uvm_fault.c revision 1.214 1 /* $NetBSD: uvm_fault.c,v 1.214 2019/12/31 22:42:51 ad Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 */
29
30 /*
31 * uvm_fault.c: fault handler
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.214 2019/12/31 22:42:51 ad Exp $");
36
37 #include "opt_uvmhist.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/atomic.h>
42 #include <sys/kernel.h>
43 #include <sys/mman.h>
44
45 #include <uvm/uvm.h>
46
47 /*
48 *
49 * a word on page faults:
50 *
51 * types of page faults we handle:
52 *
53 * CASE 1: upper layer faults CASE 2: lower layer faults
54 *
55 * CASE 1A CASE 1B CASE 2A CASE 2B
56 * read/write1 write>1 read/write +-cow_write/zero
57 * | | | |
58 * +--|--+ +--|--+ +-----+ + | + | +-----+
59 * amap | V | | ---------> new | | | | ^ |
60 * +-----+ +-----+ +-----+ + | + | +--|--+
61 * | | |
62 * +-----+ +-----+ +--|--+ | +--|--+
63 * uobj | d/c | | d/c | | V | +----+ |
64 * +-----+ +-----+ +-----+ +-----+
65 *
66 * d/c = don't care
67 *
68 * case [0]: layerless fault
69 * no amap or uobj is present. this is an error.
70 *
71 * case [1]: upper layer fault [anon active]
72 * 1A: [read] or [write with anon->an_ref == 1]
73 * I/O takes place in upper level anon and uobj is not touched.
74 * 1B: [write with anon->an_ref > 1]
75 * new anon is alloc'd and data is copied off ["COW"]
76 *
77 * case [2]: lower layer fault [uobj]
78 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
79 * I/O takes place directly in object.
80 * 2B: [write to copy_on_write] or [read on NULL uobj]
81 * data is "promoted" from uobj to a new anon.
82 * if uobj is null, then we zero fill.
83 *
84 * we follow the standard UVM locking protocol ordering:
85 *
86 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
87 * we hold a PG_BUSY page if we unlock for I/O
88 *
89 *
90 * the code is structured as follows:
91 *
92 * - init the "IN" params in the ufi structure
93 * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
94 * - do lookups [locks maps], check protection, handle needs_copy
95 * - check for case 0 fault (error)
96 * - establish "range" of fault
97 * - if we have an amap lock it and extract the anons
98 * - if sequential advice deactivate pages behind us
99 * - at the same time check pmap for unmapped areas and anon for pages
100 * that we could map in (and do map it if found)
101 * - check object for resident pages that we could map in
102 * - if (case 2) goto Case2
103 * - >>> handle case 1
104 * - ensure source anon is resident in RAM
105 * - if case 1B alloc new anon and copy from source
106 * - map the correct page in
107 * Case2:
108 * - >>> handle case 2
109 * - ensure source page is resident (if uobj)
110 * - if case 2B alloc new anon and copy from source (could be zero
111 * fill if uobj == NULL)
112 * - map the correct page in
113 * - done!
114 *
115 * note on paging:
116 * if we have to do I/O we place a PG_BUSY page in the correct object,
117 * unlock everything, and do the I/O. when I/O is done we must reverify
118 * the state of the world before assuming that our data structures are
119 * valid. [because mappings could change while the map is unlocked]
120 *
121 * alternative 1: unbusy the page in question and restart the page fault
122 * from the top (ReFault). this is easy but does not take advantage
123 * of the information that we already have from our previous lookup,
124 * although it is possible that the "hints" in the vm_map will help here.
125 *
126 * alternative 2: the system already keeps track of a "version" number of
127 * a map. [i.e. every time you write-lock a map (e.g. to change a
128 * mapping) you bump the version number up by one...] so, we can save
129 * the version number of the map before we release the lock and start I/O.
130 * then when I/O is done we can relock and check the version numbers
131 * to see if anything changed. this might save us some over 1 because
132 * we don't have to unbusy the page and may be less compares(?).
133 *
134 * alternative 3: put in backpointers or a way to "hold" part of a map
135 * in place while I/O is in progress. this could be complex to
136 * implement (especially with structures like amap that can be referenced
137 * by multiple map entries, and figuring out what should wait could be
138 * complex as well...).
139 *
140 * we use alternative 2. given that we are multi-threaded now we may want
141 * to reconsider the choice.
142 */
143
144 /*
145 * local data structures
146 */
147
148 struct uvm_advice {
149 int advice;
150 int nback;
151 int nforw;
152 };
153
154 /*
155 * page range array:
156 * note: index in array must match "advice" value
157 * XXX: borrowed numbers from freebsd. do they work well for us?
158 */
159
160 static const struct uvm_advice uvmadvice[] = {
161 { UVM_ADV_NORMAL, 3, 4 },
162 { UVM_ADV_RANDOM, 0, 0 },
163 { UVM_ADV_SEQUENTIAL, 8, 7},
164 };
165
166 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
167
168 /*
169 * private prototypes
170 */
171
172 /*
173 * externs from other modules
174 */
175
176 extern int start_init_exec; /* Is init_main() done / init running? */
177
178 /*
179 * inline functions
180 */
181
182 /*
183 * uvmfault_anonflush: try and deactivate pages in specified anons
184 *
185 * => does not have to deactivate page if it is busy
186 */
187
188 static inline void
189 uvmfault_anonflush(struct vm_anon **anons, int n)
190 {
191 int lcv;
192 struct vm_page *pg;
193
194 for (lcv = 0; lcv < n; lcv++) {
195 if (anons[lcv] == NULL)
196 continue;
197 KASSERT(mutex_owned(anons[lcv]->an_lock));
198 pg = anons[lcv]->an_page;
199 if (pg && (pg->flags & PG_BUSY) == 0) {
200 uvm_pagelock(pg);
201 uvm_pagedeactivate(pg);
202 uvm_pageunlock(pg);
203 }
204 }
205 }
206
207 /*
208 * normal functions
209 */
210
211 /*
212 * uvmfault_amapcopy: clear "needs_copy" in a map.
213 *
214 * => called with VM data structures unlocked (usually, see below)
215 * => we get a write lock on the maps and clear needs_copy for a VA
216 * => if we are out of RAM we sleep (waiting for more)
217 */
218
219 static void
220 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
221 {
222 for (;;) {
223
224 /*
225 * no mapping? give up.
226 */
227
228 if (uvmfault_lookup(ufi, true) == false)
229 return;
230
231 /*
232 * copy if needed.
233 */
234
235 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
236 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
237 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
238
239 /*
240 * didn't work? must be out of RAM. unlock and sleep.
241 */
242
243 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
244 uvmfault_unlockmaps(ufi, true);
245 uvm_wait("fltamapcopy");
246 continue;
247 }
248
249 /*
250 * got it! unlock and return.
251 */
252
253 uvmfault_unlockmaps(ufi, true);
254 return;
255 }
256 /*NOTREACHED*/
257 }
258
259 /*
260 * uvmfault_anonget: get data in an anon into a non-busy, non-released
261 * page in that anon.
262 *
263 * => Map, amap and thus anon should be locked by caller.
264 * => If we fail, we unlock everything and error is returned.
265 * => If we are successful, return with everything still locked.
266 * => We do not move the page on the queues [gets moved later]. If we
267 * allocate a new page [we_own], it gets put on the queues. Either way,
268 * the result is that the page is on the queues at return time
269 * => For pages which are on loan from a uvm_object (and thus are not owned
270 * by the anon): if successful, return with the owning object locked.
271 * The caller must unlock this object when it unlocks everything else.
272 */
273
274 int
275 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
276 struct vm_anon *anon)
277 {
278 struct vm_page *pg;
279 int error;
280
281 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
282 KASSERT(mutex_owned(anon->an_lock));
283 KASSERT(anon->an_lock == amap->am_lock);
284
285 /* Increment the counters.*/
286 cpu_count(CPU_COUNT_FLTANGET, 1);
287 if (anon->an_page) {
288 curlwp->l_ru.ru_minflt++;
289 } else {
290 curlwp->l_ru.ru_majflt++;
291 }
292 error = 0;
293
294 /*
295 * Loop until we get the anon data, or fail.
296 */
297
298 for (;;) {
299 bool we_own, locked;
300 /*
301 * Note: 'we_own' will become true if we set PG_BUSY on a page.
302 */
303 we_own = false;
304 pg = anon->an_page;
305
306 /*
307 * If there is a resident page and it is loaned, then anon
308 * may not own it. Call out to uvm_anon_lockloanpg() to
309 * identify and lock the real owner of the page.
310 */
311
312 if (pg && pg->loan_count)
313 pg = uvm_anon_lockloanpg(anon);
314
315 /*
316 * Is page resident? Make sure it is not busy/released.
317 */
318
319 if (pg) {
320
321 /*
322 * at this point, if the page has a uobject [meaning
323 * we have it on loan], then that uobject is locked
324 * by us! if the page is busy, we drop all the
325 * locks (including uobject) and try again.
