uvm_fault.c revision 1.209 1 /* $NetBSD: uvm_fault.c,v 1.209 2019/12/01 08:19:09 maxv Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 */
29
30 /*
31 * uvm_fault.c: fault handler
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.209 2019/12/01 08:19:09 maxv Exp $");
36
37 #include "opt_uvmhist.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/mman.h>
43
44 #include <uvm/uvm.h>
45
46 /*
47 *
48 * a word on page faults:
49 *
50 * types of page faults we handle:
51 *
52 * CASE 1: upper layer faults CASE 2: lower layer faults
53 *
54 * CASE 1A CASE 1B CASE 2A CASE 2B
55 * read/write1 write>1 read/write +-cow_write/zero
56 * | | | |
57 * +--|--+ +--|--+ +-----+ + | + | +-----+
58 * amap | V | | ---------> new | | | | ^ |
59 * +-----+ +-----+ +-----+ + | + | +--|--+
60 * | | |
61 * +-----+ +-----+ +--|--+ | +--|--+
62 * uobj | d/c | | d/c | | V | +----+ |
63 * +-----+ +-----+ +-----+ +-----+
64 *
65 * d/c = don't care
66 *
67 * case [0]: layerless fault
68 * no amap or uobj is present. this is an error.
69 *
70 * case [1]: upper layer fault [anon active]
71 * 1A: [read] or [write with anon->an_ref == 1]
72 * I/O takes place in upper level anon and uobj is not touched.
73 * 1B: [write with anon->an_ref > 1]
74 * new anon is alloc'd and data is copied off ["COW"]
75 *
76 * case [2]: lower layer fault [uobj]
77 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78 * I/O takes place directly in object.
79 * 2B: [write to copy_on_write] or [read on NULL uobj]
80 * data is "promoted" from uobj to a new anon.
81 * if uobj is null, then we zero fill.
82 *
83 * we follow the standard UVM locking protocol ordering:
84 *
85 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86 * we hold a PG_BUSY page if we unlock for I/O
87 *
88 *
89 * the code is structured as follows:
90 *
91 * - init the "IN" params in the ufi structure
92 * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
93 * - do lookups [locks maps], check protection, handle needs_copy
94 * - check for case 0 fault (error)
95 * - establish "range" of fault
96 * - if we have an amap lock it and extract the anons
97 * - if sequential advice deactivate pages behind us
98 * - at the same time check pmap for unmapped areas and anon for pages
99 * that we could map in (and do map it if found)
100 * - check object for resident pages that we could map in
101 * - if (case 2) goto Case2
102 * - >>> handle case 1
103 * - ensure source anon is resident in RAM
104 * - if case 1B alloc new anon and copy from source
105 * - map the correct page in
106 * Case2:
107 * - >>> handle case 2
108 * - ensure source page is resident (if uobj)
109 * - if case 2B alloc new anon and copy from source (could be zero
110 * fill if uobj == NULL)
111 * - map the correct page in
112 * - done!
113 *
114 * note on paging:
115 * if we have to do I/O we place a PG_BUSY page in the correct object,
116 * unlock everything, and do the I/O. when I/O is done we must reverify
117 * the state of the world before assuming that our data structures are
118 * valid. [because mappings could change while the map is unlocked]
119 *
120 * alternative 1: unbusy the page in question and restart the page fault
121 * from the top (ReFault). this is easy but does not take advantage
122 * of the information that we already have from our previous lookup,
123 * although it is possible that the "hints" in the vm_map will help here.
124 *
125 * alternative 2: the system already keeps track of a "version" number of
126 * a map. [i.e. every time you write-lock a map (e.g. to change a
127 * mapping) you bump the version number up by one...] so, we can save
128 * the version number of the map before we release the lock and start I/O.
129 * then when I/O is done we can relock and check the version numbers
130 * to see if anything changed. this might save us some over 1 because
131 * we don't have to unbusy the page and may be less compares(?).
132 *
133 * alternative 3: put in backpointers or a way to "hold" part of a map
134 * in place while I/O is in progress. this could be complex to
135 * implement (especially with structures like amap that can be referenced
136 * by multiple map entries, and figuring out what should wait could be
137 * complex as well...).
138 *
139 * we use alternative 2. given that we are multi-threaded now we may want
140 * to reconsider the choice.
141 */
142
143 /*
144 * local data structures
145 */
146
147 struct uvm_advice {
148 int advice;
149 int nback;
150 int nforw;
151 };
152
153 /*
154 * page range array:
155 * note: index in array must match "advice" value
156 * XXX: borrowed numbers from freebsd. do they work well for us?
157 */
158
159 static const struct uvm_advice uvmadvice[] = {
160 { UVM_ADV_NORMAL, 3, 4 },
161 { UVM_ADV_RANDOM, 0, 0 },
162 { UVM_ADV_SEQUENTIAL, 8, 7},
163 };
164
165 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
166
167 /*
168 * private prototypes
169 */
170
171 /*
172 * externs from other modules
173 */
174
175 extern int start_init_exec; /* Is init_main() done / init running? */
176
177 /*
178 * inline functions
179 */
180
181 /*
182 * uvmfault_anonflush: try and deactivate pages in specified anons
183 *
184 * => does not have to deactivate page if it is busy
185 */
186
187 static inline void
188 uvmfault_anonflush(struct vm_anon **anons, int n)
189 {
190 int lcv;
191 struct vm_page *pg;
192
193 for (lcv = 0; lcv < n; lcv++) {
194 if (anons[lcv] == NULL)
195 continue;
196 KASSERT(mutex_owned(anons[lcv]->an_lock));
197 pg = anons[lcv]->an_page;
198 if (pg && (pg->flags & PG_BUSY) == 0) {
199 mutex_enter(&uvm_pageqlock);
200 if (pg->wire_count == 0) {
201 uvm_pagedeactivate(pg);
202 }
203 mutex_exit(&uvm_pageqlock);
204 }
205 }
206 }
207
208 /*
209 * normal functions
210 */
211
212 /*
213 * uvmfault_amapcopy: clear "needs_copy" in a map.
214 *
215 * => called with VM data structures unlocked (usually, see below)
216 * => we get a write lock on the maps and clear needs_copy for a VA
217 * => if we are out of RAM we sleep (waiting for more)
218 */
219
220 static void
221 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
222 {
223 for (;;) {
224
225 /*
226 * no mapping? give up.
227 */
228
229 if (uvmfault_lookup(ufi, true) == false)
230 return;
231
232 /*
233 * copy if needed.
234 */
235
236 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
237 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
238 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
239
240 /*
241 * didn't work? must be out of RAM. unlock and sleep.
242 */
243
244 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
245 uvmfault_unlockmaps(ufi, true);
246 uvm_wait("fltamapcopy");
247 continue;
248 }
249
250 /*
251 * got it! unlock and return.
252 */
253
254 uvmfault_unlockmaps(ufi, true);
255 return;
256 }
257 /*NOTREACHED*/
258 }
259
260 /*
261 * uvmfault_anonget: get data in an anon into a non-busy, non-released
262 * page in that anon.
263 *
264 * => Map, amap and thus anon should be locked by caller.
265 * => If we fail, we unlock everything and error is returned.
266 * => If we are successful, return with everything still locked.
267 * => We do not move the page on the queues [gets moved later]. If we
268 * allocate a new page [we_own], it gets put on the queues. Either way,
269 * the result is that the page is on the queues at return time
270 * => For pages which are on loan from a uvm_object (and thus are not owned
271 * by the anon): if successful, return with the owning object locked.
272 * The caller must unlock this object when it unlocks everything else.
273 */
274
275 int
276 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
277 struct vm_anon *anon)
278 {
279 struct vm_page *pg;
280 int error;
281
282 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
283 KASSERT(mutex_owned(anon->an_lock));
284 KASSERT(anon->an_lock == amap->am_lock);
285
286 /* Increment the counters.*/
287 atomic_store_relaxed(&uvmexp.fltanget,
288 atomic_load_relaxed(&uvmexp.fltanget) + 1);
289 if (anon->an_page) {
290 curlwp->l_ru.ru_minflt++;
291 } else {
292 curlwp->l_ru.ru_majflt++;
293 }
294 error = 0;
295
296 /*
297 * Loop until we get the anon data, or fail.
298 */
299
300 for (;;) {
301 bool we_own, locked;
302 /*
303 * Note: 'we_own' will become true if we set PG_BUSY on a page.
304 */
305 we_own = false;
306 pg = anon->an_page;
307
308 /*
309 * If there is a resident page and it is loaned, then anon
310 * may not own it. Call out to uvm_anon_lockloanpg() to
311 * identify and lock the real owner of the page.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * Is page resident? Make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return 0;
333 }
334 pg->flags |= PG_WANTED;
335 atomic_store_relaxed(&uvmexp.fltpgwait,
336 atomic_load_relaxed(&uvmexp.fltpgwait) + 1);
337
338 /*
339 * The last unlock must be an atomic unlock and wait
340 * on the owner of page.
