uvm_fault.c revision 1.208 1 /* $NetBSD: uvm_fault.c,v 1.208 2019/11/10 20:38:33 chs Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 */
29
30 /*
31 * uvm_fault.c: fault handler
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.208 2019/11/10 20:38:33 chs Exp $");
36
37 #include "opt_uvmhist.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/mman.h>
43
44 #include <uvm/uvm.h>
45
46 /*
47 *
48 * a word on page faults:
49 *
50 * types of page faults we handle:
51 *
52 * CASE 1: upper layer faults CASE 2: lower layer faults
53 *
54 * CASE 1A CASE 1B CASE 2A CASE 2B
55 * read/write1 write>1 read/write +-cow_write/zero
56 * | | | |
57 * +--|--+ +--|--+ +-----+ + | + | +-----+
58 * amap | V | | ---------> new | | | | ^ |
59 * +-----+ +-----+ +-----+ + | + | +--|--+
60 * | | |
61 * +-----+ +-----+ +--|--+ | +--|--+
62 * uobj | d/c | | d/c | | V | +----+ |
63 * +-----+ +-----+ +-----+ +-----+
64 *
65 * d/c = don't care
66 *
67 * case [0]: layerless fault
68 * no amap or uobj is present. this is an error.
69 *
70 * case [1]: upper layer fault [anon active]
71 * 1A: [read] or [write with anon->an_ref == 1]
72 * I/O takes place in upper level anon and uobj is not touched.
73 * 1B: [write with anon->an_ref > 1]
74 * new anon is alloc'd and data is copied off ["COW"]
75 *
76 * case [2]: lower layer fault [uobj]
77 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78 * I/O takes place directly in object.
79 * 2B: [write to copy_on_write] or [read on NULL uobj]
80 * data is "promoted" from uobj to a new anon.
81 * if uobj is null, then we zero fill.
82 *
83 * we follow the standard UVM locking protocol ordering:
84 *
85 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86 * we hold a PG_BUSY page if we unlock for I/O
87 *
88 *
89 * the code is structured as follows:
90 *
91 * - init the "IN" params in the ufi structure
92 * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
93 * - do lookups [locks maps], check protection, handle needs_copy
94 * - check for case 0 fault (error)
95 * - establish "range" of fault
96 * - if we have an amap lock it and extract the anons
97 * - if sequential advice deactivate pages behind us
98 * - at the same time check pmap for unmapped areas and anon for pages
99 * that we could map in (and do map it if found)
100 * - check object for resident pages that we could map in
101 * - if (case 2) goto Case2
102 * - >>> handle case 1
103 * - ensure source anon is resident in RAM
104 * - if case 1B alloc new anon and copy from source
105 * - map the correct page in
106 * Case2:
107 * - >>> handle case 2
108 * - ensure source page is resident (if uobj)
109 * - if case 2B alloc new anon and copy from source (could be zero
110 * fill if uobj == NULL)
111 * - map the correct page in
112 * - done!
113 *
114 * note on paging:
115 * if we have to do I/O we place a PG_BUSY page in the correct object,
116 * unlock everything, and do the I/O. when I/O is done we must reverify
117 * the state of the world before assuming that our data structures are
118 * valid. [because mappings could change while the map is unlocked]
119 *
120 * alternative 1: unbusy the page in question and restart the page fault
121 * from the top (ReFault). this is easy but does not take advantage
122 * of the information that we already have from our previous lookup,
123 * although it is possible that the "hints" in the vm_map will help here.
124 *
125 * alternative 2: the system already keeps track of a "version" number of
126 * a map. [i.e. every time you write-lock a map (e.g. to change a
127 * mapping) you bump the version number up by one...] so, we can save
128 * the version number of the map before we release the lock and start I/O.
129 * then when I/O is done we can relock and check the version numbers
130 * to see if anything changed. this might save us some over 1 because
131 * we don't have to unbusy the page and may be less compares(?).
132 *
133 * alternative 3: put in backpointers or a way to "hold" part of a map
134 * in place while I/O is in progress. this could be complex to
135 * implement (especially with structures like amap that can be referenced
136 * by multiple map entries, and figuring out what should wait could be
137 * complex as well...).
138 *
139 * we use alternative 2. given that we are multi-threaded now we may want
140 * to reconsider the choice.
141 */
142
143 /*
144 * local data structures
145 */
146
147 struct uvm_advice {
148 int advice;
149 int nback;
150 int nforw;
151 };
152
153 /*
154 * page range array:
155 * note: index in array must match "advice" value
156 * XXX: borrowed numbers from freebsd. do they work well for us?
157 */
158
159 static const struct uvm_advice uvmadvice[] = {
160 { UVM_ADV_NORMAL, 3, 4 },
161 { UVM_ADV_RANDOM, 0, 0 },
162 { UVM_ADV_SEQUENTIAL, 8, 7},
163 };
164
165 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
166
167 /*
168 * private prototypes
169 */
170
171 /*
172 * externs from other modules
173 */
174
175 extern int start_init_exec; /* Is init_main() done / init running? */
176
177 /*
178 * inline functions
179 */
180
181 /*
182 * uvmfault_anonflush: try and deactivate pages in specified anons
183 *
184 * => does not have to deactivate page if it is busy
185 */
186
187 static inline void
188 uvmfault_anonflush(struct vm_anon **anons, int n)
189 {
190 int lcv;
191 struct vm_page *pg;
192
193 for (lcv = 0; lcv < n; lcv++) {
194 if (anons[lcv] == NULL)
195 continue;
196 KASSERT(mutex_owned(anons[lcv]->an_lock));
197 pg = anons[lcv]->an_page;
198 if (pg && (pg->flags & PG_BUSY) == 0) {
199 mutex_enter(&uvm_pageqlock);
200 if (pg->wire_count == 0) {
201 uvm_pagedeactivate(pg);
202 }
203 mutex_exit(&uvm_pageqlock);
204 }
205 }
206 }
207
208 /*
209 * normal functions
210 */
211
212 /*
213 * uvmfault_amapcopy: clear "needs_copy" in a map.
214 *
215 * => called with VM data structures unlocked (usually, see below)
216 * => we get a write lock on the maps and clear needs_copy for a VA
217 * => if we are out of RAM we sleep (waiting for more)
218 */
219
220 static void
221 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
222 {
223 for (;;) {
224
225 /*
226 * no mapping? give up.
227 */
228
229 if (uvmfault_lookup(ufi, true) == false)
230 return;
231
232 /*
233 * copy if needed.
234 */
235
236 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
237 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
238 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
239
240 /*
241 * didn't work? must be out of RAM. unlock and sleep.
242 */
243
244 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
245 uvmfault_unlockmaps(ufi, true);
246 uvm_wait("fltamapcopy");
247 continue;
248 }
249
250 /*
251 * got it! unlock and return.
252 */
253
254 uvmfault_unlockmaps(ufi, true);
255 return;
256 }
257 /*NOTREACHED*/
258 }
259
260 /*
261 * uvmfault_anonget: get data in an anon into a non-busy, non-released
262 * page in that anon.
263 *
264 * => Map, amap and thus anon should be locked by caller.
265 * => If we fail, we unlock everything and error is returned.
266 * => If we are successful, return with everything still locked.
267 * => We do not move the page on the queues [gets moved later]. If we
268 * allocate a new page [we_own], it gets put on the queues. Either way,
269 * the result is that the page is on the queues at return time
270 * => For pages which are on loan from a uvm_object (and thus are not owned
271 * by the anon): if successful, return with the owning object locked.
272 * The caller must unlock this object when it unlocks everything else.
273 */
274
275 int
276 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
277 struct vm_anon *anon)
278 {
279 struct vm_page *pg;
280 int error;
281
282 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
283 KASSERT(mutex_owned(anon->an_lock));
284 KASSERT(anon->an_lock == amap->am_lock);
285
286 /* Increment the counters.*/
287 uvmexp.fltanget++;
288 if (anon->an_page) {
289 curlwp->l_ru.ru_minflt++;
290 } else {
291 curlwp->l_ru.ru_majflt++;
292 }
293 error = 0;
294
295 /*
296 * Loop until we get the anon data, or fail.
297 */
298
299 for (;;) {
300 bool we_own, locked;
301 /*
302 * Note: 'we_own' will become true if we set PG_BUSY on a page.
303 */
304 we_own = false;
305 pg = anon->an_page;
306
307 /*
308 * If there is a resident page and it is loaned, then anon
309 * may not own it. Call out to uvm_anon_lockloanpg() to
310 * identify and lock the real owner of the page.
311 */
312
313 if (pg && pg->loan_count)
314 pg = uvm_anon_lockloanpg(anon);
315
316 /*
317 * Is page resident? Make sure it is not busy/released.
318 */
319
320 if (pg) {
321
322 /*
323 * at this point, if the page has a uobject [meaning
324 * we have it on loan], then that uobject is locked
325 * by us! if the page is busy, we drop all the
326 * locks (including uobject) and try again.
