Home | History | Annotate | Line # | Download | only in uvm
uvm_fault.c revision 1.229
      1 /*	$NetBSD: uvm_fault.c,v 1.229 2021/12/05 07:28:20 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  *
     27  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
     28  */
     29 
     30 /*
     31  * uvm_fault.c: fault handler
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.229 2021/12/05 07:28:20 msaitoh Exp $");
     36 
     37 #include "opt_uvmhist.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/atomic.h>
     42 #include <sys/kernel.h>
     43 #include <sys/mman.h>
     44 
     45 #include <uvm/uvm.h>
     46 #include <uvm/uvm_pdpolicy.h>
     47 
     48 /*
     49  *
     50  * a word on page faults:
     51  *
     52  * types of page faults we handle:
     53  *
     54  * CASE 1: upper layer faults                   CASE 2: lower layer faults
     55  *
     56  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
     57  *    read/write1     write>1                  read/write   +-cow_write/zero
     58  *         |             |                         |        |
     59  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
     60  * amap |  V  |       |  ---------> new |          |        | |  ^  |
     61  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
     62  *                                                 |        |    |
     63  *      +-----+       +-----+                   +--|--+     | +--|--+
     64  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
     65  *      +-----+       +-----+                   +-----+       +-----+
     66  *
     67  * d/c = don't care
     68  *
     69  *   case [0]: layerless fault
     70  *	no amap or uobj is present.   this is an error.
     71  *
     72  *   case [1]: upper layer fault [anon active]
     73  *     1A: [read] or [write with anon->an_ref == 1]
     74  *		I/O takes place in upper level anon and uobj is not touched.
     75  *     1B: [write with anon->an_ref > 1]
     76  *		new anon is alloc'd and data is copied off ["COW"]
     77  *
     78  *   case [2]: lower layer fault [uobj]
     79  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
     80  *		I/O takes place directly in object.
     81  *     2B: [write to copy_on_write] or [read on NULL uobj]
     82  *		data is "promoted" from uobj to a new anon.
     83  *		if uobj is null, then we zero fill.
     84  *
     85  * we follow the standard UVM locking protocol ordering:
     86  *
     87  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
     88  * we hold a PG_BUSY page if we unlock for I/O
     89  *
     90  *
     91  * the code is structured as follows:
     92  *
     93  *     - init the "IN" params in the ufi structure
     94  *   ReFault: (ERESTART returned to the loop in uvm_fault_internal)
     95  *     - do lookups [locks maps], check protection, handle needs_copy
     96  *     - check for case 0 fault (error)
     97  *     - establish "range" of fault
     98  *     - if we have an amap lock it and extract the anons
     99  *     - if sequential advice deactivate pages behind us
    100  *     - at the same time check pmap for unmapped areas and anon for pages
    101  *	 that we could map in (and do map it if found)
    102  *     - check object for resident pages that we could map in
    103  *     - if (case 2) goto Case2
    104  *     - >>> handle case 1
    105  *           - ensure source anon is resident in RAM
    106  *           - if case 1B alloc new anon and copy from source
    107  *           - map the correct page in
    108  *   Case2:
    109  *     - >>> handle case 2
    110  *           - ensure source page is resident (if uobj)
    111  *           - if case 2B alloc new anon and copy from source (could be zero
    112  *		fill if uobj == NULL)
    113  *           - map the correct page in
    114  *     - done!
    115  *
    116  * note on paging:
    117  *   if we have to do I/O we place a PG_BUSY page in the correct object,
    118  * unlock everything, and do the I/O.   when I/O is done we must reverify
    119  * the state of the world before assuming that our data structures are
    120  * valid.   [because mappings could change while the map is unlocked]
    121  *
    122  *  alternative 1: unbusy the page in question and restart the page fault
    123  *    from the top (ReFault).   this is easy but does not take advantage
    124  *    of the information that we already have from our previous lookup,
    125  *    although it is possible that the "hints" in the vm_map will help here.
    126  *
    127  * alternative 2: the system already keeps track of a "version" number of
    128  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
    129  *    mapping) you bump the version number up by one...]   so, we can save
    130  *    the version number of the map before we release the lock and start I/O.
    131  *    then when I/O is done we can relock and check the version numbers
    132  *    to see if anything changed.    this might save us some over 1 because
    133  *    we don't have to unbusy the page and may be less compares(?).
    134  *
    135  * alternative 3: put in backpointers or a way to "hold" part of a map
    136  *    in place while I/O is in progress.   this could be complex to
    137  *    implement (especially with structures like amap that can be referenced
    138  *    by multiple map entries, and figuring out what should wait could be
    139  *    complex as well...).
    140  *
    141  * we use alternative 2.  given that we are multi-threaded now we may want
    142  * to reconsider the choice.
    143  */
    144 
    145 /*
    146  * local data structures
    147  */
    148 
    149 struct uvm_advice {
    150 	int advice;
    151 	int nback;
    152 	int nforw;
    153 };
    154 
    155 /*
    156  * page range array:
    157  * note: index in array must match "advice" value
    158  * XXX: borrowed numbers from freebsd.   do they work well for us?
    159  */
    160 
    161 static const struct uvm_advice uvmadvice[] = {
    162 	{ UVM_ADV_NORMAL, 3, 4 },
    163 	{ UVM_ADV_RANDOM, 0, 0 },
    164 	{ UVM_ADV_SEQUENTIAL, 8, 7},
    165 };
    166 
    167 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
    168 
    169 /*
    170  * private prototypes
    171  */
    172 
    173 /*
    174  * externs from other modules
    175  */
    176 
    177 extern int start_init_exec;	/* Is init_main() done / init running? */
    178 
    179 /*
    180  * inline functions
    181  */
    182 
    183 /*
    184  * uvmfault_anonflush: try and deactivate pages in specified anons
    185  *
    186  * => does not have to deactivate page if it is busy
    187  */
    188 
    189 static inline void
    190 uvmfault_anonflush(struct vm_anon **anons, int n)
    191 {
    192 	int lcv;
    193 	struct vm_page *pg;
    194 
    195 	for (lcv = 0; lcv < n; lcv++) {
    196 		if (anons[lcv] == NULL)
    197 			continue;
    198 		KASSERT(rw_lock_held(anons[lcv]->an_lock));
    199 		pg = anons[lcv]->an_page;
    200 		if (pg && (pg->flags & PG_BUSY) == 0) {
    201 			uvm_pagelock(pg);
    202 			uvm_pagedeactivate(pg);
    203 			uvm_pageunlock(pg);
    204 		}
    205 	}
    206 }
    207 
    208 /*
    209  * normal functions
    210  */
    211 
    212 /*
    213  * uvmfault_amapcopy: clear "needs_copy" in a map.
    214  *
    215  * => called with VM data structures unlocked (usually, see below)
    216  * => we get a write lock on the maps and clear needs_copy for a VA
    217  * => if we are out of RAM we sleep (waiting for more)
    218  */
    219 
    220 static void
    221 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
    222 {
    223 	for (;;) {
    224 
    225 		/*
    226 		 * no mapping?  give up.
    227 		 */
    228 
    229 		if (uvmfault_lookup(ufi, true) == false)
    230 			return;
    231 
    232 		/*
    233 		 * copy if needed.
    234 		 */
    235 
    236 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
    237 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
    238 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
    239 
    240 		/*
    241 		 * didn't work?  must be out of RAM.   unlock and sleep.
    242 		 */
    243 
    244 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
    245 			uvmfault_unlockmaps(ufi, true);
    246 			uvm_wait("fltamapcopy");
    247 			continue;
    248 		}
    249 
    250 		/*
    251 		 * got it!   unlock and return.
    252 		 */
    253 
    254 		uvmfault_unlockmaps(ufi, true);
    255 		return;
    256 	}
    257 	/*NOTREACHED*/
    258 }
    259 
    260 /*
    261  * uvmfault_anonget: get data in an anon into a non-busy, non-released
    262  * page in that anon.
    263  *
    264  * => Map, amap and thus anon should be locked by caller.
    265  * => If we fail, we unlock everything and error is returned.
    266  * => If we are successful, return with everything still locked.
    267  * => We do not move the page on the queues [gets moved later].  If we
    268  *    allocate a new page [we_own], it gets put on the queues.  Either way,
    269  *    the result is that the page is on the queues at return time
    270  * => For pages which are on loan from a uvm_object (and thus are not owned
    271  *    by the anon): if successful, return with the owning object locked.
    272  *    The caller must unlock this object when it unlocks everything else.
    273  */
    274 
    275 int
    276 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
    277     struct vm_anon *anon)
    278 {
    279 	struct vm_page *pg;
    280 	krw_t lock_type;
    281 	int error;
    282 
    283 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    284 	KASSERT(rw_lock_held(anon->an_lock));
    285 	KASSERT(anon->an_lock == amap->am_lock);
    286 
    287 	/* Increment the counters.*/
    288 	cpu_count(CPU_COUNT_FLTANGET, 1);
    289 	if (anon->an_page) {
    290 		curlwp->l_ru.ru_minflt++;
    291 	} else {
    292 		curlwp->l_ru.ru_majflt++;
    293 	}
    294 	error = 0;
    295 
    296 	/*
    297 	 * Loop until we get the anon data, or fail.
    298 	 */
    299 
    300 	for (;;) {
    301 		bool we_own, locked;
    302 		/*
    303 		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
    304 		 */
    305 		we_own = false;
    306 		pg = anon->an_page;
    307 
    308 		/*
    309 		 * If there is a resident page and it is loaned, then anon
    310 		 * may not own it.  Call out to uvm_anon_lockloanpg() to
    311 		 * identify and lock the real owner of the page.
    312 		 */
    313 
    314 		if (pg && pg->loan_count)
    315 			pg = uvm_anon_lockloanpg(anon);
    316 
    317 		/*
    318 		 * Is page resident?  Make sure it is not busy/released.
    319 		 */
    320 
    321 		lock_type = rw_lock_op(anon->an_lock);
    322 		if (pg) {
    323 
    324 			/*
    325 			 * at this point, if the page has a uobject [meaning
    326 			 * we have it on loan], then that uobject is locked
    327 			 * by us!   if the page is busy, we drop all the
    328 			 * locks (including uobject) and try again.
    329 			 */
    330 
    331 			if ((pg->flags & PG_BUSY) == 0) {
    332 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
    333 				return 0;
    334 			}
    335 			cpu_count(CPU_COUNT_FLTPGWAIT, 1);
    336 
    337 			/*
    338 			 * The last unlock must be an atomic unlock and wait
    339 			 * on the owner of page.
    340 			 */
    341 
    342 			if (pg->uobject) {
    343 				/* Owner of page is UVM object. */
    344 				uvmfault_unlockall(ufi, amap, NULL);
    345 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
    346 				    0,0,0);
    347 				uvm_pagewait(pg, pg->uobject->vmobjlock, "anonget1");
    348 			} else {
    349 				/* Owner of page is anon. */
    350 				uvmfault_unlockall(ufi, NULL, NULL);
    351 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
    352 				    0,0,0);
    353 				uvm_pagewait(pg, anon->an_lock, "anonget2");
    354 			}
    355 		} else {
    356 #if defined(VMSWAP)
    357 			/*
    358 			 * No page, therefore allocate one.  A write lock is
    359 			 * required for this.  If the caller didn't supply
    360 			 * one, fail now and have them retry.
