uvm_fault.c revision 1.231.2.1 1 /* $NetBSD: uvm_fault.c,v 1.231.2.1 2023/08/15 09:44:09 martin Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 */
29
30 /*
31 * uvm_fault.c: fault handler
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.231.2.1 2023/08/15 09:44:09 martin Exp $");
36
37 #include "opt_uvmhist.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/atomic.h>
42 #include <sys/kernel.h>
43 #include <sys/mman.h>
44
45 #include <uvm/uvm.h>
46 #include <uvm/uvm_pdpolicy.h>
47
48 /*
49 *
50 * a word on page faults:
51 *
52 * types of page faults we handle:
53 *
54 * CASE 1: upper layer faults CASE 2: lower layer faults
55 *
56 * CASE 1A CASE 1B CASE 2A CASE 2B
57 * read/write1 write>1 read/write +-cow_write/zero
58 * | | | |
59 * +--|--+ +--|--+ +-----+ + | + | +-----+
60 * amap | V | | ---------> new | | | | ^ |
61 * +-----+ +-----+ +-----+ + | + | +--|--+
62 * | | |
63 * +-----+ +-----+ +--|--+ | +--|--+
64 * uobj | d/c | | d/c | | V | +----+ |
65 * +-----+ +-----+ +-----+ +-----+
66 *
67 * d/c = don't care
68 *
69 * case [0]: layerless fault
70 * no amap or uobj is present. this is an error.
71 *
72 * case [1]: upper layer fault [anon active]
73 * 1A: [read] or [write with anon->an_ref == 1]
74 * I/O takes place in upper level anon and uobj is not touched.
75 * 1B: [write with anon->an_ref > 1]
76 * new anon is alloc'd and data is copied off ["COW"]
77 *
78 * case [2]: lower layer fault [uobj]
79 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
80 * I/O takes place directly in object.
81 * 2B: [write to copy_on_write] or [read on NULL uobj]
82 * data is "promoted" from uobj to a new anon.
83 * if uobj is null, then we zero fill.
84 *
85 * we follow the standard UVM locking protocol ordering:
86 *
87 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
88 * we hold a PG_BUSY page if we unlock for I/O
89 *
90 *
91 * the code is structured as follows:
92 *
93 * - init the "IN" params in the ufi structure
94 * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
95 * - do lookups [locks maps], check protection, handle needs_copy
96 * - check for case 0 fault (error)
97 * - establish "range" of fault
98 * - if we have an amap lock it and extract the anons
99 * - if sequential advice deactivate pages behind us
100 * - at the same time check pmap for unmapped areas and anon for pages
101 * that we could map in (and do map it if found)
102 * - check object for resident pages that we could map in
103 * - if (case 2) goto Case2
104 * - >>> handle case 1
105 * - ensure source anon is resident in RAM
106 * - if case 1B alloc new anon and copy from source
107 * - map the correct page in
108 * Case2:
109 * - >>> handle case 2
110 * - ensure source page is resident (if uobj)
111 * - if case 2B alloc new anon and copy from source (could be zero
112 * fill if uobj == NULL)
113 * - map the correct page in
114 * - done!
115 *
116 * note on paging:
117 * if we have to do I/O we place a PG_BUSY page in the correct object,
118 * unlock everything, and do the I/O. when I/O is done we must reverify
119 * the state of the world before assuming that our data structures are
120 * valid. [because mappings could change while the map is unlocked]
121 *
122 * alternative 1: unbusy the page in question and restart the page fault
123 * from the top (ReFault). this is easy but does not take advantage
124 * of the information that we already have from our previous lookup,
125 * although it is possible that the "hints" in the vm_map will help here.
126 *
127 * alternative 2: the system already keeps track of a "version" number of
128 * a map. [i.e. every time you write-lock a map (e.g. to change a
129 * mapping) you bump the version number up by one...] so, we can save
130 * the version number of the map before we release the lock and start I/O.
131 * then when I/O is done we can relock and check the version numbers
132 * to see if anything changed. this might save us some over 1 because
133 * we don't have to unbusy the page and may be less compares(?).
134 *
135 * alternative 3: put in backpointers or a way to "hold" part of a map
136 * in place while I/O is in progress. this could be complex to
137 * implement (especially with structures like amap that can be referenced
138 * by multiple map entries, and figuring out what should wait could be
139 * complex as well...).
140 *
141 * we use alternative 2. given that we are multi-threaded now we may want
142 * to reconsider the choice.
143 */
144
145 /*
146 * local data structures
147 */
148
149 struct uvm_advice {
150 int advice;
151 int nback;
152 int nforw;
153 };
154
155 /*
156 * page range array:
157 * note: index in array must match "advice" value
158 * XXX: borrowed numbers from freebsd. do they work well for us?
159 */
160
161 static const struct uvm_advice uvmadvice[] = {
162 { UVM_ADV_NORMAL, 3, 4 },
163 { UVM_ADV_RANDOM, 0, 0 },
164 { UVM_ADV_SEQUENTIAL, 8, 7},
165 };
166
167 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
168
169 /*
170 * private prototypes
171 */
172
173 /*
174 * inline functions
175 */
176
177 /*
178 * uvmfault_anonflush: try and deactivate pages in specified anons
179 *
180 * => does not have to deactivate page if it is busy
181 */
182
183 static inline void
184 uvmfault_anonflush(struct vm_anon **anons, int n)
185 {
186 int lcv;
187 struct vm_page *pg;
188
189 for (lcv = 0; lcv < n; lcv++) {
190 if (anons[lcv] == NULL)
191 continue;
192 KASSERT(rw_lock_held(anons[lcv]->an_lock));
193 pg = anons[lcv]->an_page;
194 if (pg && (pg->flags & PG_BUSY) == 0) {
195 uvm_pagelock(pg);
196 uvm_pagedeactivate(pg);
197 uvm_pageunlock(pg);
198 }
199 }
200 }
201
202 /*
203 * normal functions
204 */
205
206 /*
207 * uvmfault_amapcopy: clear "needs_copy" in a map.
208 *
209 * => called with VM data structures unlocked (usually, see below)
210 * => we get a write lock on the maps and clear needs_copy for a VA
211 * => if we are out of RAM we sleep (waiting for more)
212 */
213
214 static void
215 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
216 {
217 for (;;) {
218
219 /*
220 * no mapping? give up.
221 */
222
223 if (uvmfault_lookup(ufi, true) == false)
224 return;
225
226 /*
227 * copy if needed.
228 */
229
230 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
231 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
232 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
233
234 /*
235 * didn't work? must be out of RAM. unlock and sleep.
236 */
237
238 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
239 uvmfault_unlockmaps(ufi, true);
240 uvm_wait("fltamapcopy");
241 continue;
242 }
243
244 /*
245 * got it! unlock and return.
246 */
247
248 uvmfault_unlockmaps(ufi, true);
249 return;
250 }
251 /*NOTREACHED*/
252 }
253
254 /*
255 * uvmfault_anonget: get data in an anon into a non-busy, non-released
256 * page in that anon.
257 *
258 * => Map, amap and thus anon should be locked by caller.
259 * => If we fail, we unlock everything and error is returned.
260 * => If we are successful, return with everything still locked.
261 * => We do not move the page on the queues [gets moved later]. If we
262 * allocate a new page [we_own], it gets put on the queues. Either way,
263 * the result is that the page is on the queues at return time
264 * => For pages which are on loan from a uvm_object (and thus are not owned
265 * by the anon): if successful, return with the owning object locked.
266 * The caller must unlock this object when it unlocks everything else.
267 */
268
269 int
270 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
271 struct vm_anon *anon)
272 {
273 struct vm_page *pg;
274 krw_t lock_type;
275 int error;
276
277 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
278 KASSERT(rw_lock_held(anon->an_lock));
279 KASSERT(anon->an_lock == amap->am_lock);
280
281 /* Increment the counters.*/
282 cpu_count(CPU_COUNT_FLTANGET, 1);
283 if (anon->an_page) {
284 curlwp->l_ru.ru_minflt++;
285 } else {
286 curlwp->l_ru.ru_majflt++;
287 }
288 error = 0;
289
290 /*
291 * Loop until we get the anon data, or fail.
292 */
293
294 for (;;) {
295 bool we_own, locked;
296 /*
297 * Note: 'we_own' will become true if we set PG_BUSY on a page.
298 */
299 we_own = false;
300 pg = anon->an_page;
301
302 /*
303 * If there is a resident page and it is loaned, then anon
304 * may not own it. Call out to uvm_anon_lockloanpg() to
305 * identify and lock the real owner of the page.
306 */
307
308 if (pg && pg->loan_count)
309 pg = uvm_anon_lockloanpg(anon);
310
311 /*
312 * Is page resident? Make sure it is not busy/released.
313 */
314
315 lock_type = rw_lock_op(anon->an_lock);
316 if (pg) {
317
318 /*
319 * at this point, if the page has a uobject [meaning
320 * we have it on loan], then that uobject is locked
321 * by us! if the page is busy, we drop all the
322 * locks (including uobject) and try again.
323 */
324
325 if ((pg->flags & PG_BUSY) == 0) {
326 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
327 return 0;
328 }
329 cpu_count(CPU_COUNT_FLTPGWAIT, 1);
330
331 /*
332 * The last unlock must be an atomic unlock and wait
333 * on the owner of page.
334 */
335
336 if (pg->uobject) {
337 /* Owner of page is UVM object. */
338 uvmfault_unlockall(ufi, amap, NULL);
339 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
340 0,0,0);
341 uvm_pagewait(pg, pg->uobject->vmobjlock, "anonget1");
342 } else {
343 /* Owner of page is anon. */
344 uvmfault_unlockall(ufi, NULL, NULL);
345 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
346 0,0,0);
347 uvm_pagewait(pg, anon->an_lock, "anonget2");
348 }
349 } else {
350 #if defined(VMSWAP)
351 /*
352 * No page, therefore allocate one. A write lock is
353 * required for this. If the caller didn't supply
354 * one, fail now and have them retry.