326 */
327
328 if ((pg->flags & PG_BUSY) == 0) {
329 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
330 return 0;
331 }
332 pg->flags |= PG_WANTED;
333 cpu_count(CPU_COUNT_FLTPGWAIT, 1);
334
335 /*
336 * The last unlock must be an atomic unlock and wait
337 * on the owner of page.
338 */
339
340 if (pg->uobject) {
341 /* Owner of page is UVM object. */
342 uvmfault_unlockall(ufi, amap, NULL);
343 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
344 0,0,0);
345 UVM_UNLOCK_AND_WAIT(pg,
346 pg->uobject->vmobjlock,
347 false, "anonget1", 0);
348 } else {
349 /* Owner of page is anon. */
350 uvmfault_unlockall(ufi, NULL, NULL);
351 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
352 0,0,0);
353 UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
354 false, "anonget2", 0);
355 }
356 } else {
357 #if defined(VMSWAP)
358 /*
359 * No page, therefore allocate one.
360 */
361
362 pg = uvm_pagealloc(NULL,
363 ufi != NULL ? ufi->orig_rvaddr : 0,
364 anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
365 if (pg == NULL) {
366 /* Out of memory. Wait a little. */
367 uvmfault_unlockall(ufi, amap, NULL);
368 cpu_count(CPU_COUNT_FLTNORAM, 1);
369 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
370 0,0,0);
371 if (!uvm_reclaimable()) {
372 return ENOMEM;
373 }
374 uvm_wait("flt_noram1");
375 } else {
376 /* PG_BUSY bit is set. */
377 we_own = true;
378 uvmfault_unlockall(ufi, amap, NULL);
379
380 /*
381 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
382 * the uvm_swap_get() function with all data
383 * structures unlocked. Note that it is OK
384 * to read an_swslot here, because we hold
385 * PG_BUSY on the page.
386 */
387 cpu_count(CPU_COUNT_PAGEINS, 1);
388 error = uvm_swap_get(pg, anon->an_swslot,
389 PGO_SYNCIO);
390
391 /*
392 * We clean up after the I/O below in the
393 * 'we_own' case.
394 */
395 }
396 #else
397 panic("%s: no page", __func__);
398 #endif /* defined(VMSWAP) */
399 }
400
401 /*
402 * Re-lock the map and anon.
403 */
404
405 locked = uvmfault_relock(ufi);
406 if (locked || we_own) {
407 mutex_enter(anon->an_lock);
408 }
409
410 /*
411 * If we own the page (i.e. we set PG_BUSY), then we need
412 * to clean up after the I/O. There are three cases to
413 * consider:
414 *
415 * 1) Page was released during I/O: free anon and ReFault.
416 * 2) I/O not OK. Free the page and cause the fault to fail.
417 * 3) I/O OK! Activate the page and sync with the non-we_own
418 * case (i.e. drop anon lock if not locked).
419 */
420
421 if (we_own) {
422 #if defined(VMSWAP)
423 if (pg->flags & PG_WANTED) {
424 wakeup(pg);
425 }
426 if (error) {
427
428 /*
429 * Remove the swap slot from the anon and
430 * mark the anon as having no real slot.
431 * Do not free the swap slot, thus preventing
432 * it from being used again.
433 */
434
435 if (anon->an_swslot > 0) {
436 uvm_swap_markbad(anon->an_swslot, 1);
437 }
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0) {
441 goto released;
442 }
443
444 /*
445 * Note: page was never !PG_BUSY, so it
446 * cannot be mapped and thus no need to
447 * pmap_page_protect() it.
448 */
449
450 uvm_pagefree(pg);
451
452 if (locked) {
453 uvmfault_unlockall(ufi, NULL, NULL);
454 }
455 mutex_exit(anon->an_lock);
456 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
457 return error;
458 }
459
460 if ((pg->flags & PG_RELEASED) != 0) {
461 released:
462 KASSERT(anon->an_ref == 0);
463
464 /*
465 * Released while we had unlocked amap.
466 */
467
468 if (locked) {
469 uvmfault_unlockall(ufi, NULL, NULL);
470 }
471 uvm_anon_release(anon);
472
473 if (error) {
474 UVMHIST_LOG(maphist,
475 "<- ERROR/RELEASED", 0,0,0,0);
476 return error;
477 }
478
479 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
480 return ERESTART;
481 }
482
483 /*
484 * We have successfully read the page, activate it.
485 */
486
487 uvm_pagelock(pg);
488 uvm_pageactivate(pg);
489 uvm_pageunlock(pg);
490 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
491 UVM_PAGE_OWN(pg, NULL);
492 #else
493 panic("%s: we_own", __func__);
494 #endif /* defined(VMSWAP) */
495 }
496
497 /*
498 * We were not able to re-lock the map - restart the fault.
499 */
500
501 if (!locked) {
502 if (we_own) {
503 mutex_exit(anon->an_lock);
504 }
505 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
506 return ERESTART;
507 }
508
509 /*
510 * Verify that no one has touched the amap and moved
511 * the anon on us.
512 */
513
514 if (ufi != NULL && amap_lookup(&ufi->entry->aref,
515 ufi->orig_rvaddr - ufi->entry->start) != anon) {
516
517 uvmfault_unlockall(ufi, amap, NULL);
518 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
519 return ERESTART;
520 }
521
522 /*
523 * Retry..
524 */
525
526 cpu_count(CPU_COUNT_FLTANRETRY, 1);
527 continue;
528 }
529 /*NOTREACHED*/
530 }
531
532 /*
533 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
534 *
535 * 1. allocate an anon and a page.
536 * 2. fill its contents.
537 * 3. put it into amap.
538 *
539 * => if we fail (result != 0) we unlock everything.
540 * => on success, return a new locked anon via 'nanon'.
541 * (*nanon)->an_page will be a resident, locked, dirty page.
542 * => it's caller's responsibility to put the promoted nanon->an_page to the
543 * page queue.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(amap->am_lock));
583 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
584 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
585
586 if (*spare != NULL) {
587 anon = *spare;
588 *spare = NULL;
589 } else {
590 anon = uvm_analloc();
591 }
592 if (anon) {
593
594 /*
595 * The new anon is locked.
596 *
597 * if opg == NULL, we want a zero'd, dirty page,
598 * so have uvm_pagealloc() do that for us.
599 */
600
601 KASSERT(anon->an_lock == NULL);
602 anon->an_lock = amap->am_lock;
603 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
604 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
605 if (pg == NULL) {
606 anon->an_lock = NULL;
607 }
608 } else {
609 pg = NULL;
610 }
611
612 /*
613 * out of memory resources?
614 */
615
616 if (pg == NULL) {
617 /* save anon for the next try. */
618 if (anon != NULL) {
619 *spare = anon;
620 }
621
622 /* unlock and fail ... */
623 uvm_page_unbusy(&uobjpage, 1);
624 uvmfault_unlockall(ufi, amap, uobj);
625 if (!uvm_reclaimable()) {
626 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
627 cpu_count(CPU_COUNT_FLTNOANON, 1);
628 error = ENOMEM;
629 goto done;
630 }
631
632 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
633 cpu_count(CPU_COUNT_FLTNORAM, 1);
634 uvm_wait("flt_noram5");
635 error = ERESTART;
636 goto done;
637 }
638
639 /* copy page [pg now dirty] */
640 if (opg) {
641 uvm_pagecopy(opg, pg);
642 }
643
644 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
645 oanon != NULL);
646
647 *nanon = anon;
648 error = 0;
649 done:
650 return error;
651 }
652
653 /*
654 * Update statistics after fault resolution.
655 * - maxrss
656 */
657 void
658 uvmfault_update_stats(struct uvm_faultinfo *ufi)
659 {
660 struct vm_map *map;
661 struct vmspace *vm;
662 struct proc *p;
663 vsize_t res;
664
665 map = ufi->orig_map;
666
667 p = curproc;
668 KASSERT(p != NULL);
669 vm = p->p_vmspace;
670
671 if (&vm->vm_map != map)
672 return;
673
674 res = pmap_resident_count(map->pmap);
675 if (vm->vm_rssmax < res)
676 vm->vm_rssmax = res;
677 }
678
679 /*
680 * F A U L T - m a i n e n t r y p o i n t
681 */
682
683 /*
684 * uvm_fault: page fault handler
685 *
686 * => called from MD code to resolve a page fault
687 * => VM data structures usually should be unlocked. however, it is
688 * possible to call here with the main map locked if the caller
689 * gets a write lock, sets it recusive, and then calls us (c.f.
690 * uvm_map_pageable). this should be avoided because it keeps
691 * the map locked off during I/O.
692 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
693 */
694
695 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
696 ~VM_PROT_WRITE : VM_PROT_ALL)
697
698 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
699 #define UVM_FAULT_WIRE (1 << 0)
700 #define UVM_FAULT_MAXPROT (1 << 1)
701
702 struct uvm_faultctx {
703
704 /*
705 * the following members are set up by uvm_fault_check() and
706 * read-only after that.
