uvm_fault.c revision 1.229 1 /* $NetBSD: uvm_fault.c,v 1.229 2021/12/05 07:28:20 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 */
29
30 /*
31 * uvm_fault.c: fault handler
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.229 2021/12/05 07:28:20 msaitoh Exp $");
36
37 #include "opt_uvmhist.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/atomic.h>
42 #include <sys/kernel.h>
43 #include <sys/mman.h>
44
45 #include <uvm/uvm.h>
46 #include <uvm/uvm_pdpolicy.h>
47
48 /*
49 *
50 * a word on page faults:
51 *
52 * types of page faults we handle:
53 *
54 * CASE 1: upper layer faults CASE 2: lower layer faults
55 *
56 * CASE 1A CASE 1B CASE 2A CASE 2B
57 * read/write1 write>1 read/write +-cow_write/zero
58 * | | | |
59 * +--|--+ +--|--+ +-----+ + | + | +-----+
60 * amap | V | | ---------> new | | | | ^ |
61 * +-----+ +-----+ +-----+ + | + | +--|--+
62 * | | |
63 * +-----+ +-----+ +--|--+ | +--|--+
64 * uobj | d/c | | d/c | | V | +----+ |
65 * +-----+ +-----+ +-----+ +-----+
66 *
67 * d/c = don't care
68 *
69 * case [0]: layerless fault
70 * no amap or uobj is present. this is an error.
71 *
72 * case [1]: upper layer fault [anon active]
73 * 1A: [read] or [write with anon->an_ref == 1]
74 * I/O takes place in upper level anon and uobj is not touched.
75 * 1B: [write with anon->an_ref > 1]
76 * new anon is alloc'd and data is copied off ["COW"]
77 *
78 * case [2]: lower layer fault [uobj]
79 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
80 * I/O takes place directly in object.
81 * 2B: [write to copy_on_write] or [read on NULL uobj]
82 * data is "promoted" from uobj to a new anon.
83 * if uobj is null, then we zero fill.
84 *
85 * we follow the standard UVM locking protocol ordering:
86 *
87 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
88 * we hold a PG_BUSY page if we unlock for I/O
89 *
90 *
91 * the code is structured as follows:
92 *
93 * - init the "IN" params in the ufi structure
94 * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
95 * - do lookups [locks maps], check protection, handle needs_copy
96 * - check for case 0 fault (error)
97 * - establish "range" of fault
98 * - if we have an amap lock it and extract the anons
99 * - if sequential advice deactivate pages behind us
100 * - at the same time check pmap for unmapped areas and anon for pages
101 * that we could map in (and do map it if found)
102 * - check object for resident pages that we could map in
103 * - if (case 2) goto Case2
104 * - >>> handle case 1
105 * - ensure source anon is resident in RAM
106 * - if case 1B alloc new anon and copy from source
107 * - map the correct page in
108 * Case2:
109 * - >>> handle case 2
110 * - ensure source page is resident (if uobj)
111 * - if case 2B alloc new anon and copy from source (could be zero
112 * fill if uobj == NULL)
113 * - map the correct page in
114 * - done!
115 *
116 * note on paging:
117 * if we have to do I/O we place a PG_BUSY page in the correct object,
118 * unlock everything, and do the I/O. when I/O is done we must reverify
119 * the state of the world before assuming that our data structures are
120 * valid. [because mappings could change while the map is unlocked]
121 *
122 * alternative 1: unbusy the page in question and restart the page fault
123 * from the top (ReFault). this is easy but does not take advantage
124 * of the information that we already have from our previous lookup,
125 * although it is possible that the "hints" in the vm_map will help here.
126 *
127 * alternative 2: the system already keeps track of a "version" number of
128 * a map. [i.e. every time you write-lock a map (e.g. to change a
129 * mapping) you bump the version number up by one...] so, we can save
130 * the version number of the map before we release the lock and start I/O.
131 * then when I/O is done we can relock and check the version numbers
132 * to see if anything changed. this might save us some over 1 because
133 * we don't have to unbusy the page and may be less compares(?).
134 *
135 * alternative 3: put in backpointers or a way to "hold" part of a map
136 * in place while I/O is in progress. this could be complex to
137 * implement (especially with structures like amap that can be referenced
138 * by multiple map entries, and figuring out what should wait could be
139 * complex as well...).
140 *
141 * we use alternative 2. given that we are multi-threaded now we may want
142 * to reconsider the choice.
143 */
144
145 /*
146 * local data structures
147 */
148
149 struct uvm_advice {
150 int advice;
151 int nback;
152 int nforw;
153 };
154
155 /*
156 * page range array:
157 * note: index in array must match "advice" value
158 * XXX: borrowed numbers from freebsd. do they work well for us?
159 */
160
161 static const struct uvm_advice uvmadvice[] = {
162 { UVM_ADV_NORMAL, 3, 4 },
163 { UVM_ADV_RANDOM, 0, 0 },
164 { UVM_ADV_SEQUENTIAL, 8, 7},
165 };
166
167 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
168
169 /*
170 * private prototypes
171 */
172
173 /*
174 * externs from other modules
175 */
176
177 extern int start_init_exec; /* Is init_main() done / init running? */
178
179 /*
180 * inline functions
181 */
182
183 /*
184 * uvmfault_anonflush: try and deactivate pages in specified anons
185 *
186 * => does not have to deactivate page if it is busy
187 */
188
189 static inline void
190 uvmfault_anonflush(struct vm_anon **anons, int n)
191 {
192 int lcv;
193 struct vm_page *pg;
194
195 for (lcv = 0; lcv < n; lcv++) {
196 if (anons[lcv] == NULL)
197 continue;
198 KASSERT(rw_lock_held(anons[lcv]->an_lock));
199 pg = anons[lcv]->an_page;
200 if (pg && (pg->flags & PG_BUSY) == 0) {
201 uvm_pagelock(pg);
202 uvm_pagedeactivate(pg);
203 uvm_pageunlock(pg);
204 }
205 }
206 }
207
208 /*
209 * normal functions
210 */
211
212 /*
213 * uvmfault_amapcopy: clear "needs_copy" in a map.
214 *
215 * => called with VM data structures unlocked (usually, see below)
216 * => we get a write lock on the maps and clear needs_copy for a VA
217 * => if we are out of RAM we sleep (waiting for more)
218 */
219
220 static void
221 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
222 {
223 for (;;) {
224
225 /*
226 * no mapping? give up.
227 */
228
229 if (uvmfault_lookup(ufi, true) == false)
230 return;
231
232 /*
233 * copy if needed.
234 */
235
236 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
237 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
238 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
239
240 /*
241 * didn't work? must be out of RAM. unlock and sleep.
242 */
243
244 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
245 uvmfault_unlockmaps(ufi, true);
246 uvm_wait("fltamapcopy");
247 continue;
248 }
249
250 /*
251 * got it! unlock and return.
252 */
253
254 uvmfault_unlockmaps(ufi, true);
255 return;
256 }
257 /*NOTREACHED*/
258 }
259
260 /*
261 * uvmfault_anonget: get data in an anon into a non-busy, non-released
262 * page in that anon.
263 *
264 * => Map, amap and thus anon should be locked by caller.
265 * => If we fail, we unlock everything and error is returned.
266 * => If we are successful, return with everything still locked.
267 * => We do not move the page on the queues [gets moved later]. If we
268 * allocate a new page [we_own], it gets put on the queues. Either way,
269 * the result is that the page is on the queues at return time
270 * => For pages which are on loan from a uvm_object (and thus are not owned
271 * by the anon): if successful, return with the owning object locked.
272 * The caller must unlock this object when it unlocks everything else.
273 */
274
275 int
276 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
277 struct vm_anon *anon)
278 {
279 struct vm_page *pg;
280 krw_t lock_type;
281 int error;
282
283 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
284 KASSERT(rw_lock_held(anon->an_lock));
285 KASSERT(anon->an_lock == amap->am_lock);
286
287 /* Increment the counters.*/
288 cpu_count(CPU_COUNT_FLTANGET, 1);
289 if (anon->an_page) {
290 curlwp->l_ru.ru_minflt++;
291 } else {
292 curlwp->l_ru.ru_majflt++;
293 }
294 error = 0;
295
296 /*
297 * Loop until we get the anon data, or fail.
298 */
299
300 for (;;) {
301 bool we_own, locked;
302 /*
303 * Note: 'we_own' will become true if we set PG_BUSY on a page.
304 */
305 we_own = false;
306 pg = anon->an_page;
307
308 /*
309 * If there is a resident page and it is loaned, then anon
310 * may not own it. Call out to uvm_anon_lockloanpg() to
311 * identify and lock the real owner of the page.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * Is page resident? Make sure it is not busy/released.
319 */
320
321 lock_type = rw_lock_op(anon->an_lock);
322 if (pg) {
323
324 /*
325 * at this point, if the page has a uobject [meaning
326 * we have it on loan], then that uobject is locked
327 * by us! if the page is busy, we drop all the
328 * locks (including uobject) and try again.
329 */
330
331 if ((pg->flags & PG_BUSY) == 0) {
332 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
333 return 0;
334 }
335 cpu_count(CPU_COUNT_FLTPGWAIT, 1);
336
337 /*
338 * The last unlock must be an atomic unlock and wait
339 * on the owner of page.
340 */
341
342 if (pg->uobject) {
343 /* Owner of page is UVM object. */
344 uvmfault_unlockall(ufi, amap, NULL);
345 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
346 0,0,0);
347 uvm_pagewait(pg, pg->uobject->vmobjlock, "anonget1");
348 } else {
349 /* Owner of page is anon. */
350 uvmfault_unlockall(ufi, NULL, NULL);
351 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
352 0,0,0);
353 uvm_pagewait(pg, anon->an_lock, "anonget2");
354 }
355 } else {
356 #if defined(VMSWAP)
357 /*
358 * No page, therefore allocate one. A write lock is
359 * required for this. If the caller didn't supply
360 * one, fail now and have them retry.