341 */
342
343 if (pg->uobject) {
344 /* Owner of page is UVM object. */
345 uvmfault_unlockall(ufi, amap, NULL);
346 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
347 0,0,0);
348 UVM_UNLOCK_AND_WAIT(pg,
349 pg->uobject->vmobjlock,
350 false, "anonget1", 0);
351 } else {
352 /* Owner of page is anon. */
353 uvmfault_unlockall(ufi, NULL, NULL);
354 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
355 0,0,0);
356 UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
357 false, "anonget2", 0);
358 }
359 } else {
360 #if defined(VMSWAP)
361 /*
362 * No page, therefore allocate one.
363 */
364
365 pg = uvm_pagealloc(NULL,
366 ufi != NULL ? ufi->orig_rvaddr : 0,
367 anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
368 if (pg == NULL) {
369 /* Out of memory. Wait a little. */
370 uvmfault_unlockall(ufi, amap, NULL);
371 atomic_store_relaxed(&uvmexp.fltnoram,
372 atomic_load_relaxed(&uvmexp.fltnoram) + 1);
373 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
374 0,0,0);
375 if (!uvm_reclaimable()) {
376 return ENOMEM;
377 }
378 uvm_wait("flt_noram1");
379 } else {
380 /* PG_BUSY bit is set. */
381 we_own = true;
382 uvmfault_unlockall(ufi, amap, NULL);
383
384 /*
385 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
386 * the uvm_swap_get() function with all data
387 * structures unlocked. Note that it is OK
388 * to read an_swslot here, because we hold
389 * PG_BUSY on the page.
390 */
391 atomic_store_relaxed(&uvmexp.pageins,
392 atomic_load_relaxed(&uvmexp.pageins) + 1);
393 error = uvm_swap_get(pg, anon->an_swslot,
394 PGO_SYNCIO);
395
396 /*
397 * We clean up after the I/O below in the
398 * 'we_own' case.
399 */
400 }
401 #else
402 panic("%s: no page", __func__);
403 #endif /* defined(VMSWAP) */
404 }
405
406 /*
407 * Re-lock the map and anon.
408 */
409
410 locked = uvmfault_relock(ufi);
411 if (locked || we_own) {
412 mutex_enter(anon->an_lock);
413 }
414
415 /*
416 * If we own the page (i.e. we set PG_BUSY), then we need
417 * to clean up after the I/O. There are three cases to
418 * consider:
419 *
420 * 1) Page was released during I/O: free anon and ReFault.
421 * 2) I/O not OK. Free the page and cause the fault to fail.
422 * 3) I/O OK! Activate the page and sync with the non-we_own
423 * case (i.e. drop anon lock if not locked).
424 */
425
426 if (we_own) {
427 #if defined(VMSWAP)
428 if (pg->flags & PG_WANTED) {
429 wakeup(pg);
430 }
431 if (error) {
432
433 /*
434 * Remove the swap slot from the anon and
435 * mark the anon as having no real slot.
436 * Do not free the swap slot, thus preventing
437 * it from being used again.
438 */
439
440 if (anon->an_swslot > 0) {
441 uvm_swap_markbad(anon->an_swslot, 1);
442 }
443 anon->an_swslot = SWSLOT_BAD;
444
445 if ((pg->flags & PG_RELEASED) != 0) {
446 goto released;
447 }
448
449 /*
450 * Note: page was never !PG_BUSY, so it
451 * cannot be mapped and thus no need to
452 * pmap_page_protect() it.
453 */
454
455 mutex_enter(&uvm_pageqlock);
456 uvm_pagefree(pg);
457 mutex_exit(&uvm_pageqlock);
458
459 if (locked) {
460 uvmfault_unlockall(ufi, NULL, NULL);
461 }
462 mutex_exit(anon->an_lock);
463 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
464 return error;
465 }
466
467 if ((pg->flags & PG_RELEASED) != 0) {
468 released:
469 KASSERT(anon->an_ref == 0);
470
471 /*
472 * Released while we had unlocked amap.
473 */
474
475 if (locked) {
476 uvmfault_unlockall(ufi, NULL, NULL);
477 }
478 uvm_anon_release(anon);
479
480 if (error) {
481 UVMHIST_LOG(maphist,
482 "<- ERROR/RELEASED", 0,0,0,0);
483 return error;
484 }
485
486 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
487 return ERESTART;
488 }
489
490 /*
491 * We have successfully read the page, activate it.
492 */
493
494 mutex_enter(&uvm_pageqlock);
495 uvm_pageactivate(pg);
496 mutex_exit(&uvm_pageqlock);
497 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
498 UVM_PAGE_OWN(pg, NULL);
499 #else
500 panic("%s: we_own", __func__);
501 #endif /* defined(VMSWAP) */
502 }
503
504 /*
505 * We were not able to re-lock the map - restart the fault.
506 */
507
508 if (!locked) {
509 if (we_own) {
510 mutex_exit(anon->an_lock);
511 }
512 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
513 return ERESTART;
514 }
515
516 /*
517 * Verify that no one has touched the amap and moved
518 * the anon on us.
519 */
520
521 if (ufi != NULL && amap_lookup(&ufi->entry->aref,
522 ufi->orig_rvaddr - ufi->entry->start) != anon) {
523
524 uvmfault_unlockall(ufi, amap, NULL);
525 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
526 return ERESTART;
527 }
528
529 /*
530 * Retry..
531 */
532
533 atomic_store_relaxed(&uvmexp.fltanretry,
534 atomic_load_relaxed(&uvmexp.fltanretry) + 1);
535 continue;
536 }
537 /*NOTREACHED*/
538 }
539
540 /*
541 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
542 *
543 * 1. allocate an anon and a page.
544 * 2. fill its contents.
545 * 3. put it into amap.
546 *
547 * => if we fail (result != 0) we unlock everything.
548 * => on success, return a new locked anon via 'nanon'.
549 * (*nanon)->an_page will be a resident, locked, dirty page.
550 * => it's caller's responsibility to put the promoted nanon->an_page to the
551 * page queue.
552 */
553
554 static int
555 uvmfault_promote(struct uvm_faultinfo *ufi,
556 struct vm_anon *oanon,
557 struct vm_page *uobjpage,
558 struct vm_anon **nanon, /* OUT: allocated anon */
559 struct vm_anon **spare)
560 {
561 struct vm_amap *amap = ufi->entry->aref.ar_amap;
562 struct uvm_object *uobj;
563 struct vm_anon *anon;
564 struct vm_page *pg;
565 struct vm_page *opg;
566 int error;
567 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
568
569 if (oanon) {
570 /* anon COW */
571 opg = oanon->an_page;
572 KASSERT(opg != NULL);
573 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
574 } else if (uobjpage != PGO_DONTCARE) {
575 /* object-backed COW */
576 opg = uobjpage;
577 } else {
578 /* ZFOD */
579 opg = NULL;
580 }
581 if (opg != NULL) {
582 uobj = opg->uobject;
583 } else {
584 uobj = NULL;
585 }
586
587 KASSERT(amap != NULL);
588 KASSERT(uobjpage != NULL);
589 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
590 KASSERT(mutex_owned(amap->am_lock));
591 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
592 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
593
594 if (*spare != NULL) {
595 anon = *spare;
596 *spare = NULL;
597 } else {
598 anon = uvm_analloc();
599 }
600 if (anon) {
601
602 /*
603 * The new anon is locked.
604 *
605 * if opg == NULL, we want a zero'd, dirty page,
606 * so have uvm_pagealloc() do that for us.
607 */
608
609 KASSERT(anon->an_lock == NULL);
610 anon->an_lock = amap->am_lock;
611 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
612 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
613 if (pg == NULL) {
614 anon->an_lock = NULL;
615 }
616 } else {
617 pg = NULL;
618 }
619
620 /*
621 * out of memory resources?
622 */
623
624 if (pg == NULL) {
625 /* save anon for the next try. */
626 if (anon != NULL) {
627 *spare = anon;
628 }
629
630 /* unlock and fail ... */
631 uvm_page_unbusy(&uobjpage, 1);
632 uvmfault_unlockall(ufi, amap, uobj);
633 if (!uvm_reclaimable()) {
634 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
635 atomic_store_relaxed(&uvmexp.fltnoanon,
636 atomic_load_relaxed(&uvmexp.fltnoanon) + 1);
637 error = ENOMEM;
638 goto done;
639 }
640
641 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
642 atomic_store_relaxed(&uvmexp.fltnoram,
643 atomic_load_relaxed(&uvmexp.fltnoram) + 1);
644 uvm_wait("flt_noram5");
645 error = ERESTART;
646 goto done;
647 }
648
649 /* copy page [pg now dirty] */
650 if (opg) {
651 uvm_pagecopy(opg, pg);
652 }
653
654 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
655 oanon != NULL);
656
657 *nanon = anon;
658 error = 0;
659 done:
660 return error;
661 }
662
663 /*
664 * Update statistics after fault resolution.
665 * - maxrss
666 */
667 void
668 uvmfault_update_stats(struct uvm_faultinfo *ufi)
669 {
670 struct vm_map *map;
671 struct vmspace *vm;
672 struct proc *p;
673 vsize_t res;
674
675 map = ufi->orig_map;
676
677 p = curproc;
678 KASSERT(p != NULL);
679 vm = p->p_vmspace;
680
681 if (&vm->vm_map != map)
682 return;
683
684 res = pmap_resident_count(map->pmap);
685 if (vm->vm_rssmax < res)
686 vm->vm_rssmax = res;
687 }
688
689 /*
690 * F A U L T - m a i n e n t r y p o i n t
691 */
692
693 /*
694 * uvm_fault: page fault handler
695 *
696 * => called from MD code to resolve a page fault
697 * => VM data structures usually should be unlocked. however, it is
698 * possible to call here with the main map locked if the caller
699 * gets a write lock, sets it recusive, and then calls us (c.f.
