Home | History | Annotate | Line # | Download | only in uvm
uvm_fault.c revision 1.213
      1 /*	$NetBSD: uvm_fault.c,v 1.213 2019/12/16 22:47:55 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  *
     27  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
     28  */
     29 
     30 /*
     31  * uvm_fault.c: fault handler
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.213 2019/12/16 22:47:55 ad Exp $");
     36 
     37 #include "opt_uvmhist.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/atomic.h>
     42 #include <sys/kernel.h>
     43 #include <sys/mman.h>
     44 
     45 #include <uvm/uvm.h>
     46 
     47 /*
     48  *
     49  * a word on page faults:
     50  *
     51  * types of page faults we handle:
     52  *
     53  * CASE 1: upper layer faults                   CASE 2: lower layer faults
     54  *
     55  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
     56  *    read/write1     write>1                  read/write   +-cow_write/zero
     57  *         |             |                         |        |
     58  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
     59  * amap |  V  |       |  ---------> new |          |        | |  ^  |
     60  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
     61  *                                                 |        |    |
     62  *      +-----+       +-----+                   +--|--+     | +--|--+
     63  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
     64  *      +-----+       +-----+                   +-----+       +-----+
     65  *
     66  * d/c = don't care
     67  *
     68  *   case [0]: layerless fault
     69  *	no amap or uobj is present.   this is an error.
     70  *
     71  *   case [1]: upper layer fault [anon active]
     72  *     1A: [read] or [write with anon->an_ref == 1]
     73  *		I/O takes place in upper level anon and uobj is not touched.
     74  *     1B: [write with anon->an_ref > 1]
     75  *		new anon is alloc'd and data is copied off ["COW"]
     76  *
     77  *   case [2]: lower layer fault [uobj]
     78  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
     79  *		I/O takes place directly in object.
     80  *     2B: [write to copy_on_write] or [read on NULL uobj]
     81  *		data is "promoted" from uobj to a new anon.
     82  *		if uobj is null, then we zero fill.
     83  *
     84  * we follow the standard UVM locking protocol ordering:
     85  *
     86  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
     87  * we hold a PG_BUSY page if we unlock for I/O
     88  *
     89  *
     90  * the code is structured as follows:
     91  *
     92  *     - init the "IN" params in the ufi structure
     93  *   ReFault: (ERESTART returned to the loop in uvm_fault_internal)
     94  *     - do lookups [locks maps], check protection, handle needs_copy
     95  *     - check for case 0 fault (error)
     96  *     - establish "range" of fault
     97  *     - if we have an amap lock it and extract the anons
     98  *     - if sequential advice deactivate pages behind us
     99  *     - at the same time check pmap for unmapped areas and anon for pages
    100  *	 that we could map in (and do map it if found)
    101  *     - check object for resident pages that we could map in
    102  *     - if (case 2) goto Case2
    103  *     - >>> handle case 1
    104  *           - ensure source anon is resident in RAM
    105  *           - if case 1B alloc new anon and copy from source
    106  *           - map the correct page in
    107  *   Case2:
    108  *     - >>> handle case 2
    109  *           - ensure source page is resident (if uobj)
    110  *           - if case 2B alloc new anon and copy from source (could be zero
    111  *		fill if uobj == NULL)
    112  *           - map the correct page in
    113  *     - done!
    114  *
    115  * note on paging:
    116  *   if we have to do I/O we place a PG_BUSY page in the correct object,
    117  * unlock everything, and do the I/O.   when I/O is done we must reverify
    118  * the state of the world before assuming that our data structures are
    119  * valid.   [because mappings could change while the map is unlocked]
    120  *
    121  *  alternative 1: unbusy the page in question and restart the page fault
    122  *    from the top (ReFault).   this is easy but does not take advantage
    123  *    of the information that we already have from our previous lookup,
    124  *    although it is possible that the "hints" in the vm_map will help here.
    125  *
    126  * alternative 2: the system already keeps track of a "version" number of
    127  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
    128  *    mapping) you bump the version number up by one...]   so, we can save
    129  *    the version number of the map before we release the lock and start I/O.
    130  *    then when I/O is done we can relock and check the version numbers
    131  *    to see if anything changed.    this might save us some over 1 because
    132  *    we don't have to unbusy the page and may be less compares(?).
    133  *
    134  * alternative 3: put in backpointers or a way to "hold" part of a map
    135  *    in place while I/O is in progress.   this could be complex to
    136  *    implement (especially with structures like amap that can be referenced
    137  *    by multiple map entries, and figuring out what should wait could be
    138  *    complex as well...).
    139  *
    140  * we use alternative 2.  given that we are multi-threaded now we may want
    141  * to reconsider the choice.
    142  */
    143 
    144 /*
    145  * local data structures
    146  */
    147 
    148 struct uvm_advice {
    149 	int advice;
    150 	int nback;
    151 	int nforw;
    152 };
    153 
    154 /*
    155  * page range array:
    156  * note: index in array must match "advice" value
    157  * XXX: borrowed numbers from freebsd.   do they work well for us?
    158  */
    159 
    160 static const struct uvm_advice uvmadvice[] = {
    161 	{ UVM_ADV_NORMAL, 3, 4 },
    162 	{ UVM_ADV_RANDOM, 0, 0 },
    163 	{ UVM_ADV_SEQUENTIAL, 8, 7},
    164 };
    165 
    166 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
    167 
    168 /*
    169  * private prototypes
    170  */
    171 
    172 /*
    173  * externs from other modules
    174  */
    175 
    176 extern int start_init_exec;	/* Is init_main() done / init running? */
    177 
    178 /*
    179  * inline functions
    180  */
    181 
    182 /*
    183  * uvmfault_anonflush: try and deactivate pages in specified anons
    184  *
    185  * => does not have to deactivate page if it is busy
    186  */
    187 
    188 static inline void
    189 uvmfault_anonflush(struct vm_anon **anons, int n)
    190 {
    191 	int lcv;
    192 	struct vm_page *pg;
    193 
    194 	for (lcv = 0; lcv < n; lcv++) {
    195 		if (anons[lcv] == NULL)
    196 			continue;
    197 		KASSERT(mutex_owned(anons[lcv]->an_lock));
    198 		pg = anons[lcv]->an_page;
    199 		if (pg && (pg->flags & PG_BUSY) == 0) {
    200 			uvm_pagedeactivate(pg);
    201 		}
    202 	}
    203 }
    204 
    205 /*
    206  * normal functions
    207  */
    208 
    209 /*
    210  * uvmfault_amapcopy: clear "needs_copy" in a map.
    211  *
    212  * => called with VM data structures unlocked (usually, see below)
    213  * => we get a write lock on the maps and clear needs_copy for a VA
    214  * => if we are out of RAM we sleep (waiting for more)
    215  */
    216 
    217 static void
    218 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
    219 {
    220 	for (;;) {
    221 
    222 		/*
    223 		 * no mapping?  give up.
    224 		 */
    225 
    226 		if (uvmfault_lookup(ufi, true) == false)
    227 			return;
    228 
    229 		/*
    230 		 * copy if needed.
    231 		 */
    232 
    233 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
    234 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
    235 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
    236 
    237 		/*
    238 		 * didn't work?  must be out of RAM.   unlock and sleep.
    239 		 */
    240 
    241 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
    242 			uvmfault_unlockmaps(ufi, true);
    243 			uvm_wait("fltamapcopy");
    244 			continue;
    245 		}
    246 
    247 		/*
    248 		 * got it!   unlock and return.
    249 		 */
    250 
    251 		uvmfault_unlockmaps(ufi, true);
    252 		return;
    253 	}
    254 	/*NOTREACHED*/
    255 }
    256 
    257 /*
    258  * uvmfault_anonget: get data in an anon into a non-busy, non-released
    259  * page in that anon.
    260  *
    261  * => Map, amap and thus anon should be locked by caller.
    262  * => If we fail, we unlock everything and error is returned.
    263  * => If we are successful, return with everything still locked.
    264  * => We do not move the page on the queues [gets moved later].  If we
    265  *    allocate a new page [we_own], it gets put on the queues.  Either way,
    266  *    the result is that the page is on the queues at return time
    267  * => For pages which are on loan from a uvm_object (and thus are not owned
    268  *    by the anon): if successful, return with the owning object locked.
    269  *    The caller must unlock this object when it unlocks everything else.
    270  */
    271 
    272 int
    273 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
    274     struct vm_anon *anon)
    275 {
    276 	struct vm_page *pg;
    277 	int error;
    278 
    279 	UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
    280 	KASSERT(mutex_owned(anon->an_lock));
    281 	KASSERT(anon->an_lock == amap->am_lock);
    282 
    283 	/* Increment the counters.*/
    284 	cpu_count(CPU_COUNT_FLTANGET, 1);
    285 	if (anon->an_page) {
    286 		curlwp->l_ru.ru_minflt++;
    287 	} else {
    288 		curlwp->l_ru.ru_majflt++;
    289 	}
    290 	error = 0;
    291 
    292 	/*
    293 	 * Loop until we get the anon data, or fail.
    294 	 */
    295 
    296 	for (;;) {
    297 		bool we_own, locked;
    298 		/*
    299 		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
    300 		 */
    301 		we_own = false;
    302 		pg = anon->an_page;
    303 
    304 		/*
    305 		 * If there is a resident page and it is loaned, then anon
    306 		 * may not own it.  Call out to uvm_anon_lockloanpg() to
    307 		 * identify and lock the real owner of the page.
    308 		 */
    309 
    310 		if (pg && pg->loan_count)
    311 			pg = uvm_anon_lockloanpg(anon);
    312 
    313 		/*
    314 		 * Is page resident?  Make sure it is not busy/released.
    315 		 */
    316 
    317 		if (pg) {
    318 
    319 			/*
    320 			 * at this point, if the page has a uobject [meaning
    321 			 * we have it on loan], then that uobject is locked
    322 			 * by us!   if the page is busy, we drop all the
    323 			 * locks (including uobject) and try again.
    324 			 */
    325 
    326 			if ((pg->flags & PG_BUSY) == 0) {
    327 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
    328 				return 0;
    329 			}
    330 			pg->flags |= PG_WANTED;
    331 			cpu_count(CPU_COUNT_FLTPGWAIT, 1);
    332 
    333 			/*
    334 			 * The last unlock must be an atomic unlock and wait
    335 			 * on the owner of page.