707 *
708 * note that narrow is used by uvm_fault_check() to change
709 * the behaviour after ERESTART.
710 *
711 * most of them might change after RESTART if the underlying
712 * map entry has been changed behind us. an exception is
713 * wire_paging, which does never change.
714 */
715 vm_prot_t access_type;
716 vaddr_t startva;
717 int npages;
718 int centeridx;
719 bool narrow; /* work on a single requested page only */
720 bool wire_mapping; /* request a PMAP_WIRED mapping
721 (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
722 bool wire_paging; /* request uvm_pagewire
723 (true for UVM_FAULT_WIRE) */
724 bool cow_now; /* VM_PROT_WRITE is actually requested
725 (ie. should break COW and page loaning) */
726
727 /*
728 * enter_prot is set up by uvm_fault_check() and clamped
729 * (ie. drop the VM_PROT_WRITE bit) in various places in case
730 * of !cow_now.
731 */
732 vm_prot_t enter_prot; /* prot at which we want to enter pages in */
733
734 /*
735 * the following member is for uvmfault_promote() and ERESTART.
736 */
737 struct vm_anon *anon_spare;
738
739 /*
740 * the folloing is actually a uvm_fault_lower() internal.
741 * it's here merely for debugging.
742 * (or due to the mechanical separation of the function?)
743 */
744 bool promote;
745 };
746
747 static inline int uvm_fault_check(
748 struct uvm_faultinfo *, struct uvm_faultctx *,
749 struct vm_anon ***, bool);
750
751 static int uvm_fault_upper(
752 struct uvm_faultinfo *, struct uvm_faultctx *,
753 struct vm_anon **);
754 static inline int uvm_fault_upper_lookup(
755 struct uvm_faultinfo *, const struct uvm_faultctx *,
756 struct vm_anon **, struct vm_page **);
757 static inline void uvm_fault_upper_neighbor(
758 struct uvm_faultinfo *, const struct uvm_faultctx *,
759 vaddr_t, struct vm_page *, bool);
760 static inline int uvm_fault_upper_loan(
761 struct uvm_faultinfo *, struct uvm_faultctx *,
762 struct vm_anon *, struct uvm_object **);
763 static inline int uvm_fault_upper_promote(
764 struct uvm_faultinfo *, struct uvm_faultctx *,
765 struct uvm_object *, struct vm_anon *);
766 static inline int uvm_fault_upper_direct(
767 struct uvm_faultinfo *, struct uvm_faultctx *,
768 struct uvm_object *, struct vm_anon *);
769 static int uvm_fault_upper_enter(
770 struct uvm_faultinfo *, const struct uvm_faultctx *,
771 struct uvm_object *, struct vm_anon *,
772 struct vm_page *, struct vm_anon *);
773 static inline void uvm_fault_upper_done(
774 struct uvm_faultinfo *, const struct uvm_faultctx *,
775 struct vm_anon *, struct vm_page *);
776
777 static int uvm_fault_lower(
778 struct uvm_faultinfo *, struct uvm_faultctx *,
779 struct vm_page **);
780 static inline void uvm_fault_lower_lookup(
781 struct uvm_faultinfo *, const struct uvm_faultctx *,
782 struct vm_page **);
783 static inline void uvm_fault_lower_neighbor(
784 struct uvm_faultinfo *, const struct uvm_faultctx *,
785 vaddr_t, struct vm_page *, bool);
786 static inline int uvm_fault_lower_io(
787 struct uvm_faultinfo *, const struct uvm_faultctx *,
788 struct uvm_object **, struct vm_page **);
789 static inline int uvm_fault_lower_direct(
790 struct uvm_faultinfo *, struct uvm_faultctx *,
791 struct uvm_object *, struct vm_page *);
792 static inline int uvm_fault_lower_direct_loan(
793 struct uvm_faultinfo *, struct uvm_faultctx *,
794 struct uvm_object *, struct vm_page **,
795 struct vm_page **);
796 static inline int uvm_fault_lower_promote(
797 struct uvm_faultinfo *, struct uvm_faultctx *,
798 struct uvm_object *, struct vm_page *);
799 static int uvm_fault_lower_enter(
800 struct uvm_faultinfo *, const struct uvm_faultctx *,
801 struct uvm_object *,
802 struct vm_anon *, struct vm_page *);
803 static inline void uvm_fault_lower_done(
804 struct uvm_faultinfo *, const struct uvm_faultctx *,
805 struct uvm_object *, struct vm_page *);
806
807 int
808 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
809 vm_prot_t access_type, int fault_flag)
810 {
811 struct uvm_faultinfo ufi;
812 struct uvm_faultctx flt = {
813 .access_type = access_type,
814
815 /* don't look for neighborhood * pages on "wire" fault */
816 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
817
818 /* "wire" fault causes wiring of both mapping and paging */
819 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
820 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
821 };
822 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
823 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
824 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
825 int error;
826
827 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
828
829 UVMHIST_LOG(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)",
830 (uintptr_t)orig_map, vaddr, access_type, fault_flag);
831
832 /* Don't count anything until user interaction is possible */
833 kpreempt_disable();
834 if (__predict_true(start_init_exec)) {
835 struct cpu_info *ci = curcpu();
836 CPU_COUNT(CPU_COUNT_NFAULT, 1);
837 /* Don't flood RNG subsystem with samples. */
838 if (++(ci->ci_faultrng) == 503) {
839 ci->ci_faultrng = 0;
840 rnd_add_uint32(&curcpu()->ci_data.cpu_uvm->rs,
841 sizeof(vaddr_t) == sizeof(uint32_t) ?
842 (uint32_t)vaddr : sizeof(vaddr_t) ==
843 sizeof(uint64_t) ?
844 (uint32_t)vaddr :
845 (uint32_t)ci->ci_counts[CPU_COUNT_NFAULT]);
846 }
847 }
848 kpreempt_enable();
849
850 /*
851 * init the IN parameters in the ufi
852 */
853
854 ufi.orig_map = orig_map;
855 ufi.orig_rvaddr = trunc_page(vaddr);
856 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
857
858 error = ERESTART;
859 while (error == ERESTART) { /* ReFault: */
860 anons = anons_store;
861 pages = pages_store;
862
863 error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
864 if (error != 0)
865 continue;
866
867 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
868 if (error != 0)
869 continue;
870
871 if (pages[flt.centeridx] == PGO_DONTCARE)
872 error = uvm_fault_upper(&ufi, &flt, anons);
873 else {
874 struct uvm_object * const uobj =
875 ufi.entry->object.uvm_obj;
876
877 if (uobj && uobj->pgops->pgo_fault != NULL) {
878 /*
879 * invoke "special" fault routine.
880 */
881 mutex_enter(uobj->vmobjlock);
882 /* locked: maps(read), amap(if there), uobj */
883 error = uobj->pgops->pgo_fault(&ufi,
884 flt.startva, pages, flt.npages,
885 flt.centeridx, flt.access_type,
886 PGO_LOCKED|PGO_SYNCIO);
887
888 /*
889 * locked: nothing, pgo_fault has unlocked
890 * everything
891 */
892
893 /*
894 * object fault routine responsible for
895 * pmap_update().
896 */
897
898 /*
899 * Wake up the pagedaemon if the fault method
900 * failed for lack of memory but some can be
901 * reclaimed.
902 */
903 if (error == ENOMEM && uvm_reclaimable()) {
904 uvm_wait("pgo_fault");
905 error = ERESTART;
906 }
907 } else {
908 error = uvm_fault_lower(&ufi, &flt, pages);
909 }
910 }
911 }
912
913 if (flt.anon_spare != NULL) {
914 flt.anon_spare->an_ref--;
915 KASSERT(flt.anon_spare->an_ref == 0);
916 KASSERT(flt.anon_spare->an_lock == NULL);
917 uvm_anon_free(flt.anon_spare);
918 }
919 return error;
920 }
921
922 /*
923 * uvm_fault_check: check prot, handle needs-copy, etc.
924 *
925 * 1. lookup entry.
926 * 2. check protection.
927 * 3. adjust fault condition (mainly for simulated fault).
928 * 4. handle needs-copy (lazy amap copy).
929 * 5. establish range of interest for neighbor fault (aka pre-fault).
930 * 6. look up anons (if amap exists).
931 * 7. flush pages (if MADV_SEQUENTIAL)
932 *
933 * => called with nothing locked.
934 * => if we fail (result != 0) we unlock everything.
935 * => initialize/adjust many members of flt.
936 */
937
938 static int
939 uvm_fault_check(
940 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
941 struct vm_anon ***ranons, bool maxprot)
942 {
943 struct vm_amap *amap;
944 struct uvm_object *uobj;
945 vm_prot_t check_prot;
946 int nback, nforw;
947 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
948
949 /*
950 * lookup and lock the maps
951 */
952
953 if (uvmfault_lookup(ufi, false) == false) {
954 UVMHIST_LOG(maphist, "<- no mapping @ 0x%#jx", ufi->orig_rvaddr,
955 0,0,0);
956 return EFAULT;
957 }
958 /* locked: maps(read) */
959
960 #ifdef DIAGNOSTIC
961 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
962 printf("Page fault on non-pageable map:\n");
963 printf("ufi->map = %p\n", ufi->map);
964 printf("ufi->orig_map = %p\n", ufi->orig_map);
965 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
966 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
967 }
968 #endif
969
970 /*
971 * check protection
972 */
973
974 check_prot = maxprot ?