700 * uvm_map_pageable). this should be avoided because it keeps
701 * the map locked off during I/O.
702 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
703 */
704
705 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
706 ~VM_PROT_WRITE : VM_PROT_ALL)
707
708 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
709 #define UVM_FAULT_WIRE (1 << 0)
710 #define UVM_FAULT_MAXPROT (1 << 1)
711
712 struct uvm_faultctx {
713
714 /*
715 * the following members are set up by uvm_fault_check() and
716 * read-only after that.
717 *
718 * note that narrow is used by uvm_fault_check() to change
719 * the behaviour after ERESTART.
720 *
721 * most of them might change after RESTART if the underlying
722 * map entry has been changed behind us. an exception is
723 * wire_paging, which does never change.
724 */
725 vm_prot_t access_type;
726 vaddr_t startva;
727 int npages;
728 int centeridx;
729 bool narrow; /* work on a single requested page only */
730 bool wire_mapping; /* request a PMAP_WIRED mapping
731 (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
732 bool wire_paging; /* request uvm_pagewire
733 (true for UVM_FAULT_WIRE) */
734 bool cow_now; /* VM_PROT_WRITE is actually requested
735 (ie. should break COW and page loaning) */
736
737 /*
738 * enter_prot is set up by uvm_fault_check() and clamped
739 * (ie. drop the VM_PROT_WRITE bit) in various places in case
740 * of !cow_now.
741 */
742 vm_prot_t enter_prot; /* prot at which we want to enter pages in */
743
744 /*
745 * the following member is for uvmfault_promote() and ERESTART.
746 */
747 struct vm_anon *anon_spare;
748
749 /*
750 * the folloing is actually a uvm_fault_lower() internal.
751 * it's here merely for debugging.
752 * (or due to the mechanical separation of the function?)
753 */
754 bool promote;
755 };
756
757 static inline int uvm_fault_check(
758 struct uvm_faultinfo *, struct uvm_faultctx *,
759 struct vm_anon ***, bool);
760
761 static int uvm_fault_upper(
762 struct uvm_faultinfo *, struct uvm_faultctx *,
763 struct vm_anon **);
764 static inline int uvm_fault_upper_lookup(
765 struct uvm_faultinfo *, const struct uvm_faultctx *,
766 struct vm_anon **, struct vm_page **);
767 static inline void uvm_fault_upper_neighbor(
768 struct uvm_faultinfo *, const struct uvm_faultctx *,
769 vaddr_t, struct vm_page *, bool);
770 static inline int uvm_fault_upper_loan(
771 struct uvm_faultinfo *, struct uvm_faultctx *,
772 struct vm_anon *, struct uvm_object **);
773 static inline int uvm_fault_upper_promote(
774 struct uvm_faultinfo *, struct uvm_faultctx *,
775 struct uvm_object *, struct vm_anon *);
776 static inline int uvm_fault_upper_direct(
777 struct uvm_faultinfo *, struct uvm_faultctx *,
778 struct uvm_object *, struct vm_anon *);
779 static int uvm_fault_upper_enter(
780 struct uvm_faultinfo *, const struct uvm_faultctx *,
781 struct uvm_object *, struct vm_anon *,
782 struct vm_page *, struct vm_anon *);
783 static inline void uvm_fault_upper_done(
784 struct uvm_faultinfo *, const struct uvm_faultctx *,
785 struct vm_anon *, struct vm_page *);
786
787 static int uvm_fault_lower(
788 struct uvm_faultinfo *, struct uvm_faultctx *,
789 struct vm_page **);
790 static inline void uvm_fault_lower_lookup(
791 struct uvm_faultinfo *, const struct uvm_faultctx *,
792 struct vm_page **);
793 static inline void uvm_fault_lower_neighbor(
794 struct uvm_faultinfo *, const struct uvm_faultctx *,
795 vaddr_t, struct vm_page *, bool);
796 static inline int uvm_fault_lower_io(
797 struct uvm_faultinfo *, const struct uvm_faultctx *,
798 struct uvm_object **, struct vm_page **);
799 static inline int uvm_fault_lower_direct(
800 struct uvm_faultinfo *, struct uvm_faultctx *,
801 struct uvm_object *, struct vm_page *);
802 static inline int uvm_fault_lower_direct_loan(
803 struct uvm_faultinfo *, struct uvm_faultctx *,
804 struct uvm_object *, struct vm_page **,
805 struct vm_page **);
806 static inline int uvm_fault_lower_promote(
807 struct uvm_faultinfo *, struct uvm_faultctx *,
808 struct uvm_object *, struct vm_page *);
809 static int uvm_fault_lower_enter(
810 struct uvm_faultinfo *, const struct uvm_faultctx *,
811 struct uvm_object *,
812 struct vm_anon *, struct vm_page *);
813 static inline void uvm_fault_lower_done(
814 struct uvm_faultinfo *, const struct uvm_faultctx *,
815 struct uvm_object *, struct vm_page *);
816
817 int
818 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
819 vm_prot_t access_type, int fault_flag)
820 {
821 struct cpu_data *cd;
822 struct uvm_cpu *ucpu;
823 struct uvm_faultinfo ufi;
824 struct uvm_faultctx flt = {
825 .access_type = access_type,
826
827 /* don't look for neighborhood * pages on "wire" fault */
828 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
829
830 /* "wire" fault causes wiring of both mapping and paging */
831 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
832 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
833 };
834 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
835 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
836 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
837 int error;
838
839 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
840
841 UVMHIST_LOG(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)",
842 (uintptr_t)orig_map, vaddr, access_type, fault_flag);
843
844 cd = &(curcpu()->ci_data);
845 cd->cpu_nfault++;
846 ucpu = cd->cpu_uvm;
847
848 /* Don't flood RNG subsystem with samples. */
849 if (cd->cpu_nfault % 503)
850 goto norng;
851
852 /* Don't count anything until user interaction is possible */
853 if (__predict_true(start_init_exec)) {
854 kpreempt_disable();
855 rnd_add_uint32(&ucpu->rs,
856 sizeof(vaddr_t) == sizeof(uint32_t) ?
857 (uint32_t)vaddr : sizeof(vaddr_t) ==
858 sizeof(uint64_t) ?
859 (uint32_t)(vaddr & 0x00000000ffffffff) :
860 (uint32_t)(cd->cpu_nfault & 0x00000000ffffffff));
861 kpreempt_enable();
862 }
863 norng:
864 /*
865 * init the IN parameters in the ufi
866 */
867
868 ufi.orig_map = orig_map;
869 ufi.orig_rvaddr = trunc_page(vaddr);
870 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
871
872 error = ERESTART;
873 while (error == ERESTART) { /* ReFault: */
874 anons = anons_store;
875 pages = pages_store;
876
877 error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
878 if (error != 0)
879 continue;
880
881 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
882 if (error != 0)
883 continue;
884
885 if (pages[flt.centeridx] == PGO_DONTCARE)
886 error = uvm_fault_upper(&ufi, &flt, anons);
887 else {
888 struct uvm_object * const uobj =
889 ufi.entry->object.uvm_obj;
890
891 if (uobj && uobj->pgops->pgo_fault != NULL) {
892 /*
893 * invoke "special" fault routine.
894 */
895 mutex_enter(uobj->vmobjlock);
896 /* locked: maps(read), amap(if there), uobj */
897 error = uobj->pgops->pgo_fault(&ufi,
898 flt.startva, pages, flt.npages,
899 flt.centeridx, flt.access_type,
900 PGO_LOCKED|PGO_SYNCIO);
901
902 /*
903 * locked: nothing, pgo_fault has unlocked
904 * everything
905 */
906
907 /*
908 * object fault routine responsible for
909 * pmap_update().
910 */
911
912 /*
913 * Wake up the pagedaemon if the fault method
914 * failed for lack of memory but some can be
915 * reclaimed.
916 */
917 if (error == ENOMEM && uvm_reclaimable()) {
918 uvm_wait("pgo_fault");
919 error = ERESTART;
920 }
921 } else {
922 error = uvm_fault_lower(&ufi, &flt, pages);
923 }
924 }
925 }
926
927 if (flt.anon_spare != NULL) {
928 flt.anon_spare->an_ref--;
929 KASSERT(flt.anon_spare->an_ref == 0);
930 KASSERT(flt.anon_spare->an_lock == NULL);
931 uvm_anon_free(flt.anon_spare);
932 }
933 return error;
934 }
935
936 /*
937 * uvm_fault_check: check prot, handle needs-copy, etc.
938 *
939 * 1. lookup entry.
940 * 2. check protection.
941 * 3. adjust fault condition (mainly for simulated fault).
942 * 4. handle needs-copy (lazy amap copy).
943 * 5. establish range of interest for neighbor fault (aka pre-fault).
944 * 6. look up anons (if amap exists).
945 * 7. flush pages (if MADV_SEQUENTIAL)
946 *
947 * => called with nothing locked.
948 * => if we fail (result != 0) we unlock everything.
949 * => initialize/adjust many members of flt.