    336 			 */
    337 
    338 			if (pg->uobject) {
    339 				/* Owner of page is UVM object. */
    340 				uvmfault_unlockall(ufi, amap, NULL);
    341 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
    342 				    0,0,0);
    343 				UVM_UNLOCK_AND_WAIT(pg,
    344 				    pg->uobject->vmobjlock,
    345 				    false, "anonget1", 0);
    346 			} else {
    347 				/* Owner of page is anon. */
    348 				uvmfault_unlockall(ufi, NULL, NULL);
    349 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
    350 				    0,0,0);
    351 				UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
    352 				    false, "anonget2", 0);
    353 			}
    354 		} else {
    355 #if defined(VMSWAP)
    356 			/*
    357 			 * No page, therefore allocate one.
    358 			 */
    359 
    360 			pg = uvm_pagealloc(NULL,
    361 			    ufi != NULL ? ufi->orig_rvaddr : 0,
    362 			    anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
    363 			if (pg == NULL) {
    364 				/* Out of memory.  Wait a little. */
    365 				uvmfault_unlockall(ufi, amap, NULL);
    366 				cpu_count(CPU_COUNT_FLTNORAM, 1);
    367 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
    368 				    0,0,0);
    369 				if (!uvm_reclaimable()) {
    370 					return ENOMEM;
    371 				}
    372 				uvm_wait("flt_noram1");
    373 			} else {
    374 				/* PG_BUSY bit is set. */
    375 				we_own = true;
    376 				uvmfault_unlockall(ufi, amap, NULL);
    377 
    378 				/*
    379 				 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
    380 				 * the uvm_swap_get() function with all data
    381 				 * structures unlocked.  Note that it is OK
    382 				 * to read an_swslot here, because we hold
    383 				 * PG_BUSY on the page.
    384 				 */
    385 				cpu_count(CPU_COUNT_PAGEINS, 1);
    386 				error = uvm_swap_get(pg, anon->an_swslot,
    387 				    PGO_SYNCIO);
    388 
    389 				/*
    390 				 * We clean up after the I/O below in the
    391 				 * 'we_own' case.
    392 				 */
    393 			}
    394 #else
    395 			panic("%s: no page", __func__);
    396 #endif /* defined(VMSWAP) */
    397 		}
    398 
    399 		/*
    400 		 * Re-lock the map and anon.
    401 		 */
    402 
    403 		locked = uvmfault_relock(ufi);
    404 		if (locked || we_own) {
    405 			mutex_enter(anon->an_lock);
    406 		}
    407 
    408 		/*
    409 		 * If we own the page (i.e. we set PG_BUSY), then we need
    410 		 * to clean up after the I/O.  There are three cases to
    411 		 * consider:
    412 		 *
    413 		 * 1) Page was released during I/O: free anon and ReFault.
    414 		 * 2) I/O not OK.  Free the page and cause the fault to fail.
    415 		 * 3) I/O OK!  Activate the page and sync with the non-we_own
    416 		 *    case (i.e. drop anon lock if not locked).
    417 		 */
    418 
    419 		if (we_own) {
    420 #if defined(VMSWAP)
    421 			if (pg->flags & PG_WANTED) {
    422 				wakeup(pg);
    423 			}
    424 			if (error) {
    425 
    426 				/*
    427 				 * Remove the swap slot from the anon and
    428 				 * mark the anon as having no real slot.
    429 				 * Do not free the swap slot, thus preventing
    430 				 * it from being used again.
    431 				 */
    432 
    433 				if (anon->an_swslot > 0) {
    434 					uvm_swap_markbad(anon->an_swslot, 1);
    435 				}
    436 				anon->an_swslot = SWSLOT_BAD;
    437 
    438 				if ((pg->flags & PG_RELEASED) != 0) {
    439 					goto released;
    440 				}
    441 
    442 				/*
    443 				 * Note: page was never !PG_BUSY, so it
    444 				 * cannot be mapped and thus no need to
    445 				 * pmap_page_protect() it.
    446 				 */
    447 
    448 				uvm_pagefree(pg);
    449 
    450 				if (locked) {
    451 					uvmfault_unlockall(ufi, NULL, NULL);
    452 				}
    453 				mutex_exit(anon->an_lock);
    454 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
    455 				return error;
    456 			}
    457 
    458 			if ((pg->flags & PG_RELEASED) != 0) {
    459 released:
    460 				KASSERT(anon->an_ref == 0);
    461 
    462 				/*
    463 				 * Released while we had unlocked amap.
    464 				 */
    465 
    466 				if (locked) {
    467 					uvmfault_unlockall(ufi, NULL, NULL);
    468 				}
    469 				uvm_anon_release(anon);
    470 
    471 				if (error) {
    472 					UVMHIST_LOG(maphist,
    473 					    "<- ERROR/RELEASED", 0,0,0,0);
    474 					return error;
    475 				}
    476 
    477 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
    478 				return ERESTART;
    479 			}
    480 
    481 			/*
    482 			 * We have successfully read the page, activate it.
    483 			 */
    484 
    485 			uvm_pageactivate(pg);
    486 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    487 			UVM_PAGE_OWN(pg, NULL);
    488 #else
    489 			panic("%s: we_own", __func__);
    490 #endif /* defined(VMSWAP) */
    491 		}
    492 
    493 		/*
    494 		 * We were not able to re-lock the map - restart the fault.
    495 		 */
    496 
    497 		if (!locked) {
    498 			if (we_own) {
    499 				mutex_exit(anon->an_lock);
    500 			}
    501 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    502 			return ERESTART;
    503 		}
    504 
    505 		/*
    506 		 * Verify that no one has touched the amap and moved
    507 		 * the anon on us.
    508 		 */
    509 
    510 		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
    511 		    ufi->orig_rvaddr - ufi->entry->start) != anon) {
    512 
    513 			uvmfault_unlockall(ufi, amap, NULL);
    514 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    515 			return ERESTART;
    516 		}
    517 
    518 		/*
    519 		 * Retry..
    520 		 */
    521 
    522 		cpu_count(CPU_COUNT_FLTANRETRY, 1);
    523 		continue;
    524 	}
    525 	/*NOTREACHED*/
    526 }
    527 
    528 /*
    529  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
    530  *
    531  *	1. allocate an anon and a page.
    532  *	2. fill its contents.
    533  *	3. put it into amap.
    534  *
    535  * => if we fail (result != 0) we unlock everything.
    536  * => on success, return a new locked anon via 'nanon'.
    537  *    (*nanon)->an_page will be a resident, locked, dirty page.
    538  * => it's caller's responsibility to put the promoted nanon->an_page to the
    539  *    page queue.
    540  */
    541 
    542 static int
    543 uvmfault_promote(struct uvm_faultinfo *ufi,
    544     struct vm_anon *oanon,
    545     struct vm_page *uobjpage,
    546     struct vm_anon **nanon, /* OUT: allocated anon */
    547     struct vm_anon **spare)
    548 {
    549 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
    550 	struct uvm_object *uobj;
    551 	struct vm_anon *anon;
    552 	struct vm_page *pg;
    553 	struct vm_page *opg;
    554 	int error;
    555 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    556 
    557 	if (oanon) {
    558 		/* anon COW */
    559 		opg = oanon->an_page;
    560 		KASSERT(opg != NULL);
    561 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
    562 	} else if (uobjpage != PGO_DONTCARE) {
    563 		/* object-backed COW */
    564 		opg = uobjpage;
    565 	} else {
    566 		/* ZFOD */
    567 		opg = NULL;
    568 	}
    569 	if (opg != NULL) {
    570 		uobj = opg->uobject;
    571 	} else {
    572 		uobj = NULL;
    573 	}
    574 
    575 	KASSERT(amap != NULL);
    576 	KASSERT(uobjpage != NULL);
    577 	KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
    578 	KASSERT(mutex_owned(amap->am_lock));
    579 	KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
    580 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
    581 
    582 	if (*spare != NULL) {
    583 		anon = *spare;
    584 		*spare = NULL;
    585 	} else {
    586 		anon = uvm_analloc();
    587 	}
    588 	if (anon) {
    589 
    590 		/*
    591 		 * The new anon is locked.
    592 		 *
    593 		 * if opg == NULL, we want a zero'd, dirty page,
    594 		 * so have uvm_pagealloc() do that for us.
    595 		 */
    596 
    597 		KASSERT(anon->an_lock == NULL);
    598 		anon->an_lock = amap->am_lock;
    599 		pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
    600 		    UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
    601 		if (pg == NULL) {
    602 			anon->an_lock = NULL;
    603 		}
    604 	} else {
    605 		pg = NULL;
    606 	}
    607 
    608 	/*
    609 	 * out of memory resources?
    610 	 */
    611 
    612 	if (pg == NULL) {
    613 		/* save anon for the next try. */
    614 		if (anon != NULL) {
    615 			*spare = anon;
    616 		}
    617 
    618 		/* unlock and fail ... */
    619 		uvm_page_unbusy(&uobjpage, 1);
    620 		uvmfault_unlockall(ufi, amap, uobj);
    621 		if (!uvm_reclaimable()) {
    622 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
    623 			cpu_count(CPU_COUNT_FLTNOANON, 1);
    624 			error = ENOMEM;
    625 			goto done;
    626 		}
    627 
    628 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
    629 		cpu_count(CPU_COUNT_FLTNORAM, 1);
    630 		uvm_wait("flt_noram5");
    631 		error = ERESTART;
    632 		goto done;
    633 	}
    634 
    635 	/* copy page [pg now dirty] */
    636 	if (opg) {
    637 		uvm_pagecopy(opg, pg);
    638 	}
    639 
    640 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
    641 	    oanon != NULL);
    642 
    643 	*nanon = anon;
    644 	error = 0;
    645 done:
    646 	return error;
    647 }
    648 
    649 /*
    650  * Update statistics after fault resolution.
    651  * - maxrss
    652  */
    653 void
    654 uvmfault_update_stats(struct uvm_faultinfo *ufi)
    655 {
    656 	struct vm_map		*map;
    657 	struct vmspace 		*vm;
    658 	struct proc		*p;
    659 	vsize_t			 res;
    660 
    661 	map = ufi->orig_map;
    662 
    663 	p = curproc;
    664 	KASSERT(p != NULL);
    665 	vm = p->p_vmspace;
    666 
    667 	if (&vm->vm_map != map)
    668 		return;
    669 
    670 	res = pmap_resident_count(map->pmap);
    671 	if (vm->vm_rssmax < res)
    672 		vm->vm_rssmax = res;
    673 }
    674 
    675 /*
    676  *   F A U L T   -   m a i n   e n t r y   p o i n t
    677  */
    678 
    679 /*
    680  * uvm_fault: page fault handler
    681  *
    682  * => called from MD code to resolve a page fault
    683  * => VM data structures usually should be unlocked.   however, it is
    684  *	possible to call here with the main map locked if the caller
    685  *	gets a write lock, sets it recusive, and then calls us (c.f.
