill; don't care neighbor pages */
1672 uobjpage = NULL;
1673 } else {
1674 uvm_fault_lower_lookup(ufi, flt, pages);
1675 uobjpage = pages[flt->centeridx];
1676 }
1677
1678 /*
1679 * note that at this point we are done with any front or back pages.
1680 * we are now going to focus on the center page (i.e. the one we've
1681 * faulted on). if we have faulted on the upper (anon) layer
1682 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1683 * not touched it yet). if we have faulted on the bottom (uobj)
1684 * layer [i.e. case 2] and the page was both present and available,
1685 * then we've got a pointer to it as "uobjpage" and we've already
1686 * made it BUSY.
1687 */
1688
1689 /*
1690 * locked:
1691 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1692 */
1693 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1694 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1695 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1696
1697 /*
1698 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1699 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1700 * have a backing object, check and see if we are going to promote
1701 * the data up to an anon during the fault.
1702 */
1703
1704 if (uobj == NULL) {
1705 uobjpage = PGO_DONTCARE;
1706 flt->promote = true; /* always need anon here */
1707 } else {
1708 KASSERT(uobjpage != PGO_DONTCARE);
1709 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1710 }
1711 UVMHIST_LOG(maphist, " case 2 fault: promote=%jd, zfill=%jd",
1712 flt->promote, (uobj == NULL), 0,0);
1713
1714 /*
1715 * if uobjpage is not null then we do not need to do I/O to get the
1716 * uobjpage.
1717 *
1718 * if uobjpage is null, then we need to unlock and ask the pager to
1719 * get the data for us. once we have the data, we need to reverify
1720 * the state the world. we are currently not holding any resources.
1721 */
1722
1723 if (uobjpage) {
1724 /* update rusage counters */
1725 curlwp->l_ru.ru_minflt++;
1726 } else {
1727 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1728 if (error != 0)
1729 return error;
1730 }
1731
1732 /*
1733 * locked:
1734 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1735 */
1736 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1737 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1738 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1739
1740 /*
1741 * notes:
1742 * - at this point uobjpage can not be NULL
1743 * - at this point uobjpage can not be PG_RELEASED (since we checked
1744 * for it above)
1745 * - at this point uobjpage could be PG_WANTED (handle later)
1746 */
1747
1748 KASSERT(uobjpage != NULL);
1749 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1750 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1751 (uobjpage->flags & PG_CLEAN) != 0);
1752
1753 if (!flt->promote) {
1754 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1755 } else {
1756 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1757 }
1758 return error;
1759 }
1760
1761 /*
1762 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1763 *
1764 * 1. get on-memory pages.
1765 * 2. if failed, give up (get only center page later).
1766 * 3. if succeeded, enter h/w mapping of neighbor pages.
1767 */
1768
1769 static void
1770 uvm_fault_lower_lookup(
1771 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1772 struct vm_page **pages)
1773 {
1774 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1775 int lcv, gotpages;
1776 vaddr_t currva;
1777 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1778
1779 mutex_enter(uobj->vmobjlock);
1780 /* Locked: maps(read), amap(if there), uobj */
1781
1782 uvmexp.fltlget++;
1783 gotpages = flt->npages;
1784 (void) uobj->pgops->pgo_get(uobj,
1785 ufi->entry->offset + flt->startva - ufi->entry->start,
1786 pages, &gotpages, flt->centeridx,
1787 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1788
1789 KASSERT(mutex_owned(uobj->vmobjlock));
1790
1791 /*
1792 * check for pages to map, if we got any
1793 */
1794
1795 if (gotpages == 0) {
1796 pages[flt->centeridx] = NULL;
1797 return;
1798 }
1799
1800 currva = flt->startva;
1801 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1802 struct vm_page *curpg;
1803
1804 curpg = pages[lcv];
1805 if (curpg == NULL || curpg == PGO_DONTCARE) {
1806 continue;
1807 }
1808 KASSERT(curpg->uobject == uobj);
1809
1810 /*
1811 * if center page is resident and not PG_BUSY|PG_RELEASED
1812 * then pgo_get made it PG_BUSY for us and gave us a handle
1813 * to it.