    361 			 */
    362 
    363 			if (lock_type == RW_READER) {
    364 				return ENOLCK;
    365 			}
    366 			pg = uvm_pagealloc(NULL,
    367 			    ufi != NULL ? ufi->orig_rvaddr : 0,
    368 			    anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
    369 			if (pg == NULL) {
    370 				/* Out of memory.  Wait a little. */
    371 				uvmfault_unlockall(ufi, amap, NULL);
    372 				cpu_count(CPU_COUNT_FLTNORAM, 1);
    373 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
    374 				    0,0,0);
    375 				if (!uvm_reclaimable()) {
    376 					return ENOMEM;
    377 				}
    378 				uvm_wait("flt_noram1");
    379 			} else {
    380 				/* PG_BUSY bit is set. */
    381 				we_own = true;
    382 				uvmfault_unlockall(ufi, amap, NULL);
    383 
    384 				/*
    385 				 * Pass a PG_BUSY+PG_FAKE clean page into
    386 				 * the uvm_swap_get() function with all data
    387 				 * structures unlocked.  Note that it is OK
    388 				 * to read an_swslot here, because we hold
    389 				 * PG_BUSY on the page.
    390 				 */
    391 				cpu_count(CPU_COUNT_PAGEINS, 1);
    392 				error = uvm_swap_get(pg, anon->an_swslot,
    393 				    PGO_SYNCIO);
    394 
    395 				/*
    396 				 * We clean up after the I/O below in the
    397 				 * 'we_own' case.
    398 				 */
    399 			}
    400 #else
    401 			panic("%s: no page", __func__);
    402 #endif /* defined(VMSWAP) */
    403 		}
    404 
    405 		/*
    406 		 * Re-lock the map and anon.
    407 		 */
    408 
    409 		locked = uvmfault_relock(ufi);
    410 		if (locked || we_own) {
    411 			rw_enter(anon->an_lock, lock_type);
    412 		}
    413 
    414 		/*
    415 		 * If we own the page (i.e. we set PG_BUSY), then we need
    416 		 * to clean up after the I/O.  There are three cases to
    417 		 * consider:
    418 		 *
    419 		 * 1) Page was released during I/O: free anon and ReFault.
    420 		 * 2) I/O not OK.  Free the page and cause the fault to fail.
    421 		 * 3) I/O OK!  Activate the page and sync with the non-we_own
    422 		 *    case (i.e. drop anon lock if not locked).
    423 		 */
    424 
    425 		if (we_own) {
    426 			KASSERT(lock_type == RW_WRITER);
    427 #if defined(VMSWAP)
    428 			if (error) {
    429 
    430 				/*
    431 				 * Remove the swap slot from the anon and
    432 				 * mark the anon as having no real slot.
    433 				 * Do not free the swap slot, thus preventing
    434 				 * it from being used again.
    435 				 */
    436 
    437 				if (anon->an_swslot > 0) {
    438 					uvm_swap_markbad(anon->an_swslot, 1);
    439 				}
    440 				anon->an_swslot = SWSLOT_BAD;
    441 
    442 				if ((pg->flags & PG_RELEASED) != 0) {
    443 					goto released;
    444 				}
    445 
    446 				/*
    447 				 * Note: page was never !PG_BUSY, so it
    448 				 * cannot be mapped and thus no need to
    449 				 * pmap_page_protect() it.
    450 				 */
    451 
    452 				uvm_pagefree(pg);
    453 
    454 				if (locked) {
    455 					uvmfault_unlockall(ufi, NULL, NULL);
    456 				}
    457 				rw_exit(anon->an_lock);
    458 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
    459 				return error;
    460 			}
    461 
    462 			if ((pg->flags & PG_RELEASED) != 0) {
    463 released:
    464 				KASSERT(anon->an_ref == 0);
    465 
    466 				/*
    467 				 * Released while we had unlocked amap.
    468 				 */
    469 
    470 				if (locked) {
    471 					uvmfault_unlockall(ufi, NULL, NULL);
    472 				}
    473 				uvm_anon_release(anon);
    474 
    475 				if (error) {
    476 					UVMHIST_LOG(maphist,
    477 					    "<- ERROR/RELEASED", 0,0,0,0);
    478 					return error;
    479 				}
    480 
    481 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
    482 				return ERESTART;
    483 			}
    484 
    485 			/*
    486 			 * We have successfully read the page, activate it.
    487 			 */
    488 
    489 			uvm_pagelock(pg);
    490 			uvm_pageactivate(pg);
    491 			uvm_pagewakeup(pg);
    492 			uvm_pageunlock(pg);
    493 			pg->flags &= ~(PG_BUSY|PG_FAKE);
    494 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
    495 			UVM_PAGE_OWN(pg, NULL);
    496 #else
    497 			panic("%s: we_own", __func__);
    498 #endif /* defined(VMSWAP) */
    499 		}
    500 
    501 		/*
    502 		 * We were not able to re-lock the map - restart the fault.
    503 		 */
    504 
    505 		if (!locked) {
    506 			if (we_own) {
    507 				rw_exit(anon->an_lock);
    508 			}
    509 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    510 			return ERESTART;
    511 		}
    512 
    513 		/*
    514 		 * Verify that no one has touched the amap and moved
    515 		 * the anon on us.
    516 		 */
    517 
    518 		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
    519 		    ufi->orig_rvaddr - ufi->entry->start) != anon) {
    520 
    521 			uvmfault_unlockall(ufi, amap, NULL);
    522 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    523 			return ERESTART;
    524 		}
    525 
    526 		/*
    527 		 * Retry..
    528 		 */
    529 
    530 		cpu_count(CPU_COUNT_FLTANRETRY, 1);
    531 		continue;
    532 	}
    533 	/*NOTREACHED*/
    534 }
    535 
    536 /*
    537  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
    538  *
    539  *	1. allocate an anon and a page.
    540  *	2. fill its contents.
    541  *	3. put it into amap.
    542  *
    543  * => if we fail (result != 0) we unlock everything.
    544  * => on success, return a new locked anon via 'nanon'.
    545  *    (*nanon)->an_page will be a resident, locked, dirty page.
    546  * => it's caller's responsibility to put the promoted nanon->an_page to the
    547  *    page queue.
    548  */
    549 
    550 static int
    551 uvmfault_promote(struct uvm_faultinfo *ufi,
    552     struct vm_anon *oanon,
    553     struct vm_page *uobjpage,
    554     struct vm_anon **nanon, /* OUT: allocated anon */
    555     struct vm_anon **spare)
    556 {
    557 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
    558 	struct uvm_object *uobj;
    559 	struct vm_anon *anon;
    560 	struct vm_page *pg;
    561 	struct vm_page *opg;
    562 	int error;
    563 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    564 
    565 	if (oanon) {
    566 		/* anon COW */
    567 		opg = oanon->an_page;
    568 		KASSERT(opg != NULL);
    569 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
    570 	} else if (uobjpage != PGO_DONTCARE) {
    571 		/* object-backed COW */
    572 		opg = uobjpage;
    573 		KASSERT(rw_lock_held(opg->uobject->vmobjlock));
    574 	} else {
    575 		/* ZFOD */
    576 		opg = NULL;
    577 	}
    578 	if (opg != NULL) {
    579 		uobj = opg->uobject;
    580 	} else {
    581 		uobj = NULL;
    582 	}
    583 
    584 	KASSERT(amap != NULL);
    585 	KASSERT(uobjpage != NULL);
    586 	KASSERT(rw_write_held(amap->am_lock));
    587 	KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
    588 	KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
    589 
    590 	if (*spare != NULL) {
    591 		anon = *spare;
    592 		*spare = NULL;
    593 	} else {
    594 		anon = uvm_analloc();
    595 	}
    596 	if (anon) {
    597 
    598 		/*
    599 		 * The new anon is locked.
    600 		 *
    601 		 * if opg == NULL, we want a zero'd, dirty page,
    602 		 * so have uvm_pagealloc() do that for us.
    603 		 */
    604 
    605 		KASSERT(anon->an_lock == NULL);
    606 		anon->an_lock = amap->am_lock;
    607 		pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
    608 		    UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
    609 		if (pg == NULL) {
    610 			anon->an_lock = NULL;
    611 		}
    612 	} else {
    613 		pg = NULL;
    614 	}
    615 
    616 	/*
    617 	 * out of memory resources?
    618 	 */
    619 
    620 	if (pg == NULL) {
    621 		/* save anon for the next try. */
    622 		if (anon != NULL) {
    623 			*spare = anon;
    624 		}
    625 
    626 		/* unlock and fail ... */
    627 		uvmfault_unlockall(ufi, amap, uobj);
    628 		if (!uvm_reclaimable()) {
    629 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
    630 			cpu_count(CPU_COUNT_FLTNOANON, 1);
    631 			error = ENOMEM;
    632 			goto done;
    633 		}
    634 
    635 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
    636 		cpu_count(CPU_COUNT_FLTNORAM, 1);
    637 		uvm_wait("flt_noram5");
    638 		error = ERESTART;
    639 		goto done;
    640 	}
    641 
    642 	/* copy page [pg now dirty] */
    643 	if (opg) {
    644 		uvm_pagecopy(opg, pg);
    645 	}
    646 	KASSERT(uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_DIRTY);
    647 
    648 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
    649 	    oanon != NULL);
    650 
    651 	/*
    652 	 * from this point on am_lock won't be dropped until the page is
    653 	 * entered, so it's safe to unbusy the page up front.
    654 	 *
    655 	 * uvm_fault_{upper,lower}_done will activate or enqueue the page.
    656 	 */
    657 
    658 	pg = anon->an_page;
    659 	pg->flags &= ~(PG_BUSY|PG_FAKE);
    660 	UVM_PAGE_OWN(pg, NULL);
    661 
    662 	*nanon = anon;
    663 	error = 0;
    664 done:
    665 	return error;
    666 }
    667 
    668 /*
    669  * Update statistics after fault resolution.
    670  * - maxrss
    671  */
    672 void
    673 uvmfault_update_stats(struct uvm_faultinfo *ufi)
    674 {
    675 	struct vm_map		*map;
    676 	struct vmspace 		*vm;
    677 	struct proc		*p;
    678 	vsize_t			 res;
    679 
    680 	map = ufi->orig_map;
    681 
    682 	p = curproc;
    683 	KASSERT(p != NULL);
    684 	vm = p->p_vmspace;
    685 
    686 	if (&vm->vm_map != map)
    687 		return;
    688 
    689 	res = pmap_resident_count(map->pmap);
    690 	if (vm->vm_rssmax < res)
    691 		vm->vm_rssmax = res;
    692 }
    693 
    694 /*
    695  *   F A U L T   -   m a i n   e n t r y   p o i n t
    696  */
    697 
    698 /*
    699  * uvm_fault: page fault handler
    700  *
    701  * => called from MD code to resolve a page fault
    702  * => VM data structures usually should be unlocked.   however, it is
    703  *	possible to call here with the main map locked if the caller
    704  *	gets a write lock, sets it recursive, and then calls us (c.f.
    705  *	uvm_map_pageable).   this should be avoided because it keeps
    706  *	the map locked off during I/O.
    707  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
    708  */
    709 
    710 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
    711 			 ~VM_PROT_WRITE : VM_PROT_ALL)
    712 
    713 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
    714 #define UVM_FAULT_WIRE		(1 << 0)
    715 #define UVM_FAULT_MAXPROT	(1 << 1)
    716 
    717 struct uvm_faultctx {
    718 
    719 	/*
    720 	 * the following members are set up by uvm_fault_check() and
    721 	 * read-only after that.
    722 	 *
    723 	 * note that narrow is used by uvm_fault_check() to change
    724 	 * the behaviour after ERESTART.
    725 	 *
    726 	 * most of them might change after RESTART if the underlying
    727 	 * map entry has been changed behind us.  an exception is
    728 	 * wire_paging, which does never change.
    729 	 */
    730 	vm_prot_t access_type;
    731 	vaddr_t startva;
    732 	int npages;
    733 	int centeridx;
    734 	bool narrow;		/* work on a single requested page only */
    735 	bool wire_mapping;	/* request a PMAP_WIRED mapping
    736 				   (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
    737 	bool wire_paging;	/* request uvm_pagewire
    738 				   (true for UVM_FAULT_WIRE) */
    739 	bool cow_now;		/* VM_PROT_WRITE is actually requested
    740 				   (ie. should break COW and page loaning) */
    741 
    742 	/*
    743 	 * enter_prot is set up by uvm_fault_check() and clamped
    744 	 * (ie. drop the VM_PROT_WRITE bit) in various places in case
    745 	 * of !cow_now.