950 */
951
952 static int
953 uvm_fault_check(
954 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
955 struct vm_anon ***ranons, bool maxprot)
956 {
957 struct vm_amap *amap;
958 struct uvm_object *uobj;
959 vm_prot_t check_prot;
960 int nback, nforw;
961 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
962
963 /*
964 * lookup and lock the maps
965 */
966
967 if (uvmfault_lookup(ufi, false) == false) {
968 UVMHIST_LOG(maphist, "<- no mapping @ 0x%#jx", ufi->orig_rvaddr,
969 0,0,0);
970 return EFAULT;
971 }
972 /* locked: maps(read) */
973
974 #ifdef DIAGNOSTIC
975 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
976 printf("Page fault on non-pageable map:\n");
977 printf("ufi->map = %p\n", ufi->map);
978 printf("ufi->orig_map = %p\n", ufi->orig_map);
979 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
980 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
981 }
982 #endif
983
984 /*
985 * check protection
986 */
987
988 check_prot = maxprot ?
989 ufi->entry->max_protection : ufi->entry->protection;
990 if ((check_prot & flt->access_type) != flt->access_type) {
991 UVMHIST_LOG(maphist,
992 "<- protection failure (prot=%#jx, access=%#jx)",
993 ufi->entry->protection, flt->access_type, 0, 0);
994 uvmfault_unlockmaps(ufi, false);
995 return EFAULT;
996 }
997
998 /*
999 * "enter_prot" is the protection we want to enter the page in at.
1000 * for certain pages (e.g. copy-on-write pages) this protection can
1001 * be more strict than ufi->entry->protection. "wired" means either
1002 * the entry is wired or we are fault-wiring the pg.
1003 */
1004
1005 flt->enter_prot = ufi->entry->protection;
1006 if (VM_MAPENT_ISWIRED(ufi->entry)) {
1007 flt->wire_mapping = true;
1008 flt->wire_paging = true;
1009 flt->narrow = true;
1010 }
1011
1012 if (flt->wire_mapping) {
1013 flt->access_type = flt->enter_prot; /* full access for wired */
1014 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
1015 } else {
1016 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
1017 }
1018
1019 flt->promote = false;
1020
1021 /*
1022 * handle "needs_copy" case. if we need to copy the amap we will
1023 * have to drop our readlock and relock it with a write lock. (we
1024 * need a write lock to change anything in a map entry [e.g.
1025 * needs_copy]).
1026 */
1027
1028 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
1029 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
1030 KASSERT(!maxprot);
1031 /* need to clear */
1032 UVMHIST_LOG(maphist,
1033 " need to clear needs_copy and refault",0,0,0,0);
1034 uvmfault_unlockmaps(ufi, false);
1035 uvmfault_amapcopy(ufi);
1036 atomic_store_relaxed(&uvmexp.fltamcopy,
1037 atomic_load_relaxed(&uvmexp.fltamcopy) + 1);
1038 return ERESTART;
1039
1040 } else {
1041
1042 /*
1043 * ensure that we pmap_enter page R/O since
1044 * needs_copy is still true
1045 */
1046
1047 flt->enter_prot &= ~VM_PROT_WRITE;
1048 }
1049 }
1050
1051 /*
1052 * identify the players
1053 */
1054
1055 amap = ufi->entry->aref.ar_amap; /* upper layer */
1056 uobj = ufi->entry->object.uvm_obj; /* lower layer */
1057
1058 /*
1059 * check for a case 0 fault. if nothing backing the entry then
1060 * error now.
1061 */
1062
1063 if (amap == NULL && uobj == NULL) {
1064 uvmfault_unlockmaps(ufi, false);
1065 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
1066 return EFAULT;
1067 }
1068
1069 /*
1070 * establish range of interest based on advice from mapper
1071 * and then clip to fit map entry. note that we only want
1072 * to do this the first time through the fault. if we
1073 * ReFault we will disable this by setting "narrow" to true.
1074 */
1075
1076 if (flt->narrow == false) {
1077
1078 /* wide fault (!narrow) */
1079 KASSERT(uvmadvice[ufi->entry->advice].advice ==
1080 ufi->entry->advice);
1081 nback = MIN(uvmadvice[ufi->entry->advice].nback,
1082 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1083 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1084 /*
1085 * note: "-1" because we don't want to count the
1086 * faulting page as forw
1087 */
1088 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1089 ((ufi->entry->end - ufi->orig_rvaddr) >>
1090 PAGE_SHIFT) - 1);
1091 flt->npages = nback + nforw + 1;
1092 flt->centeridx = nback;
1093
1094 flt->narrow = true; /* ensure only once per-fault */
1095
1096 } else {
1097
1098 /* narrow fault! */
1099 nback = nforw = 0;
1100 flt->startva = ufi->orig_rvaddr;
1101 flt->npages = 1;
1102 flt->centeridx = 0;
1103
1104 }
1105 /* offset from entry's start to pgs' start */
1106 const voff_t eoff = flt->startva - ufi->entry->start;
1107
1108 /* locked: maps(read) */
1109 UVMHIST_LOG(maphist, " narrow=%jd, back=%jd, forw=%jd, startva=%#jx",
1110 flt->narrow, nback, nforw, flt->startva);
1111 UVMHIST_LOG(maphist, " entry=%#jx, amap=%#jx, obj=%#jx",
1112 (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0);
1113
1114 /*
1115 * if we've got an amap, lock it and extract current anons.
1116 */
1117
1118 if (amap) {
1119 amap_lock(amap);
1120 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1121 } else {
1122 *ranons = NULL; /* to be safe */
1123 }
1124
1125 /* locked: maps(read), amap(if there) */
1126 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1127
1128 /*
1129 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1130 * now and then forget about them (for the rest of the fault).
1131 */
1132
1133 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1134
1135 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1136 0,0,0,0);
1137 /* flush back-page anons? */
1138 if (amap)
1139 uvmfault_anonflush(*ranons, nback);
1140
1141 /* flush object? */
1142 if (uobj) {
1143 voff_t uoff;
1144
1145 uoff = ufi->entry->offset + eoff;
1146 mutex_enter(uobj->vmobjlock);
1147 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1148 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1149 }
1150
1151 /* now forget about the backpages */
1152 if (amap)
1153 *ranons += nback;
1154 flt->startva += (nback << PAGE_SHIFT);
1155 flt->npages -= nback;
1156 flt->centeridx = 0;
1157 }
1158 /*
1159 * => startva is fixed
1160 * => npages is fixed
1161 */
1162 KASSERT(flt->startva <= ufi->orig_rvaddr);
1163 KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1164 flt->startva + (flt->npages << PAGE_SHIFT));
1165 return 0;
1166 }
1167
1168 /*
1169 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1170 *
1171 * iterate range of interest:
1172 * 1. check if h/w mapping exists. if yes, we don't care
1173 * 2. check if anon exists. if not, page is lower.
1174 * 3. if anon exists, enter h/w mapping for neighbors.
1175 *
1176 * => called with amap locked (if exists).
1177 */
1178
1179 static int
1180 uvm_fault_upper_lookup(
1181 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1182 struct vm_anon **anons, struct vm_page **pages)
1183 {
1184 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1185 int lcv;
1186 vaddr_t currva;
1187 bool shadowed __unused;
1188 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1189
1190 /* locked: maps(read), amap(if there) */
1191 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1192
1193 /*
1194 * map in the backpages and frontpages we found in the amap in hopes
1195 * of preventing future faults. we also init the pages[] array as
1196 * we go.
1197 */
1198
1199 currva = flt->startva;
1200 shadowed = false;
1201 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1202 /*
1203 * don't play with VAs that are already mapped
1204 * (except for center)
1205 */
1206 if (lcv != flt->centeridx &&
1207 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1208 pages[lcv] = PGO_DONTCARE;
1209 continue;
1210 }
1211
1212 /*
1213 * unmapped or center page. check if any anon at this level.
1214 */
1215 if (amap == NULL || anons[lcv] == NULL) {
1216 pages[lcv] = NULL;
1217 continue;
1218 }
1219
1220 /*
1221 * check for present page and map if possible. re-activate it.
1222 */
1223
1224 pages[lcv] = PGO_DONTCARE;
1225 if (lcv == flt->centeridx) { /* save center for later! */
1226 shadowed = true;
1227 continue;
1228 }
1229
1230 struct vm_anon *anon = anons[lcv];
1231 struct vm_page *pg = anon->an_page;
1232
1233 KASSERT(anon->an_lock == amap->am_lock);
1234
1235 /* Ignore loaned and busy pages. */
1236 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
1237 uvm_fault_upper_neighbor(ufi, flt, currva,
1238 pg, anon->an_ref > 1);
1239 }
1240 }
1241
1242 /* locked: maps(read), amap(if there) */
1243 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1244 /* (shadowed == true) if there is an anon at the faulting address */
1245 UVMHIST_LOG(maphist, " shadowed=%jd, will_get=%jd", shadowed,
1246 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1247
1248 /*
1249 * note that if we are really short of RAM we could sleep in the above
1250 * call to pmap_enter with everything locked. bad?
1251 *
1252 * XXX Actually, that is bad; pmap_enter() should just fail in that
1253 * XXX case. --thorpej
1254 */
1255
1256 return 0;
1257 }
1258
1259 /*
1260 * uvm_fault_upper_neighbor: enter single upper neighbor page.