975 ufi->entry->max_protection : ufi->entry->protection;
976 if ((check_prot & flt->access_type) != flt->access_type) {
977 UVMHIST_LOG(maphist,
978 "<- protection failure (prot=%#jx, access=%#jx)",
979 ufi->entry->protection, flt->access_type, 0, 0);
980 uvmfault_unlockmaps(ufi, false);
981 return EFAULT;
982 }
983
984 /*
985 * "enter_prot" is the protection we want to enter the page in at.
986 * for certain pages (e.g. copy-on-write pages) this protection can
987 * be more strict than ufi->entry->protection. "wired" means either
988 * the entry is wired or we are fault-wiring the pg.
989 */
990
991 flt->enter_prot = ufi->entry->protection;
992 if (VM_MAPENT_ISWIRED(ufi->entry)) {
993 flt->wire_mapping = true;
994 flt->wire_paging = true;
995 flt->narrow = true;
996 }
997
998 if (flt->wire_mapping) {
999 flt->access_type = flt->enter_prot; /* full access for wired */
1000 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
1001 } else {
1002 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
1003 }
1004
1005 flt->promote = false;
1006
1007 /*
1008 * handle "needs_copy" case. if we need to copy the amap we will
1009 * have to drop our readlock and relock it with a write lock. (we
1010 * need a write lock to change anything in a map entry [e.g.
1011 * needs_copy]).
1012 */
1013
1014 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
1015 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
1016 KASSERT(!maxprot);
1017 /* need to clear */
1018 UVMHIST_LOG(maphist,
1019 " need to clear needs_copy and refault",0,0,0,0);
1020 uvmfault_unlockmaps(ufi, false);
1021 uvmfault_amapcopy(ufi);
1022 cpu_count(CPU_COUNT_FLTAMCOPY, 1);
1023 return ERESTART;
1024
1025 } else {
1026
1027 /*
1028 * ensure that we pmap_enter page R/O since
1029 * needs_copy is still true
1030 */
1031
1032 flt->enter_prot &= ~VM_PROT_WRITE;
1033 }
1034 }
1035
1036 /*
1037 * identify the players
1038 */
1039
1040 amap = ufi->entry->aref.ar_amap; /* upper layer */
1041 uobj = ufi->entry->object.uvm_obj; /* lower layer */
1042
1043 /*
1044 * check for a case 0 fault. if nothing backing the entry then
1045 * error now.
1046 */
1047
1048 if (amap == NULL && uobj == NULL) {
1049 uvmfault_unlockmaps(ufi, false);
1050 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
1051 return EFAULT;
1052 }
1053
1054 /*
1055 * establish range of interest based on advice from mapper
1056 * and then clip to fit map entry. note that we only want
1057 * to do this the first time through the fault. if we
1058 * ReFault we will disable this by setting "narrow" to true.
1059 */
1060
1061 if (flt->narrow == false) {
1062
1063 /* wide fault (!narrow) */
1064 KASSERT(uvmadvice[ufi->entry->advice].advice ==
1065 ufi->entry->advice);
1066 nback = MIN(uvmadvice[ufi->entry->advice].nback,
1067 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1068 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1069 /*
1070 * note: "-1" because we don't want to count the
1071 * faulting page as forw
1072 */
1073 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1074 ((ufi->entry->end - ufi->orig_rvaddr) >>
1075 PAGE_SHIFT) - 1);
1076 flt->npages = nback + nforw + 1;
1077 flt->centeridx = nback;
1078
1079 flt->narrow = true; /* ensure only once per-fault */
1080
1081 } else {
1082
1083 /* narrow fault! */
1084 nback = nforw = 0;
1085 flt->startva = ufi->orig_rvaddr;
1086 flt->npages = 1;
1087 flt->centeridx = 0;
1088
1089 }
1090 /* offset from entry's start to pgs' start */
1091 const voff_t eoff = flt->startva - ufi->entry->start;
1092
1093 /* locked: maps(read) */
1094 UVMHIST_LOG(maphist, " narrow=%jd, back=%jd, forw=%jd, startva=%#jx",
1095 flt->narrow, nback, nforw, flt->startva);
1096 UVMHIST_LOG(maphist, " entry=%#jx, amap=%#jx, obj=%#jx",
1097 (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0);
1098
1099 /*
1100 * if we've got an amap, lock it and extract current anons.
1101 */
1102
1103 if (amap) {
1104 amap_lock(amap);
1105 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1106 } else {
1107 *ranons = NULL; /* to be safe */
1108 }
1109
1110 /* locked: maps(read), amap(if there) */
1111 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1112
1113 /*
1114 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1115 * now and then forget about them (for the rest of the fault).
1116 */
1117
1118 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1119
1120 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1121 0,0,0,0);
1122 /* flush back-page anons? */
1123 if (amap)
1124 uvmfault_anonflush(*ranons, nback);
1125
1126 /* flush object? */
1127 if (uobj) {
1128 voff_t uoff;
1129
1130 uoff = ufi->entry->offset + eoff;
1131 mutex_enter(uobj->vmobjlock);
1132 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1133 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1134 }
1135
1136 /* now forget about the backpages */
1137 if (amap)
1138 *ranons += nback;
1139 flt->startva += (nback << PAGE_SHIFT);
1140 flt->npages -= nback;
1141 flt->centeridx = 0;
1142 }
1143 /*
1144 * => startva is fixed
1145 * => npages is fixed
1146 */
1147 KASSERT(flt->startva <= ufi->orig_rvaddr);
1148 KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1149 flt->startva + (flt->npages << PAGE_SHIFT));
1150 return 0;
1151 }
1152
1153 /*
1154 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1155 *
1156 * iterate range of interest:
1157 * 1. check if h/w mapping exists. if yes, we don't care
1158 * 2. check if anon exists. if not, page is lower.
1159 * 3. if anon exists, enter h/w mapping for neighbors.
1160 *
1161 * => called with amap locked (if exists).
1162 */
1163
1164 static int
1165 uvm_fault_upper_lookup(
1166 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1167 struct vm_anon **anons, struct vm_page **pages)
1168 {
1169 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1170 int lcv;
1171 vaddr_t currva;
1172 bool shadowed __unused;
1173 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1174
1175 /* locked: maps(read), amap(if there) */
1176 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1177
1178 /*
1179 * map in the backpages and frontpages we found in the amap in hopes
1180 * of preventing future faults. we also init the pages[] array as
1181 * we go.
1182 */
1183
1184 currva = flt->startva;
1185 shadowed = false;
1186 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1187 /*
1188 * don't play with VAs that are already mapped
1189 * (except for center)
1190 */
1191 if (lcv != flt->centeridx &&
1192 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1193 pages[lcv] = PGO_DONTCARE;
1194 continue;
1195 }
1196
1197 /*
1198 * unmapped or center page. check if any anon at this level.
1199 */
1200 if (amap == NULL || anons[lcv] == NULL) {
1201 pages[lcv] = NULL;
1202 continue;
1203 }
1204
1205 /*
1206 * check for present page and map if possible. re-activate it.
1207 */
1208
1209 pages[lcv] = PGO_DONTCARE;
1210 if (lcv == flt->centeridx) { /* save center for later! */
1211 shadowed = true;
1212 continue;
1213 }
1214
1215 struct vm_anon *anon = anons[lcv];
1216 struct vm_page *pg = anon->an_page;
1217
1218 KASSERT(anon->an_lock == amap->am_lock);
1219
1220 /* Ignore loaned and busy pages. */
1221 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
1222 uvm_fault_upper_neighbor(ufi, flt, currva,
1223 pg, anon->an_ref > 1);
1224 }
1225 }
1226
1227 /* locked: maps(read), amap(if there) */
1228 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1229 /* (shadowed == true) if there is an anon at the faulting address */
1230 UVMHIST_LOG(maphist, " shadowed=%jd, will_get=%jd", shadowed,
1231 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1232
1233 /*
1234 * note that if we are really short of RAM we could sleep in the above
1235 * call to pmap_enter with everything locked. bad?
1236 *
1237 * XXX Actually, that is bad; pmap_enter() should just fail in that
1238 * XXX case. --thorpej
1239 */
1240
1241 return 0;
1242 }
1243
1244 /*
1245 * uvm_fault_upper_neighbor: enter single upper neighbor page.
1246 *
1247 * => called with amap and anon locked.