361 */
362
363 if (lock_type == RW_READER) {
364 return ENOLCK;
365 }
366 pg = uvm_pagealloc(NULL,
367 ufi != NULL ? ufi->orig_rvaddr : 0,
368 anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
369 if (pg == NULL) {
370 /* Out of memory. Wait a little. */
371 uvmfault_unlockall(ufi, amap, NULL);
372 cpu_count(CPU_COUNT_FLTNORAM, 1);
373 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
374 0,0,0);
375 if (!uvm_reclaimable()) {
376 return ENOMEM;
377 }
378 uvm_wait("flt_noram1");
379 } else {
380 /* PG_BUSY bit is set. */
381 we_own = true;
382 uvmfault_unlockall(ufi, amap, NULL);
383
384 /*
385 * Pass a PG_BUSY+PG_FAKE clean page into
386 * the uvm_swap_get() function with all data
387 * structures unlocked. Note that it is OK
388 * to read an_swslot here, because we hold
389 * PG_BUSY on the page.
390 */
391 cpu_count(CPU_COUNT_PAGEINS, 1);
392 error = uvm_swap_get(pg, anon->an_swslot,
393 PGO_SYNCIO);
394
395 /*
396 * We clean up after the I/O below in the
397 * 'we_own' case.
398 */
399 }
400 #else
401 panic("%s: no page", __func__);
402 #endif /* defined(VMSWAP) */
403 }
404
405 /*
406 * Re-lock the map and anon.
407 */
408
409 locked = uvmfault_relock(ufi);
410 if (locked || we_own) {
411 rw_enter(anon->an_lock, lock_type);
412 }
413
414 /*
415 * If we own the page (i.e. we set PG_BUSY), then we need
416 * to clean up after the I/O. There are three cases to
417 * consider:
418 *
419 * 1) Page was released during I/O: free anon and ReFault.
420 * 2) I/O not OK. Free the page and cause the fault to fail.
421 * 3) I/O OK! Activate the page and sync with the non-we_own
422 * case (i.e. drop anon lock if not locked).
423 */
424
425 if (we_own) {
426 KASSERT(lock_type == RW_WRITER);
427 #if defined(VMSWAP)
428 if (error) {
429
430 /*
431 * Remove the swap slot from the anon and
432 * mark the anon as having no real slot.
433 * Do not free the swap slot, thus preventing
434 * it from being used again.
435 */
436
437 if (anon->an_swslot > 0) {
438 uvm_swap_markbad(anon->an_swslot, 1);
439 }
440 anon->an_swslot = SWSLOT_BAD;
441
442 if ((pg->flags & PG_RELEASED) != 0) {
443 goto released;
444 }
445
446 /*
447 * Note: page was never !PG_BUSY, so it
448 * cannot be mapped and thus no need to
449 * pmap_page_protect() it.
450 */
451
452 uvm_pagefree(pg);
453
454 if (locked) {
455 uvmfault_unlockall(ufi, NULL, NULL);
456 }
457 rw_exit(anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * Released while we had unlocked amap.
468 */
469
470 if (locked) {
471 uvmfault_unlockall(ufi, NULL, NULL);
472 }
473 uvm_anon_release(anon);
474
475 if (error) {
476 UVMHIST_LOG(maphist,
477 "<- ERROR/RELEASED", 0,0,0,0);
478 return error;
479 }
480
481 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
482 return ERESTART;
483 }
484
485 /*
486 * We have successfully read the page, activate it.
487 */
488
489 uvm_pagelock(pg);
490 uvm_pageactivate(pg);
491 uvm_pagewakeup(pg);
492 uvm_pageunlock(pg);
493 pg->flags &= ~(PG_BUSY|PG_FAKE);
494 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
495 UVM_PAGE_OWN(pg, NULL);
496 #else
497 panic("%s: we_own", __func__);
498 #endif /* defined(VMSWAP) */
499 }
500
501 /*
502 * We were not able to re-lock the map - restart the fault.
503 */
504
505 if (!locked) {
506 if (we_own) {
507 rw_exit(anon->an_lock);
508 }
509 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
510 return ERESTART;
511 }
512
513 /*
514 * Verify that no one has touched the amap and moved
515 * the anon on us.
516 */
517
518 if (ufi != NULL && amap_lookup(&ufi->entry->aref,
519 ufi->orig_rvaddr - ufi->entry->start) != anon) {
520
521 uvmfault_unlockall(ufi, amap, NULL);
522 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
523 return ERESTART;
524 }
525
526 /*
527 * Retry..
528 */
529
530 cpu_count(CPU_COUNT_FLTANRETRY, 1);
531 continue;
532 }
533 /*NOTREACHED*/
534 }
535
536 /*
537 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
538 *
539 * 1. allocate an anon and a page.
540 * 2. fill its contents.
541 * 3. put it into amap.
542 *
543 * => if we fail (result != 0) we unlock everything.
544 * => on success, return a new locked anon via 'nanon'.
545 * (*nanon)->an_page will be a resident, locked, dirty page.
546 * => it's caller's responsibility to put the promoted nanon->an_page to the
547 * page queue.
548 */
549
550 static int
551 uvmfault_promote(struct uvm_faultinfo *ufi,
552 struct vm_anon *oanon,
553 struct vm_page *uobjpage,
554 struct vm_anon **nanon, /* OUT: allocated anon */
555 struct vm_anon **spare)
556 {
557 struct vm_amap *amap = ufi->entry->aref.ar_amap;
558 struct uvm_object *uobj;
559 struct vm_anon *anon;
560 struct vm_page *pg;
561 struct vm_page *opg;
562 int error;
563 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
564
565 if (oanon) {
566 /* anon COW */
567 opg = oanon->an_page;
568 KASSERT(opg != NULL);
569 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
570 } else if (uobjpage != PGO_DONTCARE) {
571 /* object-backed COW */
572 opg = uobjpage;
573 KASSERT(rw_lock_held(opg->uobject->vmobjlock));
574 } else {
575 /* ZFOD */
576 opg = NULL;
577 }
578 if (opg != NULL) {
579 uobj = opg->uobject;
580 } else {
581 uobj = NULL;
582 }
583
584 KASSERT(amap != NULL);
585 KASSERT(uobjpage != NULL);
586 KASSERT(rw_write_held(amap->am_lock));
587 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
588 KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
589
590 if (*spare != NULL) {
591 anon = *spare;
592 *spare = NULL;
593 } else {
594 anon = uvm_analloc();
595 }
596 if (anon) {
597
598 /*
599 * The new anon is locked.
600 *
601 * if opg == NULL, we want a zero'd, dirty page,
602 * so have uvm_pagealloc() do that for us.
603 */
604
605 KASSERT(anon->an_lock == NULL);
606 anon->an_lock = amap->am_lock;
607 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
608 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
609 if (pg == NULL) {
610 anon->an_lock = NULL;
611 }
612 } else {
613 pg = NULL;
614 }
615
616 /*
617 * out of memory resources?
618 */
619
620 if (pg == NULL) {
621 /* save anon for the next try. */
622 if (anon != NULL) {
623 *spare = anon;
624 }
625
626 /* unlock and fail ... */
627 uvmfault_unlockall(ufi, amap, uobj);
628 if (!uvm_reclaimable()) {
629 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
630 cpu_count(CPU_COUNT_FLTNOANON, 1);
631 error = ENOMEM;
632 goto done;
633 }
634
635 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
636 cpu_count(CPU_COUNT_FLTNORAM, 1);
637 uvm_wait("flt_noram5");
638 error = ERESTART;
639 goto done;
640 }
641
642 /* copy page [pg now dirty] */
643 if (opg) {
644 uvm_pagecopy(opg, pg);
645 }
646 KASSERT(uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_DIRTY);
647
648 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
649 oanon != NULL);
650
651 /*
652 * from this point on am_lock won't be dropped until the page is
653 * entered, so it's safe to unbusy the page up front.
654 *
655 * uvm_fault_{upper,lower}_done will activate or enqueue the page.
656 */
657
658 pg = anon->an_page;
659 pg->flags &= ~(PG_BUSY|PG_FAKE);
660 UVM_PAGE_OWN(pg, NULL);
661
662 *nanon = anon;
663 error = 0;
664 done:
665 return error;
666 }
667
668 /*
669 * Update statistics after fault resolution.
670 * - maxrss
671 */
672 void
673 uvmfault_update_stats(struct uvm_faultinfo *ufi)
674 {
675 struct vm_map *map;
676 struct vmspace *vm;
677 struct proc *p;
678 vsize_t res;
679
680 map = ufi->orig_map;
681
682 p = curproc;
683 KASSERT(p != NULL);
684 vm = p->p_vmspace;
685
686 if (&vm->vm_map != map)
687 return;
688
689 res = pmap_resident_count(map->pmap);
690 if (vm->vm_rssmax < res)
691 vm->vm_rssmax = res;
692 }
693
694 /*
695 * F A U L T - m a i n e n t r y p o i n t
696 */
697
698 /*
699 * uvm_fault: page fault handler
700 *
701 * => called from MD code to resolve a page fault
702 * => VM data structures usually should be unlocked. however, it is
703 * possible to call here with the main map locked if the caller
704 * gets a write lock, sets it recursive, and then calls us (c.f.
705 * uvm_map_pageable). this should be avoided because it keeps
706 * the map locked off during I/O.
707 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
708 */
709
710 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
711 ~VM_PROT_WRITE : VM_PROT_ALL)
712
713 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
714 #define UVM_FAULT_WIRE (1 << 0)
715 #define UVM_FAULT_MAXPROT (1 << 1)
716
717 struct uvm_faultctx {
718
719 /*
720 * the following members are set up by uvm_fault_check() and
721 * read-only after that.
722 *
723 * note that narrow is used by uvm_fault_check() to change
724 * the behaviour after ERESTART.
725 *
726 * most of them might change after RESTART if the underlying
727 * map entry has been changed behind us. an exception is
728 * wire_paging, which does never change.
729 */
730 vm_prot_t access_type;
731 vaddr_t startva;
732 int npages;
733 int centeridx;
734 bool narrow; /* work on a single requested page only */
735 bool wire_mapping; /* request a PMAP_WIRED mapping
736 (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
737 bool wire_paging; /* request uvm_pagewire
738 (true for UVM_FAULT_WIRE) */
739 bool cow_now; /* VM_PROT_WRITE is actually requested
740 (ie. should break COW and page loaning) */
741
742 /*
743 * enter_prot is set up by uvm_fault_check() and clamped
744 * (ie. drop the VM_PROT_WRITE bit) in various places in case
745 * of !cow_now.