    686  *	uvm_map_pageable).   this should be avoided because it keeps
    687  *	the map locked off during I/O.
    688  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
    689  */
    690 
    691 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
    692 			 ~VM_PROT_WRITE : VM_PROT_ALL)
    693 
    694 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
    695 #define UVM_FAULT_WIRE		(1 << 0)
    696 #define UVM_FAULT_MAXPROT	(1 << 1)
    697 
    698 struct uvm_faultctx {
    699 
    700 	/*
    701 	 * the following members are set up by uvm_fault_check() and
    702 	 * read-only after that.
    703 	 *
    704 	 * note that narrow is used by uvm_fault_check() to change
    705 	 * the behaviour after ERESTART.
    706 	 *
    707 	 * most of them might change after RESTART if the underlying
    708 	 * map entry has been changed behind us.  an exception is
    709 	 * wire_paging, which does never change.
    710 	 */
    711 	vm_prot_t access_type;
    712 	vaddr_t startva;
    713 	int npages;
    714 	int centeridx;
    715 	bool narrow;		/* work on a single requested page only */
    716 	bool wire_mapping;	/* request a PMAP_WIRED mapping
    717 				   (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
    718 	bool wire_paging;	/* request uvm_pagewire
    719 				   (true for UVM_FAULT_WIRE) */
    720 	bool cow_now;		/* VM_PROT_WRITE is actually requested
    721 				   (ie. should break COW and page loaning) */
    722 
    723 	/*
    724 	 * enter_prot is set up by uvm_fault_check() and clamped
    725 	 * (ie. drop the VM_PROT_WRITE bit) in various places in case
    726 	 * of !cow_now.
    727 	 */
    728 	vm_prot_t enter_prot;	/* prot at which we want to enter pages in */
    729 
    730 	/*
    731 	 * the following member is for uvmfault_promote() and ERESTART.
    732 	 */
    733 	struct vm_anon *anon_spare;
    734 
    735 	/*
    736 	 * the folloing is actually a uvm_fault_lower() internal.
    737 	 * it's here merely for debugging.
    738 	 * (or due to the mechanical separation of the function?)
    739 	 */
    740 	bool promote;
    741 };
    742 
    743 static inline int	uvm_fault_check(
    744 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    745 			    struct vm_anon ***, bool);
    746 
    747 static int		uvm_fault_upper(
    748 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    749 			    struct vm_anon **);
    750 static inline int	uvm_fault_upper_lookup(
    751 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    752 			    struct vm_anon **, struct vm_page **);
    753 static inline void	uvm_fault_upper_neighbor(
    754 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    755 			    vaddr_t, struct vm_page *, bool);
    756 static inline int	uvm_fault_upper_loan(
    757 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    758 			    struct vm_anon *, struct uvm_object **);
    759 static inline int	uvm_fault_upper_promote(
    760 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    761 			    struct uvm_object *, struct vm_anon *);
    762 static inline int	uvm_fault_upper_direct(
    763 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    764 			    struct uvm_object *, struct vm_anon *);
    765 static int		uvm_fault_upper_enter(
    766 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    767 			    struct uvm_object *, struct vm_anon *,
    768 			    struct vm_page *, struct vm_anon *);
    769 static inline void	uvm_fault_upper_done(
    770 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    771 			    struct vm_anon *, struct vm_page *);
    772 
    773 static int		uvm_fault_lower(
    774 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    775 			    struct vm_page **);
    776 static inline void	uvm_fault_lower_lookup(
    777 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    778 			    struct vm_page **);
    779 static inline void	uvm_fault_lower_neighbor(
    780 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    781 			    vaddr_t, struct vm_page *, bool);
    782 static inline int	uvm_fault_lower_io(
    783 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    784 			    struct uvm_object **, struct vm_page **);
    785 static inline int	uvm_fault_lower_direct(
    786 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    787 			    struct uvm_object *, struct vm_page *);
    788 static inline int	uvm_fault_lower_direct_loan(
    789 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    790 			    struct uvm_object *, struct vm_page **,
    791 			    struct vm_page **);
    792 static inline int	uvm_fault_lower_promote(
    793 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    794 			    struct uvm_object *, struct vm_page *);
    795 static int		uvm_fault_lower_enter(
    796 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    797 			    struct uvm_object *,
    798 			    struct vm_anon *, struct vm_page *);
    799 static inline void	uvm_fault_lower_done(
    800 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    801 			    struct uvm_object *, struct vm_page *);
    802 
    803 int
    804 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
    805     vm_prot_t access_type, int fault_flag)
    806 {
    807 	struct uvm_faultinfo ufi;
    808 	struct uvm_faultctx flt = {
    809 		.access_type = access_type,
    810 
    811 		/* don't look for neighborhood * pages on "wire" fault */
    812 		.narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
    813 
    814 		/* "wire" fault causes wiring of both mapping and paging */
    815 		.wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
    816 		.wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
    817 	};
    818 	const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
    819 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
    820 	struct vm_page *pages_store[UVM_MAXRANGE], **pages;
    821 	int error;
    822 
    823 	UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
    824 
    825 	UVMHIST_LOG(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)",
    826 	      (uintptr_t)orig_map, vaddr, access_type, fault_flag);
    827 
    828 	/* Don't count anything until user interaction is possible */
    829 	kpreempt_disable();
    830 	if (__predict_true(start_init_exec)) {
    831 		struct cpu_info *ci = curcpu();
    832 		CPU_COUNT(CPU_COUNT_NFAULT, 1);
    833 		/* Don't flood RNG subsystem with samples. */
    834 		if (++(ci->ci_faultrng) == 503) {
    835 			ci->ci_faultrng = 0;
    836 			rnd_add_uint32(&curcpu()->ci_data.cpu_uvm->rs,
    837 			    sizeof(vaddr_t) == sizeof(uint32_t) ?
    838 			    (uint32_t)vaddr : sizeof(vaddr_t) ==
    839 			    sizeof(uint64_t) ?
    840 			    (uint32_t)vaddr :
    841 			    (uint32_t)ci->ci_counts[CPU_COUNT_NFAULT]);
    842 		}
    843 	}
    844 	kpreempt_enable();
    845 
    846 	/*
    847 	 * init the IN parameters in the ufi
    848 	 */
    849 
    850 	ufi.orig_map = orig_map;
    851 	ufi.orig_rvaddr = trunc_page(vaddr);
    852 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
    853 
    854 	error = ERESTART;
    855 	while (error == ERESTART) { /* ReFault: */
    856 		anons = anons_store;
    857 		pages = pages_store;
    858 
    859 		error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
    860 		if (error != 0)
    861 			continue;
    862 
    863 		error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
    864 		if (error != 0)
    865 			continue;
    866 
    867 		if (pages[flt.centeridx] == PGO_DONTCARE)
    868 			error = uvm_fault_upper(&ufi, &flt, anons);
    869 		else {
    870 			struct uvm_object * const uobj =
    871 			    ufi.entry->object.uvm_obj;
    872 
    873 			if (uobj && uobj->pgops->pgo_fault != NULL) {
    874 				/*
    875 				 * invoke "special" fault routine.
    876 				 */
    877 				mutex_enter(uobj->vmobjlock);
    878 				/* locked: maps(read), amap(if there), uobj */
    879 				error = uobj->pgops->pgo_fault(&ufi,
    880 				    flt.startva, pages, flt.npages,
    881 				    flt.centeridx, flt.access_type,
    882 				    PGO_LOCKED|PGO_SYNCIO);
    883 
    884 				/*
    885 				 * locked: nothing, pgo_fault has unlocked
    886 				 * everything
    887 				 */
    888 
    889 				/*
    890 				 * object fault routine responsible for
    891 				 * pmap_update().
    892 				 */
    893 
    894 				/*
    895 				 * Wake up the pagedaemon if the fault method
    896 				 * failed for lack of memory but some can be
    897 				 * reclaimed.
    898 				 */
    899 				if (error == ENOMEM && uvm_reclaimable()) {
    900 					uvm_wait("pgo_fault");
    901 					error = ERESTART;
    902 				}
    903 			} else {
    904 				error = uvm_fault_lower(&ufi, &flt, pages);
    905 			}
    906 		}
    907 	}
    908 
    909 	if (flt.anon_spare != NULL) {
    910 		flt.anon_spare->an_ref--;
    911 		KASSERT(flt.anon_spare->an_ref == 0);
    912 		KASSERT(flt.anon_spare->an_lock == NULL);
    913 		uvm_anon_free(flt.anon_spare);
    914 	}
    915 	return error;
    916 }
    917 
    918 /*
    919  * uvm_fault_check: check prot, handle needs-copy, etc.
    920  *
    921  *	1. lookup entry.
    922  *	2. check protection.
    923  *	3. adjust fault condition (mainly for simulated fault).
    924  *	4. handle needs-copy (lazy amap copy).
    925  *	5. establish range of interest for neighbor fault (aka pre-fault).
    926  *	6. look up anons (if amap exists).
    927  *	7. flush pages (if MADV_SEQUENTIAL)
    928  *
    929  * => called with nothing locked.
    930  * => if we fail (result != 0) we unlock everything.
    931  * => initialize/adjust many members of flt.
    932  */
    933 
    934 static int
    935 uvm_fault_check(
    936 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
    937 	struct vm_anon ***ranons, bool maxprot)
    938 {
    939 	struct vm_amap *amap;
    940 	struct uvm_object *uobj;
    941 	vm_prot_t check_prot;
    942 	int nback, nforw;
    943 	UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
    944 
    945 	/*
    946 	 * lookup and lock the maps
    947 	 */
    948 
    949 	if (uvmfault_lookup(ufi, false) == false) {
    950 		UVMHIST_LOG(maphist, "<- no mapping @ 0x%#jx", ufi->orig_rvaddr,
    951 		    0,0,0);
    952 		return EFAULT;
    953 	}
    954 	/* locked: maps(read) */
    955 
    956 #ifdef DIAGNOSTIC
    957 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
    958 		printf("Page fault on non-pageable map:\n");
    959 		printf("ufi->map = %p\n", ufi->map);
    960 		printf("ufi->orig_map = %p\n", ufi->orig_map);
    961 		printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
    962 		panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
    963 	}
    964 #endif
    965 
    966 	/*
    967 	 * check protection
    968 	 */
    969 
    970 	check_prot = maxprot ?
