Home | History | Annotate | Line # | Download | only in uvm
uvm_fault.c revision 1.235
      1 /*	$NetBSD: uvm_fault.c,v 1.235 2023/09/01 10:57:20 andvar Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  *
     27  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
     28  */
     29 
     30 /*
     31  * uvm_fault.c: fault handler
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.235 2023/09/01 10:57:20 andvar Exp $");
     36 
     37 #include "opt_uvmhist.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/atomic.h>
     42 #include <sys/kernel.h>
     43 #include <sys/mman.h>
     44 
     45 #include <uvm/uvm.h>
     46 #include <uvm/uvm_pdpolicy.h>
     47 #include <uvm/uvm_rndsource.h>
     48 
     49 /*
     50  *
     51  * a word on page faults:
     52  *
     53  * types of page faults we handle:
     54  *
     55  * CASE 1: upper layer faults                   CASE 2: lower layer faults
     56  *
     57  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
     58  *    read/write1     write>1                  read/write   +-cow_write/zero
     59  *         |             |                         |        |
     60  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
     61  * amap |  V  |       |  ---------> new |          |        | |  ^  |
     62  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
     63  *                                                 |        |    |
     64  *      +-----+       +-----+                   +--|--+     | +--|--+
     65  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
     66  *      +-----+       +-----+                   +-----+       +-----+
     67  *
     68  * d/c = don't care
     69  *
     70  *   case [0]: layerless fault
     71  *	no amap or uobj is present.   this is an error.
     72  *
     73  *   case [1]: upper layer fault [anon active]
     74  *     1A: [read] or [write with anon->an_ref == 1]
     75  *		I/O takes place in upper level anon and uobj is not touched.
     76  *     1B: [write with anon->an_ref > 1]
     77  *		new anon is alloc'd and data is copied off ["COW"]
     78  *
     79  *   case [2]: lower layer fault [uobj]
     80  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
     81  *		I/O takes place directly in object.
     82  *     2B: [write to copy_on_write] or [read on NULL uobj]
     83  *		data is "promoted" from uobj to a new anon.
     84  *		if uobj is null, then we zero fill.
     85  *
     86  * we follow the standard UVM locking protocol ordering:
     87  *
     88  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
     89  * we hold a PG_BUSY page if we unlock for I/O
     90  *
     91  *
     92  * the code is structured as follows:
     93  *
     94  *     - init the "IN" params in the ufi structure
     95  *   ReFault: (ERESTART returned to the loop in uvm_fault_internal)
     96  *     - do lookups [locks maps], check protection, handle needs_copy
     97  *     - check for case 0 fault (error)
     98  *     - establish "range" of fault
     99  *     - if we have an amap lock it and extract the anons
    100  *     - if sequential advice deactivate pages behind us
    101  *     - at the same time check pmap for unmapped areas and anon for pages
    102  *	 that we could map in (and do map it if found)
    103  *     - check object for resident pages that we could map in
    104  *     - if (case 2) goto Case2
    105  *     - >>> handle case 1
    106  *           - ensure source anon is resident in RAM
    107  *           - if case 1B alloc new anon and copy from source
    108  *           - map the correct page in
    109  *   Case2:
    110  *     - >>> handle case 2
    111  *           - ensure source page is resident (if uobj)
    112  *           - if case 2B alloc new anon and copy from source (could be zero
    113  *		fill if uobj == NULL)
    114  *           - map the correct page in
    115  *     - done!
    116  *
    117  * note on paging:
    118  *   if we have to do I/O we place a PG_BUSY page in the correct object,
    119  * unlock everything, and do the I/O.   when I/O is done we must reverify
    120  * the state of the world before assuming that our data structures are
    121  * valid.   [because mappings could change while the map is unlocked]
    122  *
    123  *  alternative 1: unbusy the page in question and restart the page fault
    124  *    from the top (ReFault).   this is easy but does not take advantage
    125  *    of the information that we already have from our previous lookup,
    126  *    although it is possible that the "hints" in the vm_map will help here.
    127  *
    128  * alternative 2: the system already keeps track of a "version" number of
    129  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
    130  *    mapping) you bump the version number up by one...]   so, we can save
    131  *    the version number of the map before we release the lock and start I/O.
    132  *    then when I/O is done we can relock and check the version numbers
    133  *    to see if anything changed.    this might save us some over 1 because
    134  *    we don't have to unbusy the page and may be less compares(?).
    135  *
    136  * alternative 3: put in backpointers or a way to "hold" part of a map
    137  *    in place while I/O is in progress.   this could be complex to
    138  *    implement (especially with structures like amap that can be referenced
    139  *    by multiple map entries, and figuring out what should wait could be
    140  *    complex as well...).
    141  *
    142  * we use alternative 2.  given that we are multi-threaded now we may want
    143  * to reconsider the choice.
    144  */
    145 
    146 /*
    147  * local data structures
    148  */
    149 
    150 struct uvm_advice {
    151 	int advice;
    152 	int nback;
    153 	int nforw;
    154 };
    155 
    156 /*
    157  * page range array:
    158  * note: index in array must match "advice" value
    159  * XXX: borrowed numbers from freebsd.   do they work well for us?
    160  */
    161 
    162 static const struct uvm_advice uvmadvice[] = {
    163 	{ UVM_ADV_NORMAL, 3, 4 },
    164 	{ UVM_ADV_RANDOM, 0, 0 },
    165 	{ UVM_ADV_SEQUENTIAL, 8, 7},
    166 };
    167 
    168 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
    169 
    170 /*
    171  * private prototypes
    172  */
    173 
    174 /*
    175  * inline functions
    176  */
    177 
    178 /*
    179  * uvmfault_anonflush: try and deactivate pages in specified anons
    180  *
    181  * => does not have to deactivate page if it is busy
    182  */
    183 
    184 static inline void
    185 uvmfault_anonflush(struct vm_anon **anons, int n)
    186 {
    187 	int lcv;
    188 	struct vm_page *pg;
    189 
    190 	for (lcv = 0; lcv < n; lcv++) {
    191 		if (anons[lcv] == NULL)
    192 			continue;
    193 		KASSERT(rw_lock_held(anons[lcv]->an_lock));
    194 		pg = anons[lcv]->an_page;
    195 		if (pg && (pg->flags & PG_BUSY) == 0) {
    196 			uvm_pagelock(pg);
    197 			uvm_pagedeactivate(pg);
    198 			uvm_pageunlock(pg);
    199 		}
    200 	}
    201 }
    202 
    203 /*
    204  * normal functions
    205  */
    206 
    207 /*
    208  * uvmfault_amapcopy: clear "needs_copy" in a map.
    209  *
    210  * => called with VM data structures unlocked (usually, see below)
    211  * => we get a write lock on the maps and clear needs_copy for a VA
    212  * => if we are out of RAM we sleep (waiting for more)
    213  */
    214 
    215 static void
    216 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
    217 {
    218 	for (;;) {
    219 
    220 		/*
    221 		 * no mapping?  give up.
    222 		 */
    223 
    224 		if (uvmfault_lookup(ufi, true) == false)
    225 			return;
    226 
    227 		/*
    228 		 * copy if needed.
    229 		 */
    230 
    231 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
    232 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
    233 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
    234 
    235 		/*
    236 		 * didn't work?  must be out of RAM.   unlock and sleep.
    237 		 */
    238 
    239 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
    240 			uvmfault_unlockmaps(ufi, true);
    241 			uvm_wait("fltamapcopy");
    242 			continue;
    243 		}
    244 
    245 		/*
    246 		 * got it!   unlock and return.
    247 		 */
    248 
    249 		uvmfault_unlockmaps(ufi, true);
    250 		return;
    251 	}
    252 	/*NOTREACHED*/
    253 }
    254 
    255 /*
    256  * uvmfault_anonget: get data in an anon into a non-busy, non-released
    257  * page in that anon.
    258  *
    259  * => Map, amap and thus anon should be locked by caller.
    260  * => If we fail, we unlock everything and error is returned.
    261  * => If we are successful, return with everything still locked.