327 */
328
329 if ((pg->flags & PG_BUSY) == 0) {
330 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
331 return 0;
332 }
333 pg->flags |= PG_WANTED;
334 uvmexp.fltpgwait++;
335
336 /*
337 * The last unlock must be an atomic unlock and wait
338 * on the owner of page.
339 */
340
341 if (pg->uobject) {
342 /* Owner of page is UVM object. */
343 uvmfault_unlockall(ufi, amap, NULL);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 pg->uobject->vmobjlock,
348 false, "anonget1", 0);
349 } else {
350 /* Owner of page is anon. */
351 uvmfault_unlockall(ufi, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
355 false, "anonget2", 0);
356 }
357 } else {
358 #if defined(VMSWAP)
359 /*
360 * No page, therefore allocate one.
361 */
362
363 pg = uvm_pagealloc(NULL,
364 ufi != NULL ? ufi->orig_rvaddr : 0,
365 anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
366 if (pg == NULL) {
367 /* Out of memory. Wait a little. */
368 uvmfault_unlockall(ufi, amap, NULL);
369 uvmexp.fltnoram++;
370 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
371 0,0,0);
372 if (!uvm_reclaimable()) {
373 return ENOMEM;
374 }
375 uvm_wait("flt_noram1");
376 } else {
377 /* PG_BUSY bit is set. */
378 we_own = true;
379 uvmfault_unlockall(ufi, amap, NULL);
380
381 /*
382 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
383 * the uvm_swap_get() function with all data
384 * structures unlocked. Note that it is OK
385 * to read an_swslot here, because we hold
386 * PG_BUSY on the page.
387 */
388 uvmexp.pageins++;
389 error = uvm_swap_get(pg, anon->an_swslot,
390 PGO_SYNCIO);
391
392 /*
393 * We clean up after the I/O below in the
394 * 'we_own' case.
395 */
396 }
397 #else
398 panic("%s: no page", __func__);
399 #endif /* defined(VMSWAP) */
400 }
401
402 /*
403 * Re-lock the map and anon.
404 */
405
406 locked = uvmfault_relock(ufi);
407 if (locked || we_own) {
408 mutex_enter(anon->an_lock);
409 }
410
411 /*
412 * If we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. There are three cases to
414 * consider:
415 *
416 * 1) Page was released during I/O: free anon and ReFault.
417 * 2) I/O not OK. Free the page and cause the fault to fail.
418 * 3) I/O OK! Activate the page and sync with the non-we_own
419 * case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * Remove the swap slot from the anon and
431 * mark the anon as having no real slot.
432 * Do not free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0) {
437 uvm_swap_markbad(anon->an_swslot, 1);
438 }
439 anon->an_swslot = SWSLOT_BAD;
440
441 if ((pg->flags & PG_RELEASED) != 0) {
442 goto released;
443 }
444
445 /*
446 * Note: page was never !PG_BUSY, so it
447 * cannot be mapped and thus no need to
448 * pmap_page_protect() it.
449 */
450
451 mutex_enter(&uvm_pageqlock);
452 uvm_pagefree(pg);
453 mutex_exit(&uvm_pageqlock);
454
455 if (locked) {
456 uvmfault_unlockall(ufi, NULL, NULL);
457 }
458 mutex_exit(anon->an_lock);
459 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
460 return error;
461 }
462
463 if ((pg->flags & PG_RELEASED) != 0) {
464 released:
465 KASSERT(anon->an_ref == 0);
466
467 /*
468 * Released while we had unlocked amap.
469 */
470
471 if (locked) {
472 uvmfault_unlockall(ufi, NULL, NULL);
473 }
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * We have successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 #else
496 panic("%s: we_own", __func__);
497 #endif /* defined(VMSWAP) */
498 }
499
500 /*
501 * We were not able to re-lock the map - restart the fault.
502 */
503
504 if (!locked) {
505 if (we_own) {
506 mutex_exit(anon->an_lock);
507 }
508 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
509 return ERESTART;
510 }
511
512 /*
513 * Verify that no one has touched the amap and moved
514 * the anon on us.
515 */
516
517 if (ufi != NULL && amap_lookup(&ufi->entry->aref,
518 ufi->orig_rvaddr - ufi->entry->start) != anon) {
519
520 uvmfault_unlockall(ufi, amap, NULL);
521 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
522 return ERESTART;
523 }
524
525 /*
526 * Retry..
527 */
528
529 uvmexp.fltanretry++;
530 continue;
531 }
532 /*NOTREACHED*/
533 }
534
535 /*
536 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
537 *
538 * 1. allocate an anon and a page.
539 * 2. fill its contents.
540 * 3. put it into amap.
541 *
542 * => if we fail (result != 0) we unlock everything.
543 * => on success, return a new locked anon via 'nanon'.
544 * (*nanon)->an_page will be a resident, locked, dirty page.
545 * => it's caller's responsibility to put the promoted nanon->an_page to the
546 * page queue.
547 */
548
549 static int
550 uvmfault_promote(struct uvm_faultinfo *ufi,
551 struct vm_anon *oanon,
552 struct vm_page *uobjpage,
553 struct vm_anon **nanon, /* OUT: allocated anon */
554 struct vm_anon **spare)
555 {
556 struct vm_amap *amap = ufi->entry->aref.ar_amap;
557 struct uvm_object *uobj;
558 struct vm_anon *anon;
559 struct vm_page *pg;
560 struct vm_page *opg;
561 int error;
562 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
563
564 if (oanon) {
565 /* anon COW */
566 opg = oanon->an_page;
567 KASSERT(opg != NULL);
568 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
569 } else if (uobjpage != PGO_DONTCARE) {
570 /* object-backed COW */
571 opg = uobjpage;
572 } else {
573 /* ZFOD */
574 opg = NULL;
575 }
576 if (opg != NULL) {
577 uobj = opg->uobject;
578 } else {
579 uobj = NULL;
580 }
581
582 KASSERT(amap != NULL);
583 KASSERT(uobjpage != NULL);
584 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
585 KASSERT(mutex_owned(amap->am_lock));
586 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
587 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 } else {
593 anon = uvm_analloc();
594 }
595 if (anon) {
596
597 /*
598 * The new anon is locked.
599 *
600 * if opg == NULL, we want a zero'd, dirty page,
601 * so have uvm_pagealloc() do that for us.
602 */
603
604 KASSERT(anon->an_lock == NULL);
605 anon->an_lock = amap->am_lock;
606 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
607 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
608 if (pg == NULL) {
609 anon->an_lock = NULL;
610 }
611 } else {
612 pg = NULL;
613 }
614
615 /*
616 * out of memory resources?
617 */
618
619 if (pg == NULL) {
620 /* save anon for the next try. */
621 if (anon != NULL) {
622 *spare = anon;
623 }
624
625 /* unlock and fail ... */
626 uvm_page_unbusy(&uobjpage, 1);
627 uvmfault_unlockall(ufi, amap, uobj);
628 if (!uvm_reclaimable()) {
629 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
630 uvmexp.fltnoanon++;
631 error = ENOMEM;
632 goto done;
633 }
634
635 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
636 uvmexp.fltnoram++;
637 uvm_wait("flt_noram5");
638 error = ERESTART;
639 goto done;
640 }
641
642 /* copy page [pg now dirty] */
643 if (opg) {
644 uvm_pagecopy(opg, pg);
645 }
646
647 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
648 oanon != NULL);
649
650 *nanon = anon;
651 error = 0;
652 done:
653 return error;
654 }
655
656 /*
657 * Update statistics after fault resolution.
658 * - maxrss
659 */
660 void
661 uvmfault_update_stats(struct uvm_faultinfo *ufi)
662 {
663 struct vm_map *map;
664 struct vmspace *vm;
665 struct proc *p;
666 vsize_t res;
667
668 map = ufi->orig_map;
669
670 p = curproc;
671 KASSERT(p != NULL);
672 vm = p->p_vmspace;
673
674 if (&vm->vm_map != map)
675 return;
676
677 res = pmap_resident_count(map->pmap);
678 if (vm->vm_rssmax < res)
679 vm->vm_rssmax = res;
680 }
681
682 /*
683 * F A U L T - m a i n e n t r y p o i n t
684 */
685
686 /*
687 * uvm_fault: page fault handler
688 *
689 * => called from MD code to resolve a page fault
690 * => VM data structures usually should be unlocked. however, it is
691 * possible to call here with the main map locked if the caller
692 * gets a write lock, sets it recusive, and then calls us (c.f.
693 * uvm_map_pageable). this should be avoided because it keeps
694 * the map locked off during I/O.
695 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
696 */
697
698 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
699 ~VM_PROT_WRITE : VM_PROT_ALL)
700
701 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
702 #define UVM_FAULT_WIRE (1 << 0)
703 #define UVM_FAULT_MAXPROT (1 << 1)
704
705 struct uvm_faultctx {
706
707 /*
708 * the following members are set up by uvm_fault_check() and
709 * read-only after that.