    971 	    ufi->entry->max_protection : ufi->entry->protection;
    972 	if ((check_prot & flt->access_type) != flt->access_type) {
    973 		UVMHIST_LOG(maphist,
    974 		    "<- protection failure (prot=%#jx, access=%#jx)",
    975 		    ufi->entry->protection, flt->access_type, 0, 0);
    976 		uvmfault_unlockmaps(ufi, false);
    977 		return EFAULT;
    978 	}
    979 
    980 	/*
    981 	 * "enter_prot" is the protection we want to enter the page in at.
    982 	 * for certain pages (e.g. copy-on-write pages) this protection can
    983 	 * be more strict than ufi->entry->protection.  "wired" means either
    984 	 * the entry is wired or we are fault-wiring the pg.
    985 	 */
    986 
    987 	flt->enter_prot = ufi->entry->protection;
    988 	if (VM_MAPENT_ISWIRED(ufi->entry)) {
    989 		flt->wire_mapping = true;
    990 		flt->wire_paging = true;
    991 		flt->narrow = true;
    992 	}
    993 
    994 	if (flt->wire_mapping) {
    995 		flt->access_type = flt->enter_prot; /* full access for wired */
    996 		flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
    997 	} else {
    998 		flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
    999 	}
   1000 
   1001 	flt->promote = false;
   1002 
   1003 	/*
   1004 	 * handle "needs_copy" case.   if we need to copy the amap we will
   1005 	 * have to drop our readlock and relock it with a write lock.  (we
   1006 	 * need a write lock to change anything in a map entry [e.g.
   1007 	 * needs_copy]).
   1008 	 */
   1009 
   1010 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
   1011 		if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
   1012 			KASSERT(!maxprot);
   1013 			/* need to clear */
   1014 			UVMHIST_LOG(maphist,
   1015 			    "  need to clear needs_copy and refault",0,0,0,0);
   1016 			uvmfault_unlockmaps(ufi, false);
   1017 			uvmfault_amapcopy(ufi);
   1018 			cpu_count(CPU_COUNT_FLTAMCOPY, 1);
   1019 			return ERESTART;
   1020 
   1021 		} else {
   1022 
   1023 			/*
   1024 			 * ensure that we pmap_enter page R/O since
   1025 			 * needs_copy is still true
   1026 			 */
   1027 
   1028 			flt->enter_prot &= ~VM_PROT_WRITE;
   1029 		}
   1030 	}
   1031 
   1032 	/*
   1033 	 * identify the players
   1034 	 */
   1035 
   1036 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
   1037 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
   1038 
   1039 	/*
   1040 	 * check for a case 0 fault.  if nothing backing the entry then
   1041 	 * error now.
   1042 	 */
   1043 
   1044 	if (amap == NULL && uobj == NULL) {
   1045 		uvmfault_unlockmaps(ufi, false);
   1046 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
   1047 		return EFAULT;
   1048 	}
   1049 
   1050 	/*
   1051 	 * establish range of interest based on advice from mapper
   1052 	 * and then clip to fit map entry.   note that we only want
   1053 	 * to do this the first time through the fault.   if we
   1054 	 * ReFault we will disable this by setting "narrow" to true.
   1055 	 */
   1056 
   1057 	if (flt->narrow == false) {
   1058 
   1059 		/* wide fault (!narrow) */
   1060 		KASSERT(uvmadvice[ufi->entry->advice].advice ==
   1061 			 ufi->entry->advice);
   1062 		nback = MIN(uvmadvice[ufi->entry->advice].nback,
   1063 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
   1064 		flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
   1065 		/*
   1066 		 * note: "-1" because we don't want to count the
   1067 		 * faulting page as forw
   1068 		 */
   1069 		nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
   1070 			    ((ufi->entry->end - ufi->orig_rvaddr) >>
   1071 			     PAGE_SHIFT) - 1);
   1072 		flt->npages = nback + nforw + 1;
   1073 		flt->centeridx = nback;
   1074 
   1075 		flt->narrow = true;	/* ensure only once per-fault */
   1076 
   1077 	} else {
   1078 
   1079 		/* narrow fault! */
   1080 		nback = nforw = 0;
   1081 		flt->startva = ufi->orig_rvaddr;
   1082 		flt->npages = 1;
   1083 		flt->centeridx = 0;
   1084 
   1085 	}
   1086 	/* offset from entry's start to pgs' start */
   1087 	const voff_t eoff = flt->startva - ufi->entry->start;
   1088 
   1089 	/* locked: maps(read) */
   1090 	UVMHIST_LOG(maphist, "  narrow=%jd, back=%jd, forw=%jd, startva=%#jx",
   1091 		    flt->narrow, nback, nforw, flt->startva);
   1092 	UVMHIST_LOG(maphist, "  entry=%#jx, amap=%#jx, obj=%#jx",
   1093 	    (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0);
   1094 
   1095 	/*
   1096 	 * if we've got an amap, lock it and extract current anons.
   1097 	 */
   1098 
   1099 	if (amap) {
   1100 		amap_lock(amap);
   1101 		amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
   1102 	} else {
   1103 		*ranons = NULL;	/* to be safe */
   1104 	}
   1105 
   1106 	/* locked: maps(read), amap(if there) */
   1107 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1108 
   1109 	/*
   1110 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
   1111 	 * now and then forget about them (for the rest of the fault).
   1112 	 */
   1113 
   1114 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
   1115 
   1116 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
   1117 		    0,0,0,0);
   1118 		/* flush back-page anons? */
   1119 		if (amap)
   1120 			uvmfault_anonflush(*ranons, nback);
   1121 
   1122 		/* flush object? */
   1123 		if (uobj) {
   1124 			voff_t uoff;
   1125 
   1126 			uoff = ufi->entry->offset + eoff;
   1127 			mutex_enter(uobj->vmobjlock);
   1128 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
   1129 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
   1130 		}
   1131 
   1132 		/* now forget about the backpages */
   1133 		if (amap)
   1134 			*ranons += nback;
   1135 		flt->startva += (nback << PAGE_SHIFT);
   1136 		flt->npages -= nback;
   1137 		flt->centeridx = 0;
   1138 	}
   1139 	/*
   1140 	 * => startva is fixed
   1141 	 * => npages is fixed
   1142 	 */
   1143 	KASSERT(flt->startva <= ufi->orig_rvaddr);
   1144 	KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
   1145 	    flt->startva + (flt->npages << PAGE_SHIFT));
   1146 	return 0;
   1147 }
   1148 
   1149 /*
   1150  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
   1151  *
   1152  * iterate range of interest:
   1153  *	1. check if h/w mapping exists.  if yes, we don't care
   1154  *	2. check if anon exists.  if not, page is lower.
   1155  *	3. if anon exists, enter h/w mapping for neighbors.
   1156  *
   1157  * => called with amap locked (if exists).
   1158  */
   1159 
   1160 static int
   1161 uvm_fault_upper_lookup(
   1162 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1163 	struct vm_anon **anons, struct vm_page **pages)
   1164 {
   1165 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1166 	int lcv;
   1167 	vaddr_t currva;
   1168 	bool shadowed __unused;
   1169 	UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
   1170 
   1171 	/* locked: maps(read), amap(if there) */
   1172 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1173 
   1174 	/*
   1175 	 * map in the backpages and frontpages we found in the amap in hopes
   1176 	 * of preventing future faults.    we also init the pages[] array as
   1177 	 * we go.
   1178 	 */
   1179 
   1180 	currva = flt->startva;
   1181 	shadowed = false;
   1182 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1183 		/*
   1184 		 * don't play with VAs that are already mapped
   1185 		 * (except for center)
   1186 		 */
   1187 		if (lcv != flt->centeridx &&
   1188 		    pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
   1189 			pages[lcv] = PGO_DONTCARE;
   1190 			continue;
   1191 		}
   1192 
   1193 		/*
   1194 		 * unmapped or center page.   check if any anon at this level.
   1195 		 */
   1196 		if (amap == NULL || anons[lcv] == NULL) {
   1197 			pages[lcv] = NULL;
   1198 			continue;
   1199 		}
   1200 
   1201 		/*
   1202 		 * check for present page and map if possible.   re-activate it.
   1203 		 */
   1204 
   1205 		pages[lcv] = PGO_DONTCARE;
   1206 		if (lcv == flt->centeridx) {	/* save center for later! */
   1207 			shadowed = true;
   1208 			continue;
   1209 		}
   1210 
   1211 		struct vm_anon *anon = anons[lcv];
   1212 		struct vm_page *pg = anon->an_page;
   1213 
   1214 		KASSERT(anon->an_lock == amap->am_lock);
   1215 
   1216 		/* Ignore loaned and busy pages. */
   1217 		if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
   1218 			uvm_fault_upper_neighbor(ufi, flt, currva,
   1219 			    pg, anon->an_ref > 1);
   1220 		}
   1221 	}
   1222 
   1223 	/* locked: maps(read), amap(if there) */
   1224 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1225 	/* (shadowed == true) if there is an anon at the faulting address */
   1226 	UVMHIST_LOG(maphist, "  shadowed=%jd, will_get=%jd", shadowed,
   1227 	    (ufi->entry->object.uvm_obj && shadowed != false),0,0);
   1228 
   1229 	/*
   1230 	 * note that if we are really short of RAM we could sleep in the above
   1231 	 * call to pmap_enter with everything locked.   bad?
   1232 	 *
   1233 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
   1234 	 * XXX case.  --thorpej
   1235 	 */
   1236 
   1237 	return 0;
   1238 }
   1239 
   1240 /*
   1241  * uvm_fault_upper_neighbor: enter single upper neighbor page.
   1242  *
   1243  * => called with amap and anon locked.