1248 */
1249
1250 static void
1251 uvm_fault_upper_neighbor(
1252 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1253 vaddr_t currva, struct vm_page *pg, bool readonly)
1254 {
1255 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1256
1257 /* locked: amap, anon */
1258
1259 uvm_pagelock(pg);
1260 uvm_pageenqueue(pg);
1261 uvm_pageunlock(pg);
1262 UVMHIST_LOG(maphist,
1263 " MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx",
1264 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1265 cpu_count(CPU_COUNT_FLTNAMAP, 1);
1266
1267 /*
1268 * Since this page isn't the page that's actually faulting,
1269 * ignore pmap_enter() failures; it's not critical that we
1270 * enter these right now.
1271 */
1272
1273 (void) pmap_enter(ufi->orig_map->pmap, currva,
1274 VM_PAGE_TO_PHYS(pg),
1275 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1276 flt->enter_prot,
1277 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1278
1279 pmap_update(ufi->orig_map->pmap);
1280 }
1281
1282 /*
1283 * uvm_fault_upper: handle upper fault.
1284 *
1285 * 1. acquire anon lock.
1286 * 2. get anon. let uvmfault_anonget do the dirty work.
1287 * 3. handle loan.
1288 * 4. dispatch direct or promote handlers.
1289 */
1290
1291 static int
1292 uvm_fault_upper(
1293 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1294 struct vm_anon **anons)
1295 {
1296 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1297 struct vm_anon * const anon = anons[flt->centeridx];
1298 struct uvm_object *uobj;
1299 int error;
1300 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1301
1302 /* locked: maps(read), amap, anon */
1303 KASSERT(mutex_owned(amap->am_lock));
1304 KASSERT(anon->an_lock == amap->am_lock);
1305
1306 /*
1307 * handle case 1: fault on an anon in our amap
1308 */
1309
1310 UVMHIST_LOG(maphist, " case 1 fault: anon=%#jx",
1311 (uintptr_t)anon, 0, 0, 0);
1312
1313 /*
1314 * no matter if we have case 1A or case 1B we are going to need to
1315 * have the anon's memory resident. ensure that now.
1316 */
1317
1318 /*
1319 * let uvmfault_anonget do the dirty work.
1320 * if it fails (!OK) it will unlock everything for us.
1321 * if it succeeds, locks are still valid and locked.
1322 * also, if it is OK, then the anon's page is on the queues.
1323 * if the page is on loan from a uvm_object, then anonget will
1324 * lock that object for us if it does not fail.
1325 */
1326
1327 error = uvmfault_anonget(ufi, amap, anon);
1328 switch (error) {
1329 case 0:
1330 break;
1331
1332 case ERESTART:
1333 return ERESTART;
1334
1335 case EAGAIN:
1336 kpause("fltagain1", false, hz/2, NULL);
1337 return ERESTART;
1338
1339 default:
1340 return error;
1341 }
1342
1343 /*
1344 * uobj is non null if the page is on loan from an object (i.e. uobj)
1345 */
1346
1347 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1348
1349 /* locked: maps(read), amap, anon, uobj(if one) */
1350 KASSERT(mutex_owned(amap->am_lock));
1351 KASSERT(anon->an_lock == amap->am_lock);
1352 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1353
1354 /*
1355 * special handling for loaned pages
1356 */
1357
1358 if (anon->an_page->loan_count) {
1359 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1360 if (error != 0)
1361 return error;
1362 }
1363
1364 /*
1365 * if we are case 1B then we will need to allocate a new blank
1366 * anon to transfer the data into. note that we have a lock
1367 * on anon, so no one can busy or release the page until we are done.
1368 * also note that the ref count can't drop to zero here because
1369 * it is > 1 and we are only dropping one ref.
1370 *
1371 * in the (hopefully very rare) case that we are out of RAM we
1372 * will unlock, wait for more RAM, and refault.
1373 *
1374 * if we are out of anon VM we kill the process (XXX: could wait?).
1375 */
1376
1377 if (flt->cow_now && anon->an_ref > 1) {
1378 flt->promote = true;
1379 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1380 } else {
1381 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1382 }
1383 return error;
1384 }
1385
1386 /*
1387 * uvm_fault_upper_loan: handle loaned upper page.
1388 *
1389 * 1. if not cow'ing now, simply adjust flt->enter_prot.
1390 * 2. if cow'ing now, and if ref count is 1, break loan.
1391 */
1392
1393 static int
1394 uvm_fault_upper_loan(
1395 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1396 struct vm_anon *anon, struct uvm_object **ruobj)
1397 {
1398 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1399 int error = 0;
1400 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1401
1402 if (!flt->cow_now) {
1403
1404 /*
1405 * for read faults on loaned pages we just cap the
1406 * protection at read-only.
1407 */
1408
1409 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1410
1411 } else {
1412 /*
1413 * note that we can't allow writes into a loaned page!
1414 *
1415 * if we have a write fault on a loaned page in an
1416 * anon then we need to look at the anon's ref count.
1417 * if it is greater than one then we are going to do
1418 * a normal copy-on-write fault into a new anon (this
1419 * is not a problem). however, if the reference count
1420 * is one (a case where we would normally allow a
1421 * write directly to the page) then we need to kill
1422 * the loan before we continue.
1423 */
1424
1425 /* >1 case is already ok */
1426 if (anon->an_ref == 1) {
1427 error = uvm_loanbreak_anon(anon, *ruobj);
1428 if (error != 0) {
1429 uvmfault_unlockall(ufi, amap, *ruobj);
1430 uvm_wait("flt_noram2");
1431 return ERESTART;
1432 }
1433 /* if we were a loan receiver uobj is gone */
1434 if (*ruobj)
1435 *ruobj = NULL;
1436 }
1437 }
1438 return error;
1439 }
1440
1441 /*
1442 * uvm_fault_upper_promote: promote upper page.
1443 *
1444 * 1. call uvmfault_promote.
1445 * 2. enqueue page.
1446 * 3. deref.
1447 * 4. pass page to uvm_fault_upper_enter.
1448 */
1449
1450 static int
1451 uvm_fault_upper_promote(
1452 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1453 struct uvm_object *uobj, struct vm_anon *anon)
1454 {
1455 struct vm_anon * const oanon = anon;
1456 struct vm_page *pg;
1457 int error;
1458 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1459
1460 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1461 cpu_count(CPU_COUNT_FLT_ACOW, 1);
1462
1463 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1464 &flt->anon_spare);
1465 switch (error) {
1466 case 0:
1467 break;
1468 case ERESTART:
1469 return ERESTART;
1470 default:
1471 return error;
1472 }
1473
1474 KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
1475
1476 pg = anon->an_page;
1477 /* uvm_fault_upper_done will activate the page */
1478 uvm_pagelock(pg);
1479 uvm_pageenqueue(pg);
1480 uvm_pageunlock(pg);
1481 pg->flags &= ~(PG_BUSY|PG_FAKE);
1482 UVM_PAGE_OWN(pg, NULL);
1483
1484 /* deref: can not drop to zero here by defn! */
1485 KASSERT(oanon->an_ref > 1);
1486 oanon->an_ref--;
1487
1488 /*
1489 * note: oanon is still locked, as is the new anon. we
1490 * need to check for this later when we unlock oanon; if
1491 * oanon != anon, we'll have to unlock anon, too.
1492 */
1493
1494 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1495 }
1496
1497 /*
1498 * uvm_fault_upper_direct: handle direct fault.
1499 */
1500
1501 static int
1502 uvm_fault_upper_direct(
1503 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1504 struct uvm_object *uobj, struct vm_anon *anon)
1505 {
1506 struct vm_anon * const oanon = anon;
1507 struct vm_page *pg;
1508 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1509
1510 cpu_count(CPU_COUNT_FLT_ANON, 1);
1511 pg = anon->an_page;
1512 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1513 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1514
1515 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1516 }
1517
1518 /*
1519 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1520 */
1521
1522 static int
1523 uvm_fault_upper_enter(
1524 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1525 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1526 struct vm_anon *oanon)
1527 {
1528 struct pmap *pmap = ufi->orig_map->pmap;
1529 vaddr_t va = ufi->orig_rvaddr;
1530 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1531 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1532
1533 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1534 KASSERT(mutex_owned(amap->am_lock));
1535 KASSERT(anon->an_lock == amap->am_lock);
1536 KASSERT(oanon->an_lock == amap->am_lock);
1537 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1538
1539 /*
1540 * now map the page in.
1541 */
1542
1543 UVMHIST_LOG(maphist,
1544 " MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
1545 (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote);
1546 if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg),
1547 flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1548 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1549
1550 /*
1551 * If pmap_enter() fails, it must not leave behind an existing
1552 * pmap entry. In particular, a now-stale entry for a different
1553 * page would leave the pmap inconsistent with the vm_map.
1554 * This is not to imply that pmap_enter() should remove an
1555 * existing mapping in such a situation (since that could create
1556 * different problems, eg. if the existing mapping is wired),
1557 * but rather that the pmap should be designed such that it
1558 * never needs to fail when the new mapping is replacing an
1559 * existing mapping and the new page has no existing mappings.
1560 */
1561
1562 KASSERT(!pmap_extract(pmap, va, NULL));
1563
1564 /*
1565 * No need to undo what we did; we can simply think of
1566 * this as the pmap throwing away the mapping information.