710 *
711 * note that narrow is used by uvm_fault_check() to change
712 * the behaviour after ERESTART.
713 *
714 * most of them might change after RESTART if the underlying
715 * map entry has been changed behind us. an exception is
716 * wire_paging, which does never change.
717 */
718 vm_prot_t access_type;
719 vaddr_t startva;
720 int npages;
721 int centeridx;
722 bool narrow; /* work on a single requested page only */
723 bool wire_mapping; /* request a PMAP_WIRED mapping
724 (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
725 bool wire_paging; /* request uvm_pagewire
726 (true for UVM_FAULT_WIRE) */
727 bool cow_now; /* VM_PROT_WRITE is actually requested
728 (ie. should break COW and page loaning) */
729
730 /*
731 * enter_prot is set up by uvm_fault_check() and clamped
732 * (ie. drop the VM_PROT_WRITE bit) in various places in case
733 * of !cow_now.
734 */
735 vm_prot_t enter_prot; /* prot at which we want to enter pages in */
736
737 /*
738 * the following member is for uvmfault_promote() and ERESTART.
739 */
740 struct vm_anon *anon_spare;
741
742 /*
743 * the folloing is actually a uvm_fault_lower() internal.
744 * it's here merely for debugging.
745 * (or due to the mechanical separation of the function?)
746 */
747 bool promote;
748 };
749
750 static inline int uvm_fault_check(
751 struct uvm_faultinfo *, struct uvm_faultctx *,
752 struct vm_anon ***, bool);
753
754 static int uvm_fault_upper(
755 struct uvm_faultinfo *, struct uvm_faultctx *,
756 struct vm_anon **);
757 static inline int uvm_fault_upper_lookup(
758 struct uvm_faultinfo *, const struct uvm_faultctx *,
759 struct vm_anon **, struct vm_page **);
760 static inline void uvm_fault_upper_neighbor(
761 struct uvm_faultinfo *, const struct uvm_faultctx *,
762 vaddr_t, struct vm_page *, bool);
763 static inline int uvm_fault_upper_loan(
764 struct uvm_faultinfo *, struct uvm_faultctx *,
765 struct vm_anon *, struct uvm_object **);
766 static inline int uvm_fault_upper_promote(
767 struct uvm_faultinfo *, struct uvm_faultctx *,
768 struct uvm_object *, struct vm_anon *);
769 static inline int uvm_fault_upper_direct(
770 struct uvm_faultinfo *, struct uvm_faultctx *,
771 struct uvm_object *, struct vm_anon *);
772 static int uvm_fault_upper_enter(
773 struct uvm_faultinfo *, const struct uvm_faultctx *,
774 struct uvm_object *, struct vm_anon *,
775 struct vm_page *, struct vm_anon *);
776 static inline void uvm_fault_upper_done(
777 struct uvm_faultinfo *, const struct uvm_faultctx *,
778 struct vm_anon *, struct vm_page *);
779
780 static int uvm_fault_lower(
781 struct uvm_faultinfo *, struct uvm_faultctx *,
782 struct vm_page **);
783 static inline void uvm_fault_lower_lookup(
784 struct uvm_faultinfo *, const struct uvm_faultctx *,
785 struct vm_page **);
786 static inline void uvm_fault_lower_neighbor(
787 struct uvm_faultinfo *, const struct uvm_faultctx *,
788 vaddr_t, struct vm_page *, bool);
789 static inline int uvm_fault_lower_io(
790 struct uvm_faultinfo *, const struct uvm_faultctx *,
791 struct uvm_object **, struct vm_page **);
792 static inline int uvm_fault_lower_direct(
793 struct uvm_faultinfo *, struct uvm_faultctx *,
794 struct uvm_object *, struct vm_page *);
795 static inline int uvm_fault_lower_direct_loan(
796 struct uvm_faultinfo *, struct uvm_faultctx *,
797 struct uvm_object *, struct vm_page **,
798 struct vm_page **);
799 static inline int uvm_fault_lower_promote(
800 struct uvm_faultinfo *, struct uvm_faultctx *,
801 struct uvm_object *, struct vm_page *);
802 static int uvm_fault_lower_enter(
803 struct uvm_faultinfo *, const struct uvm_faultctx *,
804 struct uvm_object *,
805 struct vm_anon *, struct vm_page *);
806 static inline void uvm_fault_lower_done(
807 struct uvm_faultinfo *, const struct uvm_faultctx *,
808 struct uvm_object *, struct vm_page *);
809
810 int
811 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
812 vm_prot_t access_type, int fault_flag)
813 {
814 struct cpu_data *cd;
815 struct uvm_cpu *ucpu;
816 struct uvm_faultinfo ufi;
817 struct uvm_faultctx flt = {
818 .access_type = access_type,
819
820 /* don't look for neighborhood * pages on "wire" fault */
821 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
822
823 /* "wire" fault causes wiring of both mapping and paging */
824 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
825 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
826 };
827 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
828 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
829 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
830 int error;
831
832 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
833
834 UVMHIST_LOG(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)",
835 (uintptr_t)orig_map, vaddr, access_type, fault_flag);
836
837 cd = &(curcpu()->ci_data);
838 cd->cpu_nfault++;
839 ucpu = cd->cpu_uvm;
840
841 /* Don't flood RNG subsystem with samples. */
842 if (cd->cpu_nfault % 503)
843 goto norng;
844
845 /* Don't count anything until user interaction is possible */
846 if (__predict_true(start_init_exec)) {
847 kpreempt_disable();
848 rnd_add_uint32(&ucpu->rs,
849 sizeof(vaddr_t) == sizeof(uint32_t) ?
850 (uint32_t)vaddr : sizeof(vaddr_t) ==
851 sizeof(uint64_t) ?
852 (uint32_t)(vaddr & 0x00000000ffffffff) :
853 (uint32_t)(cd->cpu_nfault & 0x00000000ffffffff));
854 kpreempt_enable();
855 }
856 norng:
857 /*
858 * init the IN parameters in the ufi
859 */
860
861 ufi.orig_map = orig_map;
862 ufi.orig_rvaddr = trunc_page(vaddr);
863 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
864
865 error = ERESTART;
866 while (error == ERESTART) { /* ReFault: */
867 anons = anons_store;
868 pages = pages_store;
869
870 error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
871 if (error != 0)
872 continue;
873
874 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
875 if (error != 0)
876 continue;
877
878 if (pages[flt.centeridx] == PGO_DONTCARE)
879 error = uvm_fault_upper(&ufi, &flt, anons);
880 else {
881 struct uvm_object * const uobj =
882 ufi.entry->object.uvm_obj;
883
884 if (uobj && uobj->pgops->pgo_fault != NULL) {
885 /*
886 * invoke "special" fault routine.
887 */
888 mutex_enter(uobj->vmobjlock);
889 /* locked: maps(read), amap(if there), uobj */
890 error = uobj->pgops->pgo_fault(&ufi,
891 flt.startva, pages, flt.npages,
892 flt.centeridx, flt.access_type,
893 PGO_LOCKED|PGO_SYNCIO);
894
895 /*
896 * locked: nothing, pgo_fault has unlocked
897 * everything
898 */
899
900 /*
901 * object fault routine responsible for
902 * pmap_update().
903 */
904
905 /*
906 * Wake up the pagedaemon if the fault method
907 * failed for lack of memory but some can be
908 * reclaimed.
909 */
910 if (error == ENOMEM && uvm_reclaimable()) {
911 uvm_wait("pgo_fault");
912 error = ERESTART;
913 }
914 } else {
915 error = uvm_fault_lower(&ufi, &flt, pages);
916 }
917 }
918 }
919
920 if (flt.anon_spare != NULL) {
921 flt.anon_spare->an_ref--;
922 KASSERT(flt.anon_spare->an_ref == 0);
923 KASSERT(flt.anon_spare->an_lock == NULL);
924 uvm_anon_free(flt.anon_spare);
925 }
926 return error;
927 }
928
929 /*
930 * uvm_fault_check: check prot, handle needs-copy, etc.
931 *
932 * 1. lookup entry.
933 * 2. check protection.
934 * 3. adjust fault condition (mainly for simulated fault).
935 * 4. handle needs-copy (lazy amap copy).
936 * 5. establish range of interest for neighbor fault (aka pre-fault).
937 * 6. look up anons (if amap exists).
938 * 7. flush pages (if MADV_SEQUENTIAL)
939 *
940 * => called with nothing locked.
941 * => if we fail (result != 0) we unlock everything.
942 * => initialize/adjust many members of flt.