   1244  */
   1245 
   1246 static void
   1247 uvm_fault_upper_neighbor(
   1248 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1249 	vaddr_t currva, struct vm_page *pg, bool readonly)
   1250 {
   1251 	UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
   1252 
   1253 	/* locked: amap, anon */
   1254 
   1255 	uvm_pageenqueue(pg);
   1256 	UVMHIST_LOG(maphist,
   1257 	    "  MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx",
   1258 	    (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
   1259 	cpu_count(CPU_COUNT_FLTNAMAP, 1);
   1260 
   1261 	/*
   1262 	 * Since this page isn't the page that's actually faulting,
   1263 	 * ignore pmap_enter() failures; it's not critical that we
   1264 	 * enter these right now.
   1265 	 */
   1266 
   1267 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1268 	    VM_PAGE_TO_PHYS(pg),
   1269 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1270 	    flt->enter_prot,
   1271 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
   1272 
   1273 	pmap_update(ufi->orig_map->pmap);
   1274 }
   1275 
   1276 /*
   1277  * uvm_fault_upper: handle upper fault.
   1278  *
   1279  *	1. acquire anon lock.
   1280  *	2. get anon.  let uvmfault_anonget do the dirty work.
   1281  *	3. handle loan.
   1282  *	4. dispatch direct or promote handlers.
   1283  */
   1284 
   1285 static int
   1286 uvm_fault_upper(
   1287 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1288 	struct vm_anon **anons)
   1289 {
   1290 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1291 	struct vm_anon * const anon = anons[flt->centeridx];
   1292 	struct uvm_object *uobj;
   1293 	int error;
   1294 	UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
   1295 
   1296 	/* locked: maps(read), amap, anon */
   1297 	KASSERT(mutex_owned(amap->am_lock));
   1298 	KASSERT(anon->an_lock == amap->am_lock);
   1299 
   1300 	/*
   1301 	 * handle case 1: fault on an anon in our amap
   1302 	 */
   1303 
   1304 	UVMHIST_LOG(maphist, "  case 1 fault: anon=%#jx",
   1305 	    (uintptr_t)anon, 0, 0, 0);
   1306 
   1307 	/*
   1308 	 * no matter if we have case 1A or case 1B we are going to need to
   1309 	 * have the anon's memory resident.   ensure that now.
   1310 	 */
   1311 
   1312 	/*
   1313 	 * let uvmfault_anonget do the dirty work.
   1314 	 * if it fails (!OK) it will unlock everything for us.
   1315 	 * if it succeeds, locks are still valid and locked.
   1316 	 * also, if it is OK, then the anon's page is on the queues.
   1317 	 * if the page is on loan from a uvm_object, then anonget will
   1318 	 * lock that object for us if it does not fail.
   1319 	 */
   1320 
   1321 	error = uvmfault_anonget(ufi, amap, anon);
   1322 	switch (error) {
   1323 	case 0:
   1324 		break;
   1325 
   1326 	case ERESTART:
   1327 		return ERESTART;
   1328 
   1329 	case EAGAIN:
   1330 		kpause("fltagain1", false, hz/2, NULL);
   1331 		return ERESTART;
   1332 
   1333 	default:
   1334 		return error;
   1335 	}
   1336 
   1337 	/*
   1338 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
   1339 	 */
   1340 
   1341 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
   1342 
   1343 	/* locked: maps(read), amap, anon, uobj(if one) */
   1344 	KASSERT(mutex_owned(amap->am_lock));
   1345 	KASSERT(anon->an_lock == amap->am_lock);
   1346 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1347 
   1348 	/*
   1349 	 * special handling for loaned pages
   1350 	 */
   1351 
   1352 	if (anon->an_page->loan_count) {
   1353 		error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
   1354 		if (error != 0)
   1355 			return error;
   1356 	}
   1357 
   1358 	/*
   1359 	 * if we are case 1B then we will need to allocate a new blank
   1360 	 * anon to transfer the data into.   note that we have a lock
   1361 	 * on anon, so no one can busy or release the page until we are done.
   1362 	 * also note that the ref count can't drop to zero here because
   1363 	 * it is > 1 and we are only dropping one ref.
   1364 	 *
   1365 	 * in the (hopefully very rare) case that we are out of RAM we
   1366 	 * will unlock, wait for more RAM, and refault.
   1367 	 *
   1368 	 * if we are out of anon VM we kill the process (XXX: could wait?).
   1369 	 */
   1370 
   1371 	if (flt->cow_now && anon->an_ref > 1) {
   1372 		flt->promote = true;
   1373 		error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
   1374 	} else {
   1375 		error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
   1376 	}
   1377 	return error;
   1378 }
   1379 
   1380 /*
   1381  * uvm_fault_upper_loan: handle loaned upper page.
   1382  *
   1383  *	1. if not cow'ing now, simply adjust flt->enter_prot.
   1384  *	2. if cow'ing now, and if ref count is 1, break loan.
   1385  */
   1386 
   1387 static int
   1388 uvm_fault_upper_loan(
   1389 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1390 	struct vm_anon *anon, struct uvm_object **ruobj)
   1391 {
   1392 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1393 	int error = 0;
   1394 	UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
   1395 
   1396 	if (!flt->cow_now) {
   1397 
   1398 		/*
   1399 		 * for read faults on loaned pages we just cap the
   1400 		 * protection at read-only.
   1401 		 */
   1402 
   1403 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1404 
   1405 	} else {
   1406 		/*
   1407 		 * note that we can't allow writes into a loaned page!
   1408 		 *
   1409 		 * if we have a write fault on a loaned page in an
   1410 		 * anon then we need to look at the anon's ref count.
   1411 		 * if it is greater than one then we are going to do
   1412 		 * a normal copy-on-write fault into a new anon (this
   1413 		 * is not a problem).  however, if the reference count
   1414 		 * is one (a case where we would normally allow a
   1415 		 * write directly to the page) then we need to kill
   1416 		 * the loan before we continue.
   1417 		 */
   1418 
   1419 		/* >1 case is already ok */
   1420 		if (anon->an_ref == 1) {
   1421 			error = uvm_loanbreak_anon(anon, *ruobj);
   1422 			if (error != 0) {
   1423 				uvmfault_unlockall(ufi, amap, *ruobj);
   1424 				uvm_wait("flt_noram2");
   1425 				return ERESTART;
   1426 			}
   1427 			/* if we were a loan receiver uobj is gone */
   1428 			if (*ruobj)
   1429 				*ruobj = NULL;
   1430 		}
   1431 	}
   1432 	return error;
   1433 }
   1434 
   1435 /*
   1436  * uvm_fault_upper_promote: promote upper page.
   1437  *
   1438  *	1. call uvmfault_promote.
   1439  *	2. enqueue page.
   1440  *	3. deref.
   1441  *	4. pass page to uvm_fault_upper_enter.
   1442  */
   1443 
   1444 static int
   1445 uvm_fault_upper_promote(
   1446 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1447 	struct uvm_object *uobj, struct vm_anon *anon)
   1448 {
   1449 	struct vm_anon * const oanon = anon;
   1450 	struct vm_page *pg;
   1451 	int error;
   1452 	UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
   1453 
   1454 	UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
   1455 	cpu_count(CPU_COUNT_FLT_ACOW, 1);
   1456 
   1457 	error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
   1458 	    &flt->anon_spare);
   1459 	switch (error) {
   1460 	case 0:
   1461 		break;
   1462 	case ERESTART:
   1463 		return ERESTART;
   1464 	default:
   1465 		return error;
   1466 	}
   1467 
   1468 	KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
   1469 
   1470 	pg = anon->an_page;
   1471 	/* uvm_fault_upper_done will activate the page */
   1472 	uvm_pageenqueue(pg);
   1473 	pg->flags &= ~(PG_BUSY|PG_FAKE);
   1474 	UVM_PAGE_OWN(pg, NULL);
   1475 
   1476 	/* deref: can not drop to zero here by defn! */
   1477 	KASSERT(oanon->an_ref > 1);
   1478 	oanon->an_ref--;
   1479 
   1480 	/*
   1481 	 * note: oanon is still locked, as is the new anon.  we
   1482 	 * need to check for this later when we unlock oanon; if
   1483 	 * oanon != anon, we'll have to unlock anon, too.
   1484 	 */
   1485 
   1486 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1487 }
   1488 
   1489 /*
   1490  * uvm_fault_upper_direct: handle direct fault.
   1491  */
   1492 
   1493 static int
   1494 uvm_fault_upper_direct(
   1495 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1496 	struct uvm_object *uobj, struct vm_anon *anon)
   1497 {
   1498 	struct vm_anon * const oanon = anon;
   1499 	struct vm_page *pg;
   1500 	UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
   1501 
   1502 	cpu_count(CPU_COUNT_FLT_ANON, 1);
   1503 	pg = anon->an_page;
   1504 	if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
   1505 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1506 
   1507 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1508 }
   1509 
   1510 /*
   1511  * uvm_fault_upper_enter: enter h/w mapping of upper page.
   1512  */
   1513 
   1514 static int
   1515 uvm_fault_upper_enter(
   1516 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1517 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
   1518 	struct vm_anon *oanon)
   1519 {
   1520 	struct pmap *pmap = ufi->orig_map->pmap;
   1521 	vaddr_t va = ufi->orig_rvaddr;
   1522 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1523 	UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
   1524 
   1525 	/* locked: maps(read), amap, oanon, anon(if different from oanon) */
   1526 	KASSERT(mutex_owned(amap->am_lock));
   1527 	KASSERT(anon->an_lock == amap->am_lock);
   1528 	KASSERT(oanon->an_lock == amap->am_lock);
   1529 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1530 
   1531 	/*
   1532 	 * now map the page in.
   1533 	 */
   1534 
   1535 	UVMHIST_LOG(maphist,
   1536 	    "  MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
   1537 	    (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote);
   1538 	if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg),
   1539 	    flt->enter_prot, flt->access_type | PMAP_CANFAIL |
   1540 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   1541 
   1542 		/*
   1543 		 * If pmap_enter() fails, it must not leave behind an existing
   1544 		 * pmap entry.  In particular, a now-stale entry for a different
   1545 		 * page would leave the pmap inconsistent with the vm_map.
   1546 		 * This is not to imply that pmap_enter() should remove an
   1547 		 * existing mapping in such a situation (since that could create
   1548 		 * different problems, eg. if the existing mapping is wired),
   1549 		 * but rather that the pmap should be designed such that it
   1550 		 * never needs to fail when the new mapping is replacing an
   1551 		 * existing mapping and the new page has no existing mappings.
   1552 		 */
   1553 
   1554 		KASSERT(!pmap_extract(pmap, va, NULL));
   1555 
   1556 		/*
   1557 		 * No need to undo what we did; we can simply think of
   1558 		 * this as the pmap throwing away the mapping information.