1567 *
1568 * We do, however, have to go through the ReFault path,
1569 * as the map may change while we're asleep.
1570 */
1571
1572 uvmfault_unlockall(ufi, amap, uobj);
1573 if (!uvm_reclaimable()) {
1574 UVMHIST_LOG(maphist,
1575 "<- failed. out of VM",0,0,0,0);
1576 /* XXX instrumentation */
1577 return ENOMEM;
1578 }
1579 /* XXX instrumentation */
1580 uvm_wait("flt_pmfail1");
1581 return ERESTART;
1582 }
1583
1584 uvm_fault_upper_done(ufi, flt, anon, pg);
1585
1586 /*
1587 * done case 1! finish up by unlocking everything and returning success
1588 */
1589
1590 pmap_update(pmap);
1591 uvmfault_unlockall(ufi, amap, uobj);
1592 return 0;
1593 }
1594
1595 /*
1596 * uvm_fault_upper_done: queue upper center page.
1597 */
1598
1599 static void
1600 uvm_fault_upper_done(
1601 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1602 struct vm_anon *anon, struct vm_page *pg)
1603 {
1604 const bool wire_paging = flt->wire_paging;
1605
1606 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1607
1608 /*
1609 * ... update the page queues.
1610 */
1611
1612 uvm_pagelock(pg);
1613 if (wire_paging) {
1614 uvm_pagewire(pg);
1615
1616 /*
1617 * since the now-wired page cannot be paged out,
1618 * release its swap resources for others to use.
1619 * since an anon with no swap cannot be PG_CLEAN,
1620 * clear its clean flag now.
1621 */
1622
1623 pg->flags &= ~(PG_CLEAN);
1624 } else {
1625 uvm_pageactivate(pg);
1626 }
1627 uvm_pageunlock(pg);
1628
1629 if (wire_paging) {
1630 uvm_anon_dropswap(anon);
1631 }
1632 }
1633
1634 /*
1635 * uvm_fault_lower: handle lower fault.
1636 *
1637 * 1. check uobj
1638 * 1.1. if null, ZFOD.
1639 * 1.2. if not null, look up unnmapped neighbor pages.
1640 * 2. for center page, check if promote.
1641 * 2.1. ZFOD always needs promotion.
1642 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1643 * 3. if uobj is not ZFOD and page is not found, do i/o.
1644 * 4. dispatch either direct / promote fault.
1645 */
1646
1647 static int
1648 uvm_fault_lower(
1649 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1650 struct vm_page **pages)
1651 {
1652 struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap;
1653 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1654 struct vm_page *uobjpage;
1655 int error;
1656 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1657
1658 /*
1659 * now, if the desired page is not shadowed by the amap and we have
1660 * a backing object that does not have a special fault routine, then
1661 * we ask (with pgo_get) the object for resident pages that we care
1662 * about and attempt to map them in. we do not let pgo_get block
1663 * (PGO_LOCKED).
1664 */
1665
1666 if (uobj == NULL) {
1667 /* zero fill; don't care neighbor pages */
1668 uobjpage = NULL;
1669 } else {
1670 uvm_fault_lower_lookup(ufi, flt, pages);
1671 uobjpage = pages[flt->centeridx];
1672 }
1673
1674 /*
1675 * note that at this point we are done with any front or back pages.
1676 * we are now going to focus on the center page (i.e. the one we've
1677 * faulted on). if we have faulted on the upper (anon) layer
1678 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1679 * not touched it yet). if we have faulted on the bottom (uobj)
1680 * layer [i.e. case 2] and the page was both present and available,
1681 * then we've got a pointer to it as "uobjpage" and we've already
1682 * made it BUSY.
1683 */
1684
1685 /*
1686 * locked:
1687 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1688 */
1689 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1690 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1691 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1692
1693 /*
1694 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1695 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1696 * have a backing object, check and see if we are going to promote
1697 * the data up to an anon during the fault.
1698 */
1699
1700 if (uobj == NULL) {
1701 uobjpage = PGO_DONTCARE;
1702 flt->promote = true; /* always need anon here */
1703 } else {
1704 KASSERT(uobjpage != PGO_DONTCARE);
1705 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1706 }
1707 UVMHIST_LOG(maphist, " case 2 fault: promote=%jd, zfill=%jd",
1708 flt->promote, (uobj == NULL), 0,0);
1709
1710 /*
1711 * if uobjpage is not null then we do not need to do I/O to get the
1712 * uobjpage.
1713 *
1714 * if uobjpage is null, then we need to unlock and ask the pager to
1715 * get the data for us. once we have the data, we need to reverify
1716 * the state the world. we are currently not holding any resources.
1717 */
1718
1719 if (uobjpage) {
1720 /* update rusage counters */
1721 curlwp->l_ru.ru_minflt++;
1722 } else {
1723 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1724 if (error != 0)
1725 return error;
1726 }
1727
1728 /*
1729 * locked:
1730 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1731 */
1732 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1733 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1734 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1735
1736 /*
1737 * notes:
1738 * - at this point uobjpage can not be NULL
1739 * - at this point uobjpage can not be PG_RELEASED (since we checked
1740 * for it above)
1741 * - at this point uobjpage could be PG_WANTED (handle later)
1742 */
1743
1744 KASSERT(uobjpage != NULL);
1745 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1746 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1747 (uobjpage->flags & PG_CLEAN) != 0);
1748
1749 if (!flt->promote) {
1750 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1751 } else {
1752 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1753 }
1754 return error;
1755 }
1756
1757 /*
1758 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1759 *
1760 * 1. get on-memory pages.
1761 * 2. if failed, give up (get only center page later).
1762 * 3. if succeeded, enter h/w mapping of neighbor pages.
1763 */
1764
1765 static void
1766 uvm_fault_lower_lookup(
1767 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1768 struct vm_page **pages)
1769 {
1770 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1771 int lcv, gotpages;
1772 vaddr_t currva;
1773 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1774
1775 mutex_enter(uobj->vmobjlock);
1776 /* Locked: maps(read), amap(if there), uobj */
1777
1778 cpu_count(CPU_COUNT_FLTLGET, 1);
1779 gotpages = flt->npages;
1780 (void) uobj->pgops->pgo_get(uobj,
1781 ufi->entry->offset + flt->startva - ufi->entry->start,
1782 pages, &gotpages, flt->centeridx,
1783 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1784
1785 KASSERT(mutex_owned(uobj->vmobjlock));
1786
1787 /*
1788 * check for pages to map, if we got any
1789 */
1790
1791 if (gotpages == 0) {
1792 pages[flt->centeridx] = NULL;
1793 return;
1794 }
1795
1796 currva = flt->startva;
1797 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1798 struct vm_page *curpg;
1799
1800 curpg = pages[lcv];
1801 if (curpg == NULL || curpg == PGO_DONTCARE) {
1802 continue;
1803 }
1804 KASSERT(curpg->uobject == uobj);
1805
1806 /*
1807 * if center page is resident and not PG_BUSY|PG_RELEASED
1808 * then pgo_get made it PG_BUSY for us and gave us a handle
1809 * to it.
1810 */
1811
1812 if (lcv == flt->centeridx) {
1813 UVMHIST_LOG(maphist, " got uobjpage (0x%#jx) "
1814 "with locked get", (uintptr_t)curpg, 0, 0, 0);
1815 } else {
1816 bool readonly = (curpg->flags & PG_RDONLY)
1817 || (curpg->loan_count > 0)
1818 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1819
1820 uvm_fault_lower_neighbor(ufi, flt,
1821 currva, curpg, readonly);
1822 }
1823 }
1824 pmap_update(ufi->orig_map->pmap);
1825 }
1826
1827 /*
1828 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1829 */
1830
1831 static void
1832 uvm_fault_lower_neighbor(
1833 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1834 vaddr_t currva, struct vm_page *pg, bool readonly)
1835 {
1836 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1837
1838 /* locked: maps(read), amap(if there), uobj */
1839
1840 /*
1841 * calling pgo_get with PGO_LOCKED returns us pages which
1842 * are neither busy nor released, so we don't need to check
1843 * for this. we can just directly enter the pages.
1844 */
1845
1846 uvm_pagelock(pg);
1847 uvm_pageenqueue(pg);
1848 uvm_pageunlock(pg);
1849 UVMHIST_LOG(maphist,
1850 " MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx",
1851 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1852 cpu_count(CPU_COUNT_FLTNOMAP, 1);
1853
1854 /*
1855 * Since this page isn't the page that's actually faulting,
1856 * ignore pmap_enter() failures; it's not critical that we
1857 * enter these right now.
1858 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1859 * held the lock the whole time we've had the handle.