1814 */
1815
1816 if (lcv == flt->centeridx) {
1817 UVMHIST_LOG(maphist, " got uobjpage (0x%#jx) "
1818 "with locked get", (uintptr_t)curpg, 0, 0, 0);
1819 } else {
1820 bool readonly = (curpg->flags & PG_RDONLY)
1821 || (curpg->loan_count > 0)
1822 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1823
1824 uvm_fault_lower_neighbor(ufi, flt,
1825 currva, curpg, readonly);
1826 }
1827 }
1828 pmap_update(ufi->orig_map->pmap);
1829 }
1830
1831 /*
1832 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1833 */
1834
1835 static void
1836 uvm_fault_lower_neighbor(
1837 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1838 vaddr_t currva, struct vm_page *pg, bool readonly)
1839 {
1840 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1841
1842 /* locked: maps(read), amap(if there), uobj */
1843
1844 /*
1845 * calling pgo_get with PGO_LOCKED returns us pages which
1846 * are neither busy nor released, so we don't need to check
1847 * for this. we can just directly enter the pages.
1848 */
1849
1850 mutex_enter(&uvm_pageqlock);
1851 uvm_pageenqueue(pg);
1852 mutex_exit(&uvm_pageqlock);
1853 UVMHIST_LOG(maphist,
1854 " MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx",
1855 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1856 uvmexp.fltnomap++;
1857
1858 /*
1859 * Since this page isn't the page that's actually faulting,
1860 * ignore pmap_enter() failures; it's not critical that we
1861 * enter these right now.
1862 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1863 * held the lock the whole time we've had the handle.
1864 */
1865 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1866 KASSERT((pg->flags & PG_RELEASED) == 0);
1867 KASSERT((pg->flags & PG_WANTED) == 0);
1868 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
1869 pg->flags &= ~(PG_BUSY);
1870 UVM_PAGE_OWN(pg, NULL);
1871
1872 KASSERT(mutex_owned(pg->uobject->vmobjlock));
1873
1874 const vm_prot_t mapprot =
1875 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1876 flt->enter_prot & MASK(ufi->entry);
1877 const u_int mapflags =
1878 PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0);
1879 (void) pmap_enter(ufi->orig_map->pmap, currva,
1880 VM_PAGE_TO_PHYS(pg), mapprot, mapflags);
1881 }
1882
1883 /*
1884 * uvm_fault_lower_io: get lower page from backing store.
1885 *
1886 * 1. unlock everything, because i/o will block.
1887 * 2. call pgo_get.
1888 * 3. if failed, recover.
1889 * 4. if succeeded, relock everything and verify things.
1890 */
1891
1892 static int
1893 uvm_fault_lower_io(
1894 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1895 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1896 {
1897 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1898 struct uvm_object *uobj = *ruobj;
1899 struct vm_page *pg;
1900 bool locked;
1901 int gotpages;
1902 int error;
1903 voff_t uoff;
1904 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1905
1906 /* update rusage counters */
1907 curlwp->l_ru.ru_majflt++;
1908
1909 /* Locked: maps(read), amap(if there), uobj */
1910 uvmfault_unlockall(ufi, amap, NULL);
1911
1912 /* Locked: uobj */
1913 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1914
1915 uvmexp.fltget++;
1916 gotpages = 1;
1917 pg = NULL;
1918 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1919 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1920 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1921 PGO_SYNCIO);
1922 /* locked: pg(if no error) */
1923
1924 /*
1925 * recover from I/O
1926 */
1927
1928 if (error) {
1929 if (error == EAGAIN) {
1930 UVMHIST_LOG(maphist,
1931 " pgo_get says TRY AGAIN!",0,0,0,0);
1932 kpause("fltagain2", false, hz/2, NULL);
1933 return ERESTART;
1934 }
1935
1936 #if 0
1937 KASSERT(error != ERESTART);
1938 #else
1939 /* XXXUEBS don't re-fault? */
1940 if (error == ERESTART)
1941 error = EIO;
1942 #endif
1943
1944 UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)",
1945 error, 0,0,0);
1946 return error;
1947 }
1948
1949 /*
1950 * re-verify the state of the world by first trying to relock
1951 * the maps. always relock the object.