943 */
944
945 static int
946 uvm_fault_check(
947 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
948 struct vm_anon ***ranons, bool maxprot)
949 {
950 struct vm_amap *amap;
951 struct uvm_object *uobj;
952 vm_prot_t check_prot;
953 int nback, nforw;
954 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
955
956 /*
957 * lookup and lock the maps
958 */
959
960 if (uvmfault_lookup(ufi, false) == false) {
961 UVMHIST_LOG(maphist, "<- no mapping @ 0x%#jx", ufi->orig_rvaddr,
962 0,0,0);
963 return EFAULT;
964 }
965 /* locked: maps(read) */
966
967 #ifdef DIAGNOSTIC
968 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
969 printf("Page fault on non-pageable map:\n");
970 printf("ufi->map = %p\n", ufi->map);
971 printf("ufi->orig_map = %p\n", ufi->orig_map);
972 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
973 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
974 }
975 #endif
976
977 /*
978 * check protection
979 */
980
981 check_prot = maxprot ?
982 ufi->entry->max_protection : ufi->entry->protection;
983 if ((check_prot & flt->access_type) != flt->access_type) {
984 UVMHIST_LOG(maphist,
985 "<- protection failure (prot=%#jx, access=%#jx)",
986 ufi->entry->protection, flt->access_type, 0, 0);
987 uvmfault_unlockmaps(ufi, false);
988 return EFAULT;
989 }
990
991 /*
992 * "enter_prot" is the protection we want to enter the page in at.
993 * for certain pages (e.g. copy-on-write pages) this protection can
994 * be more strict than ufi->entry->protection. "wired" means either
995 * the entry is wired or we are fault-wiring the pg.
996 */
997
998 flt->enter_prot = ufi->entry->protection;
999 if (VM_MAPENT_ISWIRED(ufi->entry)) {
1000 flt->wire_mapping = true;
1001 flt->wire_paging = true;
1002 flt->narrow = true;
1003 }
1004
1005 if (flt->wire_mapping) {
1006 flt->access_type = flt->enter_prot; /* full access for wired */
1007 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
1008 } else {
1009 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
1010 }
1011
1012 flt->promote = false;
1013
1014 /*
1015 * handle "needs_copy" case. if we need to copy the amap we will
1016 * have to drop our readlock and relock it with a write lock. (we
1017 * need a write lock to change anything in a map entry [e.g.
1018 * needs_copy]).
1019 */
1020
1021 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
1022 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
1023 KASSERT(!maxprot);
1024 /* need to clear */
1025 UVMHIST_LOG(maphist,
1026 " need to clear needs_copy and refault",0,0,0,0);
1027 uvmfault_unlockmaps(ufi, false);
1028 uvmfault_amapcopy(ufi);
1029 uvmexp.fltamcopy++;
1030 return ERESTART;
1031
1032 } else {
1033
1034 /*
1035 * ensure that we pmap_enter page R/O since
1036 * needs_copy is still true
1037 */
1038
1039 flt->enter_prot &= ~VM_PROT_WRITE;
1040 }
1041 }
1042
1043 /*
1044 * identify the players
1045 */
1046
1047 amap = ufi->entry->aref.ar_amap; /* upper layer */
1048 uobj = ufi->entry->object.uvm_obj; /* lower layer */
1049
1050 /*
1051 * check for a case 0 fault. if nothing backing the entry then
1052 * error now.
1053 */
1054
1055 if (amap == NULL && uobj == NULL) {
1056 uvmfault_unlockmaps(ufi, false);
1057 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
1058 return EFAULT;
1059 }
1060
1061 /*
1062 * establish range of interest based on advice from mapper
1063 * and then clip to fit map entry. note that we only want
1064 * to do this the first time through the fault. if we
1065 * ReFault we will disable this by setting "narrow" to true.
1066 */
1067
1068 if (flt->narrow == false) {
1069
1070 /* wide fault (!narrow) */
1071 KASSERT(uvmadvice[ufi->entry->advice].advice ==
1072 ufi->entry->advice);
1073 nback = MIN(uvmadvice[ufi->entry->advice].nback,
1074 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1075 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1076 /*
1077 * note: "-1" because we don't want to count the
1078 * faulting page as forw
1079 */
1080 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1081 ((ufi->entry->end - ufi->orig_rvaddr) >>
1082 PAGE_SHIFT) - 1);
1083 flt->npages = nback + nforw + 1;
1084 flt->centeridx = nback;
1085
1086 flt->narrow = true; /* ensure only once per-fault */
1087
1088 } else {
1089
1090 /* narrow fault! */
1091 nback = nforw = 0;
1092 flt->startva = ufi->orig_rvaddr;
1093 flt->npages = 1;
1094 flt->centeridx = 0;
1095
1096 }
1097 /* offset from entry's start to pgs' start */
1098 const voff_t eoff = flt->startva - ufi->entry->start;
1099
1100 /* locked: maps(read) */
1101 UVMHIST_LOG(maphist, " narrow=%jd, back=%jd, forw=%jd, startva=%#jx",
1102 flt->narrow, nback, nforw, flt->startva);
1103 UVMHIST_LOG(maphist, " entry=%#jx, amap=%#jx, obj=%#jx",
1104 (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0);
1105
1106 /*
1107 * if we've got an amap, lock it and extract current anons.
1108 */
1109
1110 if (amap) {
1111 amap_lock(amap);
1112 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1113 } else {
1114 *ranons = NULL; /* to be safe */
1115 }
1116
1117 /* locked: maps(read), amap(if there) */
1118 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1119
1120 /*
1121 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1122 * now and then forget about them (for the rest of the fault).
1123 */
1124
1125 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1126
1127 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1128 0,0,0,0);
1129 /* flush back-page anons? */
1130 if (amap)
1131 uvmfault_anonflush(*ranons, nback);
1132
1133 /* flush object? */
1134 if (uobj) {
1135 voff_t uoff;
1136
1137 uoff = ufi->entry->offset + eoff;
1138 mutex_enter(uobj->vmobjlock);
1139 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1140 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1141 }
1142
1143 /* now forget about the backpages */
1144 if (amap)
1145 *ranons += nback;
1146 flt->startva += (nback << PAGE_SHIFT);
1147 flt->npages -= nback;
1148 flt->centeridx = 0;
1149 }
1150 /*
1151 * => startva is fixed
1152 * => npages is fixed
1153 */
1154 KASSERT(flt->startva <= ufi->orig_rvaddr);
1155 KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1156 flt->startva + (flt->npages << PAGE_SHIFT));
1157 return 0;
1158 }
1159
1160 /*
1161 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1162 *
1163 * iterate range of interest:
1164 * 1. check if h/w mapping exists. if yes, we don't care
1165 * 2. check if anon exists. if not, page is lower.
1166 * 3. if anon exists, enter h/w mapping for neighbors.
1167 *
1168 * => called with amap locked (if exists).
1169 */
1170
1171 static int
1172 uvm_fault_upper_lookup(
1173 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1174 struct vm_anon **anons, struct vm_page **pages)
1175 {
1176 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1177 int lcv;
1178 vaddr_t currva;
1179 bool shadowed __unused;
1180 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1181
1182 /* locked: maps(read), amap(if there) */
1183 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1184
1185 /*
1186 * map in the backpages and frontpages we found in the amap in hopes
1187 * of preventing future faults. we also init the pages[] array as
1188 * we go.
1189 */
1190
1191 currva = flt->startva;
1192 shadowed = false;
1193 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1194 /*
1195 * don't play with VAs that are already mapped
1196 * (except for center)
1197 */
1198 if (lcv != flt->centeridx &&
1199 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1200 pages[lcv] = PGO_DONTCARE;
1201 continue;
1202 }
1203
1204 /*
1205 * unmapped or center page. check if any anon at this level.
1206 */
1207 if (amap == NULL || anons[lcv] == NULL) {
1208 pages[lcv] = NULL;
1209 continue;
1210 }
1211
1212 /*
1213 * check for present page and map if possible. re-activate it.
1214 */
1215
1216 pages[lcv] = PGO_DONTCARE;
1217 if (lcv == flt->centeridx) { /* save center for later! */
1218 shadowed = true;
1219 continue;
1220 }
1221
1222 struct vm_anon *anon = anons[lcv];
1223 struct vm_page *pg = anon->an_page;
1224
1225 KASSERT(anon->an_lock == amap->am_lock);
1226
1227 /* Ignore loaned and busy pages. */
1228 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
1229 uvm_fault_upper_neighbor(ufi, flt, currva,
1230 pg, anon->an_ref > 1);
1231 }
1232 }
1233
1234 /* locked: maps(read), amap(if there) */
1235 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1236 /* (shadowed == true) if there is an anon at the faulting address */
1237 UVMHIST_LOG(maphist, " shadowed=%jd, will_get=%jd", shadowed,
1238 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1239
1240 /*
1241 * note that if we are really short of RAM we could sleep in the above
1242 * call to pmap_enter with everything locked. bad?
1243 *
1244 * XXX Actually, that is bad; pmap_enter() should just fail in that
1245 * XXX case. --thorpej
1246 */
1247
1248 return 0;
1249 }
1250
1251 /*
1252 * uvm_fault_upper_neighbor: enter single upper neighbor page.
1253 *
1254 * => called with amap and anon locked.