746 */
747 vm_prot_t enter_prot; /* prot at which we want to enter pages in */
748
749 /*
750 * the following member is for uvmfault_promote() and ERESTART.
751 */
752 struct vm_anon *anon_spare;
753
754 /*
755 * the folloing is actually a uvm_fault_lower() internal.
756 * it's here merely for debugging.
757 * (or due to the mechanical separation of the function?)
758 */
759 bool promote;
760
761 /*
762 * type of lock to acquire on objects in both layers.
763 */
764 krw_t lower_lock_type;
765 krw_t upper_lock_type;
766 };
767
768 static inline int uvm_fault_check(
769 struct uvm_faultinfo *, struct uvm_faultctx *,
770 struct vm_anon ***, bool);
771
772 static int uvm_fault_upper(
773 struct uvm_faultinfo *, struct uvm_faultctx *,
774 struct vm_anon **);
775 static inline int uvm_fault_upper_lookup(
776 struct uvm_faultinfo *, const struct uvm_faultctx *,
777 struct vm_anon **, struct vm_page **);
778 static inline void uvm_fault_upper_neighbor(
779 struct uvm_faultinfo *, const struct uvm_faultctx *,
780 vaddr_t, struct vm_page *, bool);
781 static inline int uvm_fault_upper_loan(
782 struct uvm_faultinfo *, struct uvm_faultctx *,
783 struct vm_anon *, struct uvm_object **);
784 static inline int uvm_fault_upper_promote(
785 struct uvm_faultinfo *, struct uvm_faultctx *,
786 struct uvm_object *, struct vm_anon *);
787 static inline int uvm_fault_upper_direct(
788 struct uvm_faultinfo *, struct uvm_faultctx *,
789 struct uvm_object *, struct vm_anon *);
790 static int uvm_fault_upper_enter(
791 struct uvm_faultinfo *, const struct uvm_faultctx *,
792 struct uvm_object *, struct vm_anon *,
793 struct vm_page *, struct vm_anon *);
794 static inline void uvm_fault_upper_done(
795 struct uvm_faultinfo *, const struct uvm_faultctx *,
796 struct vm_anon *, struct vm_page *);
797
798 static int uvm_fault_lower(
799 struct uvm_faultinfo *, struct uvm_faultctx *,
800 struct vm_page **);
801 static inline void uvm_fault_lower_lookup(
802 struct uvm_faultinfo *, const struct uvm_faultctx *,
803 struct vm_page **);
804 static inline void uvm_fault_lower_neighbor(
805 struct uvm_faultinfo *, const struct uvm_faultctx *,
806 vaddr_t, struct vm_page *);
807 static inline int uvm_fault_lower_io(
808 struct uvm_faultinfo *, struct uvm_faultctx *,
809 struct uvm_object **, struct vm_page **);
810 static inline int uvm_fault_lower_direct(
811 struct uvm_faultinfo *, struct uvm_faultctx *,
812 struct uvm_object *, struct vm_page *);
813 static inline int uvm_fault_lower_direct_loan(
814 struct uvm_faultinfo *, struct uvm_faultctx *,
815 struct uvm_object *, struct vm_page **,
816 struct vm_page **);
817 static inline int uvm_fault_lower_promote(
818 struct uvm_faultinfo *, struct uvm_faultctx *,
819 struct uvm_object *, struct vm_page *);
820 static int uvm_fault_lower_enter(
821 struct uvm_faultinfo *, const struct uvm_faultctx *,
822 struct uvm_object *,
823 struct vm_anon *, struct vm_page *);
824 static inline void uvm_fault_lower_done(
825 struct uvm_faultinfo *, const struct uvm_faultctx *,
826 struct uvm_object *, struct vm_page *);
827
828 int
829 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
830 vm_prot_t access_type, int fault_flag)
831 {
832 struct uvm_faultinfo ufi;
833 struct uvm_faultctx flt = {
834 .access_type = access_type,
835
836 /* don't look for neighborhood * pages on "wire" fault */
837 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
838
839 /* "wire" fault causes wiring of both mapping and paging */
840 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
841 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
842
843 /*
844 * default lock type to acquire on upper & lower layer
845 * objects: reader. this can be upgraded at any point
846 * during the fault from read -> write and uvm_faultctx
847 * changed to match, but is never downgraded write -> read.
848 */
849 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
850 .upper_lock_type = RW_WRITER,
851 .lower_lock_type = RW_WRITER,
852 #else
853 .upper_lock_type = RW_READER,
854 .lower_lock_type = RW_READER,
855 #endif
856 };
857 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
858 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
859 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
860 int error;
861
862 UVMHIST_FUNC(__func__);
863 UVMHIST_CALLARGS(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)",
864 (uintptr_t)orig_map, vaddr, access_type, fault_flag);
865
866 /* Don't count anything until user interaction is possible */
867 kpreempt_disable();
868 if (__predict_true(start_init_exec)) {
869 struct cpu_info *ci = curcpu();
870 CPU_COUNT(CPU_COUNT_NFAULT, 1);
871 /* Don't flood RNG subsystem with samples. */
872 if (++(ci->ci_faultrng) == 503) {
873 ci->ci_faultrng = 0;
874 rnd_add_uint32(&curcpu()->ci_data.cpu_uvm->rs,
875 sizeof(vaddr_t) == sizeof(uint32_t) ?
876 (uint32_t)vaddr : sizeof(vaddr_t) ==
877 sizeof(uint64_t) ?
878 (uint32_t)vaddr :
879 (uint32_t)ci->ci_counts[CPU_COUNT_NFAULT]);
880 }
881 }
882 kpreempt_enable();
883
884 /*
885 * init the IN parameters in the ufi
886 */
887
888 ufi.orig_map = orig_map;
889 ufi.orig_rvaddr = trunc_page(vaddr);
890 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
891
892 error = ERESTART;
893 while (error == ERESTART) { /* ReFault: */
894 anons = anons_store;
895 pages = pages_store;
896
897 error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
898 if (error != 0)
899 continue;
900
901 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
902 if (error != 0)
903 continue;
904
905 if (pages[flt.centeridx] == PGO_DONTCARE)
906 error = uvm_fault_upper(&ufi, &flt, anons);
907 else {
908 struct uvm_object * const uobj =
909 ufi.entry->object.uvm_obj;
910
911 if (uobj && uobj->pgops->pgo_fault != NULL) {
912 /*
913 * invoke "special" fault routine.
914 */
915 rw_enter(uobj->vmobjlock, RW_WRITER);
916 /* locked: maps(read), amap(if there), uobj */
917 error = uobj->pgops->pgo_fault(&ufi,
918 flt.startva, pages, flt.npages,
919 flt.centeridx, flt.access_type,
920 PGO_LOCKED|PGO_SYNCIO);
921
922 /*
923 * locked: nothing, pgo_fault has unlocked
924 * everything
925 */
926
927 /*
928 * object fault routine responsible for
929 * pmap_update().
930 */
931
932 /*
933 * Wake up the pagedaemon if the fault method
934 * failed for lack of memory but some can be
935 * reclaimed.
936 */
937 if (error == ENOMEM && uvm_reclaimable()) {
938 uvm_wait("pgo_fault");
939 error = ERESTART;
940 }
941 } else {
942 error = uvm_fault_lower(&ufi, &flt, pages);
943 }
944 }
945 }
946
947 if (flt.anon_spare != NULL) {
948 flt.anon_spare->an_ref--;
949 KASSERT(flt.anon_spare->an_ref == 0);
950 KASSERT(flt.anon_spare->an_lock == NULL);
951 uvm_anfree(flt.anon_spare);
952 }
953 return error;
954 }
955
956 /*
957 * uvm_fault_check: check prot, handle needs-copy, etc.
958 *
959 * 1. lookup entry.
960 * 2. check protection.
961 * 3. adjust fault condition (mainly for simulated fault).
962 * 4. handle needs-copy (lazy amap copy).
963 * 5. establish range of interest for neighbor fault (aka pre-fault).
964 * 6. look up anons (if amap exists).
965 * 7. flush pages (if MADV_SEQUENTIAL)
966 *
967 * => called with nothing locked.
968 * => if we fail (result != 0) we unlock everything.
969 * => initialize/adjust many members of flt.
970 */
971
972 static int
973 uvm_fault_check(
974 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
975 struct vm_anon ***ranons, bool maxprot)
976 {
977 struct vm_amap *amap;
978 struct uvm_object *uobj;
979 vm_prot_t check_prot;
980 int nback, nforw;
981 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
982
983 /*
984 * lookup and lock the maps
985 */
986
987 if (uvmfault_lookup(ufi, false) == false) {
988 UVMHIST_LOG(maphist, "<- no mapping @ %#jx", ufi->orig_rvaddr,
989 0,0,0);
990 return EFAULT;
991 }
992 /* locked: maps(read) */
993
994 #ifdef DIAGNOSTIC
995 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
996 printf("Page fault on non-pageable map:\n");
997 printf("ufi->map = %p\n", ufi->map);
998 printf("ufi->orig_map = %p\n", ufi->orig_map);
999 printf("ufi->orig_rvaddr = %#lx\n", (u_long) ufi->orig_rvaddr);
1000 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
1001 }
1002 #endif
1003
1004 /*
1005 * check protection
1006 */
1007
1008 check_prot = maxprot ?
1009 ufi->entry->max_protection : ufi->entry->protection;
1010 if ((check_prot & flt->access_type) != flt->access_type) {
1011 UVMHIST_LOG(maphist,
1012 "<- protection failure (prot=%#jx, access=%#jx)",
1013 ufi->entry->protection, flt->access_type, 0, 0);
1014 uvmfault_unlockmaps(ufi, false);
1015 return EFAULT;
1016 }
1017
1018 /*
1019 * "enter_prot" is the protection we want to enter the page in at.
1020 * for certain pages (e.g. copy-on-write pages) this protection can
1021 * be more strict than ufi->entry->protection. "wired" means either
1022 * the entry is wired or we are fault-wiring the pg.