355 */
356
357 if (lock_type == RW_READER) {
358 return ENOLCK;
359 }
360 pg = uvm_pagealloc(NULL,
361 ufi != NULL ? ufi->orig_rvaddr : 0,
362 anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
363 if (pg == NULL) {
364 /* Out of memory. Wait a little. */
365 uvmfault_unlockall(ufi, amap, NULL);
366 cpu_count(CPU_COUNT_FLTNORAM, 1);
367 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
368 0,0,0);
369 if (!uvm_reclaimable()) {
370 return ENOMEM;
371 }
372 uvm_wait("flt_noram1");
373 } else {
374 /* PG_BUSY bit is set. */
375 we_own = true;
376 uvmfault_unlockall(ufi, amap, NULL);
377
378 /*
379 * Pass a PG_BUSY+PG_FAKE clean page into
380 * the uvm_swap_get() function with all data
381 * structures unlocked. Note that it is OK
382 * to read an_swslot here, because we hold
383 * PG_BUSY on the page.
384 */
385 cpu_count(CPU_COUNT_PAGEINS, 1);
386 error = uvm_swap_get(pg, anon->an_swslot,
387 PGO_SYNCIO);
388
389 /*
390 * We clean up after the I/O below in the
391 * 'we_own' case.
392 */
393 }
394 #else
395 panic("%s: no page", __func__);
396 #endif /* defined(VMSWAP) */
397 }
398
399 /*
400 * Re-lock the map and anon.
401 */
402
403 locked = uvmfault_relock(ufi);
404 if (locked || we_own) {
405 rw_enter(anon->an_lock, lock_type);
406 }
407
408 /*
409 * If we own the page (i.e. we set PG_BUSY), then we need
410 * to clean up after the I/O. There are three cases to
411 * consider:
412 *
413 * 1) Page was released during I/O: free anon and ReFault.
414 * 2) I/O not OK. Free the page and cause the fault to fail.
415 * 3) I/O OK! Activate the page and sync with the non-we_own
416 * case (i.e. drop anon lock if not locked).
417 */
418
419 if (we_own) {
420 KASSERT(lock_type == RW_WRITER);
421 #if defined(VMSWAP)
422 if (error) {
423
424 /*
425 * Remove the swap slot from the anon and
426 * mark the anon as having no real slot.
427 * Do not free the swap slot, thus preventing
428 * it from being used again.
429 */
430
431 if (anon->an_swslot > 0) {
432 uvm_swap_markbad(anon->an_swslot, 1);
433 }
434 anon->an_swslot = SWSLOT_BAD;
435
436 if ((pg->flags & PG_RELEASED) != 0) {
437 goto released;
438 }
439
440 /*
441 * Note: page was never !PG_BUSY, so it
442 * cannot be mapped and thus no need to
443 * pmap_page_protect() it.
444 */
445
446 uvm_pagefree(pg);
447
448 if (locked) {
449 uvmfault_unlockall(ufi, NULL, NULL);
450 }
451 rw_exit(anon->an_lock);
452 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
453 return error;
454 }
455
456 if ((pg->flags & PG_RELEASED) != 0) {
457 released:
458 KASSERT(anon->an_ref == 0);
459
460 /*
461 * Released while we had unlocked amap.
462 */
463
464 if (locked) {
465 uvmfault_unlockall(ufi, NULL, NULL);
466 }
467 uvm_anon_release(anon);
468
469 if (error) {
470 UVMHIST_LOG(maphist,
471 "<- ERROR/RELEASED", 0,0,0,0);
472 return error;
473 }
474
475 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
476 return ERESTART;
477 }
478
479 /*
480 * We have successfully read the page, activate it.
481 */
482
483 uvm_pagelock(pg);
484 uvm_pageactivate(pg);
485 uvm_pagewakeup(pg);
486 uvm_pageunlock(pg);
487 pg->flags &= ~(PG_BUSY|PG_FAKE);
488 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
489 UVM_PAGE_OWN(pg, NULL);
490 #else
491 panic("%s: we_own", __func__);
492 #endif /* defined(VMSWAP) */
493 }
494
495 /*
496 * We were not able to re-lock the map - restart the fault.
497 */
498
499 if (!locked) {
500 if (we_own) {
501 rw_exit(anon->an_lock);
502 }
503 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
504 return ERESTART;
505 }
506
507 /*
508 * Verify that no one has touched the amap and moved
509 * the anon on us.
510 */
511
512 if (ufi != NULL && amap_lookup(&ufi->entry->aref,
513 ufi->orig_rvaddr - ufi->entry->start) != anon) {
514
515 uvmfault_unlockall(ufi, amap, NULL);
516 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
517 return ERESTART;
518 }
519
520 /*
521 * Retry..
522 */
523
524 cpu_count(CPU_COUNT_FLTANRETRY, 1);
525 continue;
526 }
527 /*NOTREACHED*/
528 }
529
530 /*
531 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
532 *
533 * 1. allocate an anon and a page.
534 * 2. fill its contents.
535 * 3. put it into amap.
536 *
537 * => if we fail (result != 0) we unlock everything.
538 * => on success, return a new locked anon via 'nanon'.
539 * (*nanon)->an_page will be a resident, locked, dirty page.
540 * => it's caller's responsibility to put the promoted nanon->an_page to the
541 * page queue.
542 */
543
544 static int
545 uvmfault_promote(struct uvm_faultinfo *ufi,
546 struct vm_anon *oanon,
547 struct vm_page *uobjpage,
548 struct vm_anon **nanon, /* OUT: allocated anon */
549 struct vm_anon **spare)
550 {
551 struct vm_amap *amap = ufi->entry->aref.ar_amap;
552 struct uvm_object *uobj;
553 struct vm_anon *anon;
554 struct vm_page *pg;
555 struct vm_page *opg;
556 int error;
557 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
558
559 if (oanon) {
560 /* anon COW */
561 opg = oanon->an_page;
562 KASSERT(opg != NULL);
563 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
564 } else if (uobjpage != PGO_DONTCARE) {
565 /* object-backed COW */
566 opg = uobjpage;
567 KASSERT(rw_lock_held(opg->uobject->vmobjlock));
568 } else {
569 /* ZFOD */
570 opg = NULL;
571 }
572 if (opg != NULL) {
573 uobj = opg->uobject;
574 } else {
575 uobj = NULL;
576 }
577
578 KASSERT(amap != NULL);
579 KASSERT(uobjpage != NULL);
580 KASSERT(rw_write_held(amap->am_lock));
581 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
582 KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
583
584 if (*spare != NULL) {
585 anon = *spare;
586 *spare = NULL;
587 } else {
588 anon = uvm_analloc();
589 }
590 if (anon) {
591
592 /*
593 * The new anon is locked.
594 *
595 * if opg == NULL, we want a zero'd, dirty page,
596 * so have uvm_pagealloc() do that for us.
597 */
598
599 KASSERT(anon->an_lock == NULL);
600 anon->an_lock = amap->am_lock;
601 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
602 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
603 if (pg == NULL) {
604 anon->an_lock = NULL;
605 }
606 } else {
607 pg = NULL;
608 }
609
610 /*
611 * out of memory resources?
612 */
613
614 if (pg == NULL) {
615 /* save anon for the next try. */
616 if (anon != NULL) {
617 *spare = anon;
618 }
619
620 /* unlock and fail ... */
621 uvmfault_unlockall(ufi, amap, uobj);
622 if (!uvm_reclaimable()) {
623 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
624 cpu_count(CPU_COUNT_FLTNOANON, 1);
625 error = ENOMEM;
626 goto done;
627 }
628
629 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
630 cpu_count(CPU_COUNT_FLTNORAM, 1);
631 uvm_wait("flt_noram5");
632 error = ERESTART;
633 goto done;
634 }
635
636 /*
637 * copy the page [pg now dirty]
638 *
639 * Remove the pmap entry now for the old page at this address
640 * so that no thread can modify the new page while any thread
641 * might still see the old page.
642 */
643 if (opg) {
644 pmap_remove(vm_map_pmap(ufi->orig_map), ufi->orig_rvaddr,
645 ufi->orig_rvaddr + PAGE_SIZE);
646 pmap_update(vm_map_pmap(ufi->orig_map));
647 uvm_pagecopy(opg, pg);
648 }
649 KASSERT(uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_DIRTY);
650
651 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
652 oanon != NULL);
653
654 /*
655 * from this point on am_lock won't be dropped until the page is
656 * entered, so it's safe to unbusy the page up front.
657 *
658 * uvm_fault_{upper,lower}_done will activate or enqueue the page.
659 */
660
661 pg = anon->an_page;
662 pg->flags &= ~(PG_BUSY|PG_FAKE);
663 UVM_PAGE_OWN(pg, NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671 /*
672 * Update statistics after fault resolution.
673 * - maxrss
674 */
675 void
676 uvmfault_update_stats(struct uvm_faultinfo *ufi)
677 {
678 struct vm_map *map;
679 struct vmspace *vm;
680 struct proc *p;
681 vsize_t res;
682
683 map = ufi->orig_map;
684
685 p = curproc;
686 KASSERT(p != NULL);
687 vm = p->p_vmspace;
688
689 if (&vm->vm_map != map)
690 return;
691
692 res = pmap_resident_count(map->pmap);
693 if (vm->vm_rssmax < res)
694 vm->vm_rssmax = res;
695 }
696
697 /*
698 * F A U L T - m a i n e n t r y p o i n t
699 */
700
701 /*
702 * uvm_fault: page fault handler
703 *
704 * => called from MD code to resolve a page fault
705 * => VM data structures usually should be unlocked. however, it is
706 * possible to call here with the main map locked if the caller
707 * gets a write lock, sets it recursive, and then calls us (c.f.
708 * uvm_map_pageable). this should be avoided because it keeps
709 * the map locked off during I/O.
710 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
711 */
712
713 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
714 ~VM_PROT_WRITE : VM_PROT_ALL)
715
716 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
717 #define UVM_FAULT_WIRE (1 << 0)
718 #define UVM_FAULT_MAXPROT (1 << 1)
719
720 struct uvm_faultctx {
721
722 /*
723 * the following members are set up by uvm_fault_check() and
724 * read-only after that.
725 *
726 * note that narrow is used by uvm_fault_check() to change
727 * the behaviour after ERESTART.
728 *
729 * most of them might change after RESTART if the underlying
730 * map entry has been changed behind us. an exception is
731 * wire_paging, which does never change.