    262  * => We do not move the page on the queues [gets moved later].  If we
    263  *    allocate a new page [we_own], it gets put on the queues.  Either way,
    264  *    the result is that the page is on the queues at return time
    265  * => For pages which are on loan from a uvm_object (and thus are not owned
    266  *    by the anon): if successful, return with the owning object locked.
    267  *    The caller must unlock this object when it unlocks everything else.
    268  */
    269 
    270 int
    271 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
    272     struct vm_anon *anon)
    273 {
    274 	struct vm_page *pg;
    275 	krw_t lock_type;
    276 	int error;
    277 
    278 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    279 	KASSERT(rw_lock_held(anon->an_lock));
    280 	KASSERT(anon->an_lock == amap->am_lock);
    281 
    282 	/* Increment the counters.*/
    283 	cpu_count(CPU_COUNT_FLTANGET, 1);
    284 	if (anon->an_page) {
    285 		curlwp->l_ru.ru_minflt++;
    286 	} else {
    287 		curlwp->l_ru.ru_majflt++;
    288 	}
    289 	error = 0;
    290 
    291 	/*
    292 	 * Loop until we get the anon data, or fail.
    293 	 */
    294 
    295 	for (;;) {
    296 		bool we_own, locked;
    297 		/*
    298 		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
    299 		 */
    300 		we_own = false;
    301 		pg = anon->an_page;
    302 
    303 		/*
    304 		 * If there is a resident page and it is loaned, then anon
    305 		 * may not own it.  Call out to uvm_anon_lockloanpg() to
    306 		 * identify and lock the real owner of the page.
    307 		 */
    308 
    309 		if (pg && pg->loan_count)
    310 			pg = uvm_anon_lockloanpg(anon);
    311 
    312 		/*
    313 		 * Is page resident?  Make sure it is not busy/released.
    314 		 */
    315 
    316 		lock_type = rw_lock_op(anon->an_lock);
    317 		if (pg) {
    318 
    319 			/*
    320 			 * at this point, if the page has a uobject [meaning
    321 			 * we have it on loan], then that uobject is locked
    322 			 * by us!   if the page is busy, we drop all the
    323 			 * locks (including uobject) and try again.
    324 			 */
    325 
    326 			if ((pg->flags & PG_BUSY) == 0) {
    327 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
    328 				return 0;
    329 			}
    330 			cpu_count(CPU_COUNT_FLTPGWAIT, 1);
    331 
    332 			/*
    333 			 * The last unlock must be an atomic unlock and wait
    334 			 * on the owner of page.
    335 			 */
    336 
    337 			if (pg->uobject) {
    338 				/* Owner of page is UVM object. */
    339 				uvmfault_unlockall(ufi, amap, NULL);
    340 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
    341 				    0,0,0);
    342 				uvm_pagewait(pg, pg->uobject->vmobjlock, "anonget1");
    343 			} else {
    344 				/* Owner of page is anon. */
    345 				uvmfault_unlockall(ufi, NULL, NULL);
    346 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
    347 				    0,0,0);
    348 				uvm_pagewait(pg, anon->an_lock, "anonget2");
    349 			}
    350 		} else {
    351 #if defined(VMSWAP)
    352 			/*
    353 			 * No page, therefore allocate one.  A write lock is
    354 			 * required for this.  If the caller didn't supply
    355 			 * one, fail now and have them retry.
    356 			 */
    357 
    358 			if (lock_type == RW_READER) {
    359 				return ENOLCK;
    360 			}
    361 			pg = uvm_pagealloc(NULL,
    362 			    ufi != NULL ? ufi->orig_rvaddr : 0,
    363 			    anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
    364 			if (pg == NULL) {
    365 				/* Out of memory.  Wait a little. */
    366 				uvmfault_unlockall(ufi, amap, NULL);
    367 				cpu_count(CPU_COUNT_FLTNORAM, 1);
    368 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
    369 				    0,0,0);
    370 				if (!uvm_reclaimable()) {
    371 					return ENOMEM;
    372 				}
    373 				uvm_wait("flt_noram1");
    374 			} else {
    375 				/* PG_BUSY bit is set. */
    376 				we_own = true;
    377 				uvmfault_unlockall(ufi, amap, NULL);
    378 
    379 				/*
    380 				 * Pass a PG_BUSY+PG_FAKE clean page into
    381 				 * the uvm_swap_get() function with all data
    382 				 * structures unlocked.  Note that it is OK
    383 				 * to read an_swslot here, because we hold
    384 				 * PG_BUSY on the page.
    385 				 */
    386 				cpu_count(CPU_COUNT_PAGEINS, 1);
    387 				error = uvm_swap_get(pg, anon->an_swslot,
    388 				    PGO_SYNCIO);
    389 
    390 				/*
    391 				 * We clean up after the I/O below in the
    392 				 * 'we_own' case.
    393 				 */
    394 			}
    395 #else
    396 			panic("%s: no page", __func__);
    397 #endif /* defined(VMSWAP) */
    398 		}
    399 
    400 		/*
    401 		 * Re-lock the map and anon.
    402 		 */
    403 
    404 		locked = uvmfault_relock(ufi);
    405 		if (locked || we_own) {
    406 			rw_enter(anon->an_lock, lock_type);
    407 		}
    408 
    409 		/*
    410 		 * If we own the page (i.e. we set PG_BUSY), then we need
    411 		 * to clean up after the I/O.  There are three cases to
    412 		 * consider:
    413 		 *
    414 		 * 1) Page was released during I/O: free anon and ReFault.
    415 		 * 2) I/O not OK.  Free the page and cause the fault to fail.
    416 		 * 3) I/O OK!  Activate the page and sync with the non-we_own
    417 		 *    case (i.e. drop anon lock if not locked).
    418 		 */
    419 
    420 		if (we_own) {
    421 			KASSERT(lock_type == RW_WRITER);
    422 #if defined(VMSWAP)
    423 			if (error) {
    424 
    425 				/*
    426 				 * Remove the swap slot from the anon and
    427 				 * mark the anon as having no real slot.
    428 				 * Do not free the swap slot, thus preventing
    429 				 * it from being used again.
    430 				 */
    431 
    432 				if (anon->an_swslot > 0) {
    433 					uvm_swap_markbad(anon->an_swslot, 1);
    434 				}
    435 				anon->an_swslot = SWSLOT_BAD;
    436 
    437 				if ((pg->flags & PG_RELEASED) != 0) {
    438 					goto released;
    439 				}
    440 
    441 				/*
    442 				 * Note: page was never !PG_BUSY, so it
    443 				 * cannot be mapped and thus no need to
    444 				 * pmap_page_protect() it.
    445 				 */
    446 
    447 				uvm_pagefree(pg);
    448 
    449 				if (locked) {
    450 					uvmfault_unlockall(ufi, NULL, NULL);
    451 				}
    452 				rw_exit(anon->an_lock);
    453 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
    454 				return error;
    455 			}
    456 
    457 			if ((pg->flags & PG_RELEASED) != 0) {
    458 released:
    459 				KASSERT(anon->an_ref == 0);
    460 
    461 				/*
    462 				 * Released while we had unlocked amap.
    463 				 */
    464 
    465 				if (locked) {
    466 					uvmfault_unlockall(ufi, NULL, NULL);
    467 				}
    468 				uvm_anon_release(anon);
    469 
    470 				if (error) {
    471 					UVMHIST_LOG(maphist,
    472 					    "<- ERROR/RELEASED", 0,0,0,0);
    473 					return error;
    474 				}
    475 
    476 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
    477 				return ERESTART;
    478 			}
    479 
    480 			/*
    481 			 * We have successfully read the page, activate it.
    482 			 */
    483 
    484 			uvm_pagelock(pg);
    485 			uvm_pageactivate(pg);
    486 			uvm_pagewakeup(pg);
    487 			uvm_pageunlock(pg);
    488 			pg->flags &= ~(PG_BUSY|PG_FAKE);
    489 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
    490 			UVM_PAGE_OWN(pg, NULL);
    491 #else
    492 			panic("%s: we_own", __func__);
    493 #endif /* defined(VMSWAP) */
    494 		}
    495 
    496 		/*
    497 		 * We were not able to re-lock the map - restart the fault.