1023 */
1024
1025 flt->enter_prot = ufi->entry->protection;
1026 if (VM_MAPENT_ISWIRED(ufi->entry)) {
1027 flt->wire_mapping = true;
1028 flt->wire_paging = true;
1029 flt->narrow = true;
1030 }
1031
1032 if (flt->wire_mapping) {
1033 flt->access_type = flt->enter_prot; /* full access for wired */
1034 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
1035 } else {
1036 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
1037 }
1038
1039 if (flt->wire_paging) {
1040 /* wiring pages requires a write lock. */
1041 flt->upper_lock_type = RW_WRITER;
1042 flt->lower_lock_type = RW_WRITER;
1043 }
1044
1045 flt->promote = false;
1046
1047 /*
1048 * handle "needs_copy" case. if we need to copy the amap we will
1049 * have to drop our readlock and relock it with a write lock. (we
1050 * need a write lock to change anything in a map entry [e.g.
1051 * needs_copy]).
1052 */
1053
1054 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
1055 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
1056 KASSERT(!maxprot);
1057 /* need to clear */
1058 UVMHIST_LOG(maphist,
1059 " need to clear needs_copy and refault",0,0,0,0);
1060 uvmfault_unlockmaps(ufi, false);
1061 uvmfault_amapcopy(ufi);
1062 cpu_count(CPU_COUNT_FLTAMCOPY, 1);
1063 return ERESTART;
1064
1065 } else {
1066
1067 /*
1068 * ensure that we pmap_enter page R/O since
1069 * needs_copy is still true
1070 */
1071
1072 flt->enter_prot &= ~VM_PROT_WRITE;
1073 }
1074 }
1075
1076 /*
1077 * identify the players
1078 */
1079
1080 amap = ufi->entry->aref.ar_amap; /* upper layer */
1081 uobj = ufi->entry->object.uvm_obj; /* lower layer */
1082
1083 /*
1084 * check for a case 0 fault. if nothing backing the entry then
1085 * error now.
1086 */
1087
1088 if (amap == NULL && uobj == NULL) {
1089 uvmfault_unlockmaps(ufi, false);
1090 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
1091 return EFAULT;
1092 }
1093
1094 /*
1095 * for a case 2B fault waste no time on adjacent pages because
1096 * they are likely already entered.
1097 */
1098
1099 if (uobj != NULL && amap != NULL &&
1100 (flt->access_type & VM_PROT_WRITE) != 0) {
1101 /* wide fault (!narrow) */
1102 flt->narrow = true;
1103 }
1104
1105 /*
1106 * establish range of interest based on advice from mapper
1107 * and then clip to fit map entry. note that we only want
1108 * to do this the first time through the fault. if we
1109 * ReFault we will disable this by setting "narrow" to true.
1110 */
1111
1112 if (flt->narrow == false) {
1113
1114 /* wide fault (!narrow) */
1115 KASSERT(uvmadvice[ufi->entry->advice].advice ==
1116 ufi->entry->advice);
1117 nback = MIN(uvmadvice[ufi->entry->advice].nback,
1118 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1119 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1120 /*
1121 * note: "-1" because we don't want to count the
1122 * faulting page as forw
1123 */
1124 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1125 ((ufi->entry->end - ufi->orig_rvaddr) >>
1126 PAGE_SHIFT) - 1);
1127 flt->npages = nback + nforw + 1;
1128 flt->centeridx = nback;
1129
1130 flt->narrow = true; /* ensure only once per-fault */
1131
1132 } else {
1133
1134 /* narrow fault! */
1135 nback = nforw = 0;
1136 flt->startva = ufi->orig_rvaddr;
1137 flt->npages = 1;
1138 flt->centeridx = 0;
1139
1140 }
1141 /* offset from entry's start to pgs' start */
1142 const voff_t eoff = flt->startva - ufi->entry->start;
1143
1144 /* locked: maps(read) */
1145 UVMHIST_LOG(maphist, " narrow=%jd, back=%jd, forw=%jd, startva=%#jx",
1146 flt->narrow, nback, nforw, flt->startva);
1147 UVMHIST_LOG(maphist, " entry=%#jx, amap=%#jx, obj=%#jx",
1148 (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0);
1149
1150 /*
1151 * guess at the most suitable lock types to acquire.
1152 * if we've got an amap then lock it and extract current anons.
1153 */
1154
1155 if (amap) {
1156 if ((amap_flags(amap) & AMAP_SHARED) == 0) {
1157 /*
1158 * the amap isn't shared. get a writer lock to
1159 * avoid the cost of upgrading the lock later if
1160 * needed.
1161 *
1162 * XXX nice for PostgreSQL, but consider threads.
1163 */
1164 flt->upper_lock_type = RW_WRITER;
1165 } else if ((flt->access_type & VM_PROT_WRITE) != 0) {
1166 /*
1167 * assume we're about to COW.
1168 */
1169 flt->upper_lock_type = RW_WRITER;
1170 }
1171 amap_lock(amap, flt->upper_lock_type);
1172 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1173 } else {
1174 if ((flt->access_type & VM_PROT_WRITE) != 0) {
1175 /*
1176 * we are about to dirty the object and that
1177 * requires a write lock.
1178 */
1179 flt->lower_lock_type = RW_WRITER;
1180 }
1181 *ranons = NULL; /* to be safe */
1182 }
1183
1184 /* locked: maps(read), amap(if there) */
1185 KASSERT(amap == NULL ||
1186 rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1187
1188 /*
1189 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1190 * now and then forget about them (for the rest of the fault).
1191 */
1192
1193 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1194
1195 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1196 0,0,0,0);
1197 /* flush back-page anons? */
1198 if (amap)
1199 uvmfault_anonflush(*ranons, nback);
1200
1201 /*
1202 * flush object? change lock type to RW_WRITER, to avoid
1203 * excessive competition between read/write locks if many
1204 * threads doing "sequential access".
1205 */
1206 if (uobj) {
1207 voff_t uoff;
1208
1209 flt->lower_lock_type = RW_WRITER;
1210 uoff = ufi->entry->offset + eoff;
1211 rw_enter(uobj->vmobjlock, RW_WRITER);
1212 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1213 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1214 }
1215
1216 /* now forget about the backpages */
1217 if (amap)
1218 *ranons += nback;
1219 flt->startva += (nback << PAGE_SHIFT);
1220 flt->npages -= nback;
1221 flt->centeridx = 0;
1222 }
1223 /*
1224 * => startva is fixed
1225 * => npages is fixed
1226 */
1227 KASSERT(flt->startva <= ufi->orig_rvaddr);
1228 KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1229 flt->startva + (flt->npages << PAGE_SHIFT));
1230 return 0;
1231 }
1232
1233 /*
1234 * uvm_fault_upper_upgrade: upgrade upper lock, reader -> writer
1235 */
1236
1237 static inline int
1238 uvm_fault_upper_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1239 struct vm_amap *amap, struct uvm_object *uobj)
1240 {
1241 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1242
1243 KASSERT(amap != NULL);
1244 KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock));
1245
1246 /*
1247 * fast path.
1248 */
1249
1250 if (__predict_true(flt->upper_lock_type == RW_WRITER)) {
1251 return 0;
1252 }
1253
1254 /*
1255 * otherwise try for the upgrade. if we don't get it, unlock
1256 * everything, restart the fault and next time around get a writer
1257 * lock.
1258 */
1259
1260 flt->upper_lock_type = RW_WRITER;
1261 if (__predict_false(!rw_tryupgrade(amap->am_lock))) {
1262 uvmfault_unlockall(ufi, amap, uobj);
1263 cpu_count(CPU_COUNT_FLTNOUP, 1);
1264 UVMHIST_LOG(maphist, " !upgrade upper", 0, 0,0,0);
1265 return ERESTART;
1266 }
1267 cpu_count(CPU_COUNT_FLTUP, 1);
1268 KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock));
1269 return 0;
1270 }
1271
1272 /*
1273 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1274 *
1275 * iterate range of interest:
1276 * 1. check if h/w mapping exists. if yes, we don't care
1277 * 2. check if anon exists. if not, page is lower.
1278 * 3. if anon exists, enter h/w mapping for neighbors.
1279 *
1280 * => called with amap locked (if exists).
1281 */
1282
1283 static int
1284 uvm_fault_upper_lookup(
1285 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1286 struct vm_anon **anons, struct vm_page **pages)
1287 {
1288 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1289 int lcv;
1290 vaddr_t currva;
1291 bool shadowed __unused;
1292 bool entered;
1293 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1294
1295 /* locked: maps(read), amap(if there) */
1296 KASSERT(amap == NULL ||
1297 rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1298
1299 /*
1300 * map in the backpages and frontpages we found in the amap in hopes
1301 * of preventing future faults. we also init the pages[] array as
1302 * we go.
1303 */
1304
1305 currva = flt->startva;
1306 shadowed = false;
1307 entered = false;
1308 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1309 /*
1310 * unmapped or center page. check if any anon at this level.
1311 */
1312 if (amap == NULL || anons[lcv] == NULL) {
1313 pages[lcv] = NULL;
1314 continue;
1315 }
1316
1317 /*
1318 * check for present page and map if possible.
1319 */
1320
1321 pages[lcv] = PGO_DONTCARE;
1322 if (lcv == flt->centeridx) { /* save center for later! */
1323 shadowed = true;
1324 continue;
1325 }
1326
1327 struct vm_anon *anon = anons[lcv];
1328 struct vm_page *pg = anon->an_page;
1329
1330 KASSERT(anon->an_lock == amap->am_lock);
1331
1332 /*
1333 * ignore loaned and busy pages.
1334 * don't play with VAs that are already mapped.
1335 */
1336
1337 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0 &&
1338 !pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1339 uvm_fault_upper_neighbor(ufi, flt, currva,
1340 pg, anon->an_ref > 1);
1341 entered = true;
1342 }
1343 }
1344 if (entered) {
1345 pmap_update(ufi->orig_map->pmap);
1346 }
1347
1348 /* locked: maps(read), amap(if there) */
1349 KASSERT(amap == NULL ||
1350 rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1351 /* (shadowed == true) if there is an anon at the faulting address */
1352 UVMHIST_LOG(maphist, " shadowed=%jd, will_get=%jd", shadowed,
1353 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1354
1355 return 0;
1356 }
1357
1358 /*
1359 * uvm_fault_upper_neighbor: enter single upper neighbor page.
1360 *
1361 * => called with amap and anon locked.