732 */
733 vm_prot_t access_type;
734 vaddr_t startva;
735 int npages;
736 int centeridx;
737 bool narrow; /* work on a single requested page only */
738 bool wire_mapping; /* request a PMAP_WIRED mapping
739 (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
740 bool wire_paging; /* request uvm_pagewire
741 (true for UVM_FAULT_WIRE) */
742 bool cow_now; /* VM_PROT_WRITE is actually requested
743 (ie. should break COW and page loaning) */
744
745 /*
746 * enter_prot is set up by uvm_fault_check() and clamped
747 * (ie. drop the VM_PROT_WRITE bit) in various places in case
748 * of !cow_now.
749 */
750 vm_prot_t enter_prot; /* prot at which we want to enter pages in */
751
752 /*
753 * the following member is for uvmfault_promote() and ERESTART.
754 */
755 struct vm_anon *anon_spare;
756
757 /*
758 * the following is actually a uvm_fault_lower() internal.
759 * it's here merely for debugging.
760 * (or due to the mechanical separation of the function?)
761 */
762 bool promote;
763
764 /*
765 * type of lock to acquire on objects in both layers.
766 */
767 krw_t lower_lock_type;
768 krw_t upper_lock_type;
769 };
770
771 static inline int uvm_fault_check(
772 struct uvm_faultinfo *, struct uvm_faultctx *,
773 struct vm_anon ***, bool);
774
775 static int uvm_fault_upper(
776 struct uvm_faultinfo *, struct uvm_faultctx *,
777 struct vm_anon **);
778 static inline int uvm_fault_upper_lookup(
779 struct uvm_faultinfo *, const struct uvm_faultctx *,
780 struct vm_anon **, struct vm_page **);
781 static inline void uvm_fault_upper_neighbor(
782 struct uvm_faultinfo *, const struct uvm_faultctx *,
783 vaddr_t, struct vm_page *, bool);
784 static inline int uvm_fault_upper_loan(
785 struct uvm_faultinfo *, struct uvm_faultctx *,
786 struct vm_anon *, struct uvm_object **);
787 static inline int uvm_fault_upper_promote(
788 struct uvm_faultinfo *, struct uvm_faultctx *,
789 struct uvm_object *, struct vm_anon *);
790 static inline int uvm_fault_upper_direct(
791 struct uvm_faultinfo *, struct uvm_faultctx *,
792 struct uvm_object *, struct vm_anon *);
793 static int uvm_fault_upper_enter(
794 struct uvm_faultinfo *, const struct uvm_faultctx *,
795 struct uvm_object *, struct vm_anon *,
796 struct vm_page *, struct vm_anon *);
797 static inline void uvm_fault_upper_done(
798 struct uvm_faultinfo *, const struct uvm_faultctx *,
799 struct vm_anon *, struct vm_page *);
800
801 static int uvm_fault_lower(
802 struct uvm_faultinfo *, struct uvm_faultctx *,
803 struct vm_page **);
804 static inline void uvm_fault_lower_lookup(
805 struct uvm_faultinfo *, const struct uvm_faultctx *,
806 struct vm_page **);
807 static inline void uvm_fault_lower_neighbor(
808 struct uvm_faultinfo *, const struct uvm_faultctx *,
809 vaddr_t, struct vm_page *);
810 static inline int uvm_fault_lower_io(
811 struct uvm_faultinfo *, struct uvm_faultctx *,
812 struct uvm_object **, struct vm_page **);
813 static inline int uvm_fault_lower_direct(
814 struct uvm_faultinfo *, struct uvm_faultctx *,
815 struct uvm_object *, struct vm_page *);
816 static inline int uvm_fault_lower_direct_loan(
817 struct uvm_faultinfo *, struct uvm_faultctx *,
818 struct uvm_object *, struct vm_page **,
819 struct vm_page **);
820 static inline int uvm_fault_lower_promote(
821 struct uvm_faultinfo *, struct uvm_faultctx *,
822 struct uvm_object *, struct vm_page *);
823 static int uvm_fault_lower_enter(
824 struct uvm_faultinfo *, const struct uvm_faultctx *,
825 struct uvm_object *,
826 struct vm_anon *, struct vm_page *);
827 static inline void uvm_fault_lower_done(
828 struct uvm_faultinfo *, const struct uvm_faultctx *,
829 struct uvm_object *, struct vm_page *);
830
831 int
832 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
833 vm_prot_t access_type, int fault_flag)
834 {
835 struct uvm_faultinfo ufi;
836 struct uvm_faultctx flt = {
837 .access_type = access_type,
838
839 /* don't look for neighborhood * pages on "wire" fault */
840 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
841
842 /* "wire" fault causes wiring of both mapping and paging */
843 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
844 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
845
846 /*
847 * default lock type to acquire on upper & lower layer
848 * objects: reader. this can be upgraded at any point
849 * during the fault from read -> write and uvm_faultctx
850 * changed to match, but is never downgraded write -> read.
851 */
852 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
853 .upper_lock_type = RW_WRITER,
854 .lower_lock_type = RW_WRITER,
855 #else
856 .upper_lock_type = RW_READER,
857 .lower_lock_type = RW_READER,
858 #endif
859 };
860 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
861 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
862 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
863 int error;
864
865 UVMHIST_FUNC(__func__);
866 UVMHIST_CALLARGS(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)",
867 (uintptr_t)orig_map, vaddr, access_type, fault_flag);
868
869 /* Don't count anything until user interaction is possible */
870 kpreempt_disable();
871 if (__predict_true(start_init_exec)) {
872 struct cpu_info *ci = curcpu();
873 CPU_COUNT(CPU_COUNT_NFAULT, 1);
874 /* Don't flood RNG subsystem with samples. */
875 if (++(ci->ci_faultrng) == 503) {
876 ci->ci_faultrng = 0;
877 rnd_add_uint32(&curcpu()->ci_data.cpu_uvm->rs,
878 sizeof(vaddr_t) == sizeof(uint32_t) ?
879 (uint32_t)vaddr : sizeof(vaddr_t) ==
880 sizeof(uint64_t) ?
881 (uint32_t)vaddr :
882 (uint32_t)ci->ci_counts[CPU_COUNT_NFAULT]);
883 }
884 }
885 kpreempt_enable();
886
887 /*
888 * init the IN parameters in the ufi
889 */
890
891 ufi.orig_map = orig_map;
892 ufi.orig_rvaddr = trunc_page(vaddr);
893 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
894
895 error = ERESTART;
896 while (error == ERESTART) { /* ReFault: */
897 anons = anons_store;
898 pages = pages_store;
899
900 error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
901 if (error != 0)
902 continue;
903
904 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
905 if (error != 0)
906 continue;
907
908 if (pages[flt.centeridx] == PGO_DONTCARE)
909 error = uvm_fault_upper(&ufi, &flt, anons);
910 else {
911 struct uvm_object * const uobj =
912 ufi.entry->object.uvm_obj;
913
914 if (uobj && uobj->pgops->pgo_fault != NULL) {
915 /*
916 * invoke "special" fault routine.
917 */
918 rw_enter(uobj->vmobjlock, RW_WRITER);
919 /* locked: maps(read), amap(if there), uobj */
920 error = uobj->pgops->pgo_fault(&ufi,
921 flt.startva, pages, flt.npages,
922 flt.centeridx, flt.access_type,
923 PGO_LOCKED|PGO_SYNCIO);
924
925 /*
926 * locked: nothing, pgo_fault has unlocked
927 * everything
928 */
929
930 /*
931 * object fault routine responsible for
932 * pmap_update().
933 */
934
935 /*
936 * Wake up the pagedaemon if the fault method
937 * failed for lack of memory but some can be
938 * reclaimed.
939 */
940 if (error == ENOMEM && uvm_reclaimable()) {
941 uvm_wait("pgo_fault");
942 error = ERESTART;
943 }
944 } else {
945 error = uvm_fault_lower(&ufi, &flt, pages);
946 }
947 }
948 }
949
950 if (flt.anon_spare != NULL) {
951 flt.anon_spare->an_ref--;
952 KASSERT(flt.anon_spare->an_ref == 0);
953 KASSERT(flt.anon_spare->an_lock == NULL);
954 uvm_anfree(flt.anon_spare);
955 }
956 return error;
957 }
958
959 /*
960 * uvm_fault_check: check prot, handle needs-copy, etc.
961 *
962 * 1. lookup entry.
963 * 2. check protection.
964 * 3. adjust fault condition (mainly for simulated fault).
965 * 4. handle needs-copy (lazy amap copy).
966 * 5. establish range of interest for neighbor fault (aka pre-fault).
967 * 6. look up anons (if amap exists).
968 * 7. flush pages (if MADV_SEQUENTIAL)
969 *
970 * => called with nothing locked.
971 * => if we fail (result != 0) we unlock everything.
972 * => initialize/adjust many members of flt.
973 */
974
975 static int
976 uvm_fault_check(
977 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
978 struct vm_anon ***ranons, bool maxprot)
979 {
980 struct vm_amap *amap;
981 struct uvm_object *uobj;
982 vm_prot_t check_prot;
983 int nback, nforw;
984 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
985
986 /*
987 * lookup and lock the maps
988 */
989
990 if (uvmfault_lookup(ufi, false) == false) {
991 UVMHIST_LOG(maphist, "<- no mapping @ %#jx", ufi->orig_rvaddr,
992 0,0,0);
993 return EFAULT;
994 }
995 /* locked: maps(read) */
996
997 #ifdef DIAGNOSTIC
998 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
999 printf("Page fault on non-pageable map:\n");
1000 printf("ufi->map = %p\n", ufi->map);
1001 printf("ufi->orig_map = %p\n", ufi->orig_map);
1002 printf("ufi->orig_rvaddr = %#lx\n", (u_long) ufi->orig_rvaddr);
1003 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
1004 }
1005 #endif
1006
1007 /*
1008 * check protection
1009 */
1010
1011 check_prot = maxprot ?
1012 ufi->entry->max_protection : ufi->entry->protection;
1013 if ((check_prot & flt->access_type) != flt->access_type) {
1014 UVMHIST_LOG(maphist,
1015 "<- protection failure (prot=%#jx, access=%#jx)",
1016 ufi->entry->protection, flt->access_type, 0, 0);
1017 uvmfault_unlockmaps(ufi, false);
1018 return EFAULT;
1019 }
1020
1021 /*
1022 * "enter_prot" is the protection we want to enter the page in at.
1023 * for certain pages (e.g. copy-on-write pages) this protection can
1024 * be more strict than ufi->entry->protection. "wired" means either
1025 * the entry is wired or we are fault-wiring the pg.