    746 	 */
    747 	vm_prot_t enter_prot;	/* prot at which we want to enter pages in */
    748 
    749 	/*
    750 	 * the following member is for uvmfault_promote() and ERESTART.
    751 	 */
    752 	struct vm_anon *anon_spare;
    753 
    754 	/*
    755 	 * the folloing is actually a uvm_fault_lower() internal.
    756 	 * it's here merely for debugging.
    757 	 * (or due to the mechanical separation of the function?)
    758 	 */
    759 	bool promote;
    760 
    761 	/*
    762 	 * type of lock to acquire on objects in both layers.
    763 	 */
    764 	krw_t lower_lock_type;
    765 	krw_t upper_lock_type;
    766 };
    767 
    768 static inline int	uvm_fault_check(
    769 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    770 			    struct vm_anon ***, bool);
    771 
    772 static int		uvm_fault_upper(
    773 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    774 			    struct vm_anon **);
    775 static inline int	uvm_fault_upper_lookup(
    776 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    777 			    struct vm_anon **, struct vm_page **);
    778 static inline void	uvm_fault_upper_neighbor(
    779 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    780 			    vaddr_t, struct vm_page *, bool);
    781 static inline int	uvm_fault_upper_loan(
    782 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    783 			    struct vm_anon *, struct uvm_object **);
    784 static inline int	uvm_fault_upper_promote(
    785 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    786 			    struct uvm_object *, struct vm_anon *);
    787 static inline int	uvm_fault_upper_direct(
    788 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    789 			    struct uvm_object *, struct vm_anon *);
    790 static int		uvm_fault_upper_enter(
    791 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    792 			    struct uvm_object *, struct vm_anon *,
    793 			    struct vm_page *, struct vm_anon *);
    794 static inline void	uvm_fault_upper_done(
    795 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    796 			    struct vm_anon *, struct vm_page *);
    797 
    798 static int		uvm_fault_lower(
    799 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    800 			    struct vm_page **);
    801 static inline void	uvm_fault_lower_lookup(
    802 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    803 			    struct vm_page **);
    804 static inline void	uvm_fault_lower_neighbor(
    805 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    806 			    vaddr_t, struct vm_page *);
    807 static inline int	uvm_fault_lower_io(
    808 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    809 			    struct uvm_object **, struct vm_page **);
    810 static inline int	uvm_fault_lower_direct(
    811 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    812 			    struct uvm_object *, struct vm_page *);
    813 static inline int	uvm_fault_lower_direct_loan(
    814 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    815 			    struct uvm_object *, struct vm_page **,
    816 			    struct vm_page **);
    817 static inline int	uvm_fault_lower_promote(
    818 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    819 			    struct uvm_object *, struct vm_page *);
    820 static int		uvm_fault_lower_enter(
    821 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    822 			    struct uvm_object *,
    823 			    struct vm_anon *, struct vm_page *);
    824 static inline void	uvm_fault_lower_done(
    825 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    826 			    struct uvm_object *, struct vm_page *);
    827 
    828 int
    829 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
    830     vm_prot_t access_type, int fault_flag)
    831 {
    832 	struct uvm_faultinfo ufi;
    833 	struct uvm_faultctx flt = {
    834 		.access_type = access_type,
    835 
    836 		/* don't look for neighborhood * pages on "wire" fault */
    837 		.narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
    838 
    839 		/* "wire" fault causes wiring of both mapping and paging */
    840 		.wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
    841 		.wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
    842 
    843 		/*
    844 		 * default lock type to acquire on upper & lower layer
    845 		 * objects: reader.  this can be upgraded at any point
    846 		 * during the fault from read -> write and uvm_faultctx
    847 		 * changed to match, but is never downgraded write -> read.
    848 		 */
    849 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
    850 		.upper_lock_type = RW_WRITER,
    851 		.lower_lock_type = RW_WRITER,
    852 #else
    853 		.upper_lock_type = RW_READER,
    854 		.lower_lock_type = RW_READER,
    855 #endif
    856 	};
    857 	const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
    858 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
    859 	struct vm_page *pages_store[UVM_MAXRANGE], **pages;
    860 	int error;
    861 
    862 	UVMHIST_FUNC(__func__);
    863 	UVMHIST_CALLARGS(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)",
    864 	      (uintptr_t)orig_map, vaddr, access_type, fault_flag);
    865 
    866 	/* Don't count anything until user interaction is possible */
    867 	kpreempt_disable();
    868 	if (__predict_true(start_init_exec)) {
    869 		struct cpu_info *ci = curcpu();
    870 		CPU_COUNT(CPU_COUNT_NFAULT, 1);
    871 		/* Don't flood RNG subsystem with samples. */
    872 		if (++(ci->ci_faultrng) == 503) {
    873 			ci->ci_faultrng = 0;
    874 			rnd_add_uint32(&curcpu()->ci_data.cpu_uvm->rs,
    875 			    sizeof(vaddr_t) == sizeof(uint32_t) ?
    876 			    (uint32_t)vaddr : sizeof(vaddr_t) ==
    877 			    sizeof(uint64_t) ?
    878 			    (uint32_t)vaddr :
    879 			    (uint32_t)ci->ci_counts[CPU_COUNT_NFAULT]);
    880 		}
    881 	}
    882 	kpreempt_enable();
    883 
    884 	/*
    885 	 * init the IN parameters in the ufi
    886 	 */
    887 
    888 	ufi.orig_map = orig_map;
    889 	ufi.orig_rvaddr = trunc_page(vaddr);
    890 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
    891 
    892 	error = ERESTART;
    893 	while (error == ERESTART) { /* ReFault: */
    894 		anons = anons_store;
    895 		pages = pages_store;
    896 
    897 		error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
    898 		if (error != 0)
    899 			continue;
    900 
    901 		error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
    902 		if (error != 0)
    903 			continue;
    904 
    905 		if (pages[flt.centeridx] == PGO_DONTCARE)
    906 			error = uvm_fault_upper(&ufi, &flt, anons);
    907 		else {
    908 			struct uvm_object * const uobj =
    909 			    ufi.entry->object.uvm_obj;
    910 
    911 			if (uobj && uobj->pgops->pgo_fault != NULL) {
    912 				/*
    913 				 * invoke "special" fault routine.
    914 				 */
    915 				rw_enter(uobj->vmobjlock, RW_WRITER);
    916 				/* locked: maps(read), amap(if there), uobj */
    917 				error = uobj->pgops->pgo_fault(&ufi,
    918 				    flt.startva, pages, flt.npages,
    919 				    flt.centeridx, flt.access_type,
    920 				    PGO_LOCKED|PGO_SYNCIO);
    921 
    922 				/*
    923 				 * locked: nothing, pgo_fault has unlocked
    924 				 * everything
    925 				 */
    926 
    927 				/*
    928 				 * object fault routine responsible for
    929 				 * pmap_update().
    930 				 */
    931 
    932 				/*
    933 				 * Wake up the pagedaemon if the fault method
    934 				 * failed for lack of memory but some can be
    935 				 * reclaimed.
    936 				 */
    937 				if (error == ENOMEM && uvm_reclaimable()) {
    938 					uvm_wait("pgo_fault");
    939 					error = ERESTART;
    940 				}
    941 			} else {
    942 				error = uvm_fault_lower(&ufi, &flt, pages);
    943 			}
    944 		}
    945 	}
    946 
    947 	if (flt.anon_spare != NULL) {
    948 		flt.anon_spare->an_ref--;
    949 		KASSERT(flt.anon_spare->an_ref == 0);
    950 		KASSERT(flt.anon_spare->an_lock == NULL);
    951 		uvm_anfree(flt.anon_spare);
    952 	}
    953 	return error;
    954 }
    955 
    956 /*
    957  * uvm_fault_check: check prot, handle needs-copy, etc.
    958  *
    959  *	1. lookup entry.
    960  *	2. check protection.
    961  *	3. adjust fault condition (mainly for simulated fault).
    962  *	4. handle needs-copy (lazy amap copy).
    963  *	5. establish range of interest for neighbor fault (aka pre-fault).
    964  *	6. look up anons (if amap exists).
    965  *	7. flush pages (if MADV_SEQUENTIAL)
    966  *
    967  * => called with nothing locked.
    968  * => if we fail (result != 0) we unlock everything.
    969  * => initialize/adjust many members of flt.
    970  */
    971 
    972 static int
    973 uvm_fault_check(
    974 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
    975 	struct vm_anon ***ranons, bool maxprot)
    976 {
    977 	struct vm_amap *amap;
    978 	struct uvm_object *uobj;
    979 	vm_prot_t check_prot;
    980 	int nback, nforw;
    981 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    982 
    983 	/*
    984 	 * lookup and lock the maps
    985 	 */
    986 
    987 	if (uvmfault_lookup(ufi, false) == false) {
    988 		UVMHIST_LOG(maphist, "<- no mapping @ %#jx", ufi->orig_rvaddr,
    989 		    0,0,0);
    990 		return EFAULT;
    991 	}
    992 	/* locked: maps(read) */
    993 
    994 #ifdef DIAGNOSTIC
    995 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
    996 		printf("Page fault on non-pageable map:\n");
    997 		printf("ufi->map = %p\n", ufi->map);
    998 		printf("ufi->orig_map = %p\n", ufi->orig_map);
    999 		printf("ufi->orig_rvaddr = %#lx\n", (u_long) ufi->orig_rvaddr);
   1000 		panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
   1001 	}
   1002 #endif
   1003 
   1004 	/*
   1005 	 * check protection
   1006 	 */
   1007 
   1008 	check_prot = maxprot ?
   1009 	    ufi->entry->max_protection : ufi->entry->protection;
   1010 	if ((check_prot & flt->access_type) != flt->access_type) {
   1011 		UVMHIST_LOG(maphist,
   1012 		    "<- protection failure (prot=%#jx, access=%#jx)",
   1013 		    ufi->entry->protection, flt->access_type, 0, 0);
   1014 		uvmfault_unlockmaps(ufi, false);
   1015 		return EFAULT;
   1016 	}
   1017 
   1018 	/*
   1019 	 * "enter_prot" is the protection we want to enter the page in at.
   1020 	 * for certain pages (e.g. copy-on-write pages) this protection can
   1021 	 * be more strict than ufi->entry->protection.  "wired" means either
   1022 	 * the entry is wired or we are fault-wiring the pg.
   1023 	 */
   1024 
   1025 	flt->enter_prot = ufi->entry->protection;
   1026 	if (VM_MAPENT_ISWIRED(ufi->entry)) {
   1027 		flt->wire_mapping = true;
   1028 		flt->wire_paging = true;
   1029 		flt->narrow = true;
   1030 	}
   1031 
   1032 	if (flt->wire_mapping) {
   1033 		flt->access_type = flt->enter_prot; /* full access for wired */
   1034 		flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
   1035 	} else {
   1036 		flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
   1037 	}
   1038 
   1039 	if (flt->wire_paging) {
   1040 		/* wiring pages requires a write lock. */
   1041 		flt->upper_lock_type = RW_WRITER;
   1042 		flt->lower_lock_type = RW_WRITER;
   1043 	}
   1044 
   1045 	flt->promote = false;
   1046 
   1047 	/*
   1048 	 * handle "needs_copy" case.   if we need to copy the amap we will
   1049 	 * have to drop our readlock and relock it with a write lock.  (we
   1050 	 * need a write lock to change anything in a map entry [e.g.
   1051 	 * needs_copy]).