1952 */
1953
1954 locked = uvmfault_relock(ufi);
1955 if (locked && amap)
1956 amap_lock(amap);
1957
1958 /* might be changed */
1959 uobj = pg->uobject;
1960
1961 mutex_enter(uobj->vmobjlock);
1962 KASSERT((pg->flags & PG_BUSY) != 0);
1963
1964 mutex_enter(&uvm_pageqlock);
1965 uvm_pageactivate(pg);
1966 mutex_exit(&uvm_pageqlock);
1967
1968 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1969 /* locked(!locked): uobj, pg */
1970
1971 /*
1972 * verify that the page has not be released and re-verify
1973 * that amap slot is still free. if there is a problem,
1974 * we unlock and clean up.
1975 */
1976
1977 if ((pg->flags & PG_RELEASED) != 0 ||
1978 (locked && amap && amap_lookup(&ufi->entry->aref,
1979 ufi->orig_rvaddr - ufi->entry->start))) {
1980 if (locked)
1981 uvmfault_unlockall(ufi, amap, NULL);
1982 locked = false;
1983 }
1984
1985 /*
1986 * didn't get the lock? release the page and retry.
1987 */
1988
1989 if (locked == false) {
1990 UVMHIST_LOG(maphist,
1991 " wasn't able to relock after fault: retry",
1992 0,0,0,0);
1993 if (pg->flags & PG_WANTED) {
1994 wakeup(pg);
1995 }
1996 if ((pg->flags & PG_RELEASED) == 0) {
1997 pg->flags &= ~(PG_BUSY | PG_WANTED);
1998 UVM_PAGE_OWN(pg, NULL);
1999 } else {
2000 uvmexp.fltpgrele++;
2001 uvm_pagefree(pg);
2002 }
2003 mutex_exit(uobj->vmobjlock);
2004 return ERESTART;
2005 }
2006
2007 /*
2008 * we have the data in pg which is busy and
2009 * not released. we are holding object lock (so the page
2010 * can't be released on us).
2011 */
2012
2013 /* locked: maps(read), amap(if !null), uobj, pg */
2014
2015 *ruobj = uobj;
2016 *ruobjpage = pg;
2017 return 0;
2018 }
2019
2020 /*
2021 * uvm_fault_lower_direct: fault lower center page
2022 *
2023 * 1. adjust flt->enter_prot.
2024 * 2. if page is loaned, resolve.
2025 */
2026
2027 int
2028 uvm_fault_lower_direct(
2029 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2030 struct uvm_object *uobj, struct vm_page *uobjpage)
2031 {
2032 struct vm_page *pg;
2033 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
2034
2035 /*
2036 * we are not promoting. if the mapping is COW ensure that we
2037 * don't give more access than we should (e.g. when doing a read
2038 * fault on a COPYONWRITE mapping we want to map the COW page in
2039 * R/O even though the entry protection could be R/W).
2040 *
2041 * set "pg" to the page we want to map in (uobjpage, usually)
2042 */
2043
2044 uvmexp.flt_obj++;
2045 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
2046 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
2047 flt->enter_prot &= ~VM_PROT_WRITE;
2048 pg = uobjpage; /* map in the actual object */
2049
2050 KASSERT(uobjpage != PGO_DONTCARE);
2051
2052 /*
2053 * we are faulting directly on the page. be careful
2054 * about writing to loaned pages...
2055 */
2056
2057 if (uobjpage->loan_count) {
2058 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
2059 }
2060 KASSERT(pg == uobjpage);
2061
2062 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2063 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
2064 }
2065
2066 /*
2067 * uvm_fault_lower_direct_loan: resolve loaned page.