1362 */
1363
1364 static void
1365 uvm_fault_upper_neighbor(
1366 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1367 vaddr_t currva, struct vm_page *pg, bool readonly)
1368 {
1369 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1370
1371 /* locked: amap, anon */
1372
1373 KASSERT(pg->uobject == NULL);
1374 KASSERT(pg->uanon != NULL);
1375 KASSERT(rw_lock_op(pg->uanon->an_lock) == flt->upper_lock_type);
1376 KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
1377
1378 /*
1379 * there wasn't a direct fault on the page, so avoid the cost of
1380 * activating it.
1381 */
1382
1383 if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) {
1384 uvm_pagelock(pg);
1385 uvm_pageenqueue(pg);
1386 uvm_pageunlock(pg);
1387 }
1388
1389 UVMHIST_LOG(maphist,
1390 " MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx",
1391 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1392 cpu_count(CPU_COUNT_FLTNAMAP, 1);
1393
1394 /*
1395 * Since this page isn't the page that's actually faulting,
1396 * ignore pmap_enter() failures; it's not critical that we
1397 * enter these right now.
1398 */
1399
1400 (void) pmap_enter(ufi->orig_map->pmap, currva,
1401 VM_PAGE_TO_PHYS(pg),
1402 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1403 flt->enter_prot,
1404 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1405 }
1406
1407 /*
1408 * uvm_fault_upper: handle upper fault.
1409 *
1410 * 1. acquire anon lock.
1411 * 2. get anon. let uvmfault_anonget do the dirty work.
1412 * 3. handle loan.
1413 * 4. dispatch direct or promote handlers.
1414 */
1415
1416 static int
1417 uvm_fault_upper(
1418 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1419 struct vm_anon **anons)
1420 {
1421 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1422 struct vm_anon * const anon = anons[flt->centeridx];
1423 struct uvm_object *uobj;
1424 int error;
1425 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1426
1427 /* locked: maps(read), amap, anon */
1428 KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1429 KASSERT(anon->an_lock == amap->am_lock);
1430
1431 /*
1432 * handle case 1: fault on an anon in our amap
1433 */
1434
1435 UVMHIST_LOG(maphist, " case 1 fault: anon=%#jx",
1436 (uintptr_t)anon, 0, 0, 0);
1437
1438 /*
1439 * no matter if we have case 1A or case 1B we are going to need to
1440 * have the anon's memory resident. ensure that now.
1441 */
1442
1443 /*
1444 * let uvmfault_anonget do the dirty work.
1445 * if it fails (!OK) it will unlock everything for us.
1446 * if it succeeds, locks are still valid and locked.
1447 * also, if it is OK, then the anon's page is on the queues.
1448 * if the page is on loan from a uvm_object, then anonget will
1449 * lock that object for us if it does not fail.
1450 */
1451 retry:
1452 error = uvmfault_anonget(ufi, amap, anon);
1453 switch (error) {
1454 case 0:
1455 break;
1456
1457 case ERESTART:
1458 return ERESTART;
1459
1460 case EAGAIN:
1461 kpause("fltagain1", false, hz/2, NULL);
1462 return ERESTART;
1463
1464 case ENOLCK:
1465 /* it needs a write lock: retry */
1466 error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1467 if (error != 0) {
1468 return error;
1469 }
1470 KASSERT(rw_write_held(amap->am_lock));
1471 goto retry;
1472
1473 default:
1474 return error;
1475 }
1476
1477 /*
1478 * uobj is non null if the page is on loan from an object (i.e. uobj)
1479 */
1480
1481 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1482
1483 /* locked: maps(read), amap, anon, uobj(if one) */
1484 KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1485 KASSERT(anon->an_lock == amap->am_lock);
1486 KASSERT(uobj == NULL ||
1487 rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1488
1489 /*
1490 * special handling for loaned pages
1491 */
1492
1493 if (anon->an_page->loan_count) {
1494 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1495 if (error != 0)
1496 return error;
1497 }
1498
1499 /*
1500 * if we are case 1B then we will need to allocate a new blank
1501 * anon to transfer the data into. note that we have a lock
1502 * on anon, so no one can busy or release the page until we are done.
1503 * also note that the ref count can't drop to zero here because
1504 * it is > 1 and we are only dropping one ref.
1505 *
1506 * in the (hopefully very rare) case that we are out of RAM we
1507 * will unlock, wait for more RAM, and refault.
1508 *
1509 * if we are out of anon VM we kill the process (XXX: could wait?).
1510 */
1511
1512 if (flt->cow_now && anon->an_ref > 1) {
1513 flt->promote = true;
1514 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1515 } else {
1516 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1517 }
1518 return error;
1519 }
1520
1521 /*
1522 * uvm_fault_upper_loan: handle loaned upper page.
1523 *
1524 * 1. if not cow'ing now, simply adjust flt->enter_prot.
1525 * 2. if cow'ing now, and if ref count is 1, break loan.
1526 */
1527
1528 static int
1529 uvm_fault_upper_loan(
1530 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1531 struct vm_anon *anon, struct uvm_object **ruobj)
1532 {
1533 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1534 int error = 0;
1535 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1536
1537 if (!flt->cow_now) {
1538
1539 /*
1540 * for read faults on loaned pages we just cap the
1541 * protection at read-only.
1542 */
1543
1544 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1545
1546 } else {
1547 /*
1548 * note that we can't allow writes into a loaned page!
1549 *
1550 * if we have a write fault on a loaned page in an
1551 * anon then we need to look at the anon's ref count.
1552 * if it is greater than one then we are going to do
1553 * a normal copy-on-write fault into a new anon (this
1554 * is not a problem). however, if the reference count
1555 * is one (a case where we would normally allow a
1556 * write directly to the page) then we need to kill
1557 * the loan before we continue.
1558 */
1559
1560 /* >1 case is already ok */
1561 if (anon->an_ref == 1) {
1562 /* breaking loan requires a write lock. */
1563 error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1564 if (error != 0) {
1565 return error;
1566 }
1567 KASSERT(rw_write_held(amap->am_lock));
1568
1569 error = uvm_loanbreak_anon(anon, *ruobj);
1570 if (error != 0) {
1571 uvmfault_unlockall(ufi, amap, *ruobj);
1572 uvm_wait("flt_noram2");
1573 return ERESTART;
1574 }
1575 /* if we were a loan receiver uobj is gone */
1576 if (*ruobj)
1577 *ruobj = NULL;
1578 }
1579 }
1580 return error;
1581 }
1582
1583 /*
1584 * uvm_fault_upper_promote: promote upper page.
1585 *
1586 * 1. call uvmfault_promote.
1587 * 2. enqueue page.
1588 * 3. deref.
1589 * 4. pass page to uvm_fault_upper_enter.
1590 */
1591
1592 static int
1593 uvm_fault_upper_promote(
1594 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1595 struct uvm_object *uobj, struct vm_anon *anon)
1596 {
1597 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1598 struct vm_anon * const oanon = anon;
1599 struct vm_page *pg;
1600 int error;
1601 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1602
1603 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1604 cpu_count(CPU_COUNT_FLT_ACOW, 1);
1605
1606 /* promoting requires a write lock. */
1607 error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1608 if (error != 0) {
1609 return error;
1610 }
1611 KASSERT(rw_write_held(amap->am_lock));
1612
1613 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1614 &flt->anon_spare);
1615 switch (error) {
1616 case 0:
1617 break;
1618 case ERESTART:
1619 return ERESTART;
1620 default:
1621 return error;
1622 }
1623 pg = anon->an_page;
1624
1625 KASSERT(anon->an_lock == oanon->an_lock);
1626 KASSERT((pg->flags & (PG_BUSY | PG_FAKE)) == 0);
1627
1628 /* deref: can not drop to zero here by defn! */
1629 KASSERT(oanon->an_ref > 1);
1630 oanon->an_ref--;
1631
1632 /*
1633 * note: oanon is still locked, as is the new anon. we
1634 * need to check for this later when we unlock oanon; if
1635 * oanon != anon, we'll have to unlock anon, too.
1636 */
1637
1638 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1639 }
1640
1641 /*
1642 * uvm_fault_upper_direct: handle direct fault.
1643 */
1644
1645 static int
1646 uvm_fault_upper_direct(
1647 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1648 struct uvm_object *uobj, struct vm_anon *anon)
1649 {
1650 struct vm_anon * const oanon = anon;
1651 struct vm_page *pg;
1652 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1653
1654 cpu_count(CPU_COUNT_FLT_ANON, 1);
1655 pg = anon->an_page;
1656 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1657 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1658
1659 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1660 }
1661
1662 /*
1663 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1664 */
1665
1666 static int
1667 uvm_fault_upper_enter(
1668 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1669 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1670 struct vm_anon *oanon)
1671 {
1672 struct pmap *pmap = ufi->orig_map->pmap;
1673 vaddr_t va = ufi->orig_rvaddr;
1674 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1675 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1676
1677 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1678 KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1679 KASSERT(anon->an_lock == amap->am_lock);
1680 KASSERT(oanon->an_lock == amap->am_lock);
1681 KASSERT(uobj == NULL ||
1682 rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1683 KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
1684
1685 /*
1686 * now map the page in.
1687 */
1688
1689 UVMHIST_LOG(maphist,
1690 " MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
1691 (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote);
1692 if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg),
1693 flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1694 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1695
1696 /*
1697 * If pmap_enter() fails, it must not leave behind an existing
1698 * pmap entry. In particular, a now-stale entry for a different
1699 * page would leave the pmap inconsistent with the vm_map.
1700 * This is not to imply that pmap_enter() should remove an
1701 * existing mapping in such a situation (since that could create
1702 * different problems, eg. if the existing mapping is wired),
1703 * but rather that the pmap should be designed such that it
1704 * never needs to fail when the new mapping is replacing an
1705 * existing mapping and the new page has no existing mappings.
1706 *
1707 * XXX This can't be asserted safely any more because many
1708 * LWPs and/or many processes could simultaneously fault on
1709 * the same VA and some might succeed.
1710 */
1711
1712 /* KASSERT(!pmap_extract(pmap, va, NULL)); */
1713
1714 /*
1715 * ensure that the page is queued in the case that
1716 * we just promoted.
1717 */
1718
1719 uvm_pagelock(pg);
1720 uvm_pageenqueue(pg);
1721 uvm_pageunlock(pg);
1722
1723 /*
1724 * No need to undo what we did; we can simply think of
1725 * this as the pmap throwing away the mapping information.