1261 *
1262 * => called with amap and anon locked.
1263 */
1264
1265 static void
1266 uvm_fault_upper_neighbor(
1267 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1268 vaddr_t currva, struct vm_page *pg, bool readonly)
1269 {
1270 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1271
1272 /* locked: amap, anon */
1273
1274 mutex_enter(&uvm_pageqlock);
1275 uvm_pageenqueue(pg);
1276 mutex_exit(&uvm_pageqlock);
1277 UVMHIST_LOG(maphist,
1278 " MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx",
1279 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1280 atomic_store_relaxed(&uvmexp.fltnamap,
1281 atomic_load_relaxed(&uvmexp.fltnamap) + 1);
1282
1283 /*
1284 * Since this page isn't the page that's actually faulting,
1285 * ignore pmap_enter() failures; it's not critical that we
1286 * enter these right now.
1287 */
1288
1289 (void) pmap_enter(ufi->orig_map->pmap, currva,
1290 VM_PAGE_TO_PHYS(pg),
1291 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1292 flt->enter_prot,
1293 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1294
1295 pmap_update(ufi->orig_map->pmap);
1296 }
1297
1298 /*
1299 * uvm_fault_upper: handle upper fault.
1300 *
1301 * 1. acquire anon lock.
1302 * 2. get anon. let uvmfault_anonget do the dirty work.
1303 * 3. handle loan.
1304 * 4. dispatch direct or promote handlers.
1305 */
1306
1307 static int
1308 uvm_fault_upper(
1309 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1310 struct vm_anon **anons)
1311 {
1312 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1313 struct vm_anon * const anon = anons[flt->centeridx];
1314 struct uvm_object *uobj;
1315 int error;
1316 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1317
1318 /* locked: maps(read), amap, anon */
1319 KASSERT(mutex_owned(amap->am_lock));
1320 KASSERT(anon->an_lock == amap->am_lock);
1321
1322 /*
1323 * handle case 1: fault on an anon in our amap
1324 */
1325
1326 UVMHIST_LOG(maphist, " case 1 fault: anon=%#jx",
1327 (uintptr_t)anon, 0, 0, 0);
1328
1329 /*
1330 * no matter if we have case 1A or case 1B we are going to need to
1331 * have the anon's memory resident. ensure that now.
1332 */
1333
1334 /*
1335 * let uvmfault_anonget do the dirty work.
1336 * if it fails (!OK) it will unlock everything for us.
1337 * if it succeeds, locks are still valid and locked.
1338 * also, if it is OK, then the anon's page is on the queues.
1339 * if the page is on loan from a uvm_object, then anonget will
1340 * lock that object for us if it does not fail.
1341 */
1342
1343 error = uvmfault_anonget(ufi, amap, anon);
1344 switch (error) {
1345 case 0:
1346 break;
1347
1348 case ERESTART:
1349 return ERESTART;
1350
1351 case EAGAIN:
1352 kpause("fltagain1", false, hz/2, NULL);
1353 return ERESTART;
1354
1355 default:
1356 return error;
1357 }
1358
1359 /*
1360 * uobj is non null if the page is on loan from an object (i.e. uobj)
1361 */
1362
1363 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1364
1365 /* locked: maps(read), amap, anon, uobj(if one) */
1366 KASSERT(mutex_owned(amap->am_lock));
1367 KASSERT(anon->an_lock == amap->am_lock);
1368 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1369
1370 /*
1371 * special handling for loaned pages
1372 */
1373
1374 if (anon->an_page->loan_count) {
1375 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1376 if (error != 0)
1377 return error;
1378 }
1379
1380 /*
1381 * if we are case 1B then we will need to allocate a new blank
1382 * anon to transfer the data into. note that we have a lock
1383 * on anon, so no one can busy or release the page until we are done.
1384 * also note that the ref count can't drop to zero here because
1385 * it is > 1 and we are only dropping one ref.
1386 *
1387 * in the (hopefully very rare) case that we are out of RAM we
1388 * will unlock, wait for more RAM, and refault.
1389 *
1390 * if we are out of anon VM we kill the process (XXX: could wait?).
1391 */
1392
1393 if (flt->cow_now && anon->an_ref > 1) {
1394 flt->promote = true;
1395 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1396 } else {
1397 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1398 }
1399 return error;
1400 }
1401
1402 /*
1403 * uvm_fault_upper_loan: handle loaned upper page.
1404 *
1405 * 1. if not cow'ing now, simply adjust flt->enter_prot.
1406 * 2. if cow'ing now, and if ref count is 1, break loan.
1407 */
1408
1409 static int
1410 uvm_fault_upper_loan(
1411 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1412 struct vm_anon *anon, struct uvm_object **ruobj)
1413 {
1414 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1415 int error = 0;
1416 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1417
1418 if (!flt->cow_now) {
1419
1420 /*
1421 * for read faults on loaned pages we just cap the
1422 * protection at read-only.
1423 */
1424
1425 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1426
1427 } else {
1428 /*
1429 * note that we can't allow writes into a loaned page!
1430 *
1431 * if we have a write fault on a loaned page in an
1432 * anon then we need to look at the anon's ref count.
1433 * if it is greater than one then we are going to do
1434 * a normal copy-on-write fault into a new anon (this
1435 * is not a problem). however, if the reference count
1436 * is one (a case where we would normally allow a
1437 * write directly to the page) then we need to kill
1438 * the loan before we continue.
1439 */
1440
1441 /* >1 case is already ok */
1442 if (anon->an_ref == 1) {
1443 error = uvm_loanbreak_anon(anon, *ruobj);
1444 if (error != 0) {
1445 uvmfault_unlockall(ufi, amap, *ruobj);
1446 uvm_wait("flt_noram2");
1447 return ERESTART;
1448 }
1449 /* if we were a loan receiver uobj is gone */
1450 if (*ruobj)
1451 *ruobj = NULL;
1452 }
1453 }
1454 return error;
1455 }
1456
1457 /*
1458 * uvm_fault_upper_promote: promote upper page.
1459 *
1460 * 1. call uvmfault_promote.
1461 * 2. enqueue page.
1462 * 3. deref.
1463 * 4. pass page to uvm_fault_upper_enter.
1464 */
1465
1466 static int
1467 uvm_fault_upper_promote(
1468 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1469 struct uvm_object *uobj, struct vm_anon *anon)
1470 {
1471 struct vm_anon * const oanon = anon;
1472 struct vm_page *pg;
1473 int error;
1474 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1475
1476 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1477 atomic_store_relaxed(&uvmexp.flt_acow,
1478 atomic_load_relaxed(&uvmexp.flt_acow) + 1);
1479
1480 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1481 &flt->anon_spare);
1482 switch (error) {
1483 case 0:
1484 break;
1485 case ERESTART:
1486 return ERESTART;
1487 default:
1488 return error;
1489 }
1490
1491 KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
1492
1493 pg = anon->an_page;
1494 mutex_enter(&uvm_pageqlock);
1495 uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
1496 mutex_exit(&uvm_pageqlock);
1497 pg->flags &= ~(PG_BUSY|PG_FAKE);
1498 UVM_PAGE_OWN(pg, NULL);
1499
1500 /* deref: can not drop to zero here by defn! */
1501 KASSERT(oanon->an_ref > 1);
1502 oanon->an_ref--;
1503
1504 /*
1505 * note: oanon is still locked, as is the new anon. we
1506 * need to check for this later when we unlock oanon; if
1507 * oanon != anon, we'll have to unlock anon, too.
1508 */
1509
1510 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1511 }
1512
1513 /*
1514 * uvm_fault_upper_direct: handle direct fault.
1515 */
1516
1517 static int
1518 uvm_fault_upper_direct(
1519 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1520 struct uvm_object *uobj, struct vm_anon *anon)
1521 {
1522 struct vm_anon * const oanon = anon;
1523 struct vm_page *pg;
1524 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1525
1526 atomic_store_relaxed(&uvmexp.flt_anon,
1527 atomic_load_relaxed(&uvmexp.flt_anon) + 1);
1528 pg = anon->an_page;
1529 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1530 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1531
1532 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1533 }
1534
1535 /*
1536 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1537 */
1538
1539 static int
1540 uvm_fault_upper_enter(
1541 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1542 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1543 struct vm_anon *oanon)
1544 {
1545 struct pmap *pmap = ufi->orig_map->pmap;
1546 vaddr_t va = ufi->orig_rvaddr;
1547 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1548 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1549
1550 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1551 KASSERT(mutex_owned(amap->am_lock));
1552 KASSERT(anon->an_lock == amap->am_lock);
1553 KASSERT(oanon->an_lock == amap->am_lock);
1554 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1555
1556 /*
1557 * now map the page in.
1558 */
1559
1560 UVMHIST_LOG(maphist,
1561 " MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
1562 (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote);
1563 if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg),
1564 flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1565 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1566
1567 /*
1568 * If pmap_enter() fails, it must not leave behind an existing
1569 * pmap entry. In particular, a now-stale entry for a different
1570 * page would leave the pmap inconsistent with the vm_map.