1255 */
1256
1257 static void
1258 uvm_fault_upper_neighbor(
1259 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1260 vaddr_t currva, struct vm_page *pg, bool readonly)
1261 {
1262 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1263
1264 /* locked: amap, anon */
1265
1266 mutex_enter(&uvm_pageqlock);
1267 uvm_pageenqueue(pg);
1268 mutex_exit(&uvm_pageqlock);
1269 UVMHIST_LOG(maphist,
1270 " MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx",
1271 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1272 uvmexp.fltnamap++;
1273
1274 /*
1275 * Since this page isn't the page that's actually faulting,
1276 * ignore pmap_enter() failures; it's not critical that we
1277 * enter these right now.
1278 */
1279
1280 (void) pmap_enter(ufi->orig_map->pmap, currva,
1281 VM_PAGE_TO_PHYS(pg),
1282 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1283 flt->enter_prot,
1284 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1285
1286 pmap_update(ufi->orig_map->pmap);
1287 }
1288
1289 /*
1290 * uvm_fault_upper: handle upper fault.
1291 *
1292 * 1. acquire anon lock.
1293 * 2. get anon. let uvmfault_anonget do the dirty work.
1294 * 3. handle loan.
1295 * 4. dispatch direct or promote handlers.
1296 */
1297
1298 static int
1299 uvm_fault_upper(
1300 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1301 struct vm_anon **anons)
1302 {
1303 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1304 struct vm_anon * const anon = anons[flt->centeridx];
1305 struct uvm_object *uobj;
1306 int error;
1307 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1308
1309 /* locked: maps(read), amap, anon */
1310 KASSERT(mutex_owned(amap->am_lock));
1311 KASSERT(anon->an_lock == amap->am_lock);
1312
1313 /*
1314 * handle case 1: fault on an anon in our amap
1315 */
1316
1317 UVMHIST_LOG(maphist, " case 1 fault: anon=%#jx",
1318 (uintptr_t)anon, 0, 0, 0);
1319
1320 /*
1321 * no matter if we have case 1A or case 1B we are going to need to
1322 * have the anon's memory resident. ensure that now.
1323 */
1324
1325 /*
1326 * let uvmfault_anonget do the dirty work.
1327 * if it fails (!OK) it will unlock everything for us.
1328 * if it succeeds, locks are still valid and locked.
1329 * also, if it is OK, then the anon's page is on the queues.
1330 * if the page is on loan from a uvm_object, then anonget will
1331 * lock that object for us if it does not fail.
1332 */
1333
1334 error = uvmfault_anonget(ufi, amap, anon);
1335 switch (error) {
1336 case 0:
1337 break;
1338
1339 case ERESTART:
1340 return ERESTART;
1341
1342 case EAGAIN:
1343 kpause("fltagain1", false, hz/2, NULL);
1344 return ERESTART;
1345
1346 default:
1347 return error;
1348 }
1349
1350 /*
1351 * uobj is non null if the page is on loan from an object (i.e. uobj)
1352 */
1353
1354 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1355
1356 /* locked: maps(read), amap, anon, uobj(if one) */
1357 KASSERT(mutex_owned(amap->am_lock));
1358 KASSERT(anon->an_lock == amap->am_lock);
1359 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1360
1361 /*
1362 * special handling for loaned pages
1363 */
1364
1365 if (anon->an_page->loan_count) {
1366 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1367 if (error != 0)
1368 return error;
1369 }
1370
1371 /*
1372 * if we are case 1B then we will need to allocate a new blank
1373 * anon to transfer the data into. note that we have a lock
1374 * on anon, so no one can busy or release the page until we are done.
1375 * also note that the ref count can't drop to zero here because
1376 * it is > 1 and we are only dropping one ref.
1377 *
1378 * in the (hopefully very rare) case that we are out of RAM we
1379 * will unlock, wait for more RAM, and refault.
1380 *
1381 * if we are out of anon VM we kill the process (XXX: could wait?).
1382 */
1383
1384 if (flt->cow_now && anon->an_ref > 1) {
1385 flt->promote = true;
1386 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1387 } else {
1388 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1389 }
1390 return error;
1391 }
1392
1393 /*
1394 * uvm_fault_upper_loan: handle loaned upper page.
1395 *
1396 * 1. if not cow'ing now, simply adjust flt->enter_prot.
1397 * 2. if cow'ing now, and if ref count is 1, break loan.
1398 */
1399
1400 static int
1401 uvm_fault_upper_loan(
1402 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1403 struct vm_anon *anon, struct uvm_object **ruobj)
1404 {
1405 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1406 int error = 0;
1407 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1408
1409 if (!flt->cow_now) {
1410
1411 /*
1412 * for read faults on loaned pages we just cap the
1413 * protection at read-only.
1414 */
1415
1416 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1417
1418 } else {
1419 /*
1420 * note that we can't allow writes into a loaned page!
1421 *
1422 * if we have a write fault on a loaned page in an
1423 * anon then we need to look at the anon's ref count.
1424 * if it is greater than one then we are going to do
1425 * a normal copy-on-write fault into a new anon (this
1426 * is not a problem). however, if the reference count
1427 * is one (a case where we would normally allow a
1428 * write directly to the page) then we need to kill
1429 * the loan before we continue.
1430 */
1431
1432 /* >1 case is already ok */
1433 if (anon->an_ref == 1) {
1434 error = uvm_loanbreak_anon(anon, *ruobj);
1435 if (error != 0) {
1436 uvmfault_unlockall(ufi, amap, *ruobj);
1437 uvm_wait("flt_noram2");
1438 return ERESTART;
1439 }
1440 /* if we were a loan receiver uobj is gone */
1441 if (*ruobj)
1442 *ruobj = NULL;
1443 }
1444 }
1445 return error;
1446 }
1447
1448 /*
1449 * uvm_fault_upper_promote: promote upper page.
1450 *
1451 * 1. call uvmfault_promote.
1452 * 2. enqueue page.
1453 * 3. deref.
1454 * 4. pass page to uvm_fault_upper_enter.
1455 */
1456
1457 static int
1458 uvm_fault_upper_promote(
1459 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1460 struct uvm_object *uobj, struct vm_anon *anon)
1461 {
1462 struct vm_anon * const oanon = anon;
1463 struct vm_page *pg;
1464 int error;
1465 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1466
1467 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1468 uvmexp.flt_acow++;
1469
1470 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1471 &flt->anon_spare);
1472 switch (error) {
1473 case 0:
1474 break;
1475 case ERESTART:
1476 return ERESTART;
1477 default:
1478 return error;
1479 }
1480
1481 KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
1482
1483 pg = anon->an_page;
1484 mutex_enter(&uvm_pageqlock);
1485 uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
1486 mutex_exit(&uvm_pageqlock);
1487 pg->flags &= ~(PG_BUSY|PG_FAKE);
1488 UVM_PAGE_OWN(pg, NULL);
1489
1490 /* deref: can not drop to zero here by defn! */
1491 KASSERT(oanon->an_ref > 1);
1492 oanon->an_ref--;
1493
1494 /*
1495 * note: oanon is still locked, as is the new anon. we
1496 * need to check for this later when we unlock oanon; if
1497 * oanon != anon, we'll have to unlock anon, too.
1498 */
1499
1500 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1501 }
1502
1503 /*
1504 * uvm_fault_upper_direct: handle direct fault.
1505 */
1506
1507 static int
1508 uvm_fault_upper_direct(
1509 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1510 struct uvm_object *uobj, struct vm_anon *anon)
1511 {
1512 struct vm_anon * const oanon = anon;
1513 struct vm_page *pg;
1514 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1515
1516 uvmexp.flt_anon++;
1517 pg = anon->an_page;
1518 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1519 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1520
1521 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1522 }
1523
1524 /*
1525 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1526 */
1527
1528 static int
1529 uvm_fault_upper_enter(
1530 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1531 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1532 struct vm_anon *oanon)
1533 {
1534 struct pmap *pmap = ufi->orig_map->pmap;
1535 vaddr_t va = ufi->orig_rvaddr;
1536 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1537 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1538
1539 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1540 KASSERT(mutex_owned(amap->am_lock));
1541 KASSERT(anon->an_lock == amap->am_lock);
1542 KASSERT(oanon->an_lock == amap->am_lock);
1543 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1544
1545 /*
1546 * now map the page in.
1547 */
1548
1549 UVMHIST_LOG(maphist,
1550 " MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
1551 (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote);
1552 if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg),
1553 flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1554 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1555
1556 /*
1557 * If pmap_enter() fails, it must not leave behind an existing
1558 * pmap entry. In particular, a now-stale entry for a different
1559 * page would leave the pmap inconsistent with the vm_map.
1560 * This is not to imply that pmap_enter() should remove an
1561 * existing mapping in such a situation (since that could create
1562 * different problems, eg. if the existing mapping is wired),
1563 * but rather that the pmap should be designed such that it
1564 * never needs to fail when the new mapping is replacing an
1565 * existing mapping and the new page has no existing mappings.
1566 */
1567
1568 KASSERT(!pmap_extract(pmap, va, NULL));
1569
1570 /*
1571 * No need to undo what we did; we can simply think of
1572 * this as the pmap throwing away the mapping information.