   1052 	 */
   1053 
   1054 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
   1055 		if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
   1056 			KASSERT(!maxprot);
   1057 			/* need to clear */
   1058 			UVMHIST_LOG(maphist,
   1059 			    "  need to clear needs_copy and refault",0,0,0,0);
   1060 			uvmfault_unlockmaps(ufi, false);
   1061 			uvmfault_amapcopy(ufi);
   1062 			cpu_count(CPU_COUNT_FLTAMCOPY, 1);
   1063 			return ERESTART;
   1064 
   1065 		} else {
   1066 
   1067 			/*
   1068 			 * ensure that we pmap_enter page R/O since
   1069 			 * needs_copy is still true
   1070 			 */
   1071 
   1072 			flt->enter_prot &= ~VM_PROT_WRITE;
   1073 		}
   1074 	}
   1075 
   1076 	/*
   1077 	 * identify the players
   1078 	 */
   1079 
   1080 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
   1081 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
   1082 
   1083 	/*
   1084 	 * check for a case 0 fault.  if nothing backing the entry then
   1085 	 * error now.
   1086 	 */
   1087 
   1088 	if (amap == NULL && uobj == NULL) {
   1089 		uvmfault_unlockmaps(ufi, false);
   1090 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
   1091 		return EFAULT;
   1092 	}
   1093 
   1094 	/*
   1095 	 * for a case 2B fault waste no time on adjacent pages because
   1096 	 * they are likely already entered.
   1097 	 */
   1098 
   1099 	if (uobj != NULL && amap != NULL &&
   1100 	    (flt->access_type & VM_PROT_WRITE) != 0) {
   1101 		/* wide fault (!narrow) */
   1102 		flt->narrow = true;
   1103 	}
   1104 
   1105 	/*
   1106 	 * establish range of interest based on advice from mapper
   1107 	 * and then clip to fit map entry.   note that we only want
   1108 	 * to do this the first time through the fault.   if we
   1109 	 * ReFault we will disable this by setting "narrow" to true.
   1110 	 */
   1111 
   1112 	if (flt->narrow == false) {
   1113 
   1114 		/* wide fault (!narrow) */
   1115 		KASSERT(uvmadvice[ufi->entry->advice].advice ==
   1116 			 ufi->entry->advice);
   1117 		nback = MIN(uvmadvice[ufi->entry->advice].nback,
   1118 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
   1119 		flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
   1120 		/*
   1121 		 * note: "-1" because we don't want to count the
   1122 		 * faulting page as forw
   1123 		 */
   1124 		nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
   1125 			    ((ufi->entry->end - ufi->orig_rvaddr) >>
   1126 			     PAGE_SHIFT) - 1);
   1127 		flt->npages = nback + nforw + 1;
   1128 		flt->centeridx = nback;
   1129 
   1130 		flt->narrow = true;	/* ensure only once per-fault */
   1131 
   1132 	} else {
   1133 
   1134 		/* narrow fault! */
   1135 		nback = nforw = 0;
   1136 		flt->startva = ufi->orig_rvaddr;
   1137 		flt->npages = 1;
   1138 		flt->centeridx = 0;
   1139 
   1140 	}
   1141 	/* offset from entry's start to pgs' start */
   1142 	const voff_t eoff = flt->startva - ufi->entry->start;
   1143 
   1144 	/* locked: maps(read) */
   1145 	UVMHIST_LOG(maphist, "  narrow=%jd, back=%jd, forw=%jd, startva=%#jx",
   1146 		    flt->narrow, nback, nforw, flt->startva);
   1147 	UVMHIST_LOG(maphist, "  entry=%#jx, amap=%#jx, obj=%#jx",
   1148 	    (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0);
   1149 
   1150 	/*
   1151 	 * guess at the most suitable lock types to acquire.
   1152 	 * if we've got an amap then lock it and extract current anons.
   1153 	 */
   1154 
   1155 	if (amap) {
   1156 		if ((amap_flags(amap) & AMAP_SHARED) == 0) {
   1157 			/*
   1158 			 * the amap isn't shared.  get a writer lock to
   1159 			 * avoid the cost of upgrading the lock later if
   1160 			 * needed.
   1161 			 *
   1162 			 * XXX nice for PostgreSQL, but consider threads.
   1163 			 */
   1164 			flt->upper_lock_type = RW_WRITER;
   1165 		} else if ((flt->access_type & VM_PROT_WRITE) != 0) {
   1166 			/*
   1167 			 * assume we're about to COW.
   1168 			 */
   1169 			flt->upper_lock_type = RW_WRITER;
   1170 		}
   1171 		amap_lock(amap, flt->upper_lock_type);
   1172 		amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
   1173 	} else {
   1174 		if ((flt->access_type & VM_PROT_WRITE) != 0) {
   1175 			/*
   1176 			 * we are about to dirty the object and that
   1177 			 * requires a write lock.
   1178 			 */
   1179 			flt->lower_lock_type = RW_WRITER;
   1180 		}
   1181 		*ranons = NULL;	/* to be safe */
   1182 	}
   1183 
   1184 	/* locked: maps(read), amap(if there) */
   1185 	KASSERT(amap == NULL ||
   1186 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   1187 
   1188 	/*
   1189 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
   1190 	 * now and then forget about them (for the rest of the fault).
   1191 	 */
   1192 
   1193 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
   1194 
   1195 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
   1196 		    0,0,0,0);
   1197 		/* flush back-page anons? */
   1198 		if (amap)
   1199 			uvmfault_anonflush(*ranons, nback);
   1200 
   1201 		/*
   1202 		 * flush object?  change lock type to RW_WRITER, to avoid
   1203 		 * excessive competition between read/write locks if many
   1204 		 * threads doing "sequential access".
   1205 		 */
   1206 		if (uobj) {
   1207 			voff_t uoff;
   1208 
   1209 			flt->lower_lock_type = RW_WRITER;
   1210 			uoff = ufi->entry->offset + eoff;
   1211 			rw_enter(uobj->vmobjlock, RW_WRITER);
   1212 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
   1213 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
   1214 		}
   1215 
   1216 		/* now forget about the backpages */
   1217 		if (amap)
   1218 			*ranons += nback;
   1219 		flt->startva += (nback << PAGE_SHIFT);
   1220 		flt->npages -= nback;
   1221 		flt->centeridx = 0;
   1222 	}
   1223 	/*
   1224 	 * => startva is fixed
   1225 	 * => npages is fixed
   1226 	 */
   1227 	KASSERT(flt->startva <= ufi->orig_rvaddr);
   1228 	KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
   1229 	    flt->startva + (flt->npages << PAGE_SHIFT));
   1230 	return 0;
   1231 }
   1232 
   1233 /*
   1234  * uvm_fault_upper_upgrade: upgrade upper lock, reader -> writer
   1235  */
   1236 
   1237 static inline int
   1238 uvm_fault_upper_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1239     struct vm_amap *amap, struct uvm_object *uobj)
   1240 {
   1241 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1242 
   1243 	KASSERT(amap != NULL);
   1244 	KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock));
   1245 
   1246 	/*
   1247 	 * fast path.
   1248 	 */
   1249 
   1250 	if (__predict_true(flt->upper_lock_type == RW_WRITER)) {
   1251 		return 0;
   1252 	}
   1253 
   1254 	/*
   1255 	 * otherwise try for the upgrade.  if we don't get it, unlock
   1256 	 * everything, restart the fault and next time around get a writer
   1257 	 * lock.
   1258 	 */
   1259 
   1260 	flt->upper_lock_type = RW_WRITER;
   1261 	if (__predict_false(!rw_tryupgrade(amap->am_lock))) {
   1262 		uvmfault_unlockall(ufi, amap, uobj);
   1263 		cpu_count(CPU_COUNT_FLTNOUP, 1);
   1264 		UVMHIST_LOG(maphist, "  !upgrade upper", 0, 0,0,0);
   1265 		return ERESTART;
   1266 	}
   1267 	cpu_count(CPU_COUNT_FLTUP, 1);
   1268 	KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock));
   1269 	return 0;
   1270 }
   1271 
   1272 /*
   1273  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
   1274  *
   1275  * iterate range of interest:
   1276  *	1. check if h/w mapping exists.  if yes, we don't care
   1277  *	2. check if anon exists.  if not, page is lower.
   1278  *	3. if anon exists, enter h/w mapping for neighbors.
   1279  *
   1280  * => called with amap locked (if exists).
   1281  */
   1282 
   1283 static int
   1284 uvm_fault_upper_lookup(
   1285 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1286 	struct vm_anon **anons, struct vm_page **pages)
   1287 {
   1288 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1289 	int lcv;
   1290 	vaddr_t currva;
   1291 	bool shadowed __unused;
   1292 	bool entered;
   1293 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1294 
   1295 	/* locked: maps(read), amap(if there) */
   1296 	KASSERT(amap == NULL ||
   1297 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   1298 
   1299 	/*
   1300 	 * map in the backpages and frontpages we found in the amap in hopes
   1301 	 * of preventing future faults.    we also init the pages[] array as
   1302 	 * we go.
   1303 	 */
   1304 
   1305 	currva = flt->startva;
   1306 	shadowed = false;
   1307 	entered = false;
   1308 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1309 		/*
   1310 		 * unmapped or center page.   check if any anon at this level.
   1311 		 */
   1312 		if (amap == NULL || anons[lcv] == NULL) {
   1313 			pages[lcv] = NULL;
   1314 			continue;
   1315 		}
   1316 
   1317 		/*
   1318 		 * check for present page and map if possible.
   1319 		 */
   1320 
   1321 		pages[lcv] = PGO_DONTCARE;
   1322 		if (lcv == flt->centeridx) {	/* save center for later! */
   1323 			shadowed = true;
   1324 			continue;
   1325 		}
   1326 
   1327 		struct vm_anon *anon = anons[lcv];
   1328 		struct vm_page *pg = anon->an_page;
   1329 
   1330 		KASSERT(anon->an_lock == amap->am_lock);
   1331 
   1332 		/*
   1333 		 * ignore loaned and busy pages.
   1334 		 * don't play with VAs that are already mapped.
   1335 		 */
   1336 
   1337 		if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0 &&
   1338 		    !pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
   1339 			uvm_fault_upper_neighbor(ufi, flt, currva,
   1340 			    pg, anon->an_ref > 1);
   1341 			entered = true;
   1342 		}
   1343 	}
   1344 	if (entered) {
   1345 		pmap_update(ufi->orig_map->pmap);
   1346 	}
   1347 
   1348 	/* locked: maps(read), amap(if there) */
   1349 	KASSERT(amap == NULL ||
   1350 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   1351 	/* (shadowed == true) if there is an anon at the faulting address */
   1352 	UVMHIST_LOG(maphist, "  shadowed=%jd, will_get=%jd", shadowed,
   1353 	    (ufi->entry->object.uvm_obj && shadowed != false),0,0);
   1354 
   1355 	return 0;
   1356 }
   1357 
   1358 /*
   1359  * uvm_fault_upper_neighbor: enter single upper neighbor page.
   1360  *
   1361  * => called with amap and anon locked.
   1362  */
   1363 
   1364 static void
   1365 uvm_fault_upper_neighbor(
   1366 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1367 	vaddr_t currva, struct vm_page *pg, bool readonly)
   1368 {
   1369 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1370 
   1371 	/* locked: amap, anon */
   1372 
   1373 	KASSERT(pg->uobject == NULL);
   1374 	KASSERT(pg->uanon != NULL);
   1375 	KASSERT(rw_lock_op(pg->uanon->an_lock) == flt->upper_lock_type);
   1376 	KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
   1377 
   1378 	/*
   1379 	 * there wasn't a direct fault on the page, so avoid the cost of
   1380 	 * activating it.