    498 		 */
    499 
    500 		if (!locked) {
    501 			if (we_own) {
    502 				rw_exit(anon->an_lock);
    503 			}
    504 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    505 			return ERESTART;
    506 		}
    507 
    508 		/*
    509 		 * Verify that no one has touched the amap and moved
    510 		 * the anon on us.
    511 		 */
    512 
    513 		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
    514 		    ufi->orig_rvaddr - ufi->entry->start) != anon) {
    515 
    516 			uvmfault_unlockall(ufi, amap, NULL);
    517 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
    518 			return ERESTART;
    519 		}
    520 
    521 		/*
    522 		 * Retry..
    523 		 */
    524 
    525 		cpu_count(CPU_COUNT_FLTANRETRY, 1);
    526 		continue;
    527 	}
    528 	/*NOTREACHED*/
    529 }
    530 
    531 /*
    532  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
    533  *
    534  *	1. allocate an anon and a page.
    535  *	2. fill its contents.
    536  *	3. put it into amap.
    537  *
    538  * => if we fail (result != 0) we unlock everything.
    539  * => on success, return a new locked anon via 'nanon'.
    540  *    (*nanon)->an_page will be a resident, locked, dirty page.
    541  * => it's caller's responsibility to put the promoted nanon->an_page to the
    542  *    page queue.
    543  */
    544 
    545 static int
    546 uvmfault_promote(struct uvm_faultinfo *ufi,
    547     struct vm_anon *oanon,
    548     struct vm_page *uobjpage,
    549     struct vm_anon **nanon, /* OUT: allocated anon */
    550     struct vm_anon **spare)
    551 {
    552 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
    553 	struct uvm_object *uobj;
    554 	struct vm_anon *anon;
    555 	struct vm_page *pg;
    556 	struct vm_page *opg;
    557 	int error;
    558 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    559 
    560 	if (oanon) {
    561 		/* anon COW */
    562 		opg = oanon->an_page;
    563 		KASSERT(opg != NULL);
    564 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
    565 	} else if (uobjpage != PGO_DONTCARE) {
    566 		/* object-backed COW */
    567 		opg = uobjpage;
    568 		KASSERT(rw_lock_held(opg->uobject->vmobjlock));
    569 	} else {
    570 		/* ZFOD */
    571 		opg = NULL;
    572 	}
    573 	if (opg != NULL) {
    574 		uobj = opg->uobject;
    575 	} else {
    576 		uobj = NULL;
    577 	}
    578 
    579 	KASSERT(amap != NULL);
    580 	KASSERT(uobjpage != NULL);
    581 	KASSERT(rw_write_held(amap->am_lock));
    582 	KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
    583 	KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
    584 
    585 	if (*spare != NULL) {
    586 		anon = *spare;
    587 		*spare = NULL;
    588 	} else {
    589 		anon = uvm_analloc();
    590 	}
    591 	if (anon) {
    592 
    593 		/*
    594 		 * The new anon is locked.
    595 		 *
    596 		 * if opg == NULL, we want a zero'd, dirty page,
    597 		 * so have uvm_pagealloc() do that for us.
    598 		 */
    599 
    600 		KASSERT(anon->an_lock == NULL);
    601 		anon->an_lock = amap->am_lock;
    602 		pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
    603 		    UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
    604 		if (pg == NULL) {
    605 			anon->an_lock = NULL;
    606 		}
    607 	} else {
    608 		pg = NULL;
    609 	}
    610 
    611 	/*
    612 	 * out of memory resources?
    613 	 */
    614 
    615 	if (pg == NULL) {
    616 		/* save anon for the next try. */
    617 		if (anon != NULL) {
    618 			*spare = anon;
    619 		}
    620 
    621 		/* unlock and fail ... */
    622 		uvmfault_unlockall(ufi, amap, uobj);
    623 		if (!uvm_reclaimable()) {
    624 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
    625 			cpu_count(CPU_COUNT_FLTNOANON, 1);
    626 			error = ENOMEM;
    627 			goto done;
    628 		}
    629 
    630 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
    631 		cpu_count(CPU_COUNT_FLTNORAM, 1);
    632 		uvm_wait("flt_noram5");
    633 		error = ERESTART;
    634 		goto done;
    635 	}
    636 
    637 	/*
    638 	 * copy the page [pg now dirty]
    639 	 *
    640 	 * Remove the pmap entry now for the old page at this address
    641 	 * so that no thread can modify the new page while any thread
    642 	 * might still see the old page.
    643 	 */
    644 	if (opg) {
    645 		pmap_remove(vm_map_pmap(ufi->orig_map), ufi->orig_rvaddr,
    646 			     ufi->orig_rvaddr + PAGE_SIZE);
    647 		pmap_update(vm_map_pmap(ufi->orig_map));
    648 		uvm_pagecopy(opg, pg);
    649 	}
    650 	KASSERT(uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_DIRTY);
    651 
    652 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
    653 	    oanon != NULL);
    654 
    655 	/*
    656 	 * from this point on am_lock won't be dropped until the page is
    657 	 * entered, so it's safe to unbusy the page up front.
    658 	 *
    659 	 * uvm_fault_{upper,lower}_done will activate or enqueue the page.
    660 	 */
    661 
    662 	pg = anon->an_page;
    663 	pg->flags &= ~(PG_BUSY|PG_FAKE);
    664 	UVM_PAGE_OWN(pg, NULL);
    665 
    666 	*nanon = anon;
    667 	error = 0;
    668 done:
    669 	return error;
    670 }
    671 
    672 /*
    673  * Update statistics after fault resolution.
    674  * - maxrss
    675  */
    676 void
    677 uvmfault_update_stats(struct uvm_faultinfo *ufi)
    678 {
    679 	struct vm_map		*map;
    680 	struct vmspace 		*vm;
    681 	struct proc		*p;
    682 	vsize_t			 res;
    683 
    684 	map = ufi->orig_map;
    685 
    686 	p = curproc;
    687 	KASSERT(p != NULL);
    688 	vm = p->p_vmspace;
    689 
    690 	if (&vm->vm_map != map)
    691 		return;
    692 
    693 	res = pmap_resident_count(map->pmap);
    694 	if (vm->vm_rssmax < res)
    695 		vm->vm_rssmax = res;
    696 }
    697 
    698 /*
    699  *   F A U L T   -   m a i n   e n t r y   p o i n t
    700  */
    701 
    702 /*
    703  * uvm_fault: page fault handler
    704  *
    705  * => called from MD code to resolve a page fault
    706  * => VM data structures usually should be unlocked.   however, it is
    707  *	possible to call here with the main map locked if the caller
    708  *	gets a write lock, sets it recursive, and then calls us (c.f.
    709  *	uvm_map_pageable).   this should be avoided because it keeps
    710  *	the map locked off during I/O.
    711  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
    712  */
    713 
    714 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
    715 			 ~VM_PROT_WRITE : VM_PROT_ALL)
    716 
    717 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
    718 #define UVM_FAULT_WIRE		(1 << 0)
    719 #define UVM_FAULT_MAXPROT	(1 << 1)
    720 
    721 struct uvm_faultctx {
    722 
    723 	/*
    724 	 * the following members are set up by uvm_fault_check() and
    725 	 * read-only after that.
    726 	 *
    727 	 * note that narrow is used by uvm_fault_check() to change
    728 	 * the behaviour after ERESTART.
    729 	 *
    730 	 * most of them might change after RESTART if the underlying
    731 	 * map entry has been changed behind us.  an exception is
    732 	 * wire_paging, which does never change.
    733 	 */
    734 	vm_prot_t access_type;
    735 	vaddr_t startva;
    736 	int npages;
    737 	int centeridx;
    738 	bool narrow;		/* work on a single requested page only */
    739 	bool wire_mapping;	/* request a PMAP_WIRED mapping
    740 				   (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
    741 	bool wire_paging;	/* request uvm_pagewire
    742 				   (true for UVM_FAULT_WIRE) */
    743 	bool cow_now;		/* VM_PROT_WRITE is actually requested
    744 				   (ie. should break COW and page loaning) */
    745 
    746 	/*
    747 	 * enter_prot is set up by uvm_fault_check() and clamped
    748 	 * (ie. drop the VM_PROT_WRITE bit) in various places in case
    749 	 * of !cow_now.