1860 */
1861 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1862 KASSERT((pg->flags & PG_RELEASED) == 0);
1863 KASSERT((pg->flags & PG_WANTED) == 0);
1864 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
1865 pg->flags &= ~(PG_BUSY);
1866 UVM_PAGE_OWN(pg, NULL);
1867
1868 KASSERT(mutex_owned(pg->uobject->vmobjlock));
1869
1870 const vm_prot_t mapprot =
1871 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1872 flt->enter_prot & MASK(ufi->entry);
1873 const u_int mapflags =
1874 PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0);
1875 (void) pmap_enter(ufi->orig_map->pmap, currva,
1876 VM_PAGE_TO_PHYS(pg), mapprot, mapflags);
1877 }
1878
1879 /*
1880 * uvm_fault_lower_io: get lower page from backing store.
1881 *
1882 * 1. unlock everything, because i/o will block.
1883 * 2. call pgo_get.
1884 * 3. if failed, recover.
1885 * 4. if succeeded, relock everything and verify things.
1886 */
1887
1888 static int
1889 uvm_fault_lower_io(
1890 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1891 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1892 {
1893 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1894 struct uvm_object *uobj = *ruobj;
1895 struct vm_page *pg;
1896 bool locked;
1897 int gotpages;
1898 int error;
1899 voff_t uoff;
1900 vm_prot_t access_type;
1901 int advice;
1902 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1903
1904 /* update rusage counters */
1905 curlwp->l_ru.ru_majflt++;
1906
1907 /* grab everything we need from the entry before we unlock */
1908 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1909 access_type = flt->access_type & MASK(ufi->entry);
1910 advice = ufi->entry->advice;
1911
1912 /* Locked: maps(read), amap(if there), uobj */
1913 uvmfault_unlockall(ufi, amap, NULL);
1914
1915 /* Locked: uobj */
1916 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1917
1918 cpu_count(CPU_COUNT_FLTGET, 1);
1919 gotpages = 1;
1920 pg = NULL;
1921 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1922 0, access_type, advice, PGO_SYNCIO);
1923 /* locked: pg(if no error) */
1924
1925 /*
1926 * recover from I/O
1927 */
1928
1929 if (error) {
1930 if (error == EAGAIN) {
1931 UVMHIST_LOG(maphist,
1932 " pgo_get says TRY AGAIN!",0,0,0,0);
1933 kpause("fltagain2", false, hz/2, NULL);
1934 return ERESTART;
1935 }
1936
1937 #if 0
1938 KASSERT(error != ERESTART);
1939 #else
1940 /* XXXUEBS don't re-fault? */
1941 if (error == ERESTART)
1942 error = EIO;
1943 #endif
1944
1945 UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)",
1946 error, 0,0,0);
1947 return error;
1948 }
1949
1950 /*
1951 * re-verify the state of the world by first trying to relock
1952 * the maps. always relock the object.
1953 */
1954
1955 locked = uvmfault_relock(ufi);
1956 if (locked && amap)
1957 amap_lock(amap);
1958
1959 /* might be changed */
1960 uobj = pg->uobject;
1961
1962 mutex_enter(uobj->vmobjlock);
1963 KASSERT((pg->flags & PG_BUSY) != 0);
1964
1965 uvm_pagelock(pg);
1966 uvm_pageactivate(pg);
1967 uvm_pageunlock(pg);
1968
1969 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1970 /* locked(!locked): uobj, pg */
1971
1972 /*
1973 * verify that the page has not be released and re-verify
1974 * that amap slot is still free. if there is a problem,
1975 * we unlock and clean up.
1976 */
1977
1978 if ((pg->flags & PG_RELEASED) != 0 ||
1979 (locked && amap && amap_lookup(&ufi->entry->aref,
1980 ufi->orig_rvaddr - ufi->entry->start))) {
1981 if (locked)
1982 uvmfault_unlockall(ufi, amap, NULL);
1983 locked = false;
1984 }
1985
1986 /*
1987 * didn't get the lock? release the page and retry.
1988 */
1989
1990 if (locked == false) {
1991 UVMHIST_LOG(maphist,
1992 " wasn't able to relock after fault: retry",
1993 0,0,0,0);
1994 if (pg->flags & PG_WANTED) {
1995 wakeup(pg);
1996 }
1997 if ((pg->flags & PG_RELEASED) == 0) {
1998 pg->flags &= ~(PG_BUSY | PG_WANTED);
1999 UVM_PAGE_OWN(pg, NULL);
2000 } else {
2001 cpu_count(CPU_COUNT_FLTPGRELE, 1);
2002 uvm_pagefree(pg);
2003 }
2004 mutex_exit(uobj->vmobjlock);
2005 return ERESTART;
2006 }
2007
2008 /*
2009 * we have the data in pg which is busy and
2010 * not released. we are holding object lock (so the page
2011 * can't be released on us).
2012 */
2013
2014 /* locked: maps(read), amap(if !null), uobj, pg */
2015
2016 *ruobj = uobj;
2017 *ruobjpage = pg;
2018 return 0;
2019 }
2020
2021 /*
2022 * uvm_fault_lower_direct: fault lower center page
2023 *
2024 * 1. adjust flt->enter_prot.
2025 * 2. if page is loaned, resolve.
2026 */
2027
2028 int
2029 uvm_fault_lower_direct(
2030 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2031 struct uvm_object *uobj, struct vm_page *uobjpage)
2032 {
2033 struct vm_page *pg;
2034 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
2035
2036 /*
2037 * we are not promoting. if the mapping is COW ensure that we
2038 * don't give more access than we should (e.g. when doing a read
2039 * fault on a COPYONWRITE mapping we want to map the COW page in
2040 * R/O even though the entry protection could be R/W).
2041 *
2042 * set "pg" to the page we want to map in (uobjpage, usually)
2043 */
2044
2045 cpu_count(CPU_COUNT_FLT_OBJ, 1);
2046 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
2047 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
2048 flt->enter_prot &= ~VM_PROT_WRITE;
2049 pg = uobjpage; /* map in the actual object */
2050
2051 KASSERT(uobjpage != PGO_DONTCARE);
2052
2053 /*
2054 * we are faulting directly on the page. be careful
2055 * about writing to loaned pages...
2056 */
2057
2058 if (uobjpage->loan_count) {
2059 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
2060 }
2061 KASSERT(pg == uobjpage);
2062
2063 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2064 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
2065 }
2066
2067 /*
2068 * uvm_fault_lower_direct_loan: resolve loaned page.
2069 *
2070 * 1. if not cow'ing, adjust flt->enter_prot.
2071 * 2. if cow'ing, break loan.
2072 */
2073
2074 static int
2075 uvm_fault_lower_direct_loan(
2076 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2077 struct uvm_object *uobj, struct vm_page **rpg,
2078 struct vm_page **ruobjpage)
2079 {
2080 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2081 struct vm_page *pg;
2082 struct vm_page *uobjpage = *ruobjpage;
2083 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
2084
2085 if (!flt->cow_now) {
2086 /* read fault: cap the protection at readonly */
2087 /* cap! */
2088 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2089 } else {
2090 /* write fault: must break the loan here */
2091
2092 pg = uvm_loanbreak(uobjpage);
2093 if (pg == NULL) {
2094
2095 /*
2096 * drop ownership of page, it can't be released
2097 */
2098
2099 if (uobjpage->flags & PG_WANTED)
2100 wakeup(uobjpage);
2101 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2102 UVM_PAGE_OWN(uobjpage, NULL);
2103
2104 uvmfault_unlockall(ufi, amap, uobj);
2105 UVMHIST_LOG(maphist,
2106 " out of RAM breaking loan, waiting",
2107 0,0,0,0);
2108 cpu_count(CPU_COUNT_FLTNORAM, 1);
2109 uvm_wait("flt_noram4");
2110 return ERESTART;
2111 }
2112 *rpg = pg;
2113 *ruobjpage = pg;
2114 }
2115 return 0;
2116 }
2117
2118 /*
2119 * uvm_fault_lower_promote: promote lower page.
2120 *
2121 * 1. call uvmfault_promote.
2122 * 2. fill in data.
2123 * 3. if not ZFOD, dispose old page.
2124 */
2125
2126 int
2127 uvm_fault_lower_promote(
2128 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2129 struct uvm_object *uobj, struct vm_page *uobjpage)
2130 {
2131 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2132 struct vm_anon *anon;
2133 struct vm_page *pg;
2134 int error;
2135 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2136
2137 KASSERT(amap != NULL);
2138
2139 /*
2140 * If we are going to promote the data to an anon we
2141 * allocate a blank anon here and plug it into our amap.
2142 */
2143 error = uvmfault_promote(ufi, NULL, uobjpage,
2144 &anon, &flt->anon_spare);
2145 switch (error) {
2146 case 0:
2147 break;
2148 case ERESTART:
2149 return ERESTART;
2150 default:
2151 return error;
2152 }
2153
2154 pg = anon->an_page;
2155
2156 /*
2157 * Fill in the data.
2158 */
2159 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2160
2161 if (uobjpage != PGO_DONTCARE) {
2162 cpu_count(CPU_COUNT_FLT_PRCOPY, 1);
2163
2164 /*
2165 * promote to shared amap? make sure all sharing
2166 * procs see it
2167 */
2168
2169 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2170 pmap_page_protect(uobjpage, VM_PROT_NONE);
2171 /*
2172 * XXX: PAGE MIGHT BE WIRED!