1573 *
1574 * We do, however, have to go through the ReFault path,
1575 * as the map may change while we're asleep.
1576 */
1577
1578 uvmfault_unlockall(ufi, amap, uobj);
1579 if (!uvm_reclaimable()) {
1580 UVMHIST_LOG(maphist,
1581 "<- failed. out of VM",0,0,0,0);
1582 /* XXX instrumentation */
1583 return ENOMEM;
1584 }
1585 /* XXX instrumentation */
1586 uvm_wait("flt_pmfail1");
1587 return ERESTART;
1588 }
1589
1590 uvm_fault_upper_done(ufi, flt, anon, pg);
1591
1592 /*
1593 * done case 1! finish up by unlocking everything and returning success
1594 */
1595
1596 pmap_update(pmap);
1597 uvmfault_unlockall(ufi, amap, uobj);
1598 return 0;
1599 }
1600
1601 /*
1602 * uvm_fault_upper_done: queue upper center page.
1603 */
1604
1605 static void
1606 uvm_fault_upper_done(
1607 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1608 struct vm_anon *anon, struct vm_page *pg)
1609 {
1610 const bool wire_paging = flt->wire_paging;
1611
1612 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1613
1614 /*
1615 * ... update the page queues.
1616 */
1617
1618 mutex_enter(&uvm_pageqlock);
1619 if (wire_paging) {
1620 uvm_pagewire(pg);
1621
1622 /*
1623 * since the now-wired page cannot be paged out,
1624 * release its swap resources for others to use.
1625 * since an anon with no swap cannot be PG_CLEAN,
1626 * clear its clean flag now.
1627 */
1628
1629 pg->flags &= ~(PG_CLEAN);
1630
1631 } else {
1632 uvm_pageactivate(pg);
1633 }
1634 mutex_exit(&uvm_pageqlock);
1635
1636 if (wire_paging) {
1637 uvm_anon_dropswap(anon);
1638 }
1639 }
1640
1641 /*
1642 * uvm_fault_lower: handle lower fault.
1643 *
1644 * 1. check uobj
1645 * 1.1. if null, ZFOD.
1646 * 1.2. if not null, look up unnmapped neighbor pages.
1647 * 2. for center page, check if promote.
1648 * 2.1. ZFOD always needs promotion.
1649 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1650 * 3. if uobj is not ZFOD and page is not found, do i/o.
1651 * 4. dispatch either direct / promote fault.
1652 */
1653
1654 static int
1655 uvm_fault_lower(
1656 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1657 struct vm_page **pages)
1658 {
1659 struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap;
1660 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1661 struct vm_page *uobjpage;
1662 int error;
1663 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1664
1665 /*
1666 * now, if the desired page is not shadowed by the amap and we have
1667 * a backing object that does not have a special fault routine, then
1668 * we ask (with pgo_get) the object for resident pages that we care
1669 * about and attempt to map them in. we do not let pgo_get block
1670 * (PGO_LOCKED).
1671 */
1672
1673 if (uobj == NULL) {
1674 /* zero fill; don't care neighbor pages */
1675 uobjpage = NULL;
1676 } else {
1677 uvm_fault_lower_lookup(ufi, flt, pages);
1678 uobjpage = pages[flt->centeridx];
1679 }
1680
1681 /*
1682 * note that at this point we are done with any front or back pages.
1683 * we are now going to focus on the center page (i.e. the one we've
1684 * faulted on). if we have faulted on the upper (anon) layer
1685 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1686 * not touched it yet). if we have faulted on the bottom (uobj)
1687 * layer [i.e. case 2] and the page was both present and available,
1688 * then we've got a pointer to it as "uobjpage" and we've already
1689 * made it BUSY.
1690 */
1691
1692 /*
1693 * locked:
1694 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1695 */
1696 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1697 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1698 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1699
1700 /*
1701 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1702 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1703 * have a backing object, check and see if we are going to promote
1704 * the data up to an anon during the fault.
1705 */
1706
1707 if (uobj == NULL) {
1708 uobjpage = PGO_DONTCARE;
1709 flt->promote = true; /* always need anon here */
1710 } else {
1711 KASSERT(uobjpage != PGO_DONTCARE);
1712 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1713 }
1714 UVMHIST_LOG(maphist, " case 2 fault: promote=%jd, zfill=%jd",
1715 flt->promote, (uobj == NULL), 0,0);
1716
1717 /*
1718 * if uobjpage is not null then we do not need to do I/O to get the
1719 * uobjpage.
1720 *
1721 * if uobjpage is null, then we need to unlock and ask the pager to
1722 * get the data for us. once we have the data, we need to reverify
1723 * the state the world. we are currently not holding any resources.
1724 */
1725
1726 if (uobjpage) {
1727 /* update rusage counters */
1728 curlwp->l_ru.ru_minflt++;
1729 } else {
1730 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1731 if (error != 0)
1732 return error;
1733 }
1734
1735 /*
1736 * locked:
1737 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1738 */
1739 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1740 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1741 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1742
1743 /*
1744 * notes:
1745 * - at this point uobjpage can not be NULL
1746 * - at this point uobjpage can not be PG_RELEASED (since we checked
1747 * for it above)
1748 * - at this point uobjpage could be PG_WANTED (handle later)
1749 */
1750
1751 KASSERT(uobjpage != NULL);
1752 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1753 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1754 (uobjpage->flags & PG_CLEAN) != 0);
1755
1756 if (!flt->promote) {
1757 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1758 } else {
1759 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1760 }
1761 return error;
1762 }
1763
1764 /*
1765 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1766 *
1767 * 1. get on-memory pages.
1768 * 2. if failed, give up (get only center page later).
1769 * 3. if succeeded, enter h/w mapping of neighbor pages.
1770 */
1771
1772 static void
1773 uvm_fault_lower_lookup(
1774 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1775 struct vm_page **pages)
1776 {
1777 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1778 int lcv, gotpages;
1779 vaddr_t currva;
1780 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1781
1782 mutex_enter(uobj->vmobjlock);
1783 /* Locked: maps(read), amap(if there), uobj */
1784
1785 uvmexp.fltlget++;
1786 gotpages = flt->npages;
1787 (void) uobj->pgops->pgo_get(uobj,
1788 ufi->entry->offset + flt->startva - ufi->entry->start,
1789 pages, &gotpages, flt->centeridx,
1790 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1791
1792 KASSERT(mutex_owned(uobj->vmobjlock));
1793
1794 /*
1795 * check for pages to map, if we got any
1796 */
1797
1798 if (gotpages == 0) {
1799 pages[flt->centeridx] = NULL;
1800 return;
1801 }
1802
1803 currva = flt->startva;
1804 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1805 struct vm_page *curpg;
1806
1807 curpg = pages[lcv];
1808 if (curpg == NULL || curpg == PGO_DONTCARE) {
1809 continue;
1810 }
1811 KASSERT(curpg->uobject == uobj);
1812
1813 /*
1814 * if center page is resident and not PG_BUSY|PG_RELEASED
1815 * then pgo_get made it PG_BUSY for us and gave us a handle
1816 * to it.
1817 */
1818
1819 if (lcv == flt->centeridx) {
1820 UVMHIST_LOG(maphist, " got uobjpage (0x%#jx) "
1821 "with locked get", (uintptr_t)curpg, 0, 0, 0);
1822 } else {
1823 bool readonly = (curpg->flags & PG_RDONLY)
1824 || (curpg->loan_count > 0)
1825 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1826
1827 uvm_fault_lower_neighbor(ufi, flt,
1828 currva, curpg, readonly);
1829 }
1830 }
1831 pmap_update(ufi->orig_map->pmap);
1832 }
1833
1834 /*
1835 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1836 */
1837
1838 static void
1839 uvm_fault_lower_neighbor(
1840 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1841 vaddr_t currva, struct vm_page *pg, bool readonly)
1842 {
1843 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1844
1845 /* locked: maps(read), amap(if there), uobj */
1846
1847 /*
1848 * calling pgo_get with PGO_LOCKED returns us pages which
1849 * are neither busy nor released, so we don't need to check
1850 * for this. we can just directly enter the pages.
1851 */
1852
1853 mutex_enter(&uvm_pageqlock);
1854 uvm_pageenqueue(pg);
1855 mutex_exit(&uvm_pageqlock);
1856 UVMHIST_LOG(maphist,
1857 " MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx",
1858 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1859 uvmexp.fltnomap++;
1860
1861 /*
1862 * Since this page isn't the page that's actually faulting,
1863 * ignore pmap_enter() failures; it's not critical that we
1864 * enter these right now.
1865 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1866 * held the lock the whole time we've had the handle.