1026 */
1027
1028 flt->enter_prot = ufi->entry->protection;
1029 if (VM_MAPENT_ISWIRED(ufi->entry)) {
1030 flt->wire_mapping = true;
1031 flt->wire_paging = true;
1032 flt->narrow = true;
1033 }
1034
1035 if (flt->wire_mapping) {
1036 flt->access_type = flt->enter_prot; /* full access for wired */
1037 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
1038 } else {
1039 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
1040 }
1041
1042 if (flt->wire_paging) {
1043 /* wiring pages requires a write lock. */
1044 flt->upper_lock_type = RW_WRITER;
1045 flt->lower_lock_type = RW_WRITER;
1046 }
1047
1048 flt->promote = false;
1049
1050 /*
1051 * handle "needs_copy" case. if we need to copy the amap we will
1052 * have to drop our readlock and relock it with a write lock. (we
1053 * need a write lock to change anything in a map entry [e.g.
1054 * needs_copy]).
1055 */
1056
1057 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
1058 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
1059 KASSERT(!maxprot);
1060 /* need to clear */
1061 UVMHIST_LOG(maphist,
1062 " need to clear needs_copy and refault",0,0,0,0);
1063 uvmfault_unlockmaps(ufi, false);
1064 uvmfault_amapcopy(ufi);
1065 cpu_count(CPU_COUNT_FLTAMCOPY, 1);
1066 return ERESTART;
1067
1068 } else {
1069
1070 /*
1071 * ensure that we pmap_enter page R/O since
1072 * needs_copy is still true
1073 */
1074
1075 flt->enter_prot &= ~VM_PROT_WRITE;
1076 }
1077 }
1078
1079 /*
1080 * identify the players
1081 */
1082
1083 amap = ufi->entry->aref.ar_amap; /* upper layer */
1084 uobj = ufi->entry->object.uvm_obj; /* lower layer */
1085
1086 /*
1087 * check for a case 0 fault. if nothing backing the entry then
1088 * error now.
1089 */
1090
1091 if (amap == NULL && uobj == NULL) {
1092 uvmfault_unlockmaps(ufi, false);
1093 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
1094 return EFAULT;
1095 }
1096
1097 /*
1098 * for a case 2B fault waste no time on adjacent pages because
1099 * they are likely already entered.
1100 */
1101
1102 if (uobj != NULL && amap != NULL &&
1103 (flt->access_type & VM_PROT_WRITE) != 0) {
1104 /* wide fault (!narrow) */
1105 flt->narrow = true;
1106 }
1107
1108 /*
1109 * establish range of interest based on advice from mapper
1110 * and then clip to fit map entry. note that we only want
1111 * to do this the first time through the fault. if we
1112 * ReFault we will disable this by setting "narrow" to true.
1113 */
1114
1115 if (flt->narrow == false) {
1116
1117 /* wide fault (!narrow) */
1118 KASSERT(uvmadvice[ufi->entry->advice].advice ==
1119 ufi->entry->advice);
1120 nback = MIN(uvmadvice[ufi->entry->advice].nback,
1121 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1122 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1123 /*
1124 * note: "-1" because we don't want to count the
1125 * faulting page as forw
1126 */
1127 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1128 ((ufi->entry->end - ufi->orig_rvaddr) >>
1129 PAGE_SHIFT) - 1);
1130 flt->npages = nback + nforw + 1;
1131 flt->centeridx = nback;
1132
1133 flt->narrow = true; /* ensure only once per-fault */
1134
1135 } else {
1136
1137 /* narrow fault! */
1138 nback = nforw = 0;
1139 flt->startva = ufi->orig_rvaddr;
1140 flt->npages = 1;
1141 flt->centeridx = 0;
1142
1143 }
1144 /* offset from entry's start to pgs' start */
1145 const voff_t eoff = flt->startva - ufi->entry->start;
1146
1147 /* locked: maps(read) */
1148 UVMHIST_LOG(maphist, " narrow=%jd, back=%jd, forw=%jd, startva=%#jx",
1149 flt->narrow, nback, nforw, flt->startva);
1150 UVMHIST_LOG(maphist, " entry=%#jx, amap=%#jx, obj=%#jx",
1151 (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0);
1152
1153 /*
1154 * guess at the most suitable lock types to acquire.
1155 * if we've got an amap then lock it and extract current anons.
1156 */
1157
1158 if (amap) {
1159 if ((amap_flags(amap) & AMAP_SHARED) == 0) {
1160 /*
1161 * the amap isn't shared. get a writer lock to
1162 * avoid the cost of upgrading the lock later if
1163 * needed.
1164 *
1165 * XXX nice for PostgreSQL, but consider threads.
1166 */
1167 flt->upper_lock_type = RW_WRITER;
1168 } else if ((flt->access_type & VM_PROT_WRITE) != 0) {
1169 /*
1170 * assume we're about to COW.
1171 */
1172 flt->upper_lock_type = RW_WRITER;
1173 }
1174 amap_lock(amap, flt->upper_lock_type);
1175 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1176 } else {
1177 if ((flt->access_type & VM_PROT_WRITE) != 0) {
1178 /*
1179 * we are about to dirty the object and that
1180 * requires a write lock.
1181 */
1182 flt->lower_lock_type = RW_WRITER;
1183 }
1184 *ranons = NULL; /* to be safe */
1185 }
1186
1187 /* locked: maps(read), amap(if there) */
1188 KASSERT(amap == NULL ||
1189 rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1190
1191 /*
1192 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1193 * now and then forget about them (for the rest of the fault).
1194 */
1195
1196 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1197
1198 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1199 0,0,0,0);
1200 /* flush back-page anons? */
1201 if (amap)
1202 uvmfault_anonflush(*ranons, nback);
1203
1204 /*
1205 * flush object? change lock type to RW_WRITER, to avoid
1206 * excessive competition between read/write locks if many
1207 * threads doing "sequential access".
1208 */
1209 if (uobj) {
1210 voff_t uoff;
1211
1212 flt->lower_lock_type = RW_WRITER;
1213 uoff = ufi->entry->offset + eoff;
1214 rw_enter(uobj->vmobjlock, RW_WRITER);
1215 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1216 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1217 }
1218
1219 /* now forget about the backpages */
1220 if (amap)
1221 *ranons += nback;
1222 flt->startva += (nback << PAGE_SHIFT);
1223 flt->npages -= nback;
1224 flt->centeridx = 0;
1225 }
1226 /*
1227 * => startva is fixed
1228 * => npages is fixed
1229 */
1230 KASSERT(flt->startva <= ufi->orig_rvaddr);
1231 KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1232 flt->startva + (flt->npages << PAGE_SHIFT));
1233 return 0;
1234 }
1235
1236 /*
1237 * uvm_fault_upper_upgrade: upgrade upper lock, reader -> writer
1238 */
1239
1240 static inline int
1241 uvm_fault_upper_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1242 struct vm_amap *amap, struct uvm_object *uobj)
1243 {
1244 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1245
1246 KASSERT(amap != NULL);
1247 KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock));
1248
1249 /*
1250 * fast path.
1251 */
1252
1253 if (__predict_true(flt->upper_lock_type == RW_WRITER)) {
1254 return 0;
1255 }
1256
1257 /*
1258 * otherwise try for the upgrade. if we don't get it, unlock
1259 * everything, restart the fault and next time around get a writer
1260 * lock.
1261 */
1262
1263 flt->upper_lock_type = RW_WRITER;
1264 if (__predict_false(!rw_tryupgrade(amap->am_lock))) {
1265 uvmfault_unlockall(ufi, amap, uobj);
1266 cpu_count(CPU_COUNT_FLTNOUP, 1);
1267 UVMHIST_LOG(maphist, " !upgrade upper", 0, 0,0,0);
1268 return ERESTART;
1269 }
1270 cpu_count(CPU_COUNT_FLTUP, 1);
1271 KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock));
1272 return 0;
1273 }
1274
1275 /*
1276 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1277 *
1278 * iterate range of interest:
1279 * 1. check if h/w mapping exists. if yes, we don't care
1280 * 2. check if anon exists. if not, page is lower.
1281 * 3. if anon exists, enter h/w mapping for neighbors.
1282 *
1283 * => called with amap locked (if exists).
1284 */
1285
1286 static int
1287 uvm_fault_upper_lookup(
1288 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1289 struct vm_anon **anons, struct vm_page **pages)
1290 {
1291 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1292 int lcv;
1293 vaddr_t currva;
1294 bool shadowed __unused;
1295 bool entered;
1296 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1297
1298 /* locked: maps(read), amap(if there) */
1299 KASSERT(amap == NULL ||
1300 rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1301
1302 /*
1303 * map in the backpages and frontpages we found in the amap in hopes
1304 * of preventing future faults. we also init the pages[] array as
1305 * we go.
1306 */
1307
1308 currva = flt->startva;
1309 shadowed = false;
1310 entered = false;
1311 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1312 /*
1313 * unmapped or center page. check if any anon at this level.
1314 */
1315 if (amap == NULL || anons[lcv] == NULL) {
1316 pages[lcv] = NULL;
1317 continue;
1318 }
1319
1320 /*
1321 * check for present page and map if possible.
1322 */
1323
1324 pages[lcv] = PGO_DONTCARE;
1325 if (lcv == flt->centeridx) { /* save center for later! */
1326 shadowed = true;
1327 continue;
1328 }
1329
1330 struct vm_anon *anon = anons[lcv];
1331 struct vm_page *pg = anon->an_page;
1332
1333 KASSERT(anon->an_lock == amap->am_lock);
1334
1335 /*
1336 * ignore loaned and busy pages.
1337 * don't play with VAs that are already mapped.
1338 */
1339
1340 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0 &&
1341 !pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1342 uvm_fault_upper_neighbor(ufi, flt, currva,
1343 pg, anon->an_ref > 1);
1344 entered = true;
1345 }
1346 }
1347 if (entered) {
1348 pmap_update(ufi->orig_map->pmap);
1349 }
1350
1351 /* locked: maps(read), amap(if there) */
1352 KASSERT(amap == NULL ||
1353 rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1354 /* (shadowed == true) if there is an anon at the faulting address */
1355 UVMHIST_LOG(maphist, " shadowed=%jd, will_get=%jd", shadowed,
1356 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1357
1358 return 0;
1359 }
1360
1361 /*
1362 * uvm_fault_upper_neighbor: enter single upper neighbor page.