   1559 		 *
   1560 		 * We do, however, have to go through the ReFault path,
   1561 		 * as the map may change while we're asleep.
   1562 		 */
   1563 
   1564 		uvmfault_unlockall(ufi, amap, uobj);
   1565 		if (!uvm_reclaimable()) {
   1566 			UVMHIST_LOG(maphist,
   1567 			    "<- failed.  out of VM",0,0,0,0);
   1568 			/* XXX instrumentation */
   1569 			return ENOMEM;
   1570 		}
   1571 		/* XXX instrumentation */
   1572 		uvm_wait("flt_pmfail1");
   1573 		return ERESTART;
   1574 	}
   1575 
   1576 	uvm_fault_upper_done(ufi, flt, anon, pg);
   1577 
   1578 	/*
   1579 	 * done case 1!  finish up by unlocking everything and returning success
   1580 	 */
   1581 
   1582 	pmap_update(pmap);
   1583 	uvmfault_unlockall(ufi, amap, uobj);
   1584 	return 0;
   1585 }
   1586 
   1587 /*
   1588  * uvm_fault_upper_done: queue upper center page.
   1589  */
   1590 
   1591 static void
   1592 uvm_fault_upper_done(
   1593 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1594 	struct vm_anon *anon, struct vm_page *pg)
   1595 {
   1596 	const bool wire_paging = flt->wire_paging;
   1597 
   1598 	UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
   1599 
   1600 	/*
   1601 	 * ... update the page queues.
   1602 	 */
   1603 
   1604 	if (wire_paging) {
   1605 		uvm_pagewire(pg);
   1606 
   1607 		/*
   1608 		 * since the now-wired page cannot be paged out,
   1609 		 * release its swap resources for others to use.
   1610 		 * since an anon with no swap cannot be PG_CLEAN,
   1611 		 * clear its clean flag now.
   1612 		 */
   1613 
   1614 		pg->flags &= ~(PG_CLEAN);
   1615 	} else {
   1616 		uvm_pageactivate(pg);
   1617 	}
   1618 
   1619 	if (wire_paging) {
   1620 		uvm_anon_dropswap(anon);
   1621 	}
   1622 }
   1623 
   1624 /*
   1625  * uvm_fault_lower: handle lower fault.
   1626  *
   1627  *	1. check uobj
   1628  *	1.1. if null, ZFOD.
   1629  *	1.2. if not null, look up unnmapped neighbor pages.
   1630  *	2. for center page, check if promote.
   1631  *	2.1. ZFOD always needs promotion.
   1632  *	2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
   1633  *	3. if uobj is not ZFOD and page is not found, do i/o.
   1634  *	4. dispatch either direct / promote fault.
   1635  */
   1636 
   1637 static int
   1638 uvm_fault_lower(
   1639 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1640 	struct vm_page **pages)
   1641 {
   1642 	struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap;
   1643 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1644 	struct vm_page *uobjpage;
   1645 	int error;
   1646 	UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
   1647 
   1648 	/*
   1649 	 * now, if the desired page is not shadowed by the amap and we have
   1650 	 * a backing object that does not have a special fault routine, then
   1651 	 * we ask (with pgo_get) the object for resident pages that we care
   1652 	 * about and attempt to map them in.  we do not let pgo_get block
   1653 	 * (PGO_LOCKED).
   1654 	 */
   1655 
   1656 	if (uobj == NULL) {
   1657 		/* zero fill; don't care neighbor pages */
   1658 		uobjpage = NULL;
   1659 	} else {
   1660 		uvm_fault_lower_lookup(ufi, flt, pages);
   1661 		uobjpage = pages[flt->centeridx];
   1662 	}
   1663 
   1664 	/*
   1665 	 * note that at this point we are done with any front or back pages.
   1666 	 * we are now going to focus on the center page (i.e. the one we've
   1667 	 * faulted on).  if we have faulted on the upper (anon) layer
   1668 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
   1669 	 * not touched it yet).  if we have faulted on the bottom (uobj)
   1670 	 * layer [i.e. case 2] and the page was both present and available,
   1671 	 * then we've got a pointer to it as "uobjpage" and we've already
   1672 	 * made it BUSY.
   1673 	 */
   1674 
   1675 	/*
   1676 	 * locked:
   1677 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
   1678 	 */
   1679 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1680 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1681 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1682 
   1683 	/*
   1684 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
   1685 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
   1686 	 * have a backing object, check and see if we are going to promote
   1687 	 * the data up to an anon during the fault.
   1688 	 */
   1689 
   1690 	if (uobj == NULL) {
   1691 		uobjpage = PGO_DONTCARE;
   1692 		flt->promote = true;		/* always need anon here */
   1693 	} else {
   1694 		KASSERT(uobjpage != PGO_DONTCARE);
   1695 		flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
   1696 	}
   1697 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%jd, zfill=%jd",
   1698 	    flt->promote, (uobj == NULL), 0,0);
   1699 
   1700 	/*
   1701 	 * if uobjpage is not null then we do not need to do I/O to get the
   1702 	 * uobjpage.
   1703 	 *
   1704 	 * if uobjpage is null, then we need to unlock and ask the pager to
   1705 	 * get the data for us.   once we have the data, we need to reverify
   1706 	 * the state the world.   we are currently not holding any resources.
   1707 	 */
   1708 
   1709 	if (uobjpage) {
   1710 		/* update rusage counters */
   1711 		curlwp->l_ru.ru_minflt++;
   1712 	} else {
   1713 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
   1714 		if (error != 0)
   1715 			return error;
   1716 	}
   1717 
   1718 	/*
   1719 	 * locked:
   1720 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
   1721 	 */
   1722 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   1723 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1724 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   1725 
   1726 	/*
   1727 	 * notes:
   1728 	 *  - at this point uobjpage can not be NULL
   1729 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
   1730 	 *  for it above)
   1731 	 *  - at this point uobjpage could be PG_WANTED (handle later)
   1732 	 */
   1733 
   1734 	KASSERT(uobjpage != NULL);
   1735 	KASSERT(uobj == NULL || uobj == uobjpage->uobject);
   1736 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
   1737 	    (uobjpage->flags & PG_CLEAN) != 0);
   1738 
   1739 	if (!flt->promote) {
   1740 		error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
   1741 	} else {
   1742 		error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
   1743 	}
   1744 	return error;
   1745 }
   1746 
   1747 /*
   1748  * uvm_fault_lower_lookup: look up on-memory uobj pages.
   1749  *
   1750  *	1. get on-memory pages.
   1751  *	2. if failed, give up (get only center page later).
   1752  *	3. if succeeded, enter h/w mapping of neighbor pages.
   1753  */
   1754 
   1755 static void
   1756 uvm_fault_lower_lookup(
   1757 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1758 	struct vm_page **pages)
   1759 {
   1760 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1761 	int lcv, gotpages;
   1762 	vaddr_t currva;
   1763 	UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
   1764 
   1765 	mutex_enter(uobj->vmobjlock);
   1766 	/* Locked: maps(read), amap(if there), uobj */
   1767 
   1768 	cpu_count(CPU_COUNT_FLTLGET, 1);
   1769 	gotpages = flt->npages;
   1770 	(void) uobj->pgops->pgo_get(uobj,
   1771 	    ufi->entry->offset + flt->startva - ufi->entry->start,
   1772 	    pages, &gotpages, flt->centeridx,
   1773 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
   1774 
   1775 	KASSERT(mutex_owned(uobj->vmobjlock));
   1776 
   1777 	/*
   1778 	 * check for pages to map, if we got any
   1779 	 */
   1780 
   1781 	if (gotpages == 0) {
   1782 		pages[flt->centeridx] = NULL;
   1783 		return;
   1784 	}
   1785 
   1786 	currva = flt->startva;
   1787 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1788 		struct vm_page *curpg;
   1789 
   1790 		curpg = pages[lcv];
   1791 		if (curpg == NULL || curpg == PGO_DONTCARE) {
   1792 			continue;
   1793 		}
   1794 		KASSERT(curpg->uobject == uobj);
   1795 
   1796 		/*
   1797 		 * if center page is resident and not PG_BUSY|PG_RELEASED
   1798 		 * then pgo_get made it PG_BUSY for us and gave us a handle
   1799 		 * to it.
   1800 		 */
   1801 
   1802 		if (lcv == flt->centeridx) {
   1803 			UVMHIST_LOG(maphist, "  got uobjpage (0x%#jx) "
   1804 			    "with locked get", (uintptr_t)curpg, 0, 0, 0);
   1805 		} else {
   1806 			bool readonly = (curpg->flags & PG_RDONLY)
   1807 			    || (curpg->loan_count > 0)
   1808 			    || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
   1809 
   1810 			uvm_fault_lower_neighbor(ufi, flt,
   1811 			    currva, curpg, readonly);
   1812 		}
   1813 	}
   1814 	pmap_update(ufi->orig_map->pmap);
   1815 }
   1816 
   1817 /*
   1818  * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
   1819  */
   1820 
   1821 static void
   1822 uvm_fault_lower_neighbor(
   1823 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1824 	vaddr_t currva, struct vm_page *pg, bool readonly)
   1825 {
   1826 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1827 
   1828 	/* locked: maps(read), amap(if there), uobj */
   1829 
   1830 	/*
   1831 	 * calling pgo_get with PGO_LOCKED returns us pages which
   1832 	 * are neither busy nor released, so we don't need to check
   1833 	 * for this.  we can just directly enter the pages.
   1834 	 */
   1835 
   1836 	uvm_pageenqueue(pg);
   1837 	UVMHIST_LOG(maphist,
   1838 	    "  MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx",
   1839 	    (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
   1840 	cpu_count(CPU_COUNT_FLTNOMAP, 1);
   1841 
   1842 	/*
   1843 	 * Since this page isn't the page that's actually faulting,
   1844 	 * ignore pmap_enter() failures; it's not critical that we
   1845 	 * enter these right now.
   1846 	 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
   1847 	 * held the lock the whole time we've had the handle.