1867 */
1868 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1869 KASSERT((pg->flags & PG_RELEASED) == 0);
1870 KASSERT((pg->flags & PG_WANTED) == 0);
1871 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
1872 pg->flags &= ~(PG_BUSY);
1873 UVM_PAGE_OWN(pg, NULL);
1874
1875 KASSERT(mutex_owned(pg->uobject->vmobjlock));
1876
1877 const vm_prot_t mapprot =
1878 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1879 flt->enter_prot & MASK(ufi->entry);
1880 const u_int mapflags =
1881 PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0);
1882 (void) pmap_enter(ufi->orig_map->pmap, currva,
1883 VM_PAGE_TO_PHYS(pg), mapprot, mapflags);
1884 }
1885
1886 /*
1887 * uvm_fault_lower_io: get lower page from backing store.
1888 *
1889 * 1. unlock everything, because i/o will block.
1890 * 2. call pgo_get.
1891 * 3. if failed, recover.
1892 * 4. if succeeded, relock everything and verify things.
1893 */
1894
1895 static int
1896 uvm_fault_lower_io(
1897 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1898 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1899 {
1900 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1901 struct uvm_object *uobj = *ruobj;
1902 struct vm_page *pg;
1903 bool locked;
1904 int gotpages;
1905 int error;
1906 voff_t uoff;
1907 vm_prot_t access_type;
1908 int advice;
1909 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1910
1911 /* update rusage counters */
1912 curlwp->l_ru.ru_majflt++;
1913
1914 /* grab everything we need from the entry before we unlock */
1915 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1916 access_type = flt->access_type & MASK(ufi->entry);
1917 advice = ufi->entry->advice;
1918
1919 /* Locked: maps(read), amap(if there), uobj */
1920 uvmfault_unlockall(ufi, amap, NULL);
1921
1922 /* Locked: uobj */
1923 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1924
1925 uvmexp.fltget++;
1926 gotpages = 1;
1927 pg = NULL;
1928 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1929 0, access_type, advice, PGO_SYNCIO);
1930 /* locked: pg(if no error) */
1931
1932 /*
1933 * recover from I/O
1934 */
1935
1936 if (error) {
1937 if (error == EAGAIN) {
1938 UVMHIST_LOG(maphist,
1939 " pgo_get says TRY AGAIN!",0,0,0,0);
1940 kpause("fltagain2", false, hz/2, NULL);
1941 return ERESTART;
1942 }
1943
1944 #if 0
1945 KASSERT(error != ERESTART);
1946 #else
1947 /* XXXUEBS don't re-fault? */
1948 if (error == ERESTART)
1949 error = EIO;
1950 #endif
1951
1952 UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)",
1953 error, 0,0,0);
1954 return error;
1955 }
1956
1957 /*
1958 * re-verify the state of the world by first trying to relock
1959 * the maps. always relock the object.
1960 */
1961
1962 locked = uvmfault_relock(ufi);
1963 if (locked && amap)
1964 amap_lock(amap);
1965
1966 /* might be changed */
1967 uobj = pg->uobject;
1968
1969 mutex_enter(uobj->vmobjlock);
1970 KASSERT((pg->flags & PG_BUSY) != 0);
1971
1972 mutex_enter(&uvm_pageqlock);
1973 uvm_pageactivate(pg);
1974 mutex_exit(&uvm_pageqlock);
1975
1976 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1977 /* locked(!locked): uobj, pg */
1978
1979 /*
1980 * verify that the page has not be released and re-verify
1981 * that amap slot is still free. if there is a problem,
1982 * we unlock and clean up.
1983 */
1984
1985 if ((pg->flags & PG_RELEASED) != 0 ||
1986 (locked && amap && amap_lookup(&ufi->entry->aref,
1987 ufi->orig_rvaddr - ufi->entry->start))) {
1988 if (locked)
1989 uvmfault_unlockall(ufi, amap, NULL);
1990 locked = false;
1991 }
1992
1993 /*
1994 * didn't get the lock? release the page and retry.
1995 */
1996
1997 if (locked == false) {
1998 UVMHIST_LOG(maphist,
1999 " wasn't able to relock after fault: retry",
2000 0,0,0,0);
2001 if (pg->flags & PG_WANTED) {
2002 wakeup(pg);
2003 }
2004 if ((pg->flags & PG_RELEASED) == 0) {
2005 pg->flags &= ~(PG_BUSY | PG_WANTED);
2006 UVM_PAGE_OWN(pg, NULL);
2007 } else {
2008 uvmexp.fltpgrele++;
2009 uvm_pagefree(pg);
2010 }
2011 mutex_exit(uobj->vmobjlock);
2012 return ERESTART;
2013 }
2014
2015 /*
2016 * we have the data in pg which is busy and
2017 * not released. we are holding object lock (so the page
2018 * can't be released on us).
2019 */
2020
2021 /* locked: maps(read), amap(if !null), uobj, pg */
2022
2023 *ruobj = uobj;
2024 *ruobjpage = pg;
2025 return 0;
2026 }
2027
2028 /*
2029 * uvm_fault_lower_direct: fault lower center page
2030 *
2031 * 1. adjust flt->enter_prot.
2032 * 2. if page is loaned, resolve.
2033 */
2034
2035 int
2036 uvm_fault_lower_direct(
2037 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2038 struct uvm_object *uobj, struct vm_page *uobjpage)
2039 {
2040 struct vm_page *pg;
2041 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
2042
2043 /*
2044 * we are not promoting. if the mapping is COW ensure that we
2045 * don't give more access than we should (e.g. when doing a read
2046 * fault on a COPYONWRITE mapping we want to map the COW page in
2047 * R/O even though the entry protection could be R/W).
2048 *
2049 * set "pg" to the page we want to map in (uobjpage, usually)
2050 */
2051
2052 uvmexp.flt_obj++;
2053 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
2054 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
2055 flt->enter_prot &= ~VM_PROT_WRITE;
2056 pg = uobjpage; /* map in the actual object */
2057
2058 KASSERT(uobjpage != PGO_DONTCARE);
2059
2060 /*
2061 * we are faulting directly on the page. be careful
2062 * about writing to loaned pages...
2063 */
2064
2065 if (uobjpage->loan_count) {
2066 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
2067 }
2068 KASSERT(pg == uobjpage);
2069
2070 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2071 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
2072 }
2073
2074 /*
2075 * uvm_fault_lower_direct_loan: resolve loaned page.
2076 *
2077 * 1. if not cow'ing, adjust flt->enter_prot.
2078 * 2. if cow'ing, break loan.
2079 */
2080
2081 static int
2082 uvm_fault_lower_direct_loan(
2083 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2084 struct uvm_object *uobj, struct vm_page **rpg,
2085 struct vm_page **ruobjpage)
2086 {
2087 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2088 struct vm_page *pg;
2089 struct vm_page *uobjpage = *ruobjpage;
2090 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
2091
2092 if (!flt->cow_now) {
2093 /* read fault: cap the protection at readonly */
2094 /* cap! */
2095 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2096 } else {
2097 /* write fault: must break the loan here */
2098
2099 pg = uvm_loanbreak(uobjpage);
2100 if (pg == NULL) {
2101
2102 /*
2103 * drop ownership of page, it can't be released
2104 */
2105
2106 if (uobjpage->flags & PG_WANTED)
2107 wakeup(uobjpage);
2108 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2109 UVM_PAGE_OWN(uobjpage, NULL);
2110
2111 uvmfault_unlockall(ufi, amap, uobj);
2112 UVMHIST_LOG(maphist,
2113 " out of RAM breaking loan, waiting",
2114 0,0,0,0);
2115 uvmexp.fltnoram++;
2116 uvm_wait("flt_noram4");
2117 return ERESTART;
2118 }
2119 *rpg = pg;
2120 *ruobjpage = pg;
2121 }
2122 return 0;
2123 }
2124
2125 /*
2126 * uvm_fault_lower_promote: promote lower page.
2127 *
2128 * 1. call uvmfault_promote.
2129 * 2. fill in data.
2130 * 3. if not ZFOD, dispose old page.
2131 */
2132
2133 int
2134 uvm_fault_lower_promote(
2135 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2136 struct uvm_object *uobj, struct vm_page *uobjpage)
2137 {
2138 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2139 struct vm_anon *anon;
2140 struct vm_page *pg;
2141 int error;
2142 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2143
2144 KASSERT(amap != NULL);
2145
2146 /*
2147 * If we are going to promote the data to an anon we
2148 * allocate a blank anon here and plug it into our amap.
2149 */
2150 error = uvmfault_promote(ufi, NULL, uobjpage,
2151 &anon, &flt->anon_spare);
2152 switch (error) {
2153 case 0:
2154 break;
2155 case ERESTART:
2156 return ERESTART;
2157 default:
2158 return error;
2159 }
2160
2161 pg = anon->an_page;
2162
2163 /*
2164 * Fill in the data.
2165 */
2166 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2167
2168 if (uobjpage != PGO_DONTCARE) {
2169 uvmexp.flt_prcopy++;
2170
2171 /*
2172 * promote to shared amap? make sure all sharing
2173 * procs see it
2174 */
2175
2176 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2177 pmap_page_protect(uobjpage, VM_PROT_NONE);
2178 /*
2179 * XXX: PAGE MIGHT BE WIRED!