2173 */
2174 }
2175
2176 /*
2177 * dispose of uobjpage. it can't be PG_RELEASED
2178 * since we still hold the object lock.
2179 */
2180
2181 if (uobjpage->flags & PG_WANTED) {
2182 /* still have the obj lock */
2183 wakeup(uobjpage);
2184 }
2185 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2186 UVM_PAGE_OWN(uobjpage, NULL);
2187
2188 UVMHIST_LOG(maphist,
2189 " promote uobjpage 0x%#jx to anon/page 0x%#jx/0x%#jx",
2190 (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0);
2191
2192 } else {
2193 cpu_count(CPU_COUNT_FLT_PRZERO, 1);
2194
2195 /*
2196 * Page is zero'd and marked dirty by
2197 * uvmfault_promote().
2198 */
2199
2200 UVMHIST_LOG(maphist," zero fill anon/page 0x%#jx/0%#jx",
2201 (uintptr_t)anon, (uintptr_t)pg, 0, 0);
2202 }
2203
2204 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2205 }
2206
2207 /*
2208 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2209 * from the lower page.
2210 */
2211
2212 int
2213 uvm_fault_lower_enter(
2214 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2215 struct uvm_object *uobj,
2216 struct vm_anon *anon, struct vm_page *pg)
2217 {
2218 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2219 int error;
2220 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2221
2222 /*
2223 * Locked:
2224 *
2225 * maps(read), amap(if !null), uobj(if !null),
2226 * anon(if !null), pg(if anon), unlock_uobj(if !null)
2227 *
2228 * Note: pg is either the uobjpage or the new page in the new anon.
2229 */
2230 KASSERT(amap == NULL || mutex_owned(amap->am_lock));
2231 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
2232 KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2233 KASSERT((pg->flags & PG_BUSY) != 0);
2234
2235 /*
2236 * all resources are present. we can now map it in and free our
2237 * resources.
2238 */
2239
2240 UVMHIST_LOG(maphist,
2241 " MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
2242 (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr,
2243 (uintptr_t)pg, flt->promote);
2244 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2245 (pg->flags & PG_RDONLY) == 0);
2246 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2247 VM_PAGE_TO_PHYS(pg),
2248 (pg->flags & PG_RDONLY) != 0 ?
2249 flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2250 flt->access_type | PMAP_CANFAIL |
2251 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2252
2253 /*
2254 * No need to undo what we did; we can simply think of
2255 * this as the pmap throwing away the mapping information.
2256 *
2257 * We do, however, have to go through the ReFault path,
2258 * as the map may change while we're asleep.
2259 */
2260
2261 /*
2262 * ensure that the page is queued in the case that
2263 * we just promoted the page.
2264 */
2265
2266 uvm_pagelock(pg);
2267 uvm_pageenqueue(pg);
2268 uvm_pageunlock(pg);
2269
2270 if (pg->flags & PG_WANTED)
2271 wakeup(pg);
2272
2273 /*
2274 * note that pg can't be PG_RELEASED since we did not drop
2275 * the object lock since the last time we checked.
2276 */
2277 KASSERT((pg->flags & PG_RELEASED) == 0);
2278
2279 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2280 UVM_PAGE_OWN(pg, NULL);
2281
2282 uvmfault_unlockall(ufi, amap, uobj);
2283 if (!uvm_reclaimable()) {
2284 UVMHIST_LOG(maphist,
2285 "<- failed. out of VM",0,0,0,0);
2286 /* XXX instrumentation */
2287 error = ENOMEM;
2288 return error;
2289 }
2290 /* XXX instrumentation */
2291 uvm_wait("flt_pmfail2");
2292 return ERESTART;
2293 }
2294
2295 uvm_fault_lower_done(ufi, flt, uobj, pg);
2296
2297 /*
2298 * note that pg can't be PG_RELEASED since we did not drop the object
2299 * lock since the last time we checked.
2300 */
2301 KASSERT((pg->flags & PG_RELEASED) == 0);
2302 if (pg->flags & PG_WANTED)
2303 wakeup(pg);
2304 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2305 UVM_PAGE_OWN(pg, NULL);
2306
2307 pmap_update(ufi->orig_map->pmap);
2308 uvmfault_unlockall(ufi, amap, uobj);
2309
2310 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2311 return 0;
2312 }
2313
2314 /*
2315 * uvm_fault_lower_done: queue lower center page.
2316 */
2317
2318 void
2319 uvm_fault_lower_done(
2320 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2321 struct uvm_object *uobj, struct vm_page *pg)
2322 {
2323 bool dropswap = false;
2324
2325 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2326
2327 uvm_pagelock(pg);
2328 if (flt->wire_paging) {
2329 uvm_pagewire(pg);
2330 if (pg->flags & PG_AOBJ) {
2331
2332 /*
2333 * since the now-wired page cannot be paged out,
2334 * release its swap resources for others to use.
2335 * since an aobj page with no swap cannot be PG_CLEAN,
2336 * clear its clean flag now.
2337 */
2338
2339 KASSERT(uobj != NULL);
2340 pg->flags &= ~(PG_CLEAN);
2341 dropswap = true;
2342 }
2343 } else {
2344 uvm_pageactivate(pg);
2345 }
2346 uvm_pageunlock(pg);
2347
2348 if (dropswap) {
2349 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2350 }
2351 }
2352
2353
2354 /*
2355 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2356 *
2357 * => map may be read-locked by caller, but MUST NOT be write-locked.
2358 * => if map is read-locked, any operations which may cause map to
2359 * be write-locked in uvm_fault() must be taken care of by
2360 * the caller. See uvm_map_pageable().
2361 */
2362
2363 int
2364 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2365 vm_prot_t access_type, int maxprot)
2366 {
2367 vaddr_t va;
2368 int error;
2369
2370 /*
2371 * now fault it in a page at a time. if the fault fails then we have
2372 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2373 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2374 */
2375
2376 /*
2377 * XXX work around overflowing a vaddr_t. this prevents us from
2378 * wiring the last page in the address space, though.
2379 */
2380 if (start > end) {
2381 return EFAULT;
2382 }
2383
2384 for (va = start; va < end; va += PAGE_SIZE) {
2385 error = uvm_fault_internal(map, va, access_type,
2386 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2387 if (error) {
2388 if (va != start) {
2389 uvm_fault_unwire(map, start, va);
2390 }
2391 return error;
2392 }
2393 }
2394 return 0;
2395 }
2396
2397 /*
2398 * uvm_fault_unwire(): unwire range of virtual space.
2399 */
2400
2401 void
2402 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2403 {
2404 vm_map_lock_read(map);
2405 uvm_fault_unwire_locked(map, start, end);
2406 vm_map_unlock_read(map);
2407 }
2408
2409 /*
2410 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2411 *
2412 * => map must be at least read-locked.
2413 */
2414
2415 void
2416 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2417 {
2418 struct vm_map_entry *entry, *oentry;
2419 pmap_t pmap = vm_map_pmap(map);
2420 vaddr_t va;
2421 paddr_t pa;
2422 struct vm_page *pg;
2423
2424 /*
2425 * we assume that the area we are unwiring has actually been wired
2426 * in the first place. this means that we should be able to extract
2427 * the PAs from the pmap. we also lock out the page daemon so that
2428 * we can call uvm_pageunwire.
2429 */
2430
2431 /*
2432 * find the beginning map entry for the region.
2433 */
2434
2435 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2436 if (uvm_map_lookup_entry(map, start, &entry) == false)
2437 panic("uvm_fault_unwire_locked: address not in map");
2438
2439 oentry = NULL;
2440 for (va = start; va < end; va += PAGE_SIZE) {
2441
2442 /*
2443 * find the map entry for the current address.
2444 */
2445
2446 KASSERT(va >= entry->start);
2447 while (va >= entry->end) {
2448 KASSERT(entry->next != &map->header &&
2449 entry->next->start <= entry->end);
2450 entry = entry->next;
2451 }
2452
2453 /*
2454 * lock it.
2455 */
2456
2457 if (entry != oentry) {
2458 if (oentry != NULL) {
2459 uvm_map_unlock_entry(oentry);
2460 }
2461 uvm_map_lock_entry(entry);
2462 oentry = entry;
2463 }
2464
2465 /*
2466 * if the entry is no longer wired, tell the pmap.
2467 */
2468
2469 if (!pmap_extract(pmap, va, &pa))
2470 continue;
2471
2472 if (VM_MAPENT_ISWIRED(entry) == 0)
2473 pmap_unwire(pmap, va);
2474
2475 pg = PHYS_TO_VM_PAGE(pa);
2476 if (pg) {
2477 uvm_pagelock(pg);
2478 uvm_pageunwire(pg);
2479 uvm_pageunlock(pg);
2480 }
2481 }
2482
2483 if (oentry != NULL) {
2484 uvm_map_unlock_entry(entry);
2485 }
2486 }
2487