    750 	 */
    751 	vm_prot_t enter_prot;	/* prot at which we want to enter pages in */
    752 
    753 	/*
    754 	 * the following member is for uvmfault_promote() and ERESTART.
    755 	 */
    756 	struct vm_anon *anon_spare;
    757 
    758 	/*
    759 	 * the following is actually a uvm_fault_lower() internal.
    760 	 * it's here merely for debugging.
    761 	 * (or due to the mechanical separation of the function?)
    762 	 */
    763 	bool promote;
    764 
    765 	/*
    766 	 * type of lock to acquire on objects in both layers.
    767 	 */
    768 	krw_t lower_lock_type;
    769 	krw_t upper_lock_type;
    770 };
    771 
    772 static inline int	uvm_fault_check(
    773 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    774 			    struct vm_anon ***, bool);
    775 
    776 static int		uvm_fault_upper(
    777 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    778 			    struct vm_anon **);
    779 static inline int	uvm_fault_upper_lookup(
    780 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    781 			    struct vm_anon **, struct vm_page **);
    782 static inline void	uvm_fault_upper_neighbor(
    783 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    784 			    vaddr_t, struct vm_page *, bool);
    785 static inline int	uvm_fault_upper_loan(
    786 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    787 			    struct vm_anon *, struct uvm_object **);
    788 static inline int	uvm_fault_upper_promote(
    789 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    790 			    struct uvm_object *, struct vm_anon *);
    791 static inline int	uvm_fault_upper_direct(
    792 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    793 			    struct uvm_object *, struct vm_anon *);
    794 static int		uvm_fault_upper_enter(
    795 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    796 			    struct uvm_object *, struct vm_anon *,
    797 			    struct vm_page *, struct vm_anon *);
    798 static inline void	uvm_fault_upper_done(
    799 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    800 			    struct vm_anon *, struct vm_page *);
    801 
    802 static int		uvm_fault_lower(
    803 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    804 			    struct vm_page **);
    805 static inline void	uvm_fault_lower_lookup(
    806 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    807 			    struct vm_page **);
    808 static inline void	uvm_fault_lower_neighbor(
    809 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    810 			    vaddr_t, struct vm_page *);
    811 static inline int	uvm_fault_lower_io(
    812 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    813 			    struct uvm_object **, struct vm_page **);
    814 static inline int	uvm_fault_lower_direct(
    815 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    816 			    struct uvm_object *, struct vm_page *);
    817 static inline int	uvm_fault_lower_direct_loan(
    818 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    819 			    struct uvm_object *, struct vm_page **,
    820 			    struct vm_page **);
    821 static inline int	uvm_fault_lower_promote(
    822 			    struct uvm_faultinfo *, struct uvm_faultctx *,
    823 			    struct uvm_object *, struct vm_page *);
    824 static int		uvm_fault_lower_enter(
    825 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    826 			    struct uvm_object *,
    827 			    struct vm_anon *, struct vm_page *);
    828 static inline void	uvm_fault_lower_done(
    829 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
    830 			    struct uvm_object *, struct vm_page *);
    831 
    832 int
    833 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
    834     vm_prot_t access_type, int fault_flag)
    835 {
    836 	struct uvm_faultinfo ufi;
    837 	struct uvm_faultctx flt = {
    838 		.access_type = access_type,
    839 
    840 		/* don't look for neighborhood * pages on "wire" fault */
    841 		.narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
    842 
    843 		/* "wire" fault causes wiring of both mapping and paging */
    844 		.wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
    845 		.wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
    846 
    847 		/*
    848 		 * default lock type to acquire on upper & lower layer
    849 		 * objects: reader.  this can be upgraded at any point
    850 		 * during the fault from read -> write and uvm_faultctx
    851 		 * changed to match, but is never downgraded write -> read.
    852 		 */
    853 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
    854 		.upper_lock_type = RW_WRITER,
    855 		.lower_lock_type = RW_WRITER,
    856 #else
    857 		.upper_lock_type = RW_READER,
    858 		.lower_lock_type = RW_READER,
    859 #endif
    860 	};
    861 	const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
    862 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
    863 	struct vm_page *pages_store[UVM_MAXRANGE], **pages;
    864 	int error;
    865 
    866 	UVMHIST_FUNC(__func__);
    867 	UVMHIST_CALLARGS(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)",
    868 	      (uintptr_t)orig_map, vaddr, access_type, fault_flag);
    869 
    870 	/* Don't count anything until user interaction is possible */
    871 	kpreempt_disable();
    872 	if (__predict_true(start_init_exec)) {
    873 		struct cpu_info *ci = curcpu();
    874 		CPU_COUNT(CPU_COUNT_NFAULT, 1);
    875 		/* Don't flood RNG subsystem with samples. */
    876 		if (++(ci->ci_faultrng) == 503) {
    877 			ci->ci_faultrng = 0;
    878 			rnd_add_uint32(&uvm_fault_rndsource,
    879 			    sizeof(vaddr_t) == sizeof(uint32_t) ?
    880 			    (uint32_t)vaddr : sizeof(vaddr_t) ==
    881 			    sizeof(uint64_t) ?
    882 			    (uint32_t)vaddr :
    883 			    (uint32_t)ci->ci_counts[CPU_COUNT_NFAULT]);
    884 		}
    885 	}
    886 	kpreempt_enable();
    887 
    888 	/*
    889 	 * init the IN parameters in the ufi
    890 	 */
    891 
    892 	ufi.orig_map = orig_map;
    893 	ufi.orig_rvaddr = trunc_page(vaddr);
    894 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
    895 
    896 	error = ERESTART;
    897 	while (error == ERESTART) { /* ReFault: */
    898 		anons = anons_store;
    899 		pages = pages_store;
    900 
    901 		error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
    902 		if (error != 0)
    903 			continue;
    904 
    905 		error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
    906 		if (error != 0)
    907 			continue;
    908 
    909 		if (pages[flt.centeridx] == PGO_DONTCARE)
    910 			error = uvm_fault_upper(&ufi, &flt, anons);
    911 		else {
    912 			struct uvm_object * const uobj =
    913 			    ufi.entry->object.uvm_obj;
    914 
    915 			if (uobj && uobj->pgops->pgo_fault != NULL) {
    916 				/*
    917 				 * invoke "special" fault routine.
    918 				 */
    919 				rw_enter(uobj->vmobjlock, RW_WRITER);
    920 				/* locked: maps(read), amap(if there), uobj */
    921 				error = uobj->pgops->pgo_fault(&ufi,
    922 				    flt.startva, pages, flt.npages,
    923 				    flt.centeridx, flt.access_type,
    924 				    PGO_LOCKED|PGO_SYNCIO);
    925 
    926 				/*
    927 				 * locked: nothing, pgo_fault has unlocked
    928 				 * everything
    929 				 */
    930 
    931 				/*
    932 				 * object fault routine responsible for
    933 				 * pmap_update().
    934 				 */
    935 
    936 				/*
    937 				 * Wake up the pagedaemon if the fault method
    938 				 * failed for lack of memory but some can be
    939 				 * reclaimed.
    940 				 */
    941 				if (error == ENOMEM && uvm_reclaimable()) {
    942 					uvm_wait("pgo_fault");
    943 					error = ERESTART;
    944 				}
    945 			} else {
    946 				error = uvm_fault_lower(&ufi, &flt, pages);
    947 			}
    948 		}
    949 	}
    950 
    951 	if (flt.anon_spare != NULL) {
    952 		flt.anon_spare->an_ref--;
    953 		KASSERT(flt.anon_spare->an_ref == 0);
    954 		KASSERT(flt.anon_spare->an_lock == NULL);
    955 		uvm_anfree(flt.anon_spare);
    956 	}
    957 	return error;
    958 }
    959 
    960 /*
    961  * uvm_fault_check: check prot, handle needs-copy, etc.