2180 */
2181 }
2182
2183 /*
2184 * dispose of uobjpage. it can't be PG_RELEASED
2185 * since we still hold the object lock.
2186 */
2187
2188 if (uobjpage->flags & PG_WANTED) {
2189 /* still have the obj lock */
2190 wakeup(uobjpage);
2191 }
2192 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2193 UVM_PAGE_OWN(uobjpage, NULL);
2194
2195 UVMHIST_LOG(maphist,
2196 " promote uobjpage 0x%#jx to anon/page 0x%#jx/0x%#jx",
2197 (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0);
2198
2199 } else {
2200 uvmexp.flt_przero++;
2201
2202 /*
2203 * Page is zero'd and marked dirty by
2204 * uvmfault_promote().
2205 */
2206
2207 UVMHIST_LOG(maphist," zero fill anon/page 0x%#jx/0%#jx",
2208 (uintptr_t)anon, (uintptr_t)pg, 0, 0);
2209 }
2210
2211 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2212 }
2213
2214 /*
2215 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2216 * from the lower page.
2217 */
2218
2219 int
2220 uvm_fault_lower_enter(
2221 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2222 struct uvm_object *uobj,
2223 struct vm_anon *anon, struct vm_page *pg)
2224 {
2225 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2226 int error;
2227 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2228
2229 /*
2230 * Locked:
2231 *
2232 * maps(read), amap(if !null), uobj(if !null),
2233 * anon(if !null), pg(if anon), unlock_uobj(if !null)
2234 *
2235 * Note: pg is either the uobjpage or the new page in the new anon.
2236 */
2237 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
2238 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
2239 KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2240 KASSERT((pg->flags & PG_BUSY) != 0);
2241
2242 /*
2243 * all resources are present. we can now map it in and free our
2244 * resources.
2245 */
2246
2247 UVMHIST_LOG(maphist,
2248 " MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
2249 (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr,
2250 (uintptr_t)pg, flt->promote);
2251 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2252 (pg->flags & PG_RDONLY) == 0);
2253 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2254 VM_PAGE_TO_PHYS(pg),
2255 (pg->flags & PG_RDONLY) != 0 ?
2256 flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2257 flt->access_type | PMAP_CANFAIL |
2258 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2259
2260 /*
2261 * No need to undo what we did; we can simply think of
2262 * this as the pmap throwing away the mapping information.
2263 *
2264 * We do, however, have to go through the ReFault path,
2265 * as the map may change while we're asleep.
2266 */
2267
2268 /*
2269 * ensure that the page is queued in the case that
2270 * we just promoted the page.
2271 */
2272
2273 mutex_enter(&uvm_pageqlock);
2274 uvm_pageenqueue(pg);
2275 mutex_exit(&uvm_pageqlock);
2276
2277 if (pg->flags & PG_WANTED)
2278 wakeup(pg);
2279
2280 /*
2281 * note that pg can't be PG_RELEASED since we did not drop
2282 * the object lock since the last time we checked.
2283 */
2284 KASSERT((pg->flags & PG_RELEASED) == 0);
2285
2286 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2287 UVM_PAGE_OWN(pg, NULL);
2288
2289 uvmfault_unlockall(ufi, amap, uobj);
2290 if (!uvm_reclaimable()) {
2291 UVMHIST_LOG(maphist,
2292 "<- failed. out of VM",0,0,0,0);
2293 /* XXX instrumentation */
2294 error = ENOMEM;
2295 return error;
2296 }
2297 /* XXX instrumentation */
2298 uvm_wait("flt_pmfail2");
2299 return ERESTART;
2300 }
2301
2302 uvm_fault_lower_done(ufi, flt, uobj, pg);
2303
2304 /*
2305 * note that pg can't be PG_RELEASED since we did not drop the object
2306 * lock since the last time we checked.
2307 */
2308 KASSERT((pg->flags & PG_RELEASED) == 0);
2309 if (pg->flags & PG_WANTED)
2310 wakeup(pg);
2311 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2312 UVM_PAGE_OWN(pg, NULL);
2313
2314 pmap_update(ufi->orig_map->pmap);
2315 uvmfault_unlockall(ufi, amap, uobj);
2316
2317 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2318 return 0;
2319 }
2320
2321 /*
2322 * uvm_fault_lower_done: queue lower center page.
2323 */
2324
2325 void
2326 uvm_fault_lower_done(
2327 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2328 struct uvm_object *uobj, struct vm_page *pg)
2329 {
2330 bool dropswap = false;
2331
2332 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2333
2334 mutex_enter(&uvm_pageqlock);
2335 if (flt->wire_paging) {
2336 uvm_pagewire(pg);
2337 if (pg->pqflags & PQ_AOBJ) {
2338
2339 /*
2340 * since the now-wired page cannot be paged out,
2341 * release its swap resources for others to use.
2342 * since an aobj page with no swap cannot be PG_CLEAN,
2343 * clear its clean flag now.
2344 */
2345
2346 KASSERT(uobj != NULL);
2347 pg->flags &= ~(PG_CLEAN);
2348 dropswap = true;
2349 }
2350 } else {
2351 uvm_pageactivate(pg);
2352 }
2353 mutex_exit(&uvm_pageqlock);
2354
2355 if (dropswap) {
2356 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2357 }
2358 }
2359
2360
2361 /*
2362 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2363 *
2364 * => map may be read-locked by caller, but MUST NOT be write-locked.
2365 * => if map is read-locked, any operations which may cause map to
2366 * be write-locked in uvm_fault() must be taken care of by
2367 * the caller. See uvm_map_pageable().
2368 */
2369
2370 int
2371 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2372 vm_prot_t access_type, int maxprot)
2373 {
2374 vaddr_t va;
2375 int error;
2376
2377 /*
2378 * now fault it in a page at a time. if the fault fails then we have
2379 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2380 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2381 */
2382
2383 /*
2384 * XXX work around overflowing a vaddr_t. this prevents us from
2385 * wiring the last page in the address space, though.
2386 */
2387 if (start > end) {
2388 return EFAULT;
2389 }
2390
2391 for (va = start; va < end; va += PAGE_SIZE) {
2392 error = uvm_fault_internal(map, va, access_type,
2393 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2394 if (error) {
2395 if (va != start) {
2396 uvm_fault_unwire(map, start, va);
2397 }
2398 return error;
2399 }
2400 }
2401 return 0;
2402 }
2403
2404 /*
2405 * uvm_fault_unwire(): unwire range of virtual space.
2406 */
2407
2408 void
2409 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2410 {
2411 vm_map_lock_read(map);
2412 uvm_fault_unwire_locked(map, start, end);
2413 vm_map_unlock_read(map);
2414 }
2415
2416 /*
2417 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2418 *
2419 * => map must be at least read-locked.
2420 */
2421
2422 void
2423 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2424 {
2425 struct vm_map_entry *entry, *oentry;
2426 pmap_t pmap = vm_map_pmap(map);
2427 vaddr_t va;
2428 paddr_t pa;
2429 struct vm_page *pg;
2430
2431 /*
2432 * we assume that the area we are unwiring has actually been wired
2433 * in the first place. this means that we should be able to extract
2434 * the PAs from the pmap. we also lock out the page daemon so that
2435 * we can call uvm_pageunwire.
2436 */
2437
2438 /*
2439 * find the beginning map entry for the region.
2440 */
2441
2442 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2443 if (uvm_map_lookup_entry(map, start, &entry) == false)
2444 panic("uvm_fault_unwire_locked: address not in map");
2445
2446 oentry = NULL;
2447 for (va = start; va < end; va += PAGE_SIZE) {
2448
2449 /*
2450 * find the map entry for the current address.
2451 */
2452
2453 KASSERT(va >= entry->start);
2454 while (va >= entry->end) {
2455 KASSERT(entry->next != &map->header &&
2456 entry->next->start <= entry->end);
2457 entry = entry->next;
2458 }
2459
2460 /*
2461 * lock it.
2462 */
2463
2464 if (entry != oentry) {
2465 if (oentry != NULL) {
2466 mutex_exit(&uvm_pageqlock);
2467 uvm_map_unlock_entry(oentry);
2468 }
2469 uvm_map_lock_entry(entry);
2470 mutex_enter(&uvm_pageqlock);
2471 oentry = entry;
2472 }
2473
2474 /*
2475 * if the entry is no longer wired, tell the pmap.
2476 */
2477
2478 if (!pmap_extract(pmap, va, &pa))
2479 continue;
2480
2481 if (VM_MAPENT_ISWIRED(entry) == 0)
2482 pmap_unwire(pmap, va);
2483
2484 pg = PHYS_TO_VM_PAGE(pa);
2485 if (pg)
2486 uvm_pageunwire(pg);
2487 }
2488
2489 if (oentry != NULL) {
2490 mutex_exit(&uvm_pageqlock);
2491 uvm_map_unlock_entry(entry);
2492 }
2493 }
2494