   1848 	 */
   1849 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1850 	KASSERT((pg->flags & PG_RELEASED) == 0);
   1851 	KASSERT((pg->flags & PG_WANTED) == 0);
   1852 	KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
   1853 	pg->flags &= ~(PG_BUSY);
   1854 	UVM_PAGE_OWN(pg, NULL);
   1855 
   1856 	KASSERT(mutex_owned(pg->uobject->vmobjlock));
   1857 
   1858 	const vm_prot_t mapprot =
   1859 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1860 	    flt->enter_prot & MASK(ufi->entry);
   1861 	const u_int mapflags =
   1862 	    PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0);
   1863 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1864 	    VM_PAGE_TO_PHYS(pg), mapprot, mapflags);
   1865 }
   1866 
   1867 /*
   1868  * uvm_fault_lower_io: get lower page from backing store.
   1869  *
   1870  *	1. unlock everything, because i/o will block.
   1871  *	2. call pgo_get.
   1872  *	3. if failed, recover.
   1873  *	4. if succeeded, relock everything and verify things.
   1874  */
   1875 
   1876 static int
   1877 uvm_fault_lower_io(
   1878 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1879 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
   1880 {
   1881 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1882 	struct uvm_object *uobj = *ruobj;
   1883 	struct vm_page *pg;
   1884 	bool locked;
   1885 	int gotpages;
   1886 	int error;
   1887 	voff_t uoff;
   1888 	vm_prot_t access_type;
   1889 	int advice;
   1890 	UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
   1891 
   1892 	/* update rusage counters */
   1893 	curlwp->l_ru.ru_majflt++;
   1894 
   1895 	/* grab everything we need from the entry before we unlock */
   1896 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
   1897 	access_type = flt->access_type & MASK(ufi->entry);
   1898 	advice = ufi->entry->advice;
   1899 
   1900 	/* Locked: maps(read), amap(if there), uobj */
   1901 	uvmfault_unlockall(ufi, amap, NULL);
   1902 
   1903 	/* Locked: uobj */
   1904 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   1905 
   1906 	cpu_count(CPU_COUNT_FLTGET, 1);
   1907 	gotpages = 1;
   1908 	pg = NULL;
   1909 	error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
   1910 	    0, access_type, advice, PGO_SYNCIO);
   1911 	/* locked: pg(if no error) */
   1912 
   1913 	/*
   1914 	 * recover from I/O
   1915 	 */
   1916 
   1917 	if (error) {
   1918 		if (error == EAGAIN) {
   1919 			UVMHIST_LOG(maphist,
   1920 			    "  pgo_get says TRY AGAIN!",0,0,0,0);
   1921 			kpause("fltagain2", false, hz/2, NULL);
   1922 			return ERESTART;
   1923 		}
   1924 
   1925 #if 0
   1926 		KASSERT(error != ERESTART);
   1927 #else
   1928 		/* XXXUEBS don't re-fault? */
   1929 		if (error == ERESTART)
   1930 			error = EIO;
   1931 #endif
   1932 
   1933 		UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)",
   1934 		    error, 0,0,0);
   1935 		return error;
   1936 	}
   1937 
   1938 	/*
   1939 	 * re-verify the state of the world by first trying to relock
   1940 	 * the maps.  always relock the object.
   1941 	 */
   1942 
   1943 	locked = uvmfault_relock(ufi);
   1944 	if (locked && amap)
   1945 		amap_lock(amap);
   1946 
   1947 	/* might be changed */
   1948 	uobj = pg->uobject;
   1949 
   1950 	mutex_enter(uobj->vmobjlock);
   1951 	KASSERT((pg->flags & PG_BUSY) != 0);
   1952 
   1953 	uvm_pageactivate(pg);
   1954 
   1955 	/* locked(locked): maps(read), amap(if !null), uobj, pg */
   1956 	/* locked(!locked): uobj, pg */
   1957 
   1958 	/*
   1959 	 * verify that the page has not be released and re-verify
   1960 	 * that amap slot is still free.   if there is a problem,
   1961 	 * we unlock and clean up.
   1962 	 */
   1963 
   1964 	if ((pg->flags & PG_RELEASED) != 0 ||
   1965 	    (locked && amap && amap_lookup(&ufi->entry->aref,
   1966 	      ufi->orig_rvaddr - ufi->entry->start))) {
   1967 		if (locked)
   1968 			uvmfault_unlockall(ufi, amap, NULL);
   1969 		locked = false;
   1970 	}
   1971 
   1972 	/*
   1973 	 * didn't get the lock?   release the page and retry.
   1974 	 */
   1975 
   1976 	if (locked == false) {
   1977 		UVMHIST_LOG(maphist,
   1978 		    "  wasn't able to relock after fault: retry",
   1979 		    0,0,0,0);
   1980 		if (pg->flags & PG_WANTED) {
   1981 			wakeup(pg);
   1982 		}
   1983 		if ((pg->flags & PG_RELEASED) == 0) {
   1984 			pg->flags &= ~(PG_BUSY | PG_WANTED);
   1985 			UVM_PAGE_OWN(pg, NULL);
   1986 		} else {
   1987 			cpu_count(CPU_COUNT_FLTPGRELE, 1);
   1988 			uvm_pagefree(pg);
   1989 		}
   1990 		mutex_exit(uobj->vmobjlock);
   1991 		return ERESTART;
   1992 	}
   1993 
   1994 	/*
   1995 	 * we have the data in pg which is busy and
   1996 	 * not released.  we are holding object lock (so the page
   1997 	 * can't be released on us).
   1998 	 */
   1999 
   2000 	/* locked: maps(read), amap(if !null), uobj, pg */
   2001 
   2002 	*ruobj = uobj;
   2003 	*ruobjpage = pg;
   2004 	return 0;
   2005 }
   2006 
   2007 /*
   2008  * uvm_fault_lower_direct: fault lower center page
   2009  *
   2010  *	1. adjust flt->enter_prot.
   2011  *	2. if page is loaned, resolve.
   2012  */
   2013 
   2014 int
   2015 uvm_fault_lower_direct(
   2016 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2017 	struct uvm_object *uobj, struct vm_page *uobjpage)
   2018 {
   2019 	struct vm_page *pg;
   2020 	UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
   2021 
   2022 	/*
   2023 	 * we are not promoting.   if the mapping is COW ensure that we
   2024 	 * don't give more access than we should (e.g. when doing a read
   2025 	 * fault on a COPYONWRITE mapping we want to map the COW page in
   2026 	 * R/O even though the entry protection could be R/W).
   2027 	 *
   2028 	 * set "pg" to the page we want to map in (uobjpage, usually)
   2029 	 */
   2030 
   2031 	cpu_count(CPU_COUNT_FLT_OBJ, 1);
   2032 	if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
   2033 	    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
   2034 		flt->enter_prot &= ~VM_PROT_WRITE;
   2035 	pg = uobjpage;		/* map in the actual object */
   2036 
   2037 	KASSERT(uobjpage != PGO_DONTCARE);
   2038 
   2039 	/*
   2040 	 * we are faulting directly on the page.   be careful
   2041 	 * about writing to loaned pages...
   2042 	 */
   2043 
   2044 	if (uobjpage->loan_count) {
   2045 		uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
   2046 	}
   2047 	KASSERT(pg == uobjpage);
   2048 
   2049 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   2050 	return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
   2051 }
   2052 
   2053 /*
   2054  * uvm_fault_lower_direct_loan: resolve loaned page.
   2055  *
   2056  *	1. if not cow'ing, adjust flt->enter_prot.
   2057  *	2. if cow'ing, break loan.
   2058  */
   2059 
   2060 static int
   2061 uvm_fault_lower_direct_loan(
   2062 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2063 	struct uvm_object *uobj, struct vm_page **rpg,
   2064 	struct vm_page **ruobjpage)
   2065 {
   2066 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2067 	struct vm_page *pg;
   2068 	struct vm_page *uobjpage = *ruobjpage;
   2069 	UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
   2070 
   2071 	if (!flt->cow_now) {
   2072 		/* read fault: cap the protection at readonly */
   2073 		/* cap! */
   2074 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   2075 	} else {
   2076 		/* write fault: must break the loan here */
   2077 
   2078 		pg = uvm_loanbreak(uobjpage);
   2079 		if (pg == NULL) {
   2080 
   2081 			/*
   2082 			 * drop ownership of page, it can't be released
   2083 			 */
   2084 
   2085 			if (uobjpage->flags & PG_WANTED)
   2086 				wakeup(uobjpage);
   2087 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   2088 			UVM_PAGE_OWN(uobjpage, NULL);
   2089 
   2090 			uvmfault_unlockall(ufi, amap, uobj);
   2091 			UVMHIST_LOG(maphist,
   2092 			  "  out of RAM breaking loan, waiting",
   2093 			  0,0,0,0);
   2094 			cpu_count(CPU_COUNT_FLTNORAM, 1);
   2095 			uvm_wait("flt_noram4");
   2096 			return ERESTART;
   2097 		}
   2098 		*rpg = pg;
   2099 		*ruobjpage = pg;
   2100 	}
   2101 	return 0;
   2102 }
   2103 
   2104 /*
   2105  * uvm_fault_lower_promote: promote lower page.
   2106  *
   2107  *	1. call uvmfault_promote.
   2108  *	2. fill in data.
   2109  *	3. if not ZFOD, dispose old page.
   2110  */
   2111 
   2112 int
   2113 uvm_fault_lower_promote(
   2114 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2115 	struct uvm_object *uobj, struct vm_page *uobjpage)
   2116 {
   2117 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2118 	struct vm_anon *anon;
   2119 	struct vm_page *pg;
   2120 	int error;
   2121 	UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
   2122 
   2123 	KASSERT(amap != NULL);
   2124 
   2125 	/*
   2126 	 * If we are going to promote the data to an anon we
   2127 	 * allocate a blank anon here and plug it into our amap.
   2128 	 */
   2129 	error = uvmfault_promote(ufi, NULL, uobjpage,
   2130 	    &anon, &flt->anon_spare);
   2131 	switch (error) {
   2132 	case 0:
   2133 		break;
   2134 	case ERESTART:
   2135 		return ERESTART;
   2136 	default:
   2137 		return error;
   2138 	}
   2139 
   2140 	pg = anon->an_page;
   2141 
   2142 	/*
   2143 	 * Fill in the data.
   2144 	 */
   2145 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
   2146 
   2147 	if (uobjpage != PGO_DONTCARE) {
   2148 		cpu_count(CPU_COUNT_FLT_PRCOPY, 1);
   2149 
   2150 		/*
   2151 		 * promote to shared amap?  make sure all sharing
   2152 		 * procs see it
   2153 		 */
   2154 
   2155 		if ((amap_flags(amap) & AMAP_SHARED) != 0) {
   2156 			pmap_page_protect(uobjpage, VM_PROT_NONE);
   2157 			/*
   2158 			 * XXX: PAGE MIGHT BE WIRED!