1363 *
1364 * => called with amap and anon locked.
1365 */
1366
1367 static void
1368 uvm_fault_upper_neighbor(
1369 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1370 vaddr_t currva, struct vm_page *pg, bool readonly)
1371 {
1372 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1373
1374 /* locked: amap, anon */
1375
1376 KASSERT(pg->uobject == NULL);
1377 KASSERT(pg->uanon != NULL);
1378 KASSERT(rw_lock_op(pg->uanon->an_lock) == flt->upper_lock_type);
1379 KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
1380
1381 /*
1382 * there wasn't a direct fault on the page, so avoid the cost of
1383 * activating it.
1384 */
1385
1386 if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) {
1387 uvm_pagelock(pg);
1388 uvm_pageenqueue(pg);
1389 uvm_pageunlock(pg);
1390 }
1391
1392 UVMHIST_LOG(maphist,
1393 " MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx",
1394 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1395 cpu_count(CPU_COUNT_FLTNAMAP, 1);
1396
1397 /*
1398 * Since this page isn't the page that's actually faulting,
1399 * ignore pmap_enter() failures; it's not critical that we
1400 * enter these right now.
1401 */
1402
1403 (void) pmap_enter(ufi->orig_map->pmap, currva,
1404 VM_PAGE_TO_PHYS(pg),
1405 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1406 flt->enter_prot,
1407 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1408 }
1409
1410 /*
1411 * uvm_fault_upper: handle upper fault.
1412 *
1413 * 1. acquire anon lock.
1414 * 2. get anon. let uvmfault_anonget do the dirty work.
1415 * 3. handle loan.
1416 * 4. dispatch direct or promote handlers.
1417 */
1418
1419 static int
1420 uvm_fault_upper(
1421 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1422 struct vm_anon **anons)
1423 {
1424 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1425 struct vm_anon * const anon = anons[flt->centeridx];
1426 struct uvm_object *uobj;
1427 int error;
1428 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1429
1430 /* locked: maps(read), amap, anon */
1431 KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1432 KASSERT(anon->an_lock == amap->am_lock);
1433
1434 /*
1435 * handle case 1: fault on an anon in our amap
1436 */
1437
1438 UVMHIST_LOG(maphist, " case 1 fault: anon=%#jx",
1439 (uintptr_t)anon, 0, 0, 0);
1440
1441 /*
1442 * no matter if we have case 1A or case 1B we are going to need to
1443 * have the anon's memory resident. ensure that now.
1444 */
1445
1446 /*
1447 * let uvmfault_anonget do the dirty work.
1448 * if it fails (!OK) it will unlock everything for us.
1449 * if it succeeds, locks are still valid and locked.
1450 * also, if it is OK, then the anon's page is on the queues.
1451 * if the page is on loan from a uvm_object, then anonget will
1452 * lock that object for us if it does not fail.
1453 */
1454 retry:
1455 error = uvmfault_anonget(ufi, amap, anon);
1456 switch (error) {
1457 case 0:
1458 break;
1459
1460 case ERESTART:
1461 return ERESTART;
1462
1463 case EAGAIN:
1464 kpause("fltagain1", false, hz/2, NULL);
1465 return ERESTART;
1466
1467 case ENOLCK:
1468 /* it needs a write lock: retry */
1469 error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1470 if (error != 0) {
1471 return error;
1472 }
1473 KASSERT(rw_write_held(amap->am_lock));
1474 goto retry;
1475
1476 default:
1477 return error;
1478 }
1479
1480 /*
1481 * uobj is non null if the page is on loan from an object (i.e. uobj)
1482 */
1483
1484 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1485
1486 /* locked: maps(read), amap, anon, uobj(if one) */
1487 KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1488 KASSERT(anon->an_lock == amap->am_lock);
1489 KASSERT(uobj == NULL ||
1490 rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1491
1492 /*
1493 * special handling for loaned pages
1494 */
1495
1496 if (anon->an_page->loan_count) {
1497 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1498 if (error != 0)
1499 return error;
1500 }
1501
1502 /*
1503 * if we are case 1B then we will need to allocate a new blank
1504 * anon to transfer the data into. note that we have a lock
1505 * on anon, so no one can busy or release the page until we are done.
1506 * also note that the ref count can't drop to zero here because
1507 * it is > 1 and we are only dropping one ref.
1508 *
1509 * in the (hopefully very rare) case that we are out of RAM we
1510 * will unlock, wait for more RAM, and refault.
1511 *
1512 * if we are out of anon VM we kill the process (XXX: could wait?).
1513 */
1514
1515 if (flt->cow_now && anon->an_ref > 1) {
1516 flt->promote = true;
1517 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1518 } else {
1519 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1520 }
1521 return error;
1522 }
1523
1524 /*
1525 * uvm_fault_upper_loan: handle loaned upper page.
1526 *
1527 * 1. if not cow'ing now, simply adjust flt->enter_prot.
1528 * 2. if cow'ing now, and if ref count is 1, break loan.
1529 */
1530
1531 static int
1532 uvm_fault_upper_loan(
1533 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1534 struct vm_anon *anon, struct uvm_object **ruobj)
1535 {
1536 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1537 int error = 0;
1538 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1539
1540 if (!flt->cow_now) {
1541
1542 /*
1543 * for read faults on loaned pages we just cap the
1544 * protection at read-only.
1545 */
1546
1547 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1548
1549 } else {
1550 /*
1551 * note that we can't allow writes into a loaned page!
1552 *
1553 * if we have a write fault on a loaned page in an
1554 * anon then we need to look at the anon's ref count.
1555 * if it is greater than one then we are going to do
1556 * a normal copy-on-write fault into a new anon (this
1557 * is not a problem). however, if the reference count
1558 * is one (a case where we would normally allow a
1559 * write directly to the page) then we need to kill
1560 * the loan before we continue.
1561 */
1562
1563 /* >1 case is already ok */
1564 if (anon->an_ref == 1) {
1565 /* breaking loan requires a write lock. */
1566 error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1567 if (error != 0) {
1568 return error;
1569 }
1570 KASSERT(rw_write_held(amap->am_lock));
1571
1572 error = uvm_loanbreak_anon(anon, *ruobj);
1573 if (error != 0) {
1574 uvmfault_unlockall(ufi, amap, *ruobj);
1575 uvm_wait("flt_noram2");
1576 return ERESTART;
1577 }
1578 /* if we were a loan receiver uobj is gone */
1579 if (*ruobj)
1580 *ruobj = NULL;
1581 }
1582 }
1583 return error;
1584 }
1585
1586 /*
1587 * uvm_fault_upper_promote: promote upper page.
1588 *
1589 * 1. call uvmfault_promote.
1590 * 2. enqueue page.
1591 * 3. deref.
1592 * 4. pass page to uvm_fault_upper_enter.
1593 */
1594
1595 static int
1596 uvm_fault_upper_promote(
1597 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1598 struct uvm_object *uobj, struct vm_anon *anon)
1599 {
1600 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1601 struct vm_anon * const oanon = anon;
1602 struct vm_page *pg;
1603 int error;
1604 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1605
1606 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1607 cpu_count(CPU_COUNT_FLT_ACOW, 1);
1608
1609 /* promoting requires a write lock. */
1610 error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1611 if (error != 0) {
1612 return error;
1613 }
1614 KASSERT(rw_write_held(amap->am_lock));
1615
1616 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1617 &flt->anon_spare);
1618 switch (error) {
1619 case 0:
1620 break;
1621 case ERESTART:
1622 return ERESTART;
1623 default:
1624 return error;
1625 }
1626 pg = anon->an_page;
1627
1628 KASSERT(anon->an_lock == oanon->an_lock);
1629 KASSERT((pg->flags & (PG_BUSY | PG_FAKE)) == 0);
1630
1631 /* deref: can not drop to zero here by defn! */
1632 KASSERT(oanon->an_ref > 1);
1633 oanon->an_ref--;
1634
1635 /*
1636 * note: oanon is still locked, as is the new anon. we
1637 * need to check for this later when we unlock oanon; if
1638 * oanon != anon, we'll have to unlock anon, too.
1639 */
1640
1641 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1642 }
1643
1644 /*
1645 * uvm_fault_upper_direct: handle direct fault.
1646 */
1647
1648 static int
1649 uvm_fault_upper_direct(
1650 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1651 struct uvm_object *uobj, struct vm_anon *anon)
1652 {
1653 struct vm_anon * const oanon = anon;
1654 struct vm_page *pg;
1655 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1656
1657 cpu_count(CPU_COUNT_FLT_ANON, 1);
1658 pg = anon->an_page;
1659 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1660 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1661
1662 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1663 }
1664
1665 /*
1666 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1667 */
1668
1669 static int
1670 uvm_fault_upper_enter(
1671 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1672 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1673 struct vm_anon *oanon)
1674 {
1675 struct pmap *pmap = ufi->orig_map->pmap;
1676 vaddr_t va = ufi->orig_rvaddr;
1677 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1678 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1679
1680 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1681 KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1682 KASSERT(anon->an_lock == amap->am_lock);
1683 KASSERT(oanon->an_lock == amap->am_lock);
1684 KASSERT(uobj == NULL ||
1685 rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1686 KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
1687
1688 /*
1689 * now map the page in.
1690 */
1691
1692 UVMHIST_LOG(maphist,
1693 " MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
1694 (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote);
1695 if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg),
1696 flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1697 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1698
1699 /*
1700 * If pmap_enter() fails, it must not leave behind an existing
1701 * pmap entry. In particular, a now-stale entry for a different
1702 * page would leave the pmap inconsistent with the vm_map.
1703 * This is not to imply that pmap_enter() should remove an
1704 * existing mapping in such a situation (since that could create
1705 * different problems, eg. if the existing mapping is wired),
1706 * but rather that the pmap should be designed such that it
1707 * never needs to fail when the new mapping is replacing an
1708 * existing mapping and the new page has no existing mappings.
1709 *
1710 * XXX This can't be asserted safely any more because many
1711 * LWPs and/or many processes could simultaneously fault on
1712 * the same VA and some might succeed.
1713 */
1714
1715 /* KASSERT(!pmap_extract(pmap, va, NULL)); */
1716
1717 /*
1718 * ensure that the page is queued in the case that
1719 * we just promoted.