1726 *
1727 * We do, however, have to go through the ReFault path,
1728 * as the map may change while we're asleep.
1729 */
1730
1731 uvmfault_unlockall(ufi, amap, uobj);
1732 if (!uvm_reclaimable()) {
1733 UVMHIST_LOG(maphist,
1734 "<- failed. out of VM",0,0,0,0);
1735 /* XXX instrumentation */
1736 return ENOMEM;
1737 }
1738 /* XXX instrumentation */
1739 uvm_wait("flt_pmfail1");
1740 return ERESTART;
1741 }
1742
1743 uvm_fault_upper_done(ufi, flt, anon, pg);
1744
1745 /*
1746 * done case 1! finish up by unlocking everything and returning success
1747 */
1748
1749 pmap_update(pmap);
1750 uvmfault_unlockall(ufi, amap, uobj);
1751 return 0;
1752 }
1753
1754 /*
1755 * uvm_fault_upper_done: queue upper center page.
1756 */
1757
1758 static void
1759 uvm_fault_upper_done(
1760 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1761 struct vm_anon *anon, struct vm_page *pg)
1762 {
1763 const bool wire_paging = flt->wire_paging;
1764
1765 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1766
1767 /*
1768 * ... update the page queues.
1769 */
1770
1771 if (wire_paging) {
1772 uvm_pagelock(pg);
1773 uvm_pagewire(pg);
1774 uvm_pageunlock(pg);
1775
1776 /*
1777 * since the now-wired page cannot be paged out,
1778 * release its swap resources for others to use.
1779 * and since an anon with no swap cannot be clean,
1780 * mark it dirty now.
1781 */
1782
1783 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1784 uvm_anon_dropswap(anon);
1785 } else if (uvmpdpol_pageactivate_p(pg)) {
1786 /*
1787 * avoid re-activating the page unless needed,
1788 * to avoid false sharing on multiprocessor.
1789 */
1790
1791 uvm_pagelock(pg);
1792 uvm_pageactivate(pg);
1793 uvm_pageunlock(pg);
1794 }
1795 }
1796
1797 /*
1798 * uvm_fault_lower_upgrade: upgrade lower lock, reader -> writer
1799 */
1800
1801 static inline int
1802 uvm_fault_lower_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1803 struct vm_amap *amap, struct uvm_object *uobj, struct vm_page *uobjpage)
1804 {
1805
1806 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1807
1808 KASSERT(uobj != NULL);
1809 KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock));
1810
1811 /*
1812 * fast path.
1813 */
1814
1815 if (__predict_true(flt->lower_lock_type == RW_WRITER)) {
1816 return 0;
1817 }
1818
1819 /*
1820 * otherwise try for the upgrade. if we don't get it, unlock
1821 * everything, restart the fault and next time around get a writer
1822 * lock.
1823 */
1824
1825 flt->lower_lock_type = RW_WRITER;
1826 if (__predict_false(!rw_tryupgrade(uobj->vmobjlock))) {
1827 uvmfault_unlockall(ufi, amap, uobj);
1828 cpu_count(CPU_COUNT_FLTNOUP, 1);
1829 UVMHIST_LOG(maphist, " !upgrade lower", 0, 0,0,0);
1830 return ERESTART;
1831 }
1832 cpu_count(CPU_COUNT_FLTUP, 1);
1833 KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock));
1834 return 0;
1835 }
1836
1837 /*
1838 * uvm_fault_lower: handle lower fault.
1839 *
1840 * 1. check uobj
1841 * 1.1. if null, ZFOD.
1842 * 1.2. if not null, look up unnmapped neighbor pages.
1843 * 2. for center page, check if promote.
1844 * 2.1. ZFOD always needs promotion.
1845 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1846 * 3. if uobj is not ZFOD and page is not found, do i/o.
1847 * 4. dispatch either direct / promote fault.
1848 */
1849
1850 static int
1851 uvm_fault_lower(
1852 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1853 struct vm_page **pages)
1854 {
1855 struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap;
1856 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1857 struct vm_page *uobjpage;
1858 int error;
1859 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1860
1861 /*
1862 * now, if the desired page is not shadowed by the amap and we have
1863 * a backing object that does not have a special fault routine, then
1864 * we ask (with pgo_get) the object for resident pages that we care
1865 * about and attempt to map them in. we do not let pgo_get block
1866 * (PGO_LOCKED).
1867 */
1868
1869 if (uobj == NULL) {
1870 /* zero fill; don't care neighbor pages */
1871 uobjpage = NULL;
1872 } else {
1873 uvm_fault_lower_lookup(ufi, flt, pages);
1874 uobjpage = pages[flt->centeridx];
1875 }
1876
1877 /*
1878 * note that at this point we are done with any front or back pages.
1879 * we are now going to focus on the center page (i.e. the one we've
1880 * faulted on). if we have faulted on the upper (anon) layer
1881 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1882 * not touched it yet). if we have faulted on the bottom (uobj)
1883 * layer [i.e. case 2] and the page was both present and available,
1884 * then we've got a pointer to it as "uobjpage" and we've already
1885 * made it BUSY.
1886 */
1887
1888 /*
1889 * locked:
1890 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1891 */
1892 KASSERT(amap == NULL ||
1893 rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1894 KASSERT(uobj == NULL ||
1895 rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1896
1897 /*
1898 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1899 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1900 * have a backing object, check and see if we are going to promote
1901 * the data up to an anon during the fault.
1902 */
1903
1904 if (uobj == NULL) {
1905 uobjpage = PGO_DONTCARE;
1906 flt->promote = true; /* always need anon here */
1907 } else {
1908 KASSERT(uobjpage != PGO_DONTCARE);
1909 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1910 }
1911 UVMHIST_LOG(maphist, " case 2 fault: promote=%jd, zfill=%jd",
1912 flt->promote, (uobj == NULL), 0,0);
1913
1914 /*
1915 * if uobjpage is not null then we do not need to do I/O to get the
1916 * uobjpage.
1917 *
1918 * if uobjpage is null, then we need to unlock and ask the pager to
1919 * get the data for us. once we have the data, we need to reverify
1920 * the state the world. we are currently not holding any resources.
1921 */
1922
1923 if (uobjpage) {
1924 /* update rusage counters */
1925 curlwp->l_ru.ru_minflt++;
1926 } else {
1927 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1928 if (error != 0)
1929 return error;
1930 }
1931
1932 /*
1933 * locked:
1934 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1935 */
1936 KASSERT(amap == NULL ||
1937 rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1938 KASSERT(uobj == NULL ||
1939 rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1940
1941 /*
1942 * notes:
1943 * - at this point uobjpage can not be NULL
1944 * - at this point uobjpage can not be PG_RELEASED (since we checked
1945 * for it above)
1946 * - at this point uobjpage could be waited on (handle later)
1947 * - uobjpage can be from a different object if tmpfs (vnode vs UAO)
1948 */
1949
1950 KASSERT(uobjpage != NULL);
1951 KASSERT(uobj == NULL ||
1952 uobjpage->uobject->vmobjlock == uobj->vmobjlock);
1953 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1954 uvm_pagegetdirty(uobjpage) == UVM_PAGE_STATUS_CLEAN);
1955
1956 if (!flt->promote) {
1957 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1958 } else {
1959 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1960 }
1961 return error;
1962 }
1963
1964 /*
1965 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1966 *
1967 * 1. get on-memory pages.
1968 * 2. if failed, give up (get only center page later).
1969 * 3. if succeeded, enter h/w mapping of neighbor pages.
1970 */
1971
1972 static void
1973 uvm_fault_lower_lookup(
1974 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1975 struct vm_page **pages)
1976 {
1977 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1978 int lcv, gotpages;
1979 vaddr_t currva;
1980 bool entered;
1981 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1982
1983 rw_enter(uobj->vmobjlock, flt->lower_lock_type);
1984
1985 /*
1986 * Locked: maps(read), amap(if there), uobj
1987 */
1988
1989 cpu_count(CPU_COUNT_FLTLGET, 1);
1990 gotpages = flt->npages;
1991 (void) uobj->pgops->pgo_get(uobj,
1992 ufi->entry->offset + flt->startva - ufi->entry->start,
1993 pages, &gotpages, flt->centeridx,
1994 flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1995 PGO_LOCKED);
1996
1997 KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1998
1999 /*
2000 * check for pages to map, if we got any
2001 */
2002
2003 if (gotpages == 0) {
2004 pages[flt->centeridx] = NULL;
2005 return;
2006 }
2007
2008 entered = false;
2009 currva = flt->startva;
2010 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
2011 struct vm_page *curpg;
2012
2013 curpg = pages[lcv];
2014 if (curpg == NULL || curpg == PGO_DONTCARE) {
2015 continue;
2016 }
2017
2018 /*
2019 * in the case of tmpfs, the pages might be from a different
2020 * uvm_object. just make sure that they have the same lock.
2021 */
2022
2023 KASSERT(curpg->uobject->vmobjlock == uobj->vmobjlock);
2024 KASSERT((curpg->flags & PG_BUSY) == 0);
2025
2026 /*
2027 * leave the centre page for later. don't screw with
2028 * existing mappings (needless & expensive).
2029 */
2030
2031 if (lcv == flt->centeridx) {
2032 UVMHIST_LOG(maphist, " got uobjpage (%#jx) "
2033 "with locked get", (uintptr_t)curpg, 0, 0, 0);
2034 } else if (!pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
2035 uvm_fault_lower_neighbor(ufi, flt, currva, curpg);
2036 entered = true;
2037 }
2038 }
2039 if (entered) {
2040 pmap_update(ufi->orig_map->pmap);
2041 }
2042 }
2043
2044 /*
2045 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
2046 */
2047
2048 static void
2049 uvm_fault_lower_neighbor(
2050 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2051 vaddr_t currva, struct vm_page *pg)
2052 {
2053 const bool readonly = uvm_pagereadonly_p(pg) || pg->loan_count > 0;
2054 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2055
2056 /* locked: maps(read), amap(if there), uobj */
2057
2058 /*
2059 * calling pgo_get with PGO_LOCKED returns us pages which
2060 * are neither busy nor released, so we don't need to check
2061 * for this. we can just directly enter the pages.