1571 * This is not to imply that pmap_enter() should remove an
1572 * existing mapping in such a situation (since that could create
1573 * different problems, eg. if the existing mapping is wired),
1574 * but rather that the pmap should be designed such that it
1575 * never needs to fail when the new mapping is replacing an
1576 * existing mapping and the new page has no existing mappings.
1577 */
1578
1579 KASSERT(!pmap_extract(pmap, va, NULL));
1580
1581 /*
1582 * No need to undo what we did; we can simply think of
1583 * this as the pmap throwing away the mapping information.
1584 *
1585 * We do, however, have to go through the ReFault path,
1586 * as the map may change while we're asleep.
1587 */
1588
1589 uvmfault_unlockall(ufi, amap, uobj);
1590 if (!uvm_reclaimable()) {
1591 UVMHIST_LOG(maphist,
1592 "<- failed. out of VM",0,0,0,0);
1593 /* XXX instrumentation */
1594 return ENOMEM;
1595 }
1596 /* XXX instrumentation */
1597 uvm_wait("flt_pmfail1");
1598 return ERESTART;
1599 }
1600
1601 uvm_fault_upper_done(ufi, flt, anon, pg);
1602
1603 /*
1604 * done case 1! finish up by unlocking everything and returning success
1605 */
1606
1607 pmap_update(pmap);
1608 uvmfault_unlockall(ufi, amap, uobj);
1609 return 0;
1610 }
1611
1612 /*
1613 * uvm_fault_upper_done: queue upper center page.
1614 */
1615
1616 static void
1617 uvm_fault_upper_done(
1618 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1619 struct vm_anon *anon, struct vm_page *pg)
1620 {
1621 const bool wire_paging = flt->wire_paging;
1622
1623 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1624
1625 /*
1626 * ... update the page queues.
1627 */
1628
1629 mutex_enter(&uvm_pageqlock);
1630 if (wire_paging) {
1631 uvm_pagewire(pg);
1632
1633 /*
1634 * since the now-wired page cannot be paged out,
1635 * release its swap resources for others to use.
1636 * since an anon with no swap cannot be PG_CLEAN,
1637 * clear its clean flag now.
1638 */
1639
1640 pg->flags &= ~(PG_CLEAN);
1641
1642 } else {
1643 uvm_pageactivate(pg);
1644 }
1645 mutex_exit(&uvm_pageqlock);
1646
1647 if (wire_paging) {
1648 uvm_anon_dropswap(anon);
1649 }
1650 }
1651
1652 /*
1653 * uvm_fault_lower: handle lower fault.
1654 *
1655 * 1. check uobj
1656 * 1.1. if null, ZFOD.
1657 * 1.2. if not null, look up unnmapped neighbor pages.
1658 * 2. for center page, check if promote.
1659 * 2.1. ZFOD always needs promotion.
1660 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1661 * 3. if uobj is not ZFOD and page is not found, do i/o.
1662 * 4. dispatch either direct / promote fault.
1663 */
1664
1665 static int
1666 uvm_fault_lower(
1667 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1668 struct vm_page **pages)
1669 {
1670 struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap;
1671 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1672 struct vm_page *uobjpage;
1673 int error;
1674 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1675
1676 /*
1677 * now, if the desired page is not shadowed by the amap and we have
1678 * a backing object that does not have a special fault routine, then
1679 * we ask (with pgo_get) the object for resident pages that we care
1680 * about and attempt to map them in. we do not let pgo_get block
1681 * (PGO_LOCKED).
1682 */
1683
1684 if (uobj == NULL) {
1685 /* zero fill; don't care neighbor pages */
1686 uobjpage = NULL;
1687 } else {
1688 uvm_fault_lower_lookup(ufi, flt, pages);
1689 uobjpage = pages[flt->centeridx];
1690 }
1691
1692 /*
1693 * note that at this point we are done with any front or back pages.
1694 * we are now going to focus on the center page (i.e. the one we've
1695 * faulted on). if we have faulted on the upper (anon) layer
1696 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1697 * not touched it yet). if we have faulted on the bottom (uobj)
1698 * layer [i.e. case 2] and the page was both present and available,
1699 * then we've got a pointer to it as "uobjpage" and we've already
1700 * made it BUSY.
1701 */
1702
1703 /*
1704 * locked:
1705 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1706 */
1707 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1708 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1709 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1710
1711 /*
1712 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1713 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1714 * have a backing object, check and see if we are going to promote
1715 * the data up to an anon during the fault.
1716 */
1717
1718 if (uobj == NULL) {
1719 uobjpage = PGO_DONTCARE;
1720 flt->promote = true; /* always need anon here */
1721 } else {
1722 KASSERT(uobjpage != PGO_DONTCARE);
1723 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1724 }
1725 UVMHIST_LOG(maphist, " case 2 fault: promote=%jd, zfill=%jd",
1726 flt->promote, (uobj == NULL), 0,0);
1727
1728 /*
1729 * if uobjpage is not null then we do not need to do I/O to get the
1730 * uobjpage.
1731 *
1732 * if uobjpage is null, then we need to unlock and ask the pager to
1733 * get the data for us. once we have the data, we need to reverify
1734 * the state the world. we are currently not holding any resources.
1735 */
1736
1737 if (uobjpage) {
1738 /* update rusage counters */
1739 curlwp->l_ru.ru_minflt++;
1740 } else {
1741 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1742 if (error != 0)
1743 return error;
1744 }
1745
1746 /*
1747 * locked:
1748 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1749 */
1750 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1751 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1752 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1753
1754 /*
1755 * notes:
1756 * - at this point uobjpage can not be NULL
1757 * - at this point uobjpage can not be PG_RELEASED (since we checked
1758 * for it above)
1759 * - at this point uobjpage could be PG_WANTED (handle later)
1760 */
1761
1762 KASSERT(uobjpage != NULL);
1763 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1764 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1765 (uobjpage->flags & PG_CLEAN) != 0);
1766
1767 if (!flt->promote) {
1768 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1769 } else {
1770 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1771 }
1772 return error;
1773 }
1774
1775 /*
1776 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1777 *
1778 * 1. get on-memory pages.
1779 * 2. if failed, give up (get only center page later).
1780 * 3. if succeeded, enter h/w mapping of neighbor pages.
1781 */
1782
1783 static void
1784 uvm_fault_lower_lookup(
1785 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1786 struct vm_page **pages)
1787 {
1788 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1789 int lcv, gotpages;
1790 vaddr_t currva;
1791 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1792
1793 mutex_enter(uobj->vmobjlock);
1794 /* Locked: maps(read), amap(if there), uobj */
1795
1796 atomic_store_relaxed(&uvmexp.fltlget,
1797 atomic_load_relaxed(&uvmexp.fltlget) + 1);
1798 gotpages = flt->npages;
1799 (void) uobj->pgops->pgo_get(uobj,
1800 ufi->entry->offset + flt->startva - ufi->entry->start,
1801 pages, &gotpages, flt->centeridx,
1802 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1803
1804 KASSERT(mutex_owned(uobj->vmobjlock));
1805
1806 /*
1807 * check for pages to map, if we got any
1808 */
1809
1810 if (gotpages == 0) {
1811 pages[flt->centeridx] = NULL;
1812 return;
1813 }
1814
1815 currva = flt->startva;
1816 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1817 struct vm_page *curpg;
1818
1819 curpg = pages[lcv];
1820 if (curpg == NULL || curpg == PGO_DONTCARE) {
1821 continue;
1822 }
1823 KASSERT(curpg->uobject == uobj);
1824
1825 /*
1826 * if center page is resident and not PG_BUSY|PG_RELEASED
1827 * then pgo_get made it PG_BUSY for us and gave us a handle
1828 * to it.
1829 */
1830
1831 if (lcv == flt->centeridx) {
1832 UVMHIST_LOG(maphist, " got uobjpage (0x%#jx) "
1833 "with locked get", (uintptr_t)curpg, 0, 0, 0);
1834 } else {
1835 bool readonly = (curpg->flags & PG_RDONLY)
1836 || (curpg->loan_count > 0)
1837 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1838
1839 uvm_fault_lower_neighbor(ufi, flt,
1840 currva, curpg, readonly);
1841 }
1842 }
1843 pmap_update(ufi->orig_map->pmap);
1844 }
1845
1846 /*
1847 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1848 */
1849
1850 static void
1851 uvm_fault_lower_neighbor(
1852 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1853 vaddr_t currva, struct vm_page *pg, bool readonly)
1854 {
1855 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1856
1857 /* locked: maps(read), amap(if there), uobj */
1858
1859 /*
1860 * calling pgo_get with PGO_LOCKED returns us pages which
1861 * are neither busy nor released, so we don't need to check
1862 * for this. we can just directly enter the pages.
1863 */
1864
1865 mutex_enter(&uvm_pageqlock);
1866 uvm_pageenqueue(pg);
1867 mutex_exit(&uvm_pageqlock);
1868 UVMHIST_LOG(maphist,
1869 " MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx",
1870 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1871 atomic_store_relaxed(&uvmexp.fltnomap,
1872 atomic_load_relaxed(&uvmexp.fltnomap) + 1);
1873
1874 /*
1875 * Since this page isn't the page that's actually faulting,
1876 * ignore pmap_enter() failures; it's not critical that we
1877 * enter these right now.
1878 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1879 * held the lock the whole time we've had the handle.