   2159 			 */
   2160 		}
   2161 
   2162 		/*
   2163 		 * dispose of uobjpage.  it can't be PG_RELEASED
   2164 		 * since we still hold the object lock.
   2165 		 */
   2166 
   2167 		if (uobjpage->flags & PG_WANTED) {
   2168 			/* still have the obj lock */
   2169 			wakeup(uobjpage);
   2170 		}
   2171 		uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
   2172 		UVM_PAGE_OWN(uobjpage, NULL);
   2173 
   2174 		UVMHIST_LOG(maphist,
   2175 		    "  promote uobjpage 0x%#jx to anon/page 0x%#jx/0x%#jx",
   2176 		    (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0);
   2177 
   2178 	} else {
   2179 		cpu_count(CPU_COUNT_FLT_PRZERO, 1);
   2180 
   2181 		/*
   2182 		 * Page is zero'd and marked dirty by
   2183 		 * uvmfault_promote().
   2184 		 */
   2185 
   2186 		UVMHIST_LOG(maphist,"  zero fill anon/page 0x%#jx/0%#jx",
   2187 		    (uintptr_t)anon, (uintptr_t)pg, 0, 0);
   2188 	}
   2189 
   2190 	return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
   2191 }
   2192 
   2193 /*
   2194  * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
   2195  * from the lower page.
   2196  */
   2197 
   2198 int
   2199 uvm_fault_lower_enter(
   2200 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2201 	struct uvm_object *uobj,
   2202 	struct vm_anon *anon, struct vm_page *pg)
   2203 {
   2204 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2205 	int error;
   2206 	UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
   2207 
   2208 	/*
   2209 	 * Locked:
   2210 	 *
   2211 	 *	maps(read), amap(if !null), uobj(if !null),
   2212 	 *	anon(if !null), pg(if anon), unlock_uobj(if !null)
   2213 	 *
   2214 	 * Note: pg is either the uobjpage or the new page in the new anon.
   2215 	 */
   2216 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
   2217 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
   2218 	KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
   2219 	KASSERT((pg->flags & PG_BUSY) != 0);
   2220 
   2221 	/*
   2222 	 * all resources are present.   we can now map it in and free our
   2223 	 * resources.
   2224 	 */
   2225 
   2226 	UVMHIST_LOG(maphist,
   2227 	    "  MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
   2228 	    (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr,
   2229 	    (uintptr_t)pg, flt->promote);
   2230 	KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
   2231 		(pg->flags & PG_RDONLY) == 0);
   2232 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
   2233 	    VM_PAGE_TO_PHYS(pg),
   2234 	    (pg->flags & PG_RDONLY) != 0 ?
   2235 	    flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
   2236 	    flt->access_type | PMAP_CANFAIL |
   2237 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   2238 
   2239 		/*
   2240 		 * No need to undo what we did; we can simply think of
   2241 		 * this as the pmap throwing away the mapping information.
   2242 		 *
   2243 		 * We do, however, have to go through the ReFault path,
   2244 		 * as the map may change while we're asleep.
   2245 		 */
   2246 
   2247 		/*
   2248 		 * ensure that the page is queued in the case that
   2249 		 * we just promoted the page.
   2250 		 */
   2251 
   2252 		uvm_pageenqueue(pg);
   2253 
   2254 		if (pg->flags & PG_WANTED)
   2255 			wakeup(pg);
   2256 
   2257 		/*
   2258 		 * note that pg can't be PG_RELEASED since we did not drop
   2259 		 * the object lock since the last time we checked.
   2260 		 */
   2261 		KASSERT((pg->flags & PG_RELEASED) == 0);
   2262 
   2263 		pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2264 		UVM_PAGE_OWN(pg, NULL);
   2265 
   2266 		uvmfault_unlockall(ufi, amap, uobj);
   2267 		if (!uvm_reclaimable()) {
   2268 			UVMHIST_LOG(maphist,
   2269 			    "<- failed.  out of VM",0,0,0,0);
   2270 			/* XXX instrumentation */
   2271 			error = ENOMEM;
   2272 			return error;
   2273 		}
   2274 		/* XXX instrumentation */
   2275 		uvm_wait("flt_pmfail2");
   2276 		return ERESTART;
   2277 	}
   2278 
   2279 	uvm_fault_lower_done(ufi, flt, uobj, pg);
   2280 
   2281 	/*
   2282 	 * note that pg can't be PG_RELEASED since we did not drop the object
   2283 	 * lock since the last time we checked.
   2284 	 */
   2285 	KASSERT((pg->flags & PG_RELEASED) == 0);
   2286 	if (pg->flags & PG_WANTED)
   2287 		wakeup(pg);
   2288 	pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
   2289 	UVM_PAGE_OWN(pg, NULL);
   2290 
   2291 	pmap_update(ufi->orig_map->pmap);
   2292 	uvmfault_unlockall(ufi, amap, uobj);
   2293 
   2294 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
   2295 	return 0;
   2296 }
   2297 
   2298 /*
   2299  * uvm_fault_lower_done: queue lower center page.
   2300  */
   2301 
   2302 void
   2303 uvm_fault_lower_done(
   2304 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2305 	struct uvm_object *uobj, struct vm_page *pg)
   2306 {
   2307 	bool dropswap = false;
   2308 
   2309 	UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
   2310 
   2311 	if (flt->wire_paging) {
   2312 		uvm_pagewire(pg);
   2313 		if (pg->flags & PG_AOBJ) {
   2314 
   2315 			/*
   2316 			 * since the now-wired page cannot be paged out,
   2317 			 * release its swap resources for others to use.
   2318 			 * since an aobj page with no swap cannot be PG_CLEAN,
   2319 			 * clear its clean flag now.
   2320 			 */
   2321 
   2322 			KASSERT(uobj != NULL);
   2323 			pg->flags &= ~(PG_CLEAN);
   2324 			dropswap = true;
   2325 		}
   2326 	} else {
   2327 		uvm_pageactivate(pg);
   2328 	}
   2329 
   2330 	if (dropswap) {
   2331 		uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
   2332 	}
   2333 }
   2334 
   2335 
   2336 /*
   2337  * uvm_fault_wire: wire down a range of virtual addresses in a map.
   2338  *
   2339  * => map may be read-locked by caller, but MUST NOT be write-locked.
   2340  * => if map is read-locked, any operations which may cause map to
   2341  *	be write-locked in uvm_fault() must be taken care of by
   2342  *	the caller.  See uvm_map_pageable().
   2343  */
   2344 
   2345 int
   2346 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
   2347     vm_prot_t access_type, int maxprot)
   2348 {
   2349 	vaddr_t va;
   2350 	int error;
   2351 
   2352 	/*
   2353 	 * now fault it in a page at a time.   if the fault fails then we have
   2354 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
   2355 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
   2356 	 */
   2357 
   2358 	/*
   2359 	 * XXX work around overflowing a vaddr_t.  this prevents us from
   2360 	 * wiring the last page in the address space, though.
   2361 	 */
   2362 	if (start > end) {
   2363 		return EFAULT;
   2364 	}
   2365 
   2366 	for (va = start; va < end; va += PAGE_SIZE) {
   2367 		error = uvm_fault_internal(map, va, access_type,
   2368 		    (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
   2369 		if (error) {
   2370 			if (va != start) {
   2371 				uvm_fault_unwire(map, start, va);
   2372 			}
   2373 			return error;
   2374 		}
   2375 	}
   2376 	return 0;
   2377 }
   2378 
   2379 /*
   2380  * uvm_fault_unwire(): unwire range of virtual space.
   2381  */
   2382 
   2383 void
   2384 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
   2385 {
   2386 	vm_map_lock_read(map);
   2387 	uvm_fault_unwire_locked(map, start, end);
   2388 	vm_map_unlock_read(map);
   2389 }
   2390 
   2391 /*
   2392  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
   2393  *
   2394  * => map must be at least read-locked.
   2395  */
   2396 
   2397 void
   2398 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
   2399 {
   2400 	struct vm_map_entry *entry, *oentry;
   2401 	pmap_t pmap = vm_map_pmap(map);
   2402 	vaddr_t va;
   2403 	paddr_t pa;
   2404 	struct vm_page *pg;
   2405 
   2406 	/*
   2407 	 * we assume that the area we are unwiring has actually been wired
   2408 	 * in the first place.   this means that we should be able to extract
   2409 	 * the PAs from the pmap.   we also lock out the page daemon so that
   2410 	 * we can call uvm_pageunwire.
   2411 	 */
   2412 
   2413 	/*
   2414 	 * find the beginning map entry for the region.
   2415 	 */
   2416 
   2417 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
   2418 	if (uvm_map_lookup_entry(map, start, &entry) == false)
   2419 		panic("uvm_fault_unwire_locked: address not in map");
   2420 
   2421 	oentry = NULL;
   2422 	for (va = start; va < end; va += PAGE_SIZE) {
   2423 
   2424 		/*
   2425 		 * find the map entry for the current address.
   2426 		 */
   2427 
   2428 		KASSERT(va >= entry->start);
   2429 		while (va >= entry->end) {
   2430 			KASSERT(entry->next != &map->header &&
   2431 				entry->next->start <= entry->end);
   2432 			entry = entry->next;
   2433 		}
   2434 
   2435 		/*
   2436 		 * lock it.
   2437 		 */
   2438 
   2439 		if (entry != oentry) {
   2440 			if (oentry != NULL) {
   2441 				uvm_map_unlock_entry(oentry);
   2442 			}
   2443 			uvm_map_lock_entry(entry);
   2444 			oentry = entry;
   2445 		}
   2446 
   2447 		/*
   2448 		 * if the entry is no longer wired, tell the pmap.
   2449 		 */
   2450 
   2451 		if (!pmap_extract(pmap, va, &pa))
   2452 			continue;
   2453 
   2454 		if (VM_MAPENT_ISWIRED(entry) == 0)
   2455 			pmap_unwire(pmap, va);
   2456 
   2457 		pg = PHYS_TO_VM_PAGE(pa);
   2458 		if (pg)
   2459 			uvm_pageunwire(pg);
   2460 	}
   2461 
   2462 	if (oentry != NULL) {
   2463 		uvm_map_unlock_entry(entry);
   2464 	}
   2465 }
   2466