2062 *
2063 * there wasn't a direct fault on the page, so avoid the cost of
2064 * activating it.
2065 */
2066
2067 if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) {
2068 uvm_pagelock(pg);
2069 uvm_pageenqueue(pg);
2070 uvm_pageunlock(pg);
2071 }
2072
2073 UVMHIST_LOG(maphist,
2074 " MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx",
2075 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
2076 cpu_count(CPU_COUNT_FLTNOMAP, 1);
2077
2078 /*
2079 * Since this page isn't the page that's actually faulting,
2080 * ignore pmap_enter() failures; it's not critical that we
2081 * enter these right now.
2082 * NOTE: page can't be waited on or PG_RELEASED because we've
2083 * held the lock the whole time we've had the handle.
2084 */
2085 KASSERT((pg->flags & PG_PAGEOUT) == 0);
2086 KASSERT((pg->flags & PG_RELEASED) == 0);
2087 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
2088 uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN);
2089 KASSERT((pg->flags & PG_BUSY) == 0);
2090 KASSERT(rw_lock_op(pg->uobject->vmobjlock) == flt->lower_lock_type);
2091
2092 const vm_prot_t mapprot =
2093 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
2094 flt->enter_prot & MASK(ufi->entry);
2095 const u_int mapflags =
2096 PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0);
2097 (void) pmap_enter(ufi->orig_map->pmap, currva,
2098 VM_PAGE_TO_PHYS(pg), mapprot, mapflags);
2099 }
2100
2101 /*
2102 * uvm_fault_lower_io: get lower page from backing store.
2103 *
2104 * 1. unlock everything, because i/o will block.
2105 * 2. call pgo_get.
2106 * 3. if failed, recover.
2107 * 4. if succeeded, relock everything and verify things.
2108 */
2109
2110 static int
2111 uvm_fault_lower_io(
2112 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2113 struct uvm_object **ruobj, struct vm_page **ruobjpage)
2114 {
2115 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2116 struct uvm_object *uobj = *ruobj;
2117 struct vm_page *pg;
2118 bool locked;
2119 int gotpages;
2120 int error;
2121 voff_t uoff;
2122 vm_prot_t access_type;
2123 int advice;
2124 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2125
2126 /* update rusage counters */
2127 curlwp->l_ru.ru_majflt++;
2128
2129 /* grab everything we need from the entry before we unlock */
2130 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
2131 access_type = flt->access_type & MASK(ufi->entry);
2132 advice = ufi->entry->advice;
2133
2134 /* Locked: maps(read), amap(if there), uobj */
2135 KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2136
2137 /* Upgrade to a write lock if needed. */
2138 error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, NULL);
2139 if (error != 0) {
2140 return error;
2141 }
2142 uvmfault_unlockall(ufi, amap, NULL);
2143
2144 /* Locked: uobj(write) */
2145 KASSERT(rw_write_held(uobj->vmobjlock));
2146
2147 cpu_count(CPU_COUNT_FLTGET, 1);
2148 gotpages = 1;
2149 pg = NULL;
2150 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
2151 0, access_type, advice, PGO_SYNCIO);
2152 /* locked: pg(if no error) */
2153
2154 /*
2155 * recover from I/O
2156 */
2157
2158 if (error) {
2159 if (error == EAGAIN) {
2160 UVMHIST_LOG(maphist,
2161 " pgo_get says TRY AGAIN!",0,0,0,0);
2162 kpause("fltagain2", false, hz/2, NULL);
2163 return ERESTART;
2164 }
2165
2166 #if 0
2167 KASSERT(error != ERESTART);
2168 #else
2169 /* XXXUEBS don't re-fault? */
2170 if (error == ERESTART)
2171 error = EIO;
2172 #endif
2173
2174 UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)",
2175 error, 0,0,0);
2176 return error;
2177 }
2178
2179 /*
2180 * re-verify the state of the world by first trying to relock
2181 * the maps. always relock the object.
2182 */
2183
2184 locked = uvmfault_relock(ufi);
2185 if (locked && amap)
2186 amap_lock(amap, flt->upper_lock_type);
2187
2188 /* might be changed */
2189 uobj = pg->uobject;
2190
2191 rw_enter(uobj->vmobjlock, flt->lower_lock_type);
2192 KASSERT((pg->flags & PG_BUSY) != 0);
2193 KASSERT(flt->lower_lock_type == RW_WRITER);
2194
2195 uvm_pagelock(pg);
2196 uvm_pageactivate(pg);
2197 uvm_pageunlock(pg);
2198
2199 /* locked(locked): maps(read), amap(if !null), uobj, pg */
2200 /* locked(!locked): uobj, pg */
2201
2202 /*
2203 * verify that the page has not be released and re-verify
2204 * that amap slot is still free. if there is a problem,
2205 * we unlock and clean up.
2206 */
2207
2208 if ((pg->flags & PG_RELEASED) != 0 ||
2209 (locked && amap && amap_lookup(&ufi->entry->aref,
2210 ufi->orig_rvaddr - ufi->entry->start))) {
2211 if (locked)
2212 uvmfault_unlockall(ufi, amap, NULL);
2213 locked = false;
2214 }
2215
2216 /*
2217 * unbusy/release the page.
2218 */
2219
2220 if ((pg->flags & PG_RELEASED) == 0) {
2221 pg->flags &= ~PG_BUSY;
2222 uvm_pagelock(pg);
2223 uvm_pagewakeup(pg);
2224 uvm_pageunlock(pg);
2225 UVM_PAGE_OWN(pg, NULL);
2226 } else {
2227 cpu_count(CPU_COUNT_FLTPGRELE, 1);
2228 uvm_pagefree(pg);
2229 }
2230
2231 /*
2232 * didn't get the lock? retry.
2233 */
2234
2235 if (locked == false) {
2236 UVMHIST_LOG(maphist,
2237 " wasn't able to relock after fault: retry",
2238 0,0,0,0);
2239 rw_exit(uobj->vmobjlock);
2240 return ERESTART;
2241 }
2242
2243 /*
2244 * we have the data in pg. we are holding object lock (so the page
2245 * can't be released on us).
2246 */
2247
2248 /* locked: maps(read), amap(if !null), uobj */
2249
2250 *ruobj = uobj;
2251 *ruobjpage = pg;
2252 return 0;
2253 }
2254
2255 /*
2256 * uvm_fault_lower_direct: fault lower center page
2257 *
2258 * 1. adjust flt->enter_prot.
2259 * 2. if page is loaned, resolve.
2260 */
2261
2262 int
2263 uvm_fault_lower_direct(
2264 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2265 struct uvm_object *uobj, struct vm_page *uobjpage)
2266 {
2267 struct vm_page *pg;
2268 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2269
2270 /*
2271 * we are not promoting. if the mapping is COW ensure that we
2272 * don't give more access than we should (e.g. when doing a read
2273 * fault on a COPYONWRITE mapping we want to map the COW page in
2274 * R/O even though the entry protection could be R/W).
2275 *
2276 * set "pg" to the page we want to map in (uobjpage, usually)
2277 */
2278
2279 cpu_count(CPU_COUNT_FLT_OBJ, 1);
2280 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
2281 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
2282 flt->enter_prot &= ~VM_PROT_WRITE;
2283 pg = uobjpage; /* map in the actual object */
2284
2285 KASSERT(uobjpage != PGO_DONTCARE);
2286
2287 /*
2288 * we are faulting directly on the page. be careful
2289 * about writing to loaned pages...
2290 */
2291
2292 if (uobjpage->loan_count) {
2293 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
2294 }
2295 KASSERT(pg == uobjpage);
2296 KASSERT((pg->flags & PG_BUSY) == 0);
2297 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
2298 }
2299
2300 /*
2301 * uvm_fault_lower_direct_loan: resolve loaned page.
2302 *
2303 * 1. if not cow'ing, adjust flt->enter_prot.
2304 * 2. if cow'ing, break loan.
2305 */
2306
2307 static int
2308 uvm_fault_lower_direct_loan(
2309 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2310 struct uvm_object *uobj, struct vm_page **rpg,
2311 struct vm_page **ruobjpage)
2312 {
2313 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2314 struct vm_page *pg;
2315 struct vm_page *uobjpage = *ruobjpage;
2316 int error;
2317 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2318
2319 if (!flt->cow_now) {
2320 /* read fault: cap the protection at readonly */
2321 /* cap! */
2322 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2323 } else {
2324 /*
2325 * write fault: must break the loan here. to do this
2326 * we need a write lock on the object.
2327 */
2328
2329 error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, uobjpage);
2330 if (error != 0) {
2331 return error;
2332 }
2333 KASSERT(rw_write_held(uobj->vmobjlock));
2334
2335 pg = uvm_loanbreak(uobjpage);
2336 if (pg == NULL) {
2337
2338 uvmfault_unlockall(ufi, amap, uobj);
2339 UVMHIST_LOG(maphist,
2340 " out of RAM breaking loan, waiting",
2341 0,0,0,0);
2342 cpu_count(CPU_COUNT_FLTNORAM, 1);
2343 uvm_wait("flt_noram4");
2344 return ERESTART;
2345 }
2346 *rpg = pg;
2347 *ruobjpage = pg;
2348
2349 /*
2350 * drop ownership of page while still holding object lock,
2351 * which won't be dropped until the page is entered.
2352 */
2353
2354 uvm_pagelock(pg);
2355 uvm_pagewakeup(pg);
2356 uvm_pageunlock(pg);
2357 pg->flags &= ~PG_BUSY;
2358 UVM_PAGE_OWN(pg, NULL);
2359 }
2360 return 0;
2361 }
2362
2363 /*
2364 * uvm_fault_lower_promote: promote lower page.
2365 *
2366 * 1. call uvmfault_promote.
2367 * 2. fill in data.
2368 * 3. if not ZFOD, dispose old page.
2369 */
2370
2371 int
2372 uvm_fault_lower_promote(
2373 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2374 struct uvm_object *uobj, struct vm_page *uobjpage)
2375 {
2376 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2377 struct vm_anon *anon;
2378 struct vm_page *pg;
2379 int error;
2380 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2381
2382 KASSERT(amap != NULL);
2383
2384 /* promoting requires a write lock. */
2385 error = uvm_fault_upper_upgrade(ufi, flt, amap, uobj);
2386 if (error != 0) {
2387 return error;
2388 }
2389 KASSERT(rw_write_held(amap->am_lock));
2390 KASSERT(uobj == NULL ||
2391 rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2392
2393 /*
2394 * If we are going to promote the data to an anon we
2395 * allocate a blank anon here and plug it into our amap.