1880 */
1881 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1882 KASSERT((pg->flags & PG_RELEASED) == 0);
1883 KASSERT((pg->flags & PG_WANTED) == 0);
1884 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
1885 pg->flags &= ~(PG_BUSY);
1886 UVM_PAGE_OWN(pg, NULL);
1887
1888 KASSERT(mutex_owned(pg->uobject->vmobjlock));
1889
1890 const vm_prot_t mapprot =
1891 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1892 flt->enter_prot & MASK(ufi->entry);
1893 const u_int mapflags =
1894 PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0);
1895 (void) pmap_enter(ufi->orig_map->pmap, currva,
1896 VM_PAGE_TO_PHYS(pg), mapprot, mapflags);
1897 }
1898
1899 /*
1900 * uvm_fault_lower_io: get lower page from backing store.
1901 *
1902 * 1. unlock everything, because i/o will block.
1903 * 2. call pgo_get.
1904 * 3. if failed, recover.
1905 * 4. if succeeded, relock everything and verify things.
1906 */
1907
1908 static int
1909 uvm_fault_lower_io(
1910 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1911 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1912 {
1913 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1914 struct uvm_object *uobj = *ruobj;
1915 struct vm_page *pg;
1916 bool locked;
1917 int gotpages;
1918 int error;
1919 voff_t uoff;
1920 vm_prot_t access_type;
1921 int advice;
1922 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1923
1924 /* update rusage counters */
1925 curlwp->l_ru.ru_majflt++;
1926
1927 /* grab everything we need from the entry before we unlock */
1928 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1929 access_type = flt->access_type & MASK(ufi->entry);
1930 advice = ufi->entry->advice;
1931
1932 /* Locked: maps(read), amap(if there), uobj */
1933 uvmfault_unlockall(ufi, amap, NULL);
1934
1935 /* Locked: uobj */
1936 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1937
1938 atomic_store_relaxed(&uvmexp.fltget,
1939 atomic_load_relaxed(&uvmexp.fltget) + 1);
1940 gotpages = 1;
1941 pg = NULL;
1942 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1943 0, access_type, advice, PGO_SYNCIO);
1944 /* locked: pg(if no error) */
1945
1946 /*
1947 * recover from I/O
1948 */
1949
1950 if (error) {
1951 if (error == EAGAIN) {
1952 UVMHIST_LOG(maphist,
1953 " pgo_get says TRY AGAIN!",0,0,0,0);
1954 kpause("fltagain2", false, hz/2, NULL);
1955 return ERESTART;
1956 }
1957
1958 #if 0
1959 KASSERT(error != ERESTART);
1960 #else
1961 /* XXXUEBS don't re-fault? */
1962 if (error == ERESTART)
1963 error = EIO;
1964 #endif
1965
1966 UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)",
1967 error, 0,0,0);
1968 return error;
1969 }
1970
1971 /*
1972 * re-verify the state of the world by first trying to relock
1973 * the maps. always relock the object.
1974 */
1975
1976 locked = uvmfault_relock(ufi);
1977 if (locked && amap)
1978 amap_lock(amap);
1979
1980 /* might be changed */
1981 uobj = pg->uobject;
1982
1983 mutex_enter(uobj->vmobjlock);
1984 KASSERT((pg->flags & PG_BUSY) != 0);
1985
1986 mutex_enter(&uvm_pageqlock);
1987 uvm_pageactivate(pg);
1988 mutex_exit(&uvm_pageqlock);
1989
1990 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1991 /* locked(!locked): uobj, pg */
1992
1993 /*
1994 * verify that the page has not be released and re-verify
1995 * that amap slot is still free. if there is a problem,
1996 * we unlock and clean up.
1997 */
1998
1999 if ((pg->flags & PG_RELEASED) != 0 ||
2000 (locked && amap && amap_lookup(&ufi->entry->aref,
2001 ufi->orig_rvaddr - ufi->entry->start))) {
2002 if (locked)
2003 uvmfault_unlockall(ufi, amap, NULL);
2004 locked = false;
2005 }
2006
2007 /*
2008 * didn't get the lock? release the page and retry.
2009 */
2010
2011 if (locked == false) {
2012 UVMHIST_LOG(maphist,
2013 " wasn't able to relock after fault: retry",
2014 0,0,0,0);
2015 if (pg->flags & PG_WANTED) {
2016 wakeup(pg);
2017 }
2018 if ((pg->flags & PG_RELEASED) == 0) {
2019 pg->flags &= ~(PG_BUSY | PG_WANTED);
2020 UVM_PAGE_OWN(pg, NULL);
2021 } else {
2022 atomic_store_relaxed(&uvmexp.fltpgrele,
2023 atomic_load_relaxed(&uvmexp.fltpgrele) + 1);
2024 uvm_pagefree(pg);
2025 }
2026 mutex_exit(uobj->vmobjlock);
2027 return ERESTART;
2028 }
2029
2030 /*
2031 * we have the data in pg which is busy and
2032 * not released. we are holding object lock (so the page
2033 * can't be released on us).
2034 */
2035
2036 /* locked: maps(read), amap(if !null), uobj, pg */
2037
2038 *ruobj = uobj;
2039 *ruobjpage = pg;
2040 return 0;
2041 }
2042
2043 /*
2044 * uvm_fault_lower_direct: fault lower center page
2045 *
2046 * 1. adjust flt->enter_prot.
2047 * 2. if page is loaned, resolve.
2048 */
2049
2050 int
2051 uvm_fault_lower_direct(
2052 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2053 struct uvm_object *uobj, struct vm_page *uobjpage)
2054 {
2055 struct vm_page *pg;
2056 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
2057
2058 /*
2059 * we are not promoting. if the mapping is COW ensure that we
2060 * don't give more access than we should (e.g. when doing a read
2061 * fault on a COPYONWRITE mapping we want to map the COW page in
2062 * R/O even though the entry protection could be R/W).
2063 *
2064 * set "pg" to the page we want to map in (uobjpage, usually)
2065 */
2066
2067 atomic_store_relaxed(&uvmexp.flt_obj,
2068 atomic_load_relaxed(&uvmexp.flt_obj) + 1);
2069 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
2070 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
2071 flt->enter_prot &= ~VM_PROT_WRITE;
2072 pg = uobjpage; /* map in the actual object */
2073
2074 KASSERT(uobjpage != PGO_DONTCARE);
2075
2076 /*
2077 * we are faulting directly on the page. be careful
2078 * about writing to loaned pages...
2079 */
2080
2081 if (uobjpage->loan_count) {
2082 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
2083 }
2084 KASSERT(pg == uobjpage);
2085
2086 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2087 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
2088 }
2089
2090 /*
2091 * uvm_fault_lower_direct_loan: resolve loaned page.
2092 *
2093 * 1. if not cow'ing, adjust flt->enter_prot.
2094 * 2. if cow'ing, break loan.
2095 */
2096
2097 static int
2098 uvm_fault_lower_direct_loan(
2099 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2100 struct uvm_object *uobj, struct vm_page **rpg,
2101 struct vm_page **ruobjpage)
2102 {
2103 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2104 struct vm_page *pg;
2105 struct vm_page *uobjpage = *ruobjpage;
2106 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
2107
2108 if (!flt->cow_now) {
2109 /* read fault: cap the protection at readonly */
2110 /* cap! */
2111 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2112 } else {
2113 /* write fault: must break the loan here */
2114
2115 pg = uvm_loanbreak(uobjpage);
2116 if (pg == NULL) {
2117
2118 /*
2119 * drop ownership of page, it can't be released
2120 */
2121
2122 if (uobjpage->flags & PG_WANTED)
2123 wakeup(uobjpage);
2124 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2125 UVM_PAGE_OWN(uobjpage, NULL);
2126
2127 uvmfault_unlockall(ufi, amap, uobj);
2128 UVMHIST_LOG(maphist,
2129 " out of RAM breaking loan, waiting",
2130 0,0,0,0);
2131 atomic_store_relaxed(&uvmexp.fltnoram,
2132 atomic_load_relaxed(&uvmexp.fltnoram) + 1);
2133 uvm_wait("flt_noram4");
2134 return ERESTART;
2135 }
2136 *rpg = pg;
2137 *ruobjpage = pg;
2138 }
2139 return 0;
2140 }
2141
2142 /*
2143 * uvm_fault_lower_promote: promote lower page.
2144 *
2145 * 1. call uvmfault_promote.
2146 * 2. fill in data.
2147 * 3. if not ZFOD, dispose old page.
2148 */
2149
2150 int
2151 uvm_fault_lower_promote(
2152 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2153 struct uvm_object *uobj, struct vm_page *uobjpage)
2154 {
2155 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2156 struct vm_anon *anon;
2157 struct vm_page *pg;
2158 int error;
2159 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2160
2161 KASSERT(amap != NULL);
2162
2163 /*
2164 * If we are going to promote the data to an anon we
2165 * allocate a blank anon here and plug it into our amap.
2166 */
2167 error = uvmfault_promote(ufi, NULL, uobjpage,
2168 &anon, &flt->anon_spare);
2169 switch (error) {
2170 case 0:
2171 break;
2172 case ERESTART:
2173 return ERESTART;
2174 default:
2175 return error;
2176 }
2177
2178 pg = anon->an_page;
2179
2180 /*
2181 * Fill in the data.