2068 *
2069 * 1. if not cow'ing, adjust flt->enter_prot.
2070 * 2. if cow'ing, break loan.
2071 */
2072
2073 static int
2074 uvm_fault_lower_direct_loan(
2075 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2076 struct uvm_object *uobj, struct vm_page **rpg,
2077 struct vm_page **ruobjpage)
2078 {
2079 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2080 struct vm_page *pg;
2081 struct vm_page *uobjpage = *ruobjpage;
2082 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
2083
2084 if (!flt->cow_now) {
2085 /* read fault: cap the protection at readonly */
2086 /* cap! */
2087 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2088 } else {
2089 /* write fault: must break the loan here */
2090
2091 pg = uvm_loanbreak(uobjpage);
2092 if (pg == NULL) {
2093
2094 /*
2095 * drop ownership of page, it can't be released
2096 */
2097
2098 if (uobjpage->flags & PG_WANTED)
2099 wakeup(uobjpage);
2100 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2101 UVM_PAGE_OWN(uobjpage, NULL);
2102
2103 uvmfault_unlockall(ufi, amap, uobj);
2104 UVMHIST_LOG(maphist,
2105 " out of RAM breaking loan, waiting",
2106 0,0,0,0);
2107 uvmexp.fltnoram++;
2108 uvm_wait("flt_noram4");
2109 return ERESTART;
2110 }
2111 *rpg = pg;
2112 *ruobjpage = pg;
2113 }
2114 return 0;
2115 }
2116
2117 /*
2118 * uvm_fault_lower_promote: promote lower page.
2119 *
2120 * 1. call uvmfault_promote.
2121 * 2. fill in data.
2122 * 3. if not ZFOD, dispose old page.
2123 */
2124
2125 int
2126 uvm_fault_lower_promote(
2127 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2128 struct uvm_object *uobj, struct vm_page *uobjpage)
2129 {
2130 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2131 struct vm_anon *anon;
2132 struct vm_page *pg;
2133 int error;
2134 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2135
2136 KASSERT(amap != NULL);
2137
2138 /*
2139 * If we are going to promote the data to an anon we
2140 * allocate a blank anon here and plug it into our amap.
2141 */
2142 error = uvmfault_promote(ufi, NULL, uobjpage,
2143 &anon, &flt->anon_spare);
2144 switch (error) {
2145 case 0:
2146 break;
2147 case ERESTART:
2148 return ERESTART;
2149 default:
2150 return error;
2151 }
2152
2153 pg = anon->an_page;
2154
2155 /*
2156 * Fill in the data.
2157 */
2158 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2159
2160 if (uobjpage != PGO_DONTCARE) {
2161 uvmexp.flt_prcopy++;
2162
2163 /*
2164 * promote to shared amap? make sure all sharing
2165 * procs see it
2166 */
2167
2168 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2169 pmap_page_protect(uobjpage, VM_PROT_NONE);
2170 /*
2171 * XXX: PAGE MIGHT BE WIRED!
2172 */
2173 }
2174
2175 /*
2176 * dispose of uobjpage. it can't be PG_RELEASED
2177 * since we still hold the object lock.
2178 */
2179
2180 if (uobjpage->flags & PG_WANTED) {
2181 /* still have the obj lock */
2182 wakeup(uobjpage);
2183 }
2184 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2185 UVM_PAGE_OWN(uobjpage, NULL);
2186
2187 UVMHIST_LOG(maphist,
2188 " promote uobjpage 0x%#jx to anon/page 0x%#jx/0x%#jx",
2189 (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0);
2190
2191 } else {
2192 uvmexp.flt_przero++;
2193
2194 /*
2195 * Page is zero'd and marked dirty by
2196 * uvmfault_promote().
2197 */
2198
2199 UVMHIST_LOG(maphist," zero fill anon/page 0x%#jx/0%#jx",
2200 (uintptr_t)anon, (uintptr_t)pg, 0, 0);
2201 }
2202
2203 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2204 }
2205
2206 /*
2207 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2208 * from the lower page.