1720 */
1721
1722 uvm_pagelock(pg);
1723 uvm_pageenqueue(pg);
1724 uvm_pageunlock(pg);
1725
1726 /*
1727 * No need to undo what we did; we can simply think of
1728 * this as the pmap throwing away the mapping information.
1729 *
1730 * We do, however, have to go through the ReFault path,
1731 * as the map may change while we're asleep.
1732 */
1733
1734 uvmfault_unlockall(ufi, amap, uobj);
1735 if (!uvm_reclaimable()) {
1736 UVMHIST_LOG(maphist,
1737 "<- failed. out of VM",0,0,0,0);
1738 /* XXX instrumentation */
1739 return ENOMEM;
1740 }
1741 /* XXX instrumentation */
1742 uvm_wait("flt_pmfail1");
1743 return ERESTART;
1744 }
1745
1746 uvm_fault_upper_done(ufi, flt, anon, pg);
1747
1748 /*
1749 * done case 1! finish up by unlocking everything and returning success
1750 */
1751
1752 pmap_update(pmap);
1753 uvmfault_unlockall(ufi, amap, uobj);
1754 return 0;
1755 }
1756
1757 /*
1758 * uvm_fault_upper_done: queue upper center page.
1759 */
1760
1761 static void
1762 uvm_fault_upper_done(
1763 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1764 struct vm_anon *anon, struct vm_page *pg)
1765 {
1766 const bool wire_paging = flt->wire_paging;
1767
1768 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1769
1770 /*
1771 * ... update the page queues.
1772 */
1773
1774 if (wire_paging) {
1775 uvm_pagelock(pg);
1776 uvm_pagewire(pg);
1777 uvm_pageunlock(pg);
1778
1779 /*
1780 * since the now-wired page cannot be paged out,
1781 * release its swap resources for others to use.
1782 * and since an anon with no swap cannot be clean,
1783 * mark it dirty now.
1784 */
1785
1786 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1787 uvm_anon_dropswap(anon);
1788 } else if (uvmpdpol_pageactivate_p(pg)) {
1789 /*
1790 * avoid re-activating the page unless needed,
1791 * to avoid false sharing on multiprocessor.
1792 */
1793
1794 uvm_pagelock(pg);
1795 uvm_pageactivate(pg);
1796 uvm_pageunlock(pg);
1797 }
1798 }
1799
1800 /*
1801 * uvm_fault_lower_upgrade: upgrade lower lock, reader -> writer
1802 */
1803
1804 static inline int
1805 uvm_fault_lower_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1806 struct vm_amap *amap, struct uvm_object *uobj, struct vm_page *uobjpage)
1807 {
1808
1809 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1810
1811 KASSERT(uobj != NULL);
1812 KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock));
1813
1814 /*
1815 * fast path.
1816 */
1817
1818 if (__predict_true(flt->lower_lock_type == RW_WRITER)) {
1819 return 0;
1820 }
1821
1822 /*
1823 * otherwise try for the upgrade. if we don't get it, unlock
1824 * everything, restart the fault and next time around get a writer
1825 * lock.
1826 */
1827
1828 flt->lower_lock_type = RW_WRITER;
1829 if (__predict_false(!rw_tryupgrade(uobj->vmobjlock))) {
1830 uvmfault_unlockall(ufi, amap, uobj);
1831 cpu_count(CPU_COUNT_FLTNOUP, 1);
1832 UVMHIST_LOG(maphist, " !upgrade lower", 0, 0,0,0);
1833 return ERESTART;
1834 }
1835 cpu_count(CPU_COUNT_FLTUP, 1);
1836 KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock));
1837 return 0;
1838 }
1839
1840 /*
1841 * uvm_fault_lower: handle lower fault.
1842 *
1843 * 1. check uobj
1844 * 1.1. if null, ZFOD.
1845 * 1.2. if not null, look up unnmapped neighbor pages.
1846 * 2. for center page, check if promote.
1847 * 2.1. ZFOD always needs promotion.
1848 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1849 * 3. if uobj is not ZFOD and page is not found, do i/o.
1850 * 4. dispatch either direct / promote fault.
1851 */
1852
1853 static int
1854 uvm_fault_lower(
1855 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1856 struct vm_page **pages)
1857 {
1858 struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap;
1859 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1860 struct vm_page *uobjpage;
1861 int error;
1862 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1863
1864 /*
1865 * now, if the desired page is not shadowed by the amap and we have
1866 * a backing object that does not have a special fault routine, then
1867 * we ask (with pgo_get) the object for resident pages that we care
1868 * about and attempt to map them in. we do not let pgo_get block
1869 * (PGO_LOCKED).
1870 */
1871
1872 if (uobj == NULL) {
1873 /* zero fill; don't care neighbor pages */
1874 uobjpage = NULL;
1875 } else {
1876 uvm_fault_lower_lookup(ufi, flt, pages);
1877 uobjpage = pages[flt->centeridx];
1878 }
1879
1880 /*
1881 * note that at this point we are done with any front or back pages.
1882 * we are now going to focus on the center page (i.e. the one we've
1883 * faulted on). if we have faulted on the upper (anon) layer
1884 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1885 * not touched it yet). if we have faulted on the bottom (uobj)
1886 * layer [i.e. case 2] and the page was both present and available,
1887 * then we've got a pointer to it as "uobjpage" and we've already
1888 * made it BUSY.
1889 */
1890
1891 /*
1892 * locked:
1893 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1894 */
1895 KASSERT(amap == NULL ||
1896 rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1897 KASSERT(uobj == NULL ||
1898 rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1899
1900 /*
1901 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1902 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1903 * have a backing object, check and see if we are going to promote
1904 * the data up to an anon during the fault.
1905 */
1906
1907 if (uobj == NULL) {
1908 uobjpage = PGO_DONTCARE;
1909 flt->promote = true; /* always need anon here */
1910 } else {
1911 KASSERT(uobjpage != PGO_DONTCARE);
1912 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1913 }
1914 UVMHIST_LOG(maphist, " case 2 fault: promote=%jd, zfill=%jd",
1915 flt->promote, (uobj == NULL), 0,0);
1916
1917 /*
1918 * if uobjpage is not null then we do not need to do I/O to get the
1919 * uobjpage.
1920 *
1921 * if uobjpage is null, then we need to unlock and ask the pager to
1922 * get the data for us. once we have the data, we need to reverify
1923 * the state the world. we are currently not holding any resources.
1924 */
1925
1926 if (uobjpage) {
1927 /* update rusage counters */
1928 curlwp->l_ru.ru_minflt++;
1929 } else {
1930 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1931 if (error != 0)
1932 return error;
1933 }
1934
1935 /*
1936 * locked:
1937 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1938 */
1939 KASSERT(amap == NULL ||
1940 rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1941 KASSERT(uobj == NULL ||
1942 rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1943
1944 /*
1945 * notes:
1946 * - at this point uobjpage can not be NULL
1947 * - at this point uobjpage can not be PG_RELEASED (since we checked
1948 * for it above)
1949 * - at this point uobjpage could be waited on (handle later)
1950 * - uobjpage can be from a different object if tmpfs (vnode vs UAO)
1951 */
1952
1953 KASSERT(uobjpage != NULL);
1954 KASSERT(uobj == NULL ||
1955 uobjpage->uobject->vmobjlock == uobj->vmobjlock);
1956 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1957 uvm_pagegetdirty(uobjpage) == UVM_PAGE_STATUS_CLEAN);
1958
1959 if (!flt->promote) {
1960 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1961 } else {
1962 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1963 }
1964 return error;
1965 }
1966
1967 /*
1968 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1969 *
1970 * 1. get on-memory pages.
1971 * 2. if failed, give up (get only center page later).
1972 * 3. if succeeded, enter h/w mapping of neighbor pages.
1973 */
1974
1975 static void
1976 uvm_fault_lower_lookup(
1977 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1978 struct vm_page **pages)
1979 {
1980 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1981 int lcv, gotpages;
1982 vaddr_t currva;
1983 bool entered;
1984 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1985
1986 rw_enter(uobj->vmobjlock, flt->lower_lock_type);
1987
1988 /*
1989 * Locked: maps(read), amap(if there), uobj
1990 */
1991
1992 cpu_count(CPU_COUNT_FLTLGET, 1);
1993 gotpages = flt->npages;
1994 (void) uobj->pgops->pgo_get(uobj,
1995 ufi->entry->offset + flt->startva - ufi->entry->start,
1996 pages, &gotpages, flt->centeridx,
1997 flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1998 PGO_LOCKED);
1999
2000 KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2001
2002 /*
2003 * check for pages to map, if we got any
2004 */
2005
2006 if (gotpages == 0) {
2007 pages[flt->centeridx] = NULL;
2008 return;
2009 }
2010
2011 entered = false;
2012 currva = flt->startva;
2013 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
2014 struct vm_page *curpg;
2015
2016 curpg = pages[lcv];
2017 if (curpg == NULL || curpg == PGO_DONTCARE) {
2018 continue;
2019 }
2020
2021 /*
2022 * in the case of tmpfs, the pages might be from a different
2023 * uvm_object. just make sure that they have the same lock.
2024 */
2025
2026 KASSERT(curpg->uobject->vmobjlock == uobj->vmobjlock);
2027 KASSERT((curpg->flags & PG_BUSY) == 0);
2028
2029 /*
2030 * leave the centre page for later. don't screw with
2031 * existing mappings (needless & expensive).
2032 */
2033
2034 if (lcv == flt->centeridx) {
2035 UVMHIST_LOG(maphist, " got uobjpage (%#jx) "
2036 "with locked get", (uintptr_t)curpg, 0, 0, 0);
2037 } else if (!pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
2038 uvm_fault_lower_neighbor(ufi, flt, currva, curpg);
2039 entered = true;
2040 }
2041 }
2042 if (entered) {
2043 pmap_update(ufi->orig_map->pmap);
2044 }
2045 }
2046
2047 /*
2048 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
2049 */
2050
2051 static void
2052 uvm_fault_lower_neighbor(
2053 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2054 vaddr_t currva, struct vm_page *pg)
2055 {
2056 const bool readonly = uvm_pagereadonly_p(pg) || pg->loan_count > 0;
2057 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2058
2059 /* locked: maps(read), amap(if there), uobj */
2060
2061 /*
2062 * calling pgo_get with PGO_LOCKED returns us pages which
2063 * are neither busy nor released, so we don't need to check
2064 * for this. we can just directly enter the pages.