    962  *
    963  *	1. lookup entry.
    964  *	2. check protection.
    965  *	3. adjust fault condition (mainly for simulated fault).
    966  *	4. handle needs-copy (lazy amap copy).
    967  *	5. establish range of interest for neighbor fault (aka pre-fault).
    968  *	6. look up anons (if amap exists).
    969  *	7. flush pages (if MADV_SEQUENTIAL)
    970  *
    971  * => called with nothing locked.
    972  * => if we fail (result != 0) we unlock everything.
    973  * => initialize/adjust many members of flt.
    974  */
    975 
    976 static int
    977 uvm_fault_check(
    978 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
    979 	struct vm_anon ***ranons, bool maxprot)
    980 {
    981 	struct vm_amap *amap;
    982 	struct uvm_object *uobj;
    983 	vm_prot_t check_prot;
    984 	int nback, nforw;
    985 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    986 
    987 	/*
    988 	 * lookup and lock the maps
    989 	 */
    990 
    991 	if (uvmfault_lookup(ufi, false) == false) {
    992 		UVMHIST_LOG(maphist, "<- no mapping @ %#jx", ufi->orig_rvaddr,
    993 		    0,0,0);
    994 		return EFAULT;
    995 	}
    996 	/* locked: maps(read) */
    997 
    998 #ifdef DIAGNOSTIC
    999 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
   1000 		printf("Page fault on non-pageable map:\n");
   1001 		printf("ufi->map = %p\n", ufi->map);
   1002 		printf("ufi->orig_map = %p\n", ufi->orig_map);
   1003 		printf("ufi->orig_rvaddr = %#lx\n", (u_long) ufi->orig_rvaddr);
   1004 		panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
   1005 	}
   1006 #endif
   1007 
   1008 	/*
   1009 	 * check protection
   1010 	 */
   1011 
   1012 	check_prot = maxprot ?
   1013 	    ufi->entry->max_protection : ufi->entry->protection;
   1014 	if ((check_prot & flt->access_type) != flt->access_type) {
   1015 		UVMHIST_LOG(maphist,
   1016 		    "<- protection failure (prot=%#jx, access=%#jx)",
   1017 		    ufi->entry->protection, flt->access_type, 0, 0);
   1018 		uvmfault_unlockmaps(ufi, false);
   1019 		return EFAULT;
   1020 	}
   1021 
   1022 	/*
   1023 	 * "enter_prot" is the protection we want to enter the page in at.
   1024 	 * for certain pages (e.g. copy-on-write pages) this protection can
   1025 	 * be more strict than ufi->entry->protection.  "wired" means either
   1026 	 * the entry is wired or we are fault-wiring the pg.
   1027 	 */
   1028 
   1029 	flt->enter_prot = ufi->entry->protection;
   1030 	if (VM_MAPENT_ISWIRED(ufi->entry)) {
   1031 		flt->wire_mapping = true;
   1032 		flt->wire_paging = true;
   1033 		flt->narrow = true;
   1034 	}
   1035 
   1036 	if (flt->wire_mapping) {
   1037 		flt->access_type = flt->enter_prot; /* full access for wired */
   1038 		flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
   1039 	} else {
   1040 		flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
   1041 	}
   1042 
   1043 	if (flt->wire_paging) {
   1044 		/* wiring pages requires a write lock. */
   1045 		flt->upper_lock_type = RW_WRITER;
   1046 		flt->lower_lock_type = RW_WRITER;
   1047 	}
   1048 
   1049 	flt->promote = false;
   1050 
   1051 	/*
   1052 	 * handle "needs_copy" case.   if we need to copy the amap we will
   1053 	 * have to drop our readlock and relock it with a write lock.  (we
   1054 	 * need a write lock to change anything in a map entry [e.g.
   1055 	 * needs_copy]).
   1056 	 */
   1057 
   1058 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
   1059 		if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
   1060 			KASSERT(!maxprot);
   1061 			/* need to clear */
   1062 			UVMHIST_LOG(maphist,
   1063 			    "  need to clear needs_copy and refault",0,0,0,0);
   1064 			uvmfault_unlockmaps(ufi, false);
   1065 			uvmfault_amapcopy(ufi);
   1066 			cpu_count(CPU_COUNT_FLTAMCOPY, 1);
   1067 			return ERESTART;
   1068 
   1069 		} else {
   1070 
   1071 			/*
   1072 			 * ensure that we pmap_enter page R/O since
   1073 			 * needs_copy is still true
   1074 			 */
   1075 
   1076 			flt->enter_prot &= ~VM_PROT_WRITE;
   1077 		}
   1078 	}
   1079 
   1080 	/*
   1081 	 * identify the players
   1082 	 */
   1083 
   1084 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
   1085 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
   1086 
   1087 	/*
   1088 	 * check for a case 0 fault.  if nothing backing the entry then
   1089 	 * error now.
   1090 	 */
   1091 
   1092 	if (amap == NULL && uobj == NULL) {
   1093 		uvmfault_unlockmaps(ufi, false);
   1094 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
   1095 		return EFAULT;
   1096 	}
   1097 
   1098 	/*
   1099 	 * for a case 2B fault waste no time on adjacent pages because
   1100 	 * they are likely already entered.
   1101 	 */
   1102 
   1103 	if (uobj != NULL && amap != NULL &&
   1104 	    (flt->access_type & VM_PROT_WRITE) != 0) {
   1105 		/* wide fault (!narrow) */
   1106 		flt->narrow = true;
   1107 	}
   1108 
   1109 	/*
   1110 	 * establish range of interest based on advice from mapper
   1111 	 * and then clip to fit map entry.   note that we only want
   1112 	 * to do this the first time through the fault.   if we
   1113 	 * ReFault we will disable this by setting "narrow" to true.
   1114 	 */
   1115 
   1116 	if (flt->narrow == false) {
   1117 
   1118 		/* wide fault (!narrow) */
   1119 		KASSERT(uvmadvice[ufi->entry->advice].advice ==
   1120 			 ufi->entry->advice);
   1121 		nback = MIN(uvmadvice[ufi->entry->advice].nback,
   1122 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
   1123 		flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
   1124 		/*
   1125 		 * note: "-1" because we don't want to count the
   1126 		 * faulting page as forw
   1127 		 */
   1128 		nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
   1129 			    ((ufi->entry->end - ufi->orig_rvaddr) >>
   1130 			     PAGE_SHIFT) - 1);
   1131 		flt->npages = nback + nforw + 1;
   1132 		flt->centeridx = nback;
   1133 
   1134 		flt->narrow = true;	/* ensure only once per-fault */
   1135 
   1136 	} else {
   1137 
   1138 		/* narrow fault! */
   1139 		nback = nforw = 0;
   1140 		flt->startva = ufi->orig_rvaddr;
   1141 		flt->npages = 1;
   1142 		flt->centeridx = 0;
   1143 
   1144 	}
   1145 	/* offset from entry's start to pgs' start */
   1146 	const voff_t eoff = flt->startva - ufi->entry->start;
   1147 
   1148 	/* locked: maps(read) */
   1149 	UVMHIST_LOG(maphist, "  narrow=%jd, back=%jd, forw=%jd, startva=%#jx",
   1150 		    flt->narrow, nback, nforw, flt->startva);
   1151 	UVMHIST_LOG(maphist, "  entry=%#jx, amap=%#jx, obj=%#jx",
   1152 	    (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0);
   1153 
   1154 	/*
   1155 	 * guess at the most suitable lock types to acquire.
   1156 	 * if we've got an amap then lock it and extract current anons.
   1157 	 */
   1158 
   1159 	if (amap) {
   1160 		if ((amap_flags(amap) & AMAP_SHARED) == 0) {
   1161 			/*
   1162 			 * the amap isn't shared.  get a writer lock to
   1163 			 * avoid the cost of upgrading the lock later if
   1164 			 * needed.
   1165 			 *
   1166 			 * XXX nice for PostgreSQL, but consider threads.