2182 */
2183 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2184
2185 if (uobjpage != PGO_DONTCARE) {
2186 uvmexp.flt_prcopy++;
2187
2188 /*
2189 * promote to shared amap? make sure all sharing
2190 * procs see it
2191 */
2192
2193 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2194 pmap_page_protect(uobjpage, VM_PROT_NONE);
2195 /*
2196 * XXX: PAGE MIGHT BE WIRED!
2197 */
2198 }
2199
2200 /*
2201 * dispose of uobjpage. it can't be PG_RELEASED
2202 * since we still hold the object lock.
2203 */
2204
2205 if (uobjpage->flags & PG_WANTED) {
2206 /* still have the obj lock */
2207 wakeup(uobjpage);
2208 }
2209 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2210 UVM_PAGE_OWN(uobjpage, NULL);
2211
2212 UVMHIST_LOG(maphist,
2213 " promote uobjpage 0x%#jx to anon/page 0x%#jx/0x%#jx",
2214 (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0);
2215
2216 } else {
2217 uvmexp.flt_przero++;
2218
2219 /*
2220 * Page is zero'd and marked dirty by
2221 * uvmfault_promote().
2222 */
2223
2224 UVMHIST_LOG(maphist," zero fill anon/page 0x%#jx/0%#jx",
2225 (uintptr_t)anon, (uintptr_t)pg, 0, 0);
2226 }
2227
2228 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2229 }
2230
2231 /*
2232 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2233 * from the lower page.
2234 */
2235
2236 int
2237 uvm_fault_lower_enter(
2238 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2239 struct uvm_object *uobj,
2240 struct vm_anon *anon, struct vm_page *pg)
2241 {
2242 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2243 int error;
2244 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2245
2246 /*
2247 * Locked:
2248 *
2249 * maps(read), amap(if !null), uobj(if !null),
2250 * anon(if !null), pg(if anon), unlock_uobj(if !null)
2251 *
2252 * Note: pg is either the uobjpage or the new page in the new anon.
2253 */
2254 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
2255 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
2256 KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2257 KASSERT((pg->flags & PG_BUSY) != 0);
2258
2259 /*
2260 * all resources are present. we can now map it in and free our
2261 * resources.
2262 */
2263
2264 UVMHIST_LOG(maphist,
2265 " MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
2266 (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr,
2267 (uintptr_t)pg, flt->promote);
2268 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2269 (pg->flags & PG_RDONLY) == 0);
2270 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2271 VM_PAGE_TO_PHYS(pg),
2272 (pg->flags & PG_RDONLY) != 0 ?
2273 flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2274 flt->access_type | PMAP_CANFAIL |
2275 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2276
2277 /*
2278 * No need to undo what we did; we can simply think of
2279 * this as the pmap throwing away the mapping information.
2280 *
2281 * We do, however, have to go through the ReFault path,
2282 * as the map may change while we're asleep.
2283 */
2284
2285 /*
2286 * ensure that the page is queued in the case that
2287 * we just promoted the page.
2288 */
2289
2290 mutex_enter(&uvm_pageqlock);
2291 uvm_pageenqueue(pg);
2292 mutex_exit(&uvm_pageqlock);
2293
2294 if (pg->flags & PG_WANTED)
2295 wakeup(pg);
2296
2297 /*
2298 * note that pg can't be PG_RELEASED since we did not drop
2299 * the object lock since the last time we checked.
2300 */
2301 KASSERT((pg->flags & PG_RELEASED) == 0);
2302
2303 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2304 UVM_PAGE_OWN(pg, NULL);
2305
2306 uvmfault_unlockall(ufi, amap, uobj);
2307 if (!uvm_reclaimable()) {
2308 UVMHIST_LOG(maphist,
2309 "<- failed. out of VM",0,0,0,0);
2310 /* XXX instrumentation */
2311 error = ENOMEM;
2312 return error;
2313 }
2314 /* XXX instrumentation */
2315 uvm_wait("flt_pmfail2");
2316 return ERESTART;
2317 }
2318
2319 uvm_fault_lower_done(ufi, flt, uobj, pg);
2320
2321 /*
2322 * note that pg can't be PG_RELEASED since we did not drop the object
2323 * lock since the last time we checked.
2324 */
2325 KASSERT((pg->flags & PG_RELEASED) == 0);
2326 if (pg->flags & PG_WANTED)
2327 wakeup(pg);
2328 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2329 UVM_PAGE_OWN(pg, NULL);
2330
2331 pmap_update(ufi->orig_map->pmap);
2332 uvmfault_unlockall(ufi, amap, uobj);
2333
2334 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2335 return 0;
2336 }
2337
2338 /*
2339 * uvm_fault_lower_done: queue lower center page.
2340 */
2341
2342 void
2343 uvm_fault_lower_done(
2344 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2345 struct uvm_object *uobj, struct vm_page *pg)
2346 {
2347 bool dropswap = false;
2348
2349 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2350
2351 mutex_enter(&uvm_pageqlock);
2352 if (flt->wire_paging) {
2353 uvm_pagewire(pg);
2354 if (pg->pqflags & PQ_AOBJ) {
2355
2356 /*
2357 * since the now-wired page cannot be paged out,
2358 * release its swap resources for others to use.
2359 * since an aobj page with no swap cannot be PG_CLEAN,
2360 * clear its clean flag now.
2361 */
2362
2363 KASSERT(uobj != NULL);
2364 pg->flags &= ~(PG_CLEAN);
2365 dropswap = true;
2366 }
2367 } else {
2368 uvm_pageactivate(pg);
2369 }
2370 mutex_exit(&uvm_pageqlock);
2371
2372 if (dropswap) {
2373 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2374 }
2375 }
2376
2377
2378 /*
2379 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2380 *
2381 * => map may be read-locked by caller, but MUST NOT be write-locked.
2382 * => if map is read-locked, any operations which may cause map to
2383 * be write-locked in uvm_fault() must be taken care of by
2384 * the caller. See uvm_map_pageable().
2385 */
2386
2387 int
2388 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2389 vm_prot_t access_type, int maxprot)
2390 {
2391 vaddr_t va;
2392 int error;
2393
2394 /*
2395 * now fault it in a page at a time. if the fault fails then we have
2396 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2397 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2398 */
2399
2400 /*
2401 * XXX work around overflowing a vaddr_t. this prevents us from
2402 * wiring the last page in the address space, though.
2403 */
2404 if (start > end) {
2405 return EFAULT;
2406 }
2407
2408 for (va = start; va < end; va += PAGE_SIZE) {
2409 error = uvm_fault_internal(map, va, access_type,
2410 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2411 if (error) {
2412 if (va != start) {
2413 uvm_fault_unwire(map, start, va);
2414 }
2415 return error;
2416 }
2417 }
2418 return 0;
2419 }
2420
2421 /*
2422 * uvm_fault_unwire(): unwire range of virtual space.
2423 */
2424
2425 void
2426 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2427 {
2428 vm_map_lock_read(map);
2429 uvm_fault_unwire_locked(map, start, end);
2430 vm_map_unlock_read(map);
2431 }
2432
2433 /*
2434 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2435 *
2436 * => map must be at least read-locked.
2437 */
2438
2439 void
2440 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2441 {
2442 struct vm_map_entry *entry, *oentry;
2443 pmap_t pmap = vm_map_pmap(map);
2444 vaddr_t va;
2445 paddr_t pa;
2446 struct vm_page *pg;
2447
2448 /*
2449 * we assume that the area we are unwiring has actually been wired
2450 * in the first place. this means that we should be able to extract
2451 * the PAs from the pmap. we also lock out the page daemon so that
2452 * we can call uvm_pageunwire.
2453 */
2454
2455 /*
2456 * find the beginning map entry for the region.
2457 */
2458
2459 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2460 if (uvm_map_lookup_entry(map, start, &entry) == false)
2461 panic("uvm_fault_unwire_locked: address not in map");
2462
2463 oentry = NULL;
2464 for (va = start; va < end; va += PAGE_SIZE) {
2465
2466 /*
2467 * find the map entry for the current address.
2468 */
2469
2470 KASSERT(va >= entry->start);
2471 while (va >= entry->end) {
2472 KASSERT(entry->next != &map->header &&
2473 entry->next->start <= entry->end);
2474 entry = entry->next;
2475 }
2476
2477 /*
2478 * lock it.
2479 */
2480
2481 if (entry != oentry) {
2482 if (oentry != NULL) {
2483 mutex_exit(&uvm_pageqlock);
2484 uvm_map_unlock_entry(oentry);
2485 }
2486 uvm_map_lock_entry(entry);
2487 mutex_enter(&uvm_pageqlock);
2488 oentry = entry;
2489 }
2490
2491 /*
2492 * if the entry is no longer wired, tell the pmap.
2493 */
2494
2495 if (!pmap_extract(pmap, va, &pa))
2496 continue;
2497
2498 if (VM_MAPENT_ISWIRED(entry) == 0)
2499 pmap_unwire(pmap, va);
2500
2501 pg = PHYS_TO_VM_PAGE(pa);
2502 if (pg)
2503 uvm_pageunwire(pg);
2504 }
2505
2506 if (oentry != NULL) {
2507 mutex_exit(&uvm_pageqlock);
2508 uvm_map_unlock_entry(entry);
2509 }
2510 }
2511