2065 *
2066 * there wasn't a direct fault on the page, so avoid the cost of
2067 * activating it.
2068 */
2069
2070 if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) {
2071 uvm_pagelock(pg);
2072 uvm_pageenqueue(pg);
2073 uvm_pageunlock(pg);
2074 }
2075
2076 UVMHIST_LOG(maphist,
2077 " MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx",
2078 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
2079 cpu_count(CPU_COUNT_FLTNOMAP, 1);
2080
2081 /*
2082 * Since this page isn't the page that's actually faulting,
2083 * ignore pmap_enter() failures; it's not critical that we
2084 * enter these right now.
2085 * NOTE: page can't be waited on or PG_RELEASED because we've
2086 * held the lock the whole time we've had the handle.
2087 */
2088 KASSERT((pg->flags & PG_PAGEOUT) == 0);
2089 KASSERT((pg->flags & PG_RELEASED) == 0);
2090 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
2091 uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN);
2092 KASSERT((pg->flags & PG_BUSY) == 0);
2093 KASSERT(rw_lock_op(pg->uobject->vmobjlock) == flt->lower_lock_type);
2094
2095 const vm_prot_t mapprot =
2096 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
2097 flt->enter_prot & MASK(ufi->entry);
2098 const u_int mapflags =
2099 PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0);
2100 (void) pmap_enter(ufi->orig_map->pmap, currva,
2101 VM_PAGE_TO_PHYS(pg), mapprot, mapflags);
2102 }
2103
2104 /*
2105 * uvm_fault_lower_io: get lower page from backing store.
2106 *
2107 * 1. unlock everything, because i/o will block.
2108 * 2. call pgo_get.
2109 * 3. if failed, recover.
2110 * 4. if succeeded, relock everything and verify things.
2111 */
2112
2113 static int
2114 uvm_fault_lower_io(
2115 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2116 struct uvm_object **ruobj, struct vm_page **ruobjpage)
2117 {
2118 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2119 struct uvm_object *uobj = *ruobj;
2120 struct vm_page *pg;
2121 bool locked;
2122 int gotpages;
2123 int error;
2124 voff_t uoff;
2125 vm_prot_t access_type;
2126 int advice;
2127 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2128
2129 /* update rusage counters */
2130 curlwp->l_ru.ru_majflt++;
2131
2132 /* grab everything we need from the entry before we unlock */
2133 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
2134 access_type = flt->access_type & MASK(ufi->entry);
2135 advice = ufi->entry->advice;
2136
2137 /* Locked: maps(read), amap(if there), uobj */
2138 KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2139
2140 /* Upgrade to a write lock if needed. */
2141 error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, NULL);
2142 if (error != 0) {
2143 return error;
2144 }
2145 uvmfault_unlockall(ufi, amap, NULL);
2146
2147 /* Locked: uobj(write) */
2148 KASSERT(rw_write_held(uobj->vmobjlock));
2149
2150 cpu_count(CPU_COUNT_FLTGET, 1);
2151 gotpages = 1;
2152 pg = NULL;
2153 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
2154 0, access_type, advice, PGO_SYNCIO);
2155 /* locked: pg(if no error) */
2156
2157 /*
2158 * recover from I/O
2159 */
2160
2161 if (error) {
2162 if (error == EAGAIN) {
2163 UVMHIST_LOG(maphist,
2164 " pgo_get says TRY AGAIN!",0,0,0,0);
2165 kpause("fltagain2", false, hz/2, NULL);
2166 return ERESTART;
2167 }
2168
2169 #if 0
2170 KASSERT(error != ERESTART);
2171 #else
2172 /* XXXUEBS don't re-fault? */
2173 if (error == ERESTART)
2174 error = EIO;
2175 #endif
2176
2177 UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)",
2178 error, 0,0,0);
2179 return error;
2180 }
2181
2182 /*
2183 * re-verify the state of the world by first trying to relock
2184 * the maps. always relock the object.
2185 */
2186
2187 locked = uvmfault_relock(ufi);
2188 if (locked && amap)
2189 amap_lock(amap, flt->upper_lock_type);
2190
2191 /* might be changed */
2192 uobj = pg->uobject;
2193
2194 rw_enter(uobj->vmobjlock, flt->lower_lock_type);
2195 KASSERT((pg->flags & PG_BUSY) != 0);
2196 KASSERT(flt->lower_lock_type == RW_WRITER);
2197
2198 uvm_pagelock(pg);
2199 uvm_pageactivate(pg);
2200 uvm_pageunlock(pg);
2201
2202 /* locked(locked): maps(read), amap(if !null), uobj, pg */
2203 /* locked(!locked): uobj, pg */
2204
2205 /*
2206 * verify that the page has not be released and re-verify
2207 * that amap slot is still free. if there is a problem,
2208 * we unlock and clean up.
2209 */
2210
2211 if ((pg->flags & PG_RELEASED) != 0 ||
2212 (locked && amap && amap_lookup(&ufi->entry->aref,
2213 ufi->orig_rvaddr - ufi->entry->start))) {
2214 if (locked)
2215 uvmfault_unlockall(ufi, amap, NULL);
2216 locked = false;
2217 }
2218
2219 /*
2220 * unbusy/release the page.
2221 */
2222
2223 if ((pg->flags & PG_RELEASED) == 0) {
2224 pg->flags &= ~PG_BUSY;
2225 uvm_pagelock(pg);
2226 uvm_pagewakeup(pg);
2227 uvm_pageunlock(pg);
2228 UVM_PAGE_OWN(pg, NULL);
2229 } else {
2230 cpu_count(CPU_COUNT_FLTPGRELE, 1);
2231 uvm_pagefree(pg);
2232 }
2233
2234 /*
2235 * didn't get the lock? retry.
2236 */
2237
2238 if (locked == false) {
2239 UVMHIST_LOG(maphist,
2240 " wasn't able to relock after fault: retry",
2241 0,0,0,0);
2242 rw_exit(uobj->vmobjlock);
2243 return ERESTART;
2244 }
2245
2246 /*
2247 * we have the data in pg. we are holding object lock (so the page
2248 * can't be released on us).
2249 */
2250
2251 /* locked: maps(read), amap(if !null), uobj */
2252
2253 *ruobj = uobj;
2254 *ruobjpage = pg;
2255 return 0;
2256 }
2257
2258 /*
2259 * uvm_fault_lower_direct: fault lower center page
2260 *
2261 * 1. adjust flt->enter_prot.
2262 * 2. if page is loaned, resolve.
2263 */
2264
2265 int
2266 uvm_fault_lower_direct(
2267 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2268 struct uvm_object *uobj, struct vm_page *uobjpage)
2269 {
2270 struct vm_page *pg;
2271 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2272
2273 /*
2274 * we are not promoting. if the mapping is COW ensure that we
2275 * don't give more access than we should (e.g. when doing a read
2276 * fault on a COPYONWRITE mapping we want to map the COW page in
2277 * R/O even though the entry protection could be R/W).
2278 *
2279 * set "pg" to the page we want to map in (uobjpage, usually)
2280 */
2281
2282 cpu_count(CPU_COUNT_FLT_OBJ, 1);
2283 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
2284 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
2285 flt->enter_prot &= ~VM_PROT_WRITE;
2286 pg = uobjpage; /* map in the actual object */
2287
2288 KASSERT(uobjpage != PGO_DONTCARE);
2289
2290 /*
2291 * we are faulting directly on the page. be careful
2292 * about writing to loaned pages...
2293 */
2294
2295 if (uobjpage->loan_count) {
2296 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
2297 }
2298 KASSERT(pg == uobjpage);
2299 KASSERT((pg->flags & PG_BUSY) == 0);
2300 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
2301 }
2302
2303 /*
2304 * uvm_fault_lower_direct_loan: resolve loaned page.
2305 *
2306 * 1. if not cow'ing, adjust flt->enter_prot.
2307 * 2. if cow'ing, break loan.
2308 */
2309
2310 static int
2311 uvm_fault_lower_direct_loan(
2312 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2313 struct uvm_object *uobj, struct vm_page **rpg,
2314 struct vm_page **ruobjpage)
2315 {
2316 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2317 struct vm_page *pg;
2318 struct vm_page *uobjpage = *ruobjpage;
2319 int error;
2320 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2321
2322 if (!flt->cow_now) {
2323 /* read fault: cap the protection at readonly */
2324 /* cap! */
2325 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2326 } else {
2327 /*
2328 * write fault: must break the loan here. to do this
2329 * we need a write lock on the object.
2330 */
2331
2332 error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, uobjpage);
2333 if (error != 0) {
2334 return error;
2335 }
2336 KASSERT(rw_write_held(uobj->vmobjlock));
2337
2338 pg = uvm_loanbreak(uobjpage);
2339 if (pg == NULL) {
2340
2341 uvmfault_unlockall(ufi, amap, uobj);
2342 UVMHIST_LOG(maphist,
2343 " out of RAM breaking loan, waiting",
2344 0,0,0,0);
2345 cpu_count(CPU_COUNT_FLTNORAM, 1);
2346 uvm_wait("flt_noram4");
2347 return ERESTART;
2348 }
2349 *rpg = pg;
2350 *ruobjpage = pg;
2351
2352 /*
2353 * drop ownership of page while still holding object lock,
2354 * which won't be dropped until the page is entered.
2355 */
2356
2357 uvm_pagelock(pg);
2358 uvm_pagewakeup(pg);
2359 uvm_pageunlock(pg);
2360 pg->flags &= ~PG_BUSY;
2361 UVM_PAGE_OWN(pg, NULL);
2362 }
2363 return 0;
2364 }
2365
2366 /*
2367 * uvm_fault_lower_promote: promote lower page.
2368 *
2369 * 1. call uvmfault_promote.
2370 * 2. fill in data.
2371 * 3. if not ZFOD, dispose old page.