   1167 			 */
   1168 			flt->upper_lock_type = RW_WRITER;
   1169 		} else if ((flt->access_type & VM_PROT_WRITE) != 0) {
   1170 			/*
   1171 			 * assume we're about to COW.
   1172 			 */
   1173 			flt->upper_lock_type = RW_WRITER;
   1174 		}
   1175 		amap_lock(amap, flt->upper_lock_type);
   1176 		amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
   1177 	} else {
   1178 		if ((flt->access_type & VM_PROT_WRITE) != 0) {
   1179 			/*
   1180 			 * we are about to dirty the object and that
   1181 			 * requires a write lock.
   1182 			 */
   1183 			flt->lower_lock_type = RW_WRITER;
   1184 		}
   1185 		*ranons = NULL;	/* to be safe */
   1186 	}
   1187 
   1188 	/* locked: maps(read), amap(if there) */
   1189 	KASSERT(amap == NULL ||
   1190 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   1191 
   1192 	/*
   1193 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
   1194 	 * now and then forget about them (for the rest of the fault).
   1195 	 */
   1196 
   1197 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
   1198 
   1199 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
   1200 		    0,0,0,0);
   1201 		/* flush back-page anons? */
   1202 		if (amap)
   1203 			uvmfault_anonflush(*ranons, nback);
   1204 
   1205 		/*
   1206 		 * flush object?  change lock type to RW_WRITER, to avoid
   1207 		 * excessive competition between read/write locks if many
   1208 		 * threads doing "sequential access".
   1209 		 */
   1210 		if (uobj) {
   1211 			voff_t uoff;
   1212 
   1213 			flt->lower_lock_type = RW_WRITER;
   1214 			uoff = ufi->entry->offset + eoff;
   1215 			rw_enter(uobj->vmobjlock, RW_WRITER);
   1216 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
   1217 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
   1218 		}
   1219 
   1220 		/* now forget about the backpages */
   1221 		if (amap)
   1222 			*ranons += nback;
   1223 		flt->startva += (nback << PAGE_SHIFT);
   1224 		flt->npages -= nback;
   1225 		flt->centeridx = 0;
   1226 	}
   1227 	/*
   1228 	 * => startva is fixed
   1229 	 * => npages is fixed
   1230 	 */
   1231 	KASSERT(flt->startva <= ufi->orig_rvaddr);
   1232 	KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
   1233 	    flt->startva + (flt->npages << PAGE_SHIFT));
   1234 	return 0;
   1235 }
   1236 
   1237 /*
   1238  * uvm_fault_upper_upgrade: upgrade upper lock, reader -> writer
   1239  */
   1240 
   1241 static inline int
   1242 uvm_fault_upper_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1243     struct vm_amap *amap, struct uvm_object *uobj)
   1244 {
   1245 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1246 
   1247 	KASSERT(amap != NULL);
   1248 	KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock));
   1249 
   1250 	/*
   1251 	 * fast path.
   1252 	 */
   1253 
   1254 	if (__predict_true(flt->upper_lock_type == RW_WRITER)) {
   1255 		return 0;
   1256 	}
   1257 
   1258 	/*
   1259 	 * otherwise try for the upgrade.  if we don't get it, unlock
   1260 	 * everything, restart the fault and next time around get a writer
   1261 	 * lock.
   1262 	 */
   1263 
   1264 	flt->upper_lock_type = RW_WRITER;
   1265 	if (__predict_false(!rw_tryupgrade(amap->am_lock))) {
   1266 		uvmfault_unlockall(ufi, amap, uobj);
   1267 		cpu_count(CPU_COUNT_FLTNOUP, 1);
   1268 		UVMHIST_LOG(maphist, "  !upgrade upper", 0, 0,0,0);
   1269 		return ERESTART;
   1270 	}
   1271 	cpu_count(CPU_COUNT_FLTUP, 1);
   1272 	KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock));
   1273 	return 0;
   1274 }
   1275 
   1276 /*
   1277  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
   1278  *
   1279  * iterate range of interest:
   1280  *	1. check if h/w mapping exists.  if yes, we don't care
   1281  *	2. check if anon exists.  if not, page is lower.
   1282  *	3. if anon exists, enter h/w mapping for neighbors.
   1283  *
   1284  * => called with amap locked (if exists).
   1285  */
   1286 
   1287 static int
   1288 uvm_fault_upper_lookup(
   1289 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1290 	struct vm_anon **anons, struct vm_page **pages)
   1291 {
   1292 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
   1293 	int lcv;
   1294 	vaddr_t currva;
   1295 	bool shadowed __unused;
   1296 	bool entered;
   1297 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1298 
   1299 	/* locked: maps(read), amap(if there) */
   1300 	KASSERT(amap == NULL ||
   1301 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   1302 
   1303 	/*
   1304 	 * map in the backpages and frontpages we found in the amap in hopes
   1305 	 * of preventing future faults.    we also init the pages[] array as
   1306 	 * we go.
   1307 	 */
   1308 
   1309 	currva = flt->startva;
   1310 	shadowed = false;
   1311 	entered = false;
   1312 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   1313 		/*
   1314 		 * unmapped or center page.   check if any anon at this level.
   1315 		 */
   1316 		if (amap == NULL || anons[lcv] == NULL) {
   1317 			pages[lcv] = NULL;
   1318 			continue;
   1319 		}
   1320 
   1321 		/*
   1322 		 * check for present page and map if possible.
   1323 		 */
   1324 
   1325 		pages[lcv] = PGO_DONTCARE;
   1326 		if (lcv == flt->centeridx) {	/* save center for later! */
   1327 			shadowed = true;
   1328 			continue;
   1329 		}
   1330 
   1331 		struct vm_anon *anon = anons[lcv];
   1332 		struct vm_page *pg = anon->an_page;
   1333 
   1334 		KASSERT(anon->an_lock == amap->am_lock);
   1335 
   1336 		/*
   1337 		 * ignore loaned and busy pages.
   1338 		 * don't play with VAs that are already mapped.
   1339 		 */
   1340 
   1341 		if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0 &&
   1342 		    !pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
   1343 			uvm_fault_upper_neighbor(ufi, flt, currva,
   1344 			    pg, anon->an_ref > 1);
   1345 			entered = true;
   1346 		}
   1347 	}
   1348 	if (entered) {
   1349 		pmap_update(ufi->orig_map->pmap);
   1350 	}
   1351 
   1352 	/* locked: maps(read), amap(if there) */
   1353 	KASSERT(amap == NULL ||
   1354 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   1355 	/* (shadowed == true) if there is an anon at the faulting address */
   1356 	UVMHIST_LOG(maphist, "  shadowed=%jd, will_get=%jd", shadowed,
   1357 	    (ufi->entry->object.uvm_obj && shadowed != false),0,0);
   1358 
   1359 	return 0;
   1360 }
   1361 
   1362 /*
   1363  * uvm_fault_upper_neighbor: enter single upper neighbor page.
   1364  *
   1365  * => called with amap and anon locked.
   1366  */
   1367 
   1368 static void
   1369 uvm_fault_upper_neighbor(
   1370 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1371 	vaddr_t currva, struct vm_page *pg, bool readonly)
   1372 {
   1373 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1374 
   1375 	/* locked: amap, anon */
   1376 
   1377 	KASSERT(pg->uobject == NULL);
   1378 	KASSERT(pg->uanon != NULL);
   1379 	KASSERT(rw_lock_op(pg->uanon->an_lock) == flt->upper_lock_type);
   1380 	KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
   1381 
   1382 	/*
   1383 	 * there wasn't a direct fault on the page, so avoid the cost of
   1384 	 * activating it.
   1385 	 */
   1386 
   1387 	if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) {
   1388 		uvm_pagelock(pg);
   1389 		uvm_pageenqueue(pg);
   1390 		uvm_pageunlock(pg);
   1391 	}
   1392 
   1393 	UVMHIST_LOG(maphist,
   1394 	    "  MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx",
   1395 	    (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
   1396 	cpu_count(CPU_COUNT_FLTNAMAP, 1);
   1397 
   1398 	/*
   1399 	 * Since this page isn't the page that's actually faulting,
   1400 	 * ignore pmap_enter() failures; it's not critical that we
   1401 	 * enter these right now.