2396 */
2397 error = uvmfault_promote(ufi, NULL, uobjpage, &anon, &flt->anon_spare);
2398 switch (error) {
2399 case 0:
2400 break;
2401 case ERESTART:
2402 return ERESTART;
2403 default:
2404 return error;
2405 }
2406
2407 pg = anon->an_page;
2408
2409 /*
2410 * Fill in the data.
2411 */
2412
2413 if (uobjpage != PGO_DONTCARE) {
2414 cpu_count(CPU_COUNT_FLT_PRCOPY, 1);
2415
2416 /*
2417 * promote to shared amap? make sure all sharing
2418 * procs see it
2419 */
2420
2421 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2422 pmap_page_protect(uobjpage, VM_PROT_NONE);
2423 /*
2424 * XXX: PAGE MIGHT BE WIRED!
2425 */
2426 }
2427
2428 UVMHIST_LOG(maphist,
2429 " promote uobjpage %#jx to anon/page %#jx/%#jx",
2430 (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0);
2431
2432 } else {
2433 cpu_count(CPU_COUNT_FLT_PRZERO, 1);
2434
2435 /*
2436 * Page is zero'd and marked dirty by
2437 * uvmfault_promote().
2438 */
2439
2440 UVMHIST_LOG(maphist," zero fill anon/page %#jx/%#jx",
2441 (uintptr_t)anon, (uintptr_t)pg, 0, 0);
2442 }
2443
2444 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2445 }
2446
2447 /*
2448 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2449 * from the lower page.
2450 */
2451
2452 int
2453 uvm_fault_lower_enter(
2454 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2455 struct uvm_object *uobj,
2456 struct vm_anon *anon, struct vm_page *pg)
2457 {
2458 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2459 const bool readonly = uvm_pagereadonly_p(pg);
2460 int error;
2461 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2462
2463 /*
2464 * Locked:
2465 *
2466 * maps(read), amap(if !null), uobj(if !null),
2467 * anon(if !null), pg(if anon), unlock_uobj(if !null)
2468 *
2469 * anon must be write locked (promotion). uobj can be either.
2470 *
2471 * Note: pg is either the uobjpage or the new page in the new anon.
2472 */
2473
2474 KASSERT(amap == NULL ||
2475 rw_lock_op(amap->am_lock) == flt->upper_lock_type);
2476 KASSERT(uobj == NULL ||
2477 rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2478 KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2479
2480 /*
2481 * note that pg can't be PG_RELEASED or PG_BUSY since we did
2482 * not drop the object lock since the last time we checked.
2483 */
2484
2485 KASSERT((pg->flags & PG_RELEASED) == 0);
2486 KASSERT((pg->flags & PG_BUSY) == 0);
2487
2488 /*
2489 * all resources are present. we can now map it in and free our
2490 * resources.
2491 */
2492
2493 UVMHIST_LOG(maphist,
2494 " MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
2495 (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr,
2496 (uintptr_t)pg, flt->promote);
2497 KASSERTMSG((flt->access_type & VM_PROT_WRITE) == 0 || !readonly,
2498 "promote=%u cow_now=%u access_type=%x enter_prot=%x cow=%u "
2499 "entry=%p map=%p orig_rvaddr=%p pg=%p",
2500 flt->promote, flt->cow_now, flt->access_type, flt->enter_prot,
2501 UVM_ET_ISCOPYONWRITE(ufi->entry), ufi->entry, ufi->orig_map,
2502 (void *)ufi->orig_rvaddr, pg);
2503 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 || !readonly);
2504 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2505 VM_PAGE_TO_PHYS(pg),
2506 readonly ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2507 flt->access_type | PMAP_CANFAIL |
2508 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2509
2510 /*
2511 * No need to undo what we did; we can simply think of
2512 * this as the pmap throwing away the mapping information.
2513 *
2514 * We do, however, have to go through the ReFault path,
2515 * as the map may change while we're asleep.
2516 */
2517
2518 /*
2519 * ensure that the page is queued in the case that
2520 * we just promoted the page.
2521 */
2522
2523 if (anon != NULL) {
2524 uvm_pagelock(pg);
2525 uvm_pageenqueue(pg);
2526 uvm_pagewakeup(pg);
2527 uvm_pageunlock(pg);
2528 }
2529
2530 uvmfault_unlockall(ufi, amap, uobj);
2531 if (!uvm_reclaimable()) {
2532 UVMHIST_LOG(maphist,
2533 "<- failed. out of VM",0,0,0,0);
2534 /* XXX instrumentation */
2535 error = ENOMEM;
2536 return error;
2537 }
2538 /* XXX instrumentation */
2539 uvm_wait("flt_pmfail2");
2540 return ERESTART;
2541 }
2542
2543 uvm_fault_lower_done(ufi, flt, uobj, pg);
2544 pmap_update(ufi->orig_map->pmap);
2545 uvmfault_unlockall(ufi, amap, uobj);
2546
2547 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2548 return 0;
2549 }
2550
2551 /*
2552 * uvm_fault_lower_done: queue lower center page.
2553 */
2554
2555 void
2556 uvm_fault_lower_done(
2557 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2558 struct uvm_object *uobj, struct vm_page *pg)
2559 {
2560
2561 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2562
2563 if (flt->wire_paging) {
2564 uvm_pagelock(pg);
2565 uvm_pagewire(pg);
2566 uvm_pageunlock(pg);
2567 if (pg->flags & PG_AOBJ) {
2568
2569 /*
2570 * since the now-wired page cannot be paged out,
2571 * release its swap resources for others to use.
2572 * since an aobj page with no swap cannot be clean,
2573 * mark it dirty now.
2574 *
2575 * use pg->uobject here. if the page is from a
2576 * tmpfs vnode, the pages are backed by its UAO and
2577 * not the vnode.
2578 */
2579
2580 KASSERT(uobj != NULL);
2581 KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
2582 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
2583 uao_dropswap(pg->uobject, pg->offset >> PAGE_SHIFT);
2584 }
2585 } else if (uvmpdpol_pageactivate_p(pg)) {
2586 /*
2587 * avoid re-activating the page unless needed,
2588 * to avoid false sharing on multiprocessor.
2589 */
2590
2591 uvm_pagelock(pg);
2592 uvm_pageactivate(pg);
2593 uvm_pageunlock(pg);
2594 }
2595 }
2596
2597
2598 /*
2599 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2600 *
2601 * => map may be read-locked by caller, but MUST NOT be write-locked.
2602 * => if map is read-locked, any operations which may cause map to
2603 * be write-locked in uvm_fault() must be taken care of by
2604 * the caller. See uvm_map_pageable().
2605 */
2606
2607 int
2608 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2609 vm_prot_t access_type, int maxprot)
2610 {
2611 vaddr_t va;
2612 int error;
2613
2614 /*
2615 * now fault it in a page at a time. if the fault fails then we have
2616 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2617 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2618 */
2619
2620 /*
2621 * XXX work around overflowing a vaddr_t. this prevents us from
2622 * wiring the last page in the address space, though.
2623 */
2624 if (start > end) {
2625 return EFAULT;
2626 }
2627
2628 for (va = start; va < end; va += PAGE_SIZE) {
2629 error = uvm_fault_internal(map, va, access_type,
2630 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2631 if (error) {
2632 if (va != start) {
2633 uvm_fault_unwire(map, start, va);
2634 }
2635 return error;
2636 }
2637 }
2638 return 0;
2639 }
2640
2641 /*
2642 * uvm_fault_unwire(): unwire range of virtual space.
2643 */
2644
2645 void
2646 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2647 {
2648 vm_map_lock_read(map);
2649 uvm_fault_unwire_locked(map, start, end);
2650 vm_map_unlock_read(map);
2651 }
2652
2653 /*
2654 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2655 *
2656 * => map must be at least read-locked.
2657 */
2658
2659 void
2660 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2661 {
2662 struct vm_map_entry *entry, *oentry;
2663 pmap_t pmap = vm_map_pmap(map);
2664 vaddr_t va;
2665 paddr_t pa;
2666 struct vm_page *pg;
2667
2668 /*
2669 * we assume that the area we are unwiring has actually been wired
2670 * in the first place. this means that we should be able to extract
2671 * the PAs from the pmap. we also lock out the page daemon so that
2672 * we can call uvm_pageunwire.
2673 */
2674
2675 /*
2676 * find the beginning map entry for the region.
2677 */
2678
2679 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2680 if (uvm_map_lookup_entry(map, start, &entry) == false)
2681 panic("uvm_fault_unwire_locked: address not in map");
2682
2683 oentry = NULL;
2684 for (va = start; va < end; va += PAGE_SIZE) {
2685
2686 /*
2687 * find the map entry for the current address.
2688 */
2689
2690 KASSERT(va >= entry->start);
2691 while (va >= entry->end) {
2692 KASSERT(entry->next != &map->header &&
2693 entry->next->start <= entry->end);
2694 entry = entry->next;
2695 }
2696
2697 /*
2698 * lock it.
2699 */
2700
2701 if (entry != oentry) {
2702 if (oentry != NULL) {
2703 uvm_map_unlock_entry(oentry);
2704 }
2705 uvm_map_lock_entry(entry, RW_WRITER);
2706 oentry = entry;
2707 }
2708
2709 /*
2710 * if the entry is no longer wired, tell the pmap.
2711 */
2712
2713 if (!pmap_extract(pmap, va, &pa))
2714 continue;
2715
2716 if (VM_MAPENT_ISWIRED(entry) == 0)
2717 pmap_unwire(pmap, va);
2718
2719 pg = PHYS_TO_VM_PAGE(pa);
2720 if (pg) {
2721 uvm_pagelock(pg);
2722 uvm_pageunwire(pg);
2723 uvm_pageunlock(pg);
2724 }
2725 }
2726
2727 if (oentry != NULL) {
2728 uvm_map_unlock_entry(entry);
2729 }
2730 }
2731