2372 */
2373
2374 int
2375 uvm_fault_lower_promote(
2376 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2377 struct uvm_object *uobj, struct vm_page *uobjpage)
2378 {
2379 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2380 struct vm_anon *anon;
2381 struct vm_page *pg;
2382 int error;
2383 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2384
2385 KASSERT(amap != NULL);
2386
2387 /* promoting requires a write lock. */
2388 error = uvm_fault_upper_upgrade(ufi, flt, amap, uobj);
2389 if (error != 0) {
2390 return error;
2391 }
2392 KASSERT(rw_write_held(amap->am_lock));
2393 KASSERT(uobj == NULL ||
2394 rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2395
2396 /*
2397 * If we are going to promote the data to an anon we
2398 * allocate a blank anon here and plug it into our amap.
2399 */
2400 error = uvmfault_promote(ufi, NULL, uobjpage, &anon, &flt->anon_spare);
2401 switch (error) {
2402 case 0:
2403 break;
2404 case ERESTART:
2405 return ERESTART;
2406 default:
2407 return error;
2408 }
2409
2410 pg = anon->an_page;
2411
2412 /*
2413 * Fill in the data.
2414 */
2415
2416 if (uobjpage != PGO_DONTCARE) {
2417 cpu_count(CPU_COUNT_FLT_PRCOPY, 1);
2418
2419 /*
2420 * promote to shared amap? make sure all sharing
2421 * procs see it
2422 */
2423
2424 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2425 pmap_page_protect(uobjpage, VM_PROT_NONE);
2426 /*
2427 * XXX: PAGE MIGHT BE WIRED!
2428 */
2429 }
2430
2431 UVMHIST_LOG(maphist,
2432 " promote uobjpage %#jx to anon/page %#jx/%#jx",
2433 (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0);
2434
2435 } else {
2436 cpu_count(CPU_COUNT_FLT_PRZERO, 1);
2437
2438 /*
2439 * Page is zero'd and marked dirty by
2440 * uvmfault_promote().
2441 */
2442
2443 UVMHIST_LOG(maphist," zero fill anon/page %#jx/%#jx",
2444 (uintptr_t)anon, (uintptr_t)pg, 0, 0);
2445 }
2446
2447 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2448 }
2449
2450 /*
2451 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2452 * from the lower page.
2453 */
2454
2455 int
2456 uvm_fault_lower_enter(
2457 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2458 struct uvm_object *uobj,
2459 struct vm_anon *anon, struct vm_page *pg)
2460 {
2461 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2462 const bool readonly = uvm_pagereadonly_p(pg);
2463 int error;
2464 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2465
2466 /*
2467 * Locked:
2468 *
2469 * maps(read), amap(if !null), uobj(if !null),
2470 * anon(if !null), pg(if anon), unlock_uobj(if !null)
2471 *
2472 * anon must be write locked (promotion). uobj can be either.
2473 *
2474 * Note: pg is either the uobjpage or the new page in the new anon.
2475 */
2476
2477 KASSERT(amap == NULL ||
2478 rw_lock_op(amap->am_lock) == flt->upper_lock_type);
2479 KASSERT(uobj == NULL ||
2480 rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2481 KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2482
2483 /*
2484 * note that pg can't be PG_RELEASED or PG_BUSY since we did
2485 * not drop the object lock since the last time we checked.
2486 */
2487
2488 KASSERT((pg->flags & PG_RELEASED) == 0);
2489 KASSERT((pg->flags & PG_BUSY) == 0);
2490
2491 /*
2492 * all resources are present. we can now map it in and free our
2493 * resources.
2494 */
2495
2496 UVMHIST_LOG(maphist,
2497 " MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
2498 (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr,
2499 (uintptr_t)pg, flt->promote);
2500 KASSERTMSG((flt->access_type & VM_PROT_WRITE) == 0 || !readonly,
2501 "promote=%u cow_now=%u access_type=%x enter_prot=%x cow=%u "
2502 "entry=%p map=%p orig_rvaddr=%p pg=%p",
2503 flt->promote, flt->cow_now, flt->access_type, flt->enter_prot,
2504 UVM_ET_ISCOPYONWRITE(ufi->entry), ufi->entry, ufi->orig_map,
2505 (void *)ufi->orig_rvaddr, pg);
2506 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 || !readonly);
2507 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2508 VM_PAGE_TO_PHYS(pg),
2509 readonly ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2510 flt->access_type | PMAP_CANFAIL |
2511 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2512
2513 /*
2514 * No need to undo what we did; we can simply think of
2515 * this as the pmap throwing away the mapping information.
2516 *
2517 * We do, however, have to go through the ReFault path,
2518 * as the map may change while we're asleep.
2519 */
2520
2521 /*
2522 * ensure that the page is queued in the case that
2523 * we just promoted the page.
2524 */
2525
2526 if (anon != NULL) {
2527 uvm_pagelock(pg);
2528 uvm_pageenqueue(pg);
2529 uvm_pagewakeup(pg);
2530 uvm_pageunlock(pg);
2531 }
2532
2533 uvmfault_unlockall(ufi, amap, uobj);
2534 if (!uvm_reclaimable()) {
2535 UVMHIST_LOG(maphist,
2536 "<- failed. out of VM",0,0,0,0);
2537 /* XXX instrumentation */
2538 error = ENOMEM;
2539 return error;
2540 }
2541 /* XXX instrumentation */
2542 uvm_wait("flt_pmfail2");
2543 return ERESTART;
2544 }
2545
2546 uvm_fault_lower_done(ufi, flt, uobj, pg);
2547 pmap_update(ufi->orig_map->pmap);
2548 uvmfault_unlockall(ufi, amap, uobj);
2549
2550 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2551 return 0;
2552 }
2553
2554 /*
2555 * uvm_fault_lower_done: queue lower center page.
2556 */
2557
2558 void
2559 uvm_fault_lower_done(
2560 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2561 struct uvm_object *uobj, struct vm_page *pg)
2562 {
2563
2564 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2565
2566 if (flt->wire_paging) {
2567 uvm_pagelock(pg);
2568 uvm_pagewire(pg);
2569 uvm_pageunlock(pg);
2570 if (pg->flags & PG_AOBJ) {
2571
2572 /*
2573 * since the now-wired page cannot be paged out,
2574 * release its swap resources for others to use.
2575 * since an aobj page with no swap cannot be clean,
2576 * mark it dirty now.
2577 *
2578 * use pg->uobject here. if the page is from a
2579 * tmpfs vnode, the pages are backed by its UAO and
2580 * not the vnode.
2581 */
2582
2583 KASSERT(uobj != NULL);
2584 KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
2585 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
2586 uao_dropswap(pg->uobject, pg->offset >> PAGE_SHIFT);
2587 }
2588 } else if (uvmpdpol_pageactivate_p(pg)) {
2589 /*
2590 * avoid re-activating the page unless needed,
2591 * to avoid false sharing on multiprocessor.
2592 */
2593
2594 uvm_pagelock(pg);
2595 uvm_pageactivate(pg);
2596 uvm_pageunlock(pg);
2597 }
2598 }
2599
2600
2601 /*
2602 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2603 *
2604 * => map may be read-locked by caller, but MUST NOT be write-locked.
2605 * => if map is read-locked, any operations which may cause map to
2606 * be write-locked in uvm_fault() must be taken care of by
2607 * the caller. See uvm_map_pageable().
2608 */
2609
2610 int
2611 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2612 vm_prot_t access_type, int maxprot)
2613 {
2614 vaddr_t va;
2615 int error;
2616
2617 /*
2618 * now fault it in a page at a time. if the fault fails then we have
2619 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2620 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2621 */
2622
2623 /*
2624 * XXX work around overflowing a vaddr_t. this prevents us from
2625 * wiring the last page in the address space, though.
2626 */
2627 if (start > end) {
2628 return EFAULT;
2629 }
2630
2631 for (va = start; va < end; va += PAGE_SIZE) {
2632 error = uvm_fault_internal(map, va, access_type,
2633 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2634 if (error) {
2635 if (va != start) {
2636 uvm_fault_unwire(map, start, va);
2637 }
2638 return error;
2639 }
2640 }
2641 return 0;
2642 }
2643
2644 /*
2645 * uvm_fault_unwire(): unwire range of virtual space.
2646 */
2647
2648 void
2649 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2650 {
2651 vm_map_lock_read(map);
2652 uvm_fault_unwire_locked(map, start, end);
2653 vm_map_unlock_read(map);
2654 }
2655
2656 /*
2657 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2658 *
2659 * => map must be at least read-locked.
2660 */
2661
2662 void
2663 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2664 {
2665 struct vm_map_entry *entry, *oentry;
2666 pmap_t pmap = vm_map_pmap(map);
2667 vaddr_t va;
2668 paddr_t pa;
2669 struct vm_page *pg;
2670
2671 /*
2672 * we assume that the area we are unwiring has actually been wired
2673 * in the first place. this means that we should be able to extract
2674 * the PAs from the pmap. we also lock out the page daemon so that
2675 * we can call uvm_pageunwire.
2676 */
2677
2678 /*
2679 * find the beginning map entry for the region.
2680 */
2681
2682 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2683 if (uvm_map_lookup_entry(map, start, &entry) == false)
2684 panic("uvm_fault_unwire_locked: address not in map");
2685
2686 oentry = NULL;
2687 for (va = start; va < end; va += PAGE_SIZE) {
2688
2689 /*
2690 * find the map entry for the current address.
2691 */
2692
2693 KASSERT(va >= entry->start);
2694 while (va >= entry->end) {
2695 KASSERT(entry->next != &map->header &&
2696 entry->next->start <= entry->end);
2697 entry = entry->next;
2698 }
2699
2700 /*
2701 * lock it.
2702 */
2703
2704 if (entry != oentry) {
2705 if (oentry != NULL) {
2706 uvm_map_unlock_entry(oentry);
2707 }
2708 uvm_map_lock_entry(entry, RW_WRITER);
2709 oentry = entry;
2710 }
2711
2712 /*
2713 * if the entry is no longer wired, tell the pmap.
2714 */
2715
2716 if (!pmap_extract(pmap, va, &pa))
2717 continue;
2718
2719 if (VM_MAPENT_ISWIRED(entry) == 0)
2720 pmap_unwire(pmap, va);
2721
2722 pg = PHYS_TO_VM_PAGE(pa);
2723 if (pg) {
2724 uvm_pagelock(pg);
2725 uvm_pageunwire(pg);
2726 uvm_pageunlock(pg);
2727 }
2728 }
2729
2730 if (oentry != NULL) {
2731 uvm_map_unlock_entry(entry);
2732 }
2733 }
2734