2209 */
2210
2211 int
2212 uvm_fault_lower_enter(
2213 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2214 struct uvm_object *uobj,
2215 struct vm_anon *anon, struct vm_page *pg)
2216 {
2217 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2218 int error;
2219 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2220
2221 /*
2222 * Locked:
2223 *
2224 * maps(read), amap(if !null), uobj(if !null),
2225 * anon(if !null), pg(if anon), unlock_uobj(if !null)
2226 *
2227 * Note: pg is either the uobjpage or the new page in the new anon.
2228 */
2229 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
2230 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
2231 KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2232 KASSERT((pg->flags & PG_BUSY) != 0);
2233
2234 /*
2235 * all resources are present. we can now map it in and free our
2236 * resources.
2237 */
2238
2239 UVMHIST_LOG(maphist,
2240 " MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
2241 (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr,
2242 (uintptr_t)pg, flt->promote);
2243 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2244 (pg->flags & PG_RDONLY) == 0);
2245 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2246 VM_PAGE_TO_PHYS(pg),
2247 (pg->flags & PG_RDONLY) != 0 ?
2248 flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2249 flt->access_type | PMAP_CANFAIL |
2250 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2251
2252 /*
2253 * No need to undo what we did; we can simply think of
2254 * this as the pmap throwing away the mapping information.
2255 *
2256 * We do, however, have to go through the ReFault path,
2257 * as the map may change while we're asleep.
2258 */
2259
2260 /*
2261 * ensure that the page is queued in the case that
2262 * we just promoted the page.
2263 */
2264
2265 mutex_enter(&uvm_pageqlock);
2266 uvm_pageenqueue(pg);
2267 mutex_exit(&uvm_pageqlock);
2268
2269 if (pg->flags & PG_WANTED)
2270 wakeup(pg);
2271
2272 /*
2273 * note that pg can't be PG_RELEASED since we did not drop
2274 * the object lock since the last time we checked.
2275 */
2276 KASSERT((pg->flags & PG_RELEASED) == 0);
2277
2278 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2279 UVM_PAGE_OWN(pg, NULL);
2280
2281 uvmfault_unlockall(ufi, amap, uobj);
2282 if (!uvm_reclaimable()) {
2283 UVMHIST_LOG(maphist,
2284 "<- failed. out of VM",0,0,0,0);
2285 /* XXX instrumentation */
2286 error = ENOMEM;
2287 return error;
2288 }
2289 /* XXX instrumentation */
2290 uvm_wait("flt_pmfail2");
2291 return ERESTART;
2292 }
2293
2294 uvm_fault_lower_done(ufi, flt, uobj, pg);
2295
2296 /*
2297 * note that pg can't be PG_RELEASED since we did not drop the object
2298 * lock since the last time we checked.
2299 */
2300 KASSERT((pg->flags & PG_RELEASED) == 0);
2301 if (pg->flags & PG_WANTED)
2302 wakeup(pg);
2303 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2304 UVM_PAGE_OWN(pg, NULL);
2305
2306 pmap_update(ufi->orig_map->pmap);
2307 uvmfault_unlockall(ufi, amap, uobj);
2308
2309 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2310 return 0;
2311 }
2312
2313 /*
2314 * uvm_fault_lower_done: queue lower center page.
2315 */
2316
2317 void
2318 uvm_fault_lower_done(
2319 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2320 struct uvm_object *uobj, struct vm_page *pg)
2321 {
2322 bool dropswap = false;
2323
2324 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2325
2326 mutex_enter(&uvm_pageqlock);
2327 if (flt->wire_paging) {
2328 uvm_pagewire(pg);
2329 if (pg->pqflags & PQ_AOBJ) {
2330
2331 /*
2332 * since the now-wired page cannot be paged out,
2333 * release its swap resources for others to use.
2334 * since an aobj page with no swap cannot be PG_CLEAN,
2335 * clear its clean flag now.