   1381 	 */
   1382 
   1383 	if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) {
   1384 		uvm_pagelock(pg);
   1385 		uvm_pageenqueue(pg);
   1386 		uvm_pageunlock(pg);
   1387 	}
   1388 
   1389 	UVMHIST_LOG(maphist,
   1390 	    "  MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx",
   1391 	    (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
   1392 	cpu_count(CPU_COUNT_FLTNAMAP, 1);
   1393 
   1394 	/*
   1395 	 * Since this page isn't the page that's actually faulting,
   1396 	 * ignore pmap_enter() failures; it's not critical that we
   1397 	 * enter these right now.
   1398 	 */
   1399 
   1400 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1401 	    VM_PAGE_TO_PHYS(pg),
   1402 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1403 	    flt->enter_prot,
   1404 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
   1405 }
   1406 
   1407 /*
   1408  * uvm_fault_upper: handle upper fault.
   1409  *
   1410  *	1. acquire anon lock.
   1411  *	2. get anon.  let uvmfault_anonget do the dirty work.
   1412  *	3. handle loan.
   1413  *	4. dispatch direct or promote handlers.
   1414  */
   1415 
   1416 static int
   1417 uvm_fault_upper(
   1418 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1419 	struct vm_anon **anons)
   1420 {
   1421 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1422 	struct vm_anon * const anon = anons[flt->centeridx];
   1423 	struct uvm_object *uobj;
   1424 	int error;
   1425 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1426 
   1427 	/* locked: maps(read), amap, anon */
   1428 	KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   1429 	KASSERT(anon->an_lock == amap->am_lock);
   1430 
   1431 	/*
   1432 	 * handle case 1: fault on an anon in our amap
   1433 	 */
   1434 
   1435 	UVMHIST_LOG(maphist, "  case 1 fault: anon=%#jx",
   1436 	    (uintptr_t)anon, 0, 0, 0);
   1437 
   1438 	/*
   1439 	 * no matter if we have case 1A or case 1B we are going to need to
   1440 	 * have the anon's memory resident.   ensure that now.
   1441 	 */
   1442 
   1443 	/*
   1444 	 * let uvmfault_anonget do the dirty work.
   1445 	 * if it fails (!OK) it will unlock everything for us.
   1446 	 * if it succeeds, locks are still valid and locked.
   1447 	 * also, if it is OK, then the anon's page is on the queues.
   1448 	 * if the page is on loan from a uvm_object, then anonget will
   1449 	 * lock that object for us if it does not fail.
   1450 	 */
   1451  retry:
   1452 	error = uvmfault_anonget(ufi, amap, anon);
   1453 	switch (error) {
   1454 	case 0:
   1455 		break;
   1456 
   1457 	case ERESTART:
   1458 		return ERESTART;
   1459 
   1460 	case EAGAIN:
   1461 		kpause("fltagain1", false, hz/2, NULL);
   1462 		return ERESTART;
   1463 
   1464 	case ENOLCK:
   1465 		/* it needs a write lock: retry */
   1466 		error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
   1467 		if (error != 0) {
   1468 			return error;
   1469 		}
   1470 		KASSERT(rw_write_held(amap->am_lock));
   1471 		goto retry;
   1472 
   1473 	default:
   1474 		return error;
   1475 	}
   1476 
   1477 	/*
   1478 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
   1479 	 */
   1480 
   1481 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
   1482 
   1483 	/* locked: maps(read), amap, anon, uobj(if one) */
   1484 	KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   1485 	KASSERT(anon->an_lock == amap->am_lock);
   1486 	KASSERT(uobj == NULL ||
   1487 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
   1488 
   1489 	/*
   1490 	 * special handling for loaned pages
   1491 	 */
   1492 
   1493 	if (anon->an_page->loan_count) {
   1494 		error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
   1495 		if (error != 0)
   1496 			return error;
   1497 	}
   1498 
   1499 	/*
   1500 	 * if we are case 1B then we will need to allocate a new blank
   1501 	 * anon to transfer the data into.   note that we have a lock
   1502 	 * on anon, so no one can busy or release the page until we are done.
   1503 	 * also note that the ref count can't drop to zero here because
   1504 	 * it is > 1 and we are only dropping one ref.
   1505 	 *
   1506 	 * in the (hopefully very rare) case that we are out of RAM we
   1507 	 * will unlock, wait for more RAM, and refault.
   1508 	 *
   1509 	 * if we are out of anon VM we kill the process (XXX: could wait?).
   1510 	 */
   1511 
   1512 	if (flt->cow_now && anon->an_ref > 1) {
   1513 		flt->promote = true;
   1514 		error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
   1515 	} else {
   1516 		error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
   1517 	}
   1518 	return error;
   1519 }
   1520 
   1521 /*
   1522  * uvm_fault_upper_loan: handle loaned upper page.
   1523  *
   1524  *	1. if not cow'ing now, simply adjust flt->enter_prot.
   1525  *	2. if cow'ing now, and if ref count is 1, break loan.
   1526  */
   1527 
   1528 static int
   1529 uvm_fault_upper_loan(
   1530 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1531 	struct vm_anon *anon, struct uvm_object **ruobj)
   1532 {
   1533 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1534 	int error = 0;
   1535 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1536 
   1537 	if (!flt->cow_now) {
   1538 
   1539 		/*
   1540 		 * for read faults on loaned pages we just cap the
   1541 		 * protection at read-only.
   1542 		 */
   1543 
   1544 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1545 
   1546 	} else {
   1547 		/*
   1548 		 * note that we can't allow writes into a loaned page!
   1549 		 *
   1550 		 * if we have a write fault on a loaned page in an
   1551 		 * anon then we need to look at the anon's ref count.
   1552 		 * if it is greater than one then we are going to do
   1553 		 * a normal copy-on-write fault into a new anon (this
   1554 		 * is not a problem).  however, if the reference count
   1555 		 * is one (a case where we would normally allow a
   1556 		 * write directly to the page) then we need to kill
   1557 		 * the loan before we continue.
   1558 		 */
   1559 
   1560 		/* >1 case is already ok */
   1561 		if (anon->an_ref == 1) {
   1562 			/* breaking loan requires a write lock. */
   1563 			error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
   1564 			if (error != 0) {
   1565 				return error;
   1566 			}
   1567 			KASSERT(rw_write_held(amap->am_lock));
   1568 
   1569 			error = uvm_loanbreak_anon(anon, *ruobj);
   1570 			if (error != 0) {
   1571 				uvmfault_unlockall(ufi, amap, *ruobj);
   1572 				uvm_wait("flt_noram2");
   1573 				return ERESTART;
   1574 			}
   1575 			/* if we were a loan receiver uobj is gone */
   1576 			if (*ruobj)
   1577 				*ruobj = NULL;
   1578 		}
   1579 	}
   1580 	return error;
   1581 }
   1582 
   1583 /*
   1584  * uvm_fault_upper_promote: promote upper page.
   1585  *
   1586  *	1. call uvmfault_promote.
   1587  *	2. enqueue page.
   1588  *	3. deref.
   1589  *	4. pass page to uvm_fault_upper_enter.
   1590  */
   1591 
   1592 static int
   1593 uvm_fault_upper_promote(
   1594 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1595 	struct uvm_object *uobj, struct vm_anon *anon)
   1596 {
   1597 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1598 	struct vm_anon * const oanon = anon;
   1599 	struct vm_page *pg;
   1600 	int error;
   1601 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1602 
   1603 	UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
   1604 	cpu_count(CPU_COUNT_FLT_ACOW, 1);
   1605 
   1606 	/* promoting requires a write lock. */
   1607 	error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
   1608 	if (error != 0) {
   1609 		return error;
   1610 	}
   1611 	KASSERT(rw_write_held(amap->am_lock));
   1612 
   1613 	error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
   1614 	    &flt->anon_spare);
   1615 	switch (error) {
   1616 	case 0:
   1617 		break;
   1618 	case ERESTART:
   1619 		return ERESTART;
   1620 	default:
   1621 		return error;
   1622 	}
   1623 	pg = anon->an_page;
   1624 
   1625 	KASSERT(anon->an_lock == oanon->an_lock);
   1626 	KASSERT((pg->flags & (PG_BUSY | PG_FAKE)) == 0);
   1627 
   1628 	/* deref: can not drop to zero here by defn! */
   1629 	KASSERT(oanon->an_ref > 1);
   1630 	oanon->an_ref--;
   1631 
   1632 	/*
   1633 	 * note: oanon is still locked, as is the new anon.  we
   1634 	 * need to check for this later when we unlock oanon; if
   1635 	 * oanon != anon, we'll have to unlock anon, too.
   1636 	 */
   1637 
   1638 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1639 }
   1640 
   1641 /*
   1642  * uvm_fault_upper_direct: handle direct fault.
   1643  */
   1644 
   1645 static int
   1646 uvm_fault_upper_direct(
   1647 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1648 	struct uvm_object *uobj, struct vm_anon *anon)
   1649 {
   1650 	struct vm_anon * const oanon = anon;
   1651 	struct vm_page *pg;
   1652 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1653 
   1654 	cpu_count(CPU_COUNT_FLT_ANON, 1);
   1655 	pg = anon->an_page;
   1656 	if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
   1657 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1658 
   1659 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1660 }
   1661 
   1662 /*
   1663  * uvm_fault_upper_enter: enter h/w mapping of upper page.
   1664  */
   1665 
   1666 static int
   1667 uvm_fault_upper_enter(
   1668 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1669 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
   1670 	struct vm_anon *oanon)
   1671 {
   1672 	struct pmap *pmap = ufi->orig_map->pmap;
   1673 	vaddr_t va = ufi->orig_rvaddr;
   1674 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1675 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1676 
   1677 	/* locked: maps(read), amap, oanon, anon(if different from oanon) */
   1678 	KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   1679 	KASSERT(anon->an_lock == amap->am_lock);
   1680 	KASSERT(oanon->an_lock == amap->am_lock);
   1681 	KASSERT(uobj == NULL ||
   1682 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
   1683 	KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
   1684 
   1685 	/*
   1686 	 * now map the page in.
   1687 	 */
   1688 
   1689 	UVMHIST_LOG(maphist,
   1690 	    "  MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
   1691 	    (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote);
   1692 	if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg),
   1693 	    flt->enter_prot, flt->access_type | PMAP_CANFAIL |
   1694 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   1695 
   1696 		/*
   1697 		 * If pmap_enter() fails, it must not leave behind an existing
   1698 		 * pmap entry.  In particular, a now-stale entry for a different
   1699 		 * page would leave the pmap inconsistent with the vm_map.
   1700 		 * This is not to imply that pmap_enter() should remove an
   1701 		 * existing mapping in such a situation (since that could create
   1702 		 * different problems, eg. if the existing mapping is wired),
   1703 		 * but rather that the pmap should be designed such that it
   1704 		 * never needs to fail when the new mapping is replacing an
   1705 		 * existing mapping and the new page has no existing mappings.
   1706 		 *
   1707 		 * XXX This can't be asserted safely any more because many
   1708 		 * LWPs and/or many processes could simultaneously fault on
   1709 		 * the same VA and some might succeed.
   1710 		 */
   1711 
   1712 		/* KASSERT(!pmap_extract(pmap, va, NULL)); */
   1713 
   1714 		/*
   1715 		 * ensure that the page is queued in the case that
   1716 		 * we just promoted.
   1717 		 */
   1718 
   1719 		uvm_pagelock(pg);
   1720 		uvm_pageenqueue(pg);
   1721 		uvm_pageunlock(pg);
   1722 
   1723 		/*
   1724 		 * No need to undo what we did; we can simply think of
   1725 		 * this as the pmap throwing away the mapping information.
   1726 		 *
   1727 		 * We do, however, have to go through the ReFault path,
   1728 		 * as the map may change while we're asleep.