   1402 	 */
   1403 
   1404 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   1405 	    VM_PAGE_TO_PHYS(pg),
   1406 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   1407 	    flt->enter_prot,
   1408 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
   1409 }
   1410 
   1411 /*
   1412  * uvm_fault_upper: handle upper fault.
   1413  *
   1414  *	1. acquire anon lock.
   1415  *	2. get anon.  let uvmfault_anonget do the dirty work.
   1416  *	3. handle loan.
   1417  *	4. dispatch direct or promote handlers.
   1418  */
   1419 
   1420 static int
   1421 uvm_fault_upper(
   1422 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1423 	struct vm_anon **anons)
   1424 {
   1425 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1426 	struct vm_anon * const anon = anons[flt->centeridx];
   1427 	struct uvm_object *uobj;
   1428 	int error;
   1429 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1430 
   1431 	/* locked: maps(read), amap, anon */
   1432 	KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   1433 	KASSERT(anon->an_lock == amap->am_lock);
   1434 
   1435 	/*
   1436 	 * handle case 1: fault on an anon in our amap
   1437 	 */
   1438 
   1439 	UVMHIST_LOG(maphist, "  case 1 fault: anon=%#jx",
   1440 	    (uintptr_t)anon, 0, 0, 0);
   1441 
   1442 	/*
   1443 	 * no matter if we have case 1A or case 1B we are going to need to
   1444 	 * have the anon's memory resident.   ensure that now.
   1445 	 */
   1446 
   1447 	/*
   1448 	 * let uvmfault_anonget do the dirty work.
   1449 	 * if it fails (!OK) it will unlock everything for us.
   1450 	 * if it succeeds, locks are still valid and locked.
   1451 	 * also, if it is OK, then the anon's page is on the queues.
   1452 	 * if the page is on loan from a uvm_object, then anonget will
   1453 	 * lock that object for us if it does not fail.
   1454 	 */
   1455  retry:
   1456 	error = uvmfault_anonget(ufi, amap, anon);
   1457 	switch (error) {
   1458 	case 0:
   1459 		break;
   1460 
   1461 	case ERESTART:
   1462 		return ERESTART;
   1463 
   1464 	case EAGAIN:
   1465 		kpause("fltagain1", false, hz/2, NULL);
   1466 		return ERESTART;
   1467 
   1468 	case ENOLCK:
   1469 		/* it needs a write lock: retry */
   1470 		error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
   1471 		if (error != 0) {
   1472 			return error;
   1473 		}
   1474 		KASSERT(rw_write_held(amap->am_lock));
   1475 		goto retry;
   1476 
   1477 	default:
   1478 		return error;
   1479 	}
   1480 
   1481 	/*
   1482 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
   1483 	 */
   1484 
   1485 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
   1486 
   1487 	/* locked: maps(read), amap, anon, uobj(if one) */
   1488 	KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   1489 	KASSERT(anon->an_lock == amap->am_lock);
   1490 	KASSERT(uobj == NULL ||
   1491 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
   1492 
   1493 	/*
   1494 	 * special handling for loaned pages
   1495 	 */
   1496 
   1497 	if (anon->an_page->loan_count) {
   1498 		error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
   1499 		if (error != 0)
   1500 			return error;
   1501 	}
   1502 
   1503 	/*
   1504 	 * if we are case 1B then we will need to allocate a new blank
   1505 	 * anon to transfer the data into.   note that we have a lock
   1506 	 * on anon, so no one can busy or release the page until we are done.
   1507 	 * also note that the ref count can't drop to zero here because
   1508 	 * it is > 1 and we are only dropping one ref.
   1509 	 *
   1510 	 * in the (hopefully very rare) case that we are out of RAM we
   1511 	 * will unlock, wait for more RAM, and refault.
   1512 	 *
   1513 	 * if we are out of anon VM we kill the process (XXX: could wait?).
   1514 	 */
   1515 
   1516 	if (flt->cow_now && anon->an_ref > 1) {
   1517 		flt->promote = true;
   1518 		error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
   1519 	} else {
   1520 		error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
   1521 	}
   1522 	return error;
   1523 }
   1524 
   1525 /*
   1526  * uvm_fault_upper_loan: handle loaned upper page.
   1527  *
   1528  *	1. if not cow'ing now, simply adjust flt->enter_prot.
   1529  *	2. if cow'ing now, and if ref count is 1, break loan.
   1530  */
   1531 
   1532 static int
   1533 uvm_fault_upper_loan(
   1534 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1535 	struct vm_anon *anon, struct uvm_object **ruobj)
   1536 {
   1537 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1538 	int error = 0;
   1539 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1540 
   1541 	if (!flt->cow_now) {
   1542 
   1543 		/*
   1544 		 * for read faults on loaned pages we just cap the
   1545 		 * protection at read-only.
   1546 		 */
   1547 
   1548 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1549 
   1550 	} else {
   1551 		/*
   1552 		 * note that we can't allow writes into a loaned page!
   1553 		 *
   1554 		 * if we have a write fault on a loaned page in an
   1555 		 * anon then we need to look at the anon's ref count.
   1556 		 * if it is greater than one then we are going to do
   1557 		 * a normal copy-on-write fault into a new anon (this
   1558 		 * is not a problem).  however, if the reference count
   1559 		 * is one (a case where we would normally allow a
   1560 		 * write directly to the page) then we need to kill
   1561 		 * the loan before we continue.
   1562 		 */
   1563 
   1564 		/* >1 case is already ok */
   1565 		if (anon->an_ref == 1) {
   1566 			/* breaking loan requires a write lock. */
   1567 			error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
   1568 			if (error != 0) {
   1569 				return error;
   1570 			}
   1571 			KASSERT(rw_write_held(amap->am_lock));
   1572 
   1573 			error = uvm_loanbreak_anon(anon, *ruobj);
   1574 			if (error != 0) {
   1575 				uvmfault_unlockall(ufi, amap, *ruobj);
   1576 				uvm_wait("flt_noram2");
   1577 				return ERESTART;
   1578 			}
   1579 			/* if we were a loan receiver uobj is gone */
   1580 			if (*ruobj)
   1581 				*ruobj = NULL;
   1582 		}
   1583 	}
   1584 	return error;
   1585 }
   1586 
   1587 /*
   1588  * uvm_fault_upper_promote: promote upper page.
   1589  *
   1590  *	1. call uvmfault_promote.
   1591  *	2. enqueue page.
   1592  *	3. deref.
   1593  *	4. pass page to uvm_fault_upper_enter.
   1594  */
   1595 
   1596 static int
   1597 uvm_fault_upper_promote(
   1598 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1599 	struct uvm_object *uobj, struct vm_anon *anon)
   1600 {
   1601 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1602 	struct vm_anon * const oanon = anon;
   1603 	struct vm_page *pg;
   1604 	int error;
   1605 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1606 
   1607 	UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
   1608 	cpu_count(CPU_COUNT_FLT_ACOW, 1);
   1609 
   1610 	/* promoting requires a write lock. */
   1611 	error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
   1612 	if (error != 0) {
   1613 		return error;
   1614 	}
   1615 	KASSERT(rw_write_held(amap->am_lock));
   1616 
   1617 	error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
   1618 	    &flt->anon_spare);
   1619 	switch (error) {
   1620 	case 0:
   1621 		break;
   1622 	case ERESTART:
   1623 		return ERESTART;
   1624 	default:
   1625 		return error;
   1626 	}
   1627 	pg = anon->an_page;
   1628 
   1629 	KASSERT(anon->an_lock == oanon->an_lock);
   1630 	KASSERT((pg->flags & (PG_BUSY | PG_FAKE)) == 0);
   1631 
   1632 	/* deref: can not drop to zero here by defn! */
   1633 	KASSERT(oanon->an_ref > 1);
   1634 	oanon->an_ref--;
   1635 
   1636 	/*
   1637 	 * note: oanon is still locked, as is the new anon.  we
   1638 	 * need to check for this later when we unlock oanon; if
   1639 	 * oanon != anon, we'll have to unlock anon, too.