2336 */
2337
2338 KASSERT(uobj != NULL);
2339 pg->flags &= ~(PG_CLEAN);
2340 dropswap = true;
2341 }
2342 } else {
2343 uvm_pageactivate(pg);
2344 }
2345 mutex_exit(&uvm_pageqlock);
2346
2347 if (dropswap) {
2348 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2349 }
2350 }
2351
2352
2353 /*
2354 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2355 *
2356 * => map may be read-locked by caller, but MUST NOT be write-locked.
2357 * => if map is read-locked, any operations which may cause map to
2358 * be write-locked in uvm_fault() must be taken care of by
2359 * the caller. See uvm_map_pageable().
2360 */
2361
2362 int
2363 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2364 vm_prot_t access_type, int maxprot)
2365 {
2366 vaddr_t va;
2367 int error;
2368
2369 /*
2370 * now fault it in a page at a time. if the fault fails then we have
2371 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2372 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2373 */
2374
2375 /*
2376 * XXX work around overflowing a vaddr_t. this prevents us from
2377 * wiring the last page in the address space, though.
2378 */
2379 if (start > end) {
2380 return EFAULT;
2381 }
2382
2383 for (va = start; va < end; va += PAGE_SIZE) {
2384 error = uvm_fault_internal(map, va, access_type,
2385 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2386 if (error) {
2387 if (va != start) {
2388 uvm_fault_unwire(map, start, va);
2389 }
2390 return error;
2391 }
2392 }
2393 return 0;
2394 }
2395
2396 /*
2397 * uvm_fault_unwire(): unwire range of virtual space.
2398 */
2399
2400 void
2401 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2402 {
2403 vm_map_lock_read(map);
2404 uvm_fault_unwire_locked(map, start, end);
2405 vm_map_unlock_read(map);
2406 }
2407
2408 /*
2409 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2410 *
2411 * => map must be at least read-locked.
2412 */
2413
2414 void
2415 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2416 {
2417 struct vm_map_entry *entry, *oentry;
2418 pmap_t pmap = vm_map_pmap(map);
2419 vaddr_t va;
2420 paddr_t pa;
2421 struct vm_page *pg;
2422
2423 /*
2424 * we assume that the area we are unwiring has actually been wired
2425 * in the first place. this means that we should be able to extract
2426 * the PAs from the pmap. we also lock out the page daemon so that
2427 * we can call uvm_pageunwire.
2428 */
2429
2430 /*
2431 * find the beginning map entry for the region.
2432 */
2433
2434 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2435 if (uvm_map_lookup_entry(map, start, &entry) == false)
2436 panic("uvm_fault_unwire_locked: address not in map");
2437
2438 oentry = NULL;
2439 for (va = start; va < end; va += PAGE_SIZE) {
2440 if (pmap_extract(pmap, va, &pa) == false)
2441 continue;
2442
2443 /*
2444 * find the map entry for the current address.
2445 */
2446
2447 KASSERT(va >= entry->start);
2448 while (va >= entry->end) {
2449 KASSERT(entry->next != &map->header &&
2450 entry->next->start <= entry->end);
2451 entry = entry->next;
2452 }
2453
2454 /*
2455 * lock it.
2456 */
2457
2458 if (entry != oentry) {
2459 if (oentry != NULL) {
2460 mutex_exit(&uvm_pageqlock);
2461 uvm_map_unlock_entry(oentry);
2462 }
2463 uvm_map_lock_entry(entry);
2464 mutex_enter(&uvm_pageqlock);
2465 oentry = entry;
2466 }
2467
2468 /*
2469 * if the entry is no longer wired, tell the pmap.
2470 */
2471
2472 if (VM_MAPENT_ISWIRED(entry) == 0)
2473 pmap_unwire(pmap, va);
2474
2475 pg = PHYS_TO_VM_PAGE(pa);
2476 if (pg)
2477 uvm_pageunwire(pg);
2478 }
2479
2480 if (oentry != NULL) {
2481 mutex_exit(&uvm_pageqlock);
2482 uvm_map_unlock_entry(entry);
2483 }
2484 }
2485