   1729 		 */
   1730 
   1731 		uvmfault_unlockall(ufi, amap, uobj);
   1732 		if (!uvm_reclaimable()) {
   1733 			UVMHIST_LOG(maphist,
   1734 			    "<- failed.  out of VM",0,0,0,0);
   1735 			/* XXX instrumentation */
   1736 			return ENOMEM;
   1737 		}
   1738 		/* XXX instrumentation */
   1739 		uvm_wait("flt_pmfail1");
   1740 		return ERESTART;
   1741 	}
   1742 
   1743 	uvm_fault_upper_done(ufi, flt, anon, pg);
   1744 
   1745 	/*
   1746 	 * done case 1!  finish up by unlocking everything and returning success
   1747 	 */
   1748 
   1749 	pmap_update(pmap);
   1750 	uvmfault_unlockall(ufi, amap, uobj);
   1751 	return 0;
   1752 }
   1753 
   1754 /*
   1755  * uvm_fault_upper_done: queue upper center page.
   1756  */
   1757 
   1758 static void
   1759 uvm_fault_upper_done(
   1760 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1761 	struct vm_anon *anon, struct vm_page *pg)
   1762 {
   1763 	const bool wire_paging = flt->wire_paging;
   1764 
   1765 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1766 
   1767 	/*
   1768 	 * ... update the page queues.
   1769 	 */
   1770 
   1771 	if (wire_paging) {
   1772 		uvm_pagelock(pg);
   1773 		uvm_pagewire(pg);
   1774 		uvm_pageunlock(pg);
   1775 
   1776 		/*
   1777 		 * since the now-wired page cannot be paged out,
   1778 		 * release its swap resources for others to use.
   1779 		 * and since an anon with no swap cannot be clean,
   1780 		 * mark it dirty now.
   1781 		 */
   1782 
   1783 		uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   1784 		uvm_anon_dropswap(anon);
   1785 	} else if (uvmpdpol_pageactivate_p(pg)) {
   1786 		/*
   1787 		 * avoid re-activating the page unless needed,
   1788 		 * to avoid false sharing on multiprocessor.
   1789 		 */
   1790 
   1791 		uvm_pagelock(pg);
   1792 		uvm_pageactivate(pg);
   1793 		uvm_pageunlock(pg);
   1794 	}
   1795 }
   1796 
   1797 /*
   1798  * uvm_fault_lower_upgrade: upgrade lower lock, reader -> writer
   1799  */
   1800 
   1801 static inline int
   1802 uvm_fault_lower_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1803     struct vm_amap *amap, struct uvm_object *uobj, struct vm_page *uobjpage)
   1804 {
   1805 
   1806 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1807 
   1808 	KASSERT(uobj != NULL);
   1809 	KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock));
   1810 
   1811 	/*
   1812 	 * fast path.
   1813 	 */
   1814 
   1815 	if (__predict_true(flt->lower_lock_type == RW_WRITER)) {
   1816 		return 0;
   1817 	}
   1818 
   1819 	/*
   1820 	 * otherwise try for the upgrade.  if we don't get it, unlock
   1821 	 * everything, restart the fault and next time around get a writer
   1822 	 * lock.
   1823 	 */
   1824 
   1825 	flt->lower_lock_type = RW_WRITER;
   1826 	if (__predict_false(!rw_tryupgrade(uobj->vmobjlock))) {
   1827 		uvmfault_unlockall(ufi, amap, uobj);
   1828 		cpu_count(CPU_COUNT_FLTNOUP, 1);
   1829 		UVMHIST_LOG(maphist, "  !upgrade lower", 0, 0,0,0);
   1830 		return ERESTART;
   1831 	}
   1832 	cpu_count(CPU_COUNT_FLTUP, 1);
   1833 	KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock));
   1834 	return 0;
   1835 }
   1836 
   1837 /*
   1838  * uvm_fault_lower: handle lower fault.
   1839  *
   1840  *	1. check uobj
   1841  *	1.1. if null, ZFOD.
   1842  *	1.2. if not null, look up unnmapped neighbor pages.
   1843  *	2. for center page, check if promote.
   1844  *	2.1. ZFOD always needs promotion.
   1845  *	2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
   1846  *	3. if uobj is not ZFOD and page is not found, do i/o.
   1847  *	4. dispatch either direct / promote fault.
   1848  */
   1849 
   1850 static int
   1851 uvm_fault_lower(
   1852 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1853 	struct vm_page **pages)
   1854 {
   1855 	struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap;
   1856 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1857 	struct vm_page *uobjpage;
   1858 	int error;
   1859 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1860 
   1861 	/*
   1862 	 * now, if the desired page is not shadowed by the amap and we have
   1863 	 * a backing object that does not have a special fault routine, then
   1864 	 * we ask (with pgo_get) the object for resident pages that we care
   1865 	 * about and attempt to map them in.  we do not let pgo_get block
   1866 	 * (PGO_LOCKED).
   1867 	 */
   1868 
   1869 	if (uobj == NULL) {
   1870 		/* zero fill; don't care neighbor pages */
   1871 		uobjpage = NULL;
   1872 	} else {
   1873 		uvm_fault_lower_lookup(ufi, flt, pages);
   1874 		uobjpage = pages[flt->centeridx];
   1875 	}
   1876 
   1877 	/*
   1878 	 * note that at this point we are done with any front or back pages.
   1879 	 * we are now going to focus on the center page (i.e. the one we've
   1880 	 * faulted on).  if we have faulted on the upper (anon) layer
   1881 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
   1882 	 * not touched it yet).  if we have faulted on the bottom (uobj)
   1883 	 * layer [i.e. case 2] and the page was both present and available,
   1884 	 * then we've got a pointer to it as "uobjpage" and we've already
   1885 	 * made it BUSY.
   1886 	 */
   1887 
   1888 	/*
   1889 	 * locked:
   1890 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
   1891 	 */
   1892 	KASSERT(amap == NULL ||
   1893 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   1894 	KASSERT(uobj == NULL ||
   1895 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
   1896 
   1897 	/*
   1898 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
   1899 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
   1900 	 * have a backing object, check and see if we are going to promote
   1901 	 * the data up to an anon during the fault.
   1902 	 */
   1903 
   1904 	if (uobj == NULL) {
   1905 		uobjpage = PGO_DONTCARE;
   1906 		flt->promote = true;		/* always need anon here */
   1907 	} else {
   1908 		KASSERT(uobjpage != PGO_DONTCARE);
   1909 		flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
   1910 	}
   1911 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%jd, zfill=%jd",
   1912 	    flt->promote, (uobj == NULL), 0,0);
   1913 
   1914 	/*
   1915 	 * if uobjpage is not null then we do not need to do I/O to get the
   1916 	 * uobjpage.
   1917 	 *
   1918 	 * if uobjpage is null, then we need to unlock and ask the pager to
   1919 	 * get the data for us.   once we have the data, we need to reverify
   1920 	 * the state the world.   we are currently not holding any resources.
   1921 	 */
   1922 
   1923 	if (uobjpage) {
   1924 		/* update rusage counters */
   1925 		curlwp->l_ru.ru_minflt++;
   1926 	} else {
   1927 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
   1928 		if (error != 0)
   1929 			return error;
   1930 	}
   1931 
   1932 	/*
   1933 	 * locked:
   1934 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
   1935 	 */
   1936 	KASSERT(amap == NULL ||
   1937 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   1938 	KASSERT(uobj == NULL ||
   1939 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
   1940 
   1941 	/*
   1942 	 * notes:
   1943 	 *  - at this point uobjpage can not be NULL
   1944 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
   1945 	 *  for it above)
   1946 	 *  - at this point uobjpage could be waited on (handle later)
   1947 	 *  - uobjpage can be from a different object if tmpfs (vnode vs UAO)
   1948 	 */
   1949 
   1950 	KASSERT(uobjpage != NULL);
   1951 	KASSERT(uobj == NULL ||
   1952 	    uobjpage->uobject->vmobjlock == uobj->vmobjlock);
   1953 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
   1954 	    uvm_pagegetdirty(uobjpage) == UVM_PAGE_STATUS_CLEAN);
   1955 
   1956 	if (!flt->promote) {
   1957 		error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
   1958 	} else {
   1959 		error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
   1960 	}
   1961 	return error;
   1962 }
   1963 
   1964 /*
   1965  * uvm_fault_lower_lookup: look up on-memory uobj pages.
   1966  *
   1967  *	1. get on-memory pages.
   1968  *	2. if failed, give up (get only center page later).
   1969  *	3. if succeeded, enter h/w mapping of neighbor pages.
   1970  */
   1971 
   1972 static void
   1973 uvm_fault_lower_lookup(
   1974 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1975 	struct vm_page **pages)
   1976 {
   1977 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1978 	int lcv, gotpages;
   1979 	vaddr_t currva;
   1980 	bool entered;
   1981 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1982 
   1983 	rw_enter(uobj->vmobjlock, flt->lower_lock_type);
   1984 
   1985 	/*
   1986 	 * Locked: maps(read), amap(if there), uobj
   1987 	 */
   1988 
   1989 	cpu_count(CPU_COUNT_FLTLGET, 1);
   1990 	gotpages = flt->npages;
   1991 	(void) uobj->pgops->pgo_get(uobj,
   1992 	    ufi->entry->offset + flt->startva - ufi->entry->start,
   1993 	    pages, &gotpages, flt->centeridx,
   1994 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice,
   1995 	    PGO_LOCKED);
   1996 
   1997 	KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
   1998 
   1999 	/*
   2000 	 * check for pages to map, if we got any
   2001 	 */
   2002 
   2003 	if (gotpages == 0) {
   2004 		pages[flt->centeridx] = NULL;
   2005 		return;
   2006 	}
   2007 
   2008 	entered = false;
   2009 	currva = flt->startva;
   2010 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   2011 		struct vm_page *curpg;
   2012 
   2013 		curpg = pages[lcv];
   2014 		if (curpg == NULL || curpg == PGO_DONTCARE) {
   2015 			continue;
   2016 		}
   2017 
   2018 		/*
   2019 		 * in the case of tmpfs, the pages might be from a different
   2020 		 * uvm_object.  just make sure that they have the same lock.
   2021 		 */
   2022 
   2023 		KASSERT(curpg->uobject->vmobjlock == uobj->vmobjlock);
   2024 		KASSERT((curpg->flags & PG_BUSY) == 0);
   2025 
   2026 		/*
   2027 		 * leave the centre page for later.  don't screw with
   2028 		 * existing mappings (needless & expensive).
   2029 		 */
   2030 
   2031 		if (lcv == flt->centeridx) {
   2032 			UVMHIST_LOG(maphist, "  got uobjpage (%#jx) "
   2033 			    "with locked get", (uintptr_t)curpg, 0, 0, 0);
   2034 		} else if (!pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
   2035 			uvm_fault_lower_neighbor(ufi, flt, currva, curpg);
   2036 			entered = true;
   2037 		}
   2038 	}
   2039 	if (entered) {
   2040 		pmap_update(ufi->orig_map->pmap);
   2041 	}
   2042 }
   2043 
   2044 /*
   2045  * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
   2046  */
   2047 
   2048 static void
   2049 uvm_fault_lower_neighbor(
   2050 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2051 	vaddr_t currva, struct vm_page *pg)
   2052 {
   2053 	const bool readonly = uvm_pagereadonly_p(pg) || pg->loan_count > 0;
   2054 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   2055 
   2056 	/* locked: maps(read), amap(if there), uobj */
   2057 
   2058 	/*
   2059 	 * calling pgo_get with PGO_LOCKED returns us pages which
   2060 	 * are neither busy nor released, so we don't need to check
   2061 	 * for this.  we can just directly enter the pages.
   2062 	 *
   2063 	 * there wasn't a direct fault on the page, so avoid the cost of
   2064 	 * activating it.
   2065 	 */
   2066 
   2067 	if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) {
   2068 		uvm_pagelock(pg);
   2069 		uvm_pageenqueue(pg);
   2070 		uvm_pageunlock(pg);
   2071 	}
   2072 
   2073 	UVMHIST_LOG(maphist,
   2074 	    "  MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx",
   2075 	    (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
   2076 	cpu_count(CPU_COUNT_FLTNOMAP, 1);
   2077 
   2078 	/*
   2079 	 * Since this page isn't the page that's actually faulting,
   2080 	 * ignore pmap_enter() failures; it's not critical that we
   2081 	 * enter these right now.
   2082 	 * NOTE: page can't be waited on or PG_RELEASED because we've
   2083 	 * held the lock the whole time we've had the handle.
   2084 	 */
   2085 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   2086 	KASSERT((pg->flags & PG_RELEASED) == 0);
   2087 	KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
   2088 	    uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN);
   2089 	KASSERT((pg->flags & PG_BUSY) == 0);
   2090 	KASSERT(rw_lock_op(pg->uobject->vmobjlock) == flt->lower_lock_type);
   2091 
   2092 	const vm_prot_t mapprot =
   2093 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   2094 	    flt->enter_prot & MASK(ufi->entry);
   2095 	const u_int mapflags =
   2096 	    PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0);
   2097 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   2098 	    VM_PAGE_TO_PHYS(pg), mapprot, mapflags);
   2099 }
   2100 
   2101 /*
   2102  * uvm_fault_lower_io: get lower page from backing store.
   2103  *
   2104  *	1. unlock everything, because i/o will block.
   2105  *	2. call pgo_get.
   2106  *	3. if failed, recover.
   2107  *	4. if succeeded, relock everything and verify things.
   2108  */
   2109 
   2110 static int
   2111 uvm_fault_lower_io(
   2112 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2113 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
   2114 {
   2115 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2116 	struct uvm_object *uobj = *ruobj;
   2117 	struct vm_page *pg;
   2118 	bool locked;
   2119 	int gotpages;
   2120 	int error;
   2121 	voff_t uoff;
   2122 	vm_prot_t access_type;
   2123 	int advice;
   2124 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   2125 
   2126 	/* update rusage counters */
   2127 	curlwp->l_ru.ru_majflt++;
   2128 
   2129 	/* grab everything we need from the entry before we unlock */
   2130 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
   2131 	access_type = flt->access_type & MASK(ufi->entry);
   2132 	advice = ufi->entry->advice;
   2133 
   2134 	/* Locked: maps(read), amap(if there), uobj */
   2135 	KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
   2136 
   2137 	/* Upgrade to a write lock if needed. */
   2138 	error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, NULL);
   2139 	if (error != 0) {
   2140 		return error;
   2141 	}
   2142 	uvmfault_unlockall(ufi, amap, NULL);
   2143 
   2144 	/* Locked: uobj(write) */
   2145 	KASSERT(rw_write_held(uobj->vmobjlock));
   2146 
   2147 	cpu_count(CPU_COUNT_FLTGET, 1);
   2148 	gotpages = 1;
   2149 	pg = NULL;
   2150 	error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
   2151 	    0, access_type, advice, PGO_SYNCIO);
   2152 	/* locked: pg(if no error) */
   2153 
   2154 	/*
   2155 	 * recover from I/O
   2156 	 */
   2157 
   2158 	if (error) {
   2159 		if (error == EAGAIN) {
   2160 			UVMHIST_LOG(maphist,
   2161 			    "  pgo_get says TRY AGAIN!",0,0,0,0);
   2162 			kpause("fltagain2", false, hz/2, NULL);
   2163 			return ERESTART;
   2164 		}
   2165 
   2166 #if 0
   2167 		KASSERT(error != ERESTART);
   2168 #else
   2169 		/* XXXUEBS don't re-fault? */
   2170 		if (error == ERESTART)
   2171 			error = EIO;
   2172 #endif
   2173 
   2174 		UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)",
   2175 		    error, 0,0,0);
   2176 		return error;
   2177 	}
   2178 
   2179 	/*
   2180 	 * re-verify the state of the world by first trying to relock
   2181 	 * the maps.  always relock the object.
   2182 	 */
   2183 
   2184 	locked = uvmfault_relock(ufi);
   2185 	if (locked && amap)
   2186 		amap_lock(amap, flt->upper_lock_type);
   2187 
   2188 	/* might be changed */
   2189 	uobj = pg->uobject;
   2190 
   2191 	rw_enter(uobj->vmobjlock, flt->lower_lock_type);
   2192 	KASSERT((pg->flags & PG_BUSY) != 0);
   2193 	KASSERT(flt->lower_lock_type == RW_WRITER);
   2194 
   2195 	uvm_pagelock(pg);
   2196 	uvm_pageactivate(pg);
   2197 	uvm_pageunlock(pg);
   2198 
   2199 	/* locked(locked): maps(read), amap(if !null), uobj, pg */
   2200 	/* locked(!locked): uobj, pg */
   2201 
   2202 	/*
   2203 	 * verify that the page has not be released and re-verify
   2204 	 * that amap slot is still free.   if there is a problem,
   2205 	 * we unlock and clean up.
   2206 	 */
   2207 
   2208 	if ((pg->flags & PG_RELEASED) != 0 ||
   2209 	    (locked && amap && amap_lookup(&ufi->entry->aref,
   2210 	      ufi->orig_rvaddr - ufi->entry->start))) {
   2211 		if (locked)
   2212 			uvmfault_unlockall(ufi, amap, NULL);
   2213 		locked = false;
   2214 	}
   2215 
   2216 	/*
   2217 	 * unbusy/release the page.
   2218 	 */
   2219 
   2220 	if ((pg->flags & PG_RELEASED) == 0) {
   2221 		pg->flags &= ~PG_BUSY;
   2222 		uvm_pagelock(pg);
   2223 		uvm_pagewakeup(pg);
   2224 		uvm_pageunlock(pg);
   2225 		UVM_PAGE_OWN(pg, NULL);
   2226 	} else {
   2227 		cpu_count(CPU_COUNT_FLTPGRELE, 1);
   2228 		uvm_pagefree(pg);
   2229 	}
   2230 
   2231 	/*
   2232 	 * didn't get the lock?   retry.
   2233 	 */
   2234 
   2235 	if (locked == false) {
   2236 		UVMHIST_LOG(maphist,
   2237 		    "  wasn't able to relock after fault: retry",
   2238 		    0,0,0,0);
   2239 		rw_exit(uobj->vmobjlock);
   2240 		return ERESTART;
   2241 	}
   2242 
   2243 	/*
   2244 	 * we have the data in pg.  we are holding object lock (so the page
   2245 	 * can't be released on us).
   2246 	 */
   2247 
   2248 	/* locked: maps(read), amap(if !null), uobj */
   2249 
   2250 	*ruobj = uobj;
   2251 	*ruobjpage = pg;
   2252 	return 0;
   2253 }
   2254 
   2255 /*
   2256  * uvm_fault_lower_direct: fault lower center page
   2257  *
   2258  *	1. adjust flt->enter_prot.
   2259  *	2. if page is loaned, resolve.
   2260  */
   2261 
   2262 int
   2263 uvm_fault_lower_direct(
   2264 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2265 	struct uvm_object *uobj, struct vm_page *uobjpage)
   2266 {
   2267 	struct vm_page *pg;
   2268 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   2269 
   2270 	/*
   2271 	 * we are not promoting.   if the mapping is COW ensure that we
   2272 	 * don't give more access than we should (e.g. when doing a read
   2273 	 * fault on a COPYONWRITE mapping we want to map the COW page in
   2274 	 * R/O even though the entry protection could be R/W).
   2275 	 *
   2276 	 * set "pg" to the page we want to map in (uobjpage, usually)
   2277 	 */
   2278 
   2279 	cpu_count(CPU_COUNT_FLT_OBJ, 1);
   2280 	if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
   2281 	    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
   2282 		flt->enter_prot &= ~VM_PROT_WRITE;
   2283 	pg = uobjpage;		/* map in the actual object */
   2284 
   2285 	KASSERT(uobjpage != PGO_DONTCARE);
   2286 
   2287 	/*
   2288 	 * we are faulting directly on the page.   be careful
   2289 	 * about writing to loaned pages...
   2290 	 */
   2291 
   2292 	if (uobjpage->loan_count) {
   2293 		uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
   2294 	}
   2295 	KASSERT(pg == uobjpage);
   2296 	KASSERT((pg->flags & PG_BUSY) == 0);
   2297 	return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
   2298 }
   2299 
   2300 /*
   2301  * uvm_fault_lower_direct_loan: resolve loaned page.
   2302  *
   2303  *	1. if not cow'ing, adjust flt->enter_prot.
   2304  *	2. if cow'ing, break loan.
   2305  */
   2306 
   2307 static int
   2308 uvm_fault_lower_direct_loan(
   2309 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2310 	struct uvm_object *uobj, struct vm_page **rpg,
   2311 	struct vm_page **ruobjpage)
   2312 {
   2313 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2314 	struct vm_page *pg;
   2315 	struct vm_page *uobjpage = *ruobjpage;
   2316 	int error;
   2317 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   2318 
   2319 	if (!flt->cow_now) {
   2320 		/* read fault: cap the protection at readonly */
   2321 		/* cap! */
   2322 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   2323 	} else {
   2324 		/*
   2325 		 * write fault: must break the loan here.  to do this
   2326 		 * we need a write lock on the object.
   2327 		 */
   2328 
   2329 		error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, uobjpage);
   2330 		if (error != 0) {
   2331 			return error;
   2332 		}
   2333 		KASSERT(rw_write_held(uobj->vmobjlock));
   2334 
   2335 		pg = uvm_loanbreak(uobjpage);
   2336 		if (pg == NULL) {
   2337 
   2338 			uvmfault_unlockall(ufi, amap, uobj);
   2339 			UVMHIST_LOG(maphist,
   2340 			  "  out of RAM breaking loan, waiting",
   2341 			  0,0,0,0);
   2342 			cpu_count(CPU_COUNT_FLTNORAM, 1);
   2343 			uvm_wait("flt_noram4");
   2344 			return ERESTART;
   2345 		}
   2346 		*rpg = pg;
   2347 		*ruobjpage = pg;
   2348 
   2349 		/*
   2350 		 * drop ownership of page while still holding object lock,
   2351 		 * which won't be dropped until the page is entered.
   2352 		 */
   2353 
   2354 		uvm_pagelock(pg);
   2355 		uvm_pagewakeup(pg);
   2356 		uvm_pageunlock(pg);
   2357 		pg->flags &= ~PG_BUSY;
   2358 		UVM_PAGE_OWN(pg, NULL);
   2359 	}
   2360 	return 0;
   2361 }
   2362 
   2363 /*
   2364  * uvm_fault_lower_promote: promote lower page.
   2365  *
   2366  *	1. call uvmfault_promote.
   2367  *	2. fill in data.
   2368  *	3. if not ZFOD, dispose old page.
   2369  */
   2370 
   2371 int
   2372 uvm_fault_lower_promote(
   2373 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2374 	struct uvm_object *uobj, struct vm_page *uobjpage)
   2375 {
   2376 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2377 	struct vm_anon *anon;
   2378 	struct vm_page *pg;
   2379 	int error;
   2380 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   2381 
   2382 	KASSERT(amap != NULL);
   2383 
   2384 	/* promoting requires a write lock. */
   2385 	error = uvm_fault_upper_upgrade(ufi, flt, amap, uobj);
   2386 	if (error != 0) {
   2387 		return error;
   2388 	}
   2389 	KASSERT(rw_write_held(amap->am_lock));
   2390 	KASSERT(uobj == NULL ||
   2391 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
   2392 
   2393 	/*
   2394 	 * If we are going to promote the data to an anon we
   2395 	 * allocate a blank anon here and plug it into our amap.
   2396 	 */
   2397 	error = uvmfault_promote(ufi, NULL, uobjpage, &anon, &flt->anon_spare);
   2398 	switch (error) {
   2399 	case 0:
   2400 		break;
   2401 	case ERESTART:
   2402 		return ERESTART;
   2403 	default:
   2404 		return error;
   2405 	}
   2406 
   2407 	pg = anon->an_page;
   2408 
   2409 	/*
   2410 	 * Fill in the data.
   2411 	 */
   2412 
   2413 	if (uobjpage != PGO_DONTCARE) {
   2414 		cpu_count(CPU_COUNT_FLT_PRCOPY, 1);
   2415 
   2416 		/*
   2417 		 * promote to shared amap?  make sure all sharing
   2418 		 * procs see it
   2419 		 */
   2420 
   2421 		if ((amap_flags(amap) & AMAP_SHARED) != 0) {
   2422 			pmap_page_protect(uobjpage, VM_PROT_NONE);
   2423 			/*
   2424 			 * XXX: PAGE MIGHT BE WIRED!
   2425 			 */
   2426 		}
   2427 
   2428 		UVMHIST_LOG(maphist,
   2429 		    "  promote uobjpage %#jx to anon/page %#jx/%#jx",
   2430 		    (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0);
   2431 
   2432 	} else {
   2433 		cpu_count(CPU_COUNT_FLT_PRZERO, 1);
   2434 
   2435 		/*
   2436 		 * Page is zero'd and marked dirty by
   2437 		 * uvmfault_promote().
   2438 		 */
   2439 
   2440 		UVMHIST_LOG(maphist,"  zero fill anon/page %#jx/%#jx",
   2441 		    (uintptr_t)anon, (uintptr_t)pg, 0, 0);
   2442 	}
   2443 
   2444 	return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
   2445 }
   2446 
   2447 /*
   2448  * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
   2449  * from the lower page.
   2450  */
   2451 
   2452 int
   2453 uvm_fault_lower_enter(
   2454 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2455 	struct uvm_object *uobj,
   2456 	struct vm_anon *anon, struct vm_page *pg)
   2457 {
   2458 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2459 	const bool readonly = uvm_pagereadonly_p(pg);
   2460 	int error;
   2461 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   2462 
   2463 	/*
   2464 	 * Locked:
   2465 	 *
   2466 	 *	maps(read), amap(if !null), uobj(if !null),
   2467 	 *	anon(if !null), pg(if anon), unlock_uobj(if !null)
   2468 	 *
   2469 	 * anon must be write locked (promotion).  uobj can be either.
   2470 	 *
   2471 	 * Note: pg is either the uobjpage or the new page in the new anon.
   2472 	 */
   2473 
   2474 	KASSERT(amap == NULL ||
   2475 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   2476 	KASSERT(uobj == NULL ||
   2477 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
   2478 	KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
   2479 
   2480 	/*
   2481 	 * note that pg can't be PG_RELEASED or PG_BUSY since we did
   2482 	 * not drop the object lock since the last time we checked.
   2483 	 */
   2484 
   2485 	KASSERT((pg->flags & PG_RELEASED) == 0);
   2486 	KASSERT((pg->flags & PG_BUSY) == 0);
   2487 
   2488 	/*
   2489 	 * all resources are present.   we can now map it in and free our
   2490 	 * resources.
   2491 	 */
   2492 
   2493 	UVMHIST_LOG(maphist,
   2494 	    "  MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
   2495 	    (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr,
   2496 	    (uintptr_t)pg, flt->promote);
   2497 	KASSERTMSG((flt->access_type & VM_PROT_WRITE) == 0 || !readonly,
   2498 	    "promote=%u cow_now=%u access_type=%x enter_prot=%x cow=%u "
   2499 	    "entry=%p map=%p orig_rvaddr=%p pg=%p",
   2500 	    flt->promote, flt->cow_now, flt->access_type, flt->enter_prot,
   2501 	    UVM_ET_ISCOPYONWRITE(ufi->entry), ufi->entry, ufi->orig_map,
   2502 	    (void *)ufi->orig_rvaddr, pg);
   2503 	KASSERT((flt->access_type & VM_PROT_WRITE) == 0 || !readonly);
   2504 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
   2505 	    VM_PAGE_TO_PHYS(pg),
   2506 	    readonly ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
   2507 	    flt->access_type | PMAP_CANFAIL |
   2508 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   2509 
   2510 		/*
   2511 		 * No need to undo what we did; we can simply think of
   2512 		 * this as the pmap throwing away the mapping information.
   2513 		 *
   2514 		 * We do, however, have to go through the ReFault path,
   2515 		 * as the map may change while we're asleep.
   2516 		 */
   2517 
   2518 		/*
   2519 		 * ensure that the page is queued in the case that
   2520 		 * we just promoted the page.
   2521 		 */
   2522 
   2523 		if (anon != NULL) {
   2524 			uvm_pagelock(pg);
   2525 			uvm_pageenqueue(pg);
   2526 			uvm_pagewakeup(pg);
   2527 			uvm_pageunlock(pg);
   2528 		}
   2529 
   2530 		uvmfault_unlockall(ufi, amap, uobj);
   2531 		if (!uvm_reclaimable()) {
   2532 			UVMHIST_LOG(maphist,
   2533 			    "<- failed.  out of VM",0,0,0,0);
   2534 			/* XXX instrumentation */
   2535 			error = ENOMEM;
   2536 			return error;
   2537 		}
   2538 		/* XXX instrumentation */
   2539 		uvm_wait("flt_pmfail2");
   2540 		return ERESTART;
   2541 	}
   2542 
   2543 	uvm_fault_lower_done(ufi, flt, uobj, pg);
   2544 	pmap_update(ufi->orig_map->pmap);
   2545 	uvmfault_unlockall(ufi, amap, uobj);
   2546 
   2547 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
   2548 	return 0;
   2549 }
   2550 
   2551 /*
   2552  * uvm_fault_lower_done: queue lower center page.
   2553  */
   2554 
   2555 void
   2556 uvm_fault_lower_done(
   2557 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2558 	struct uvm_object *uobj, struct vm_page *pg)
   2559 {
   2560 
   2561 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   2562 
   2563 	if (flt->wire_paging) {
   2564 		uvm_pagelock(pg);
   2565 		uvm_pagewire(pg);
   2566 		uvm_pageunlock(pg);
   2567 		if (pg->flags & PG_AOBJ) {
   2568 
   2569 			/*
   2570 			 * since the now-wired page cannot be paged out,
   2571 			 * release its swap resources for others to use.
   2572 			 * since an aobj page with no swap cannot be clean,
   2573 			 * mark it dirty now.
   2574 			 *
   2575 			 * use pg->uobject here.  if the page is from a
   2576 			 * tmpfs vnode, the pages are backed by its UAO and
   2577 			 * not the vnode.
   2578 			 */
   2579 
   2580 			KASSERT(uobj != NULL);
   2581 			KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
   2582 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   2583 			uao_dropswap(pg->uobject, pg->offset >> PAGE_SHIFT);
   2584 		}
   2585 	} else if (uvmpdpol_pageactivate_p(pg)) {
   2586 		/*
   2587 		 * avoid re-activating the page unless needed,
   2588 		 * to avoid false sharing on multiprocessor.
   2589 		 */
   2590 
   2591 		uvm_pagelock(pg);
   2592 		uvm_pageactivate(pg);
   2593 		uvm_pageunlock(pg);
   2594 	}
   2595 }
   2596 
   2597 
   2598 /*
   2599  * uvm_fault_wire: wire down a range of virtual addresses in a map.
   2600  *
   2601  * => map may be read-locked by caller, but MUST NOT be write-locked.
   2602  * => if map is read-locked, any operations which may cause map to
   2603  *	be write-locked in uvm_fault() must be taken care of by
   2604  *	the caller.  See uvm_map_pageable().
   2605  */
   2606 
   2607 int
   2608 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
   2609     vm_prot_t access_type, int maxprot)
   2610 {
   2611 	vaddr_t va;
   2612 	int error;
   2613 
   2614 	/*
   2615 	 * now fault it in a page at a time.   if the fault fails then we have
   2616 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
   2617 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
   2618 	 */
   2619 
   2620 	/*
   2621 	 * XXX work around overflowing a vaddr_t.  this prevents us from
   2622 	 * wiring the last page in the address space, though.
   2623 	 */
   2624 	if (start > end) {
   2625 		return EFAULT;
   2626 	}
   2627 
   2628 	for (va = start; va < end; va += PAGE_SIZE) {
   2629 		error = uvm_fault_internal(map, va, access_type,
   2630 		    (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
   2631 		if (error) {
   2632 			if (va != start) {
   2633 				uvm_fault_unwire(map, start, va);
   2634 			}
   2635 			return error;
   2636 		}
   2637 	}
   2638 	return 0;
   2639 }
   2640 
   2641 /*
   2642  * uvm_fault_unwire(): unwire range of virtual space.
   2643  */
   2644 
   2645 void
   2646 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
   2647 {
   2648 	vm_map_lock_read(map);
   2649 	uvm_fault_unwire_locked(map, start, end);
   2650 	vm_map_unlock_read(map);
   2651 }
   2652 
   2653 /*
   2654  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
   2655  *
   2656  * => map must be at least read-locked.
   2657  */
   2658 
   2659 void
   2660 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
   2661 {
   2662 	struct vm_map_entry *entry, *oentry;
   2663 	pmap_t pmap = vm_map_pmap(map);
   2664 	vaddr_t va;
   2665 	paddr_t pa;
   2666 	struct vm_page *pg;
   2667 
   2668 	/*
   2669 	 * we assume that the area we are unwiring has actually been wired
   2670 	 * in the first place.   this means that we should be able to extract
   2671 	 * the PAs from the pmap.   we also lock out the page daemon so that
   2672 	 * we can call uvm_pageunwire.
   2673 	 */
   2674 
   2675 	/*
   2676 	 * find the beginning map entry for the region.
   2677 	 */
   2678 
   2679 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
   2680 	if (uvm_map_lookup_entry(map, start, &entry) == false)
   2681 		panic("uvm_fault_unwire_locked: address not in map");
   2682 
   2683 	oentry = NULL;
   2684 	for (va = start; va < end; va += PAGE_SIZE) {
   2685 
   2686 		/*
   2687 		 * find the map entry for the current address.
   2688 		 */
   2689 
   2690 		KASSERT(va >= entry->start);
   2691 		while (va >= entry->end) {
   2692 			KASSERT(entry->next != &map->header &&
   2693 				entry->next->start <= entry->end);
   2694 			entry = entry->next;
   2695 		}
   2696 
   2697 		/*
   2698 		 * lock it.
   2699 		 */
   2700 
   2701 		if (entry != oentry) {
   2702 			if (oentry != NULL) {
   2703 				uvm_map_unlock_entry(oentry);
   2704 			}
   2705 			uvm_map_lock_entry(entry, RW_WRITER);
   2706 			oentry = entry;
   2707 		}
   2708 
   2709 		/*
   2710 		 * if the entry is no longer wired, tell the pmap.
   2711 		 */
   2712 
   2713 		if (!pmap_extract(pmap, va, &pa))
   2714 			continue;
   2715 
   2716 		if (VM_MAPENT_ISWIRED(entry) == 0)
   2717 			pmap_unwire(pmap, va);
   2718 
   2719 		pg = PHYS_TO_VM_PAGE(pa);
   2720 		if (pg) {
   2721 			uvm_pagelock(pg);
   2722 			uvm_pageunwire(pg);
   2723 			uvm_pageunlock(pg);
   2724 		}
   2725 	}
   2726 
   2727 	if (oentry != NULL) {
   2728 		uvm_map_unlock_entry(entry);
   2729 	}
   2730 }
   2731