   1640 	 */
   1641 
   1642 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1643 }
   1644 
   1645 /*
   1646  * uvm_fault_upper_direct: handle direct fault.
   1647  */
   1648 
   1649 static int
   1650 uvm_fault_upper_direct(
   1651 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1652 	struct uvm_object *uobj, struct vm_anon *anon)
   1653 {
   1654 	struct vm_anon * const oanon = anon;
   1655 	struct vm_page *pg;
   1656 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1657 
   1658 	cpu_count(CPU_COUNT_FLT_ANON, 1);
   1659 	pg = anon->an_page;
   1660 	if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
   1661 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   1662 
   1663 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
   1664 }
   1665 
   1666 /*
   1667  * uvm_fault_upper_enter: enter h/w mapping of upper page.
   1668  */
   1669 
   1670 static int
   1671 uvm_fault_upper_enter(
   1672 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1673 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
   1674 	struct vm_anon *oanon)
   1675 {
   1676 	struct pmap *pmap = ufi->orig_map->pmap;
   1677 	vaddr_t va = ufi->orig_rvaddr;
   1678 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   1679 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1680 
   1681 	/* locked: maps(read), amap, oanon, anon(if different from oanon) */
   1682 	KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   1683 	KASSERT(anon->an_lock == amap->am_lock);
   1684 	KASSERT(oanon->an_lock == amap->am_lock);
   1685 	KASSERT(uobj == NULL ||
   1686 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
   1687 	KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
   1688 
   1689 	/*
   1690 	 * now map the page in.
   1691 	 */
   1692 
   1693 	UVMHIST_LOG(maphist,
   1694 	    "  MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
   1695 	    (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote);
   1696 	if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg),
   1697 	    flt->enter_prot, flt->access_type | PMAP_CANFAIL |
   1698 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   1699 
   1700 		/*
   1701 		 * If pmap_enter() fails, it must not leave behind an existing
   1702 		 * pmap entry.  In particular, a now-stale entry for a different
   1703 		 * page would leave the pmap inconsistent with the vm_map.
   1704 		 * This is not to imply that pmap_enter() should remove an
   1705 		 * existing mapping in such a situation (since that could create
   1706 		 * different problems, eg. if the existing mapping is wired),
   1707 		 * but rather that the pmap should be designed such that it
   1708 		 * never needs to fail when the new mapping is replacing an
   1709 		 * existing mapping and the new page has no existing mappings.
   1710 		 *
   1711 		 * XXX This can't be asserted safely any more because many
   1712 		 * LWPs and/or many processes could simultaneously fault on
   1713 		 * the same VA and some might succeed.
   1714 		 */
   1715 
   1716 		/* KASSERT(!pmap_extract(pmap, va, NULL)); */
   1717 
   1718 		/*
   1719 		 * ensure that the page is queued in the case that
   1720 		 * we just promoted.
   1721 		 */
   1722 
   1723 		uvm_pagelock(pg);
   1724 		uvm_pageenqueue(pg);
   1725 		uvm_pageunlock(pg);
   1726 
   1727 		/*
   1728 		 * No need to undo what we did; we can simply think of
   1729 		 * this as the pmap throwing away the mapping information.
   1730 		 *
   1731 		 * We do, however, have to go through the ReFault path,
   1732 		 * as the map may change while we're asleep.
   1733 		 */
   1734 
   1735 		uvmfault_unlockall(ufi, amap, uobj);
   1736 		if (!uvm_reclaimable()) {
   1737 			UVMHIST_LOG(maphist,
   1738 			    "<- failed.  out of VM",0,0,0,0);
   1739 			/* XXX instrumentation */
   1740 			return ENOMEM;
   1741 		}
   1742 		/* XXX instrumentation */
   1743 		uvm_wait("flt_pmfail1");
   1744 		return ERESTART;
   1745 	}
   1746 
   1747 	uvm_fault_upper_done(ufi, flt, anon, pg);
   1748 
   1749 	/*
   1750 	 * done case 1!  finish up by unlocking everything and returning success
   1751 	 */
   1752 
   1753 	pmap_update(pmap);
   1754 	uvmfault_unlockall(ufi, amap, uobj);
   1755 	return 0;
   1756 }
   1757 
   1758 /*
   1759  * uvm_fault_upper_done: queue upper center page.
   1760  */
   1761 
   1762 static void
   1763 uvm_fault_upper_done(
   1764 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1765 	struct vm_anon *anon, struct vm_page *pg)
   1766 {
   1767 	const bool wire_paging = flt->wire_paging;
   1768 
   1769 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1770 
   1771 	/*
   1772 	 * ... update the page queues.
   1773 	 */
   1774 
   1775 	if (wire_paging) {
   1776 		uvm_pagelock(pg);
   1777 		uvm_pagewire(pg);
   1778 		uvm_pageunlock(pg);
   1779 
   1780 		/*
   1781 		 * since the now-wired page cannot be paged out,
   1782 		 * release its swap resources for others to use.
   1783 		 * and since an anon with no swap cannot be clean,
   1784 		 * mark it dirty now.
   1785 		 */
   1786 
   1787 		uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   1788 		uvm_anon_dropswap(anon);
   1789 	} else if (uvmpdpol_pageactivate_p(pg)) {
   1790 		/*
   1791 		 * avoid re-activating the page unless needed,
   1792 		 * to avoid false sharing on multiprocessor.
   1793 		 */
   1794 
   1795 		uvm_pagelock(pg);
   1796 		uvm_pageactivate(pg);
   1797 		uvm_pageunlock(pg);
   1798 	}
   1799 }
   1800 
   1801 /*
   1802  * uvm_fault_lower_upgrade: upgrade lower lock, reader -> writer
   1803  */
   1804 
   1805 static inline int
   1806 uvm_fault_lower_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1807     struct vm_amap *amap, struct uvm_object *uobj, struct vm_page *uobjpage)
   1808 {
   1809 
   1810 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1811 
   1812 	KASSERT(uobj != NULL);
   1813 	KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock));
   1814 
   1815 	/*
   1816 	 * fast path.
   1817 	 */
   1818 
   1819 	if (__predict_true(flt->lower_lock_type == RW_WRITER)) {
   1820 		return 0;
   1821 	}
   1822 
   1823 	/*
   1824 	 * otherwise try for the upgrade.  if we don't get it, unlock
   1825 	 * everything, restart the fault and next time around get a writer
   1826 	 * lock.
   1827 	 */
   1828 
   1829 	flt->lower_lock_type = RW_WRITER;
   1830 	if (__predict_false(!rw_tryupgrade(uobj->vmobjlock))) {
   1831 		uvmfault_unlockall(ufi, amap, uobj);
   1832 		cpu_count(CPU_COUNT_FLTNOUP, 1);
   1833 		UVMHIST_LOG(maphist, "  !upgrade lower", 0, 0,0,0);
   1834 		return ERESTART;
   1835 	}
   1836 	cpu_count(CPU_COUNT_FLTUP, 1);
   1837 	KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock));
   1838 	return 0;
   1839 }
   1840 
   1841 /*
   1842  * uvm_fault_lower: handle lower fault.
   1843  *
   1844  *	1. check uobj
   1845  *	1.1. if null, ZFOD.
   1846  *	1.2. if not null, look up unmapped neighbor pages.
   1847  *	2. for center page, check if promote.
   1848  *	2.1. ZFOD always needs promotion.
   1849  *	2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
   1850  *	3. if uobj is not ZFOD and page is not found, do i/o.
   1851  *	4. dispatch either direct / promote fault.
   1852  */
   1853 
   1854 static int
   1855 uvm_fault_lower(
   1856 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   1857 	struct vm_page **pages)
   1858 {
   1859 	struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap;
   1860 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1861 	struct vm_page *uobjpage;
   1862 	int error;
   1863 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1864 
   1865 	/*
   1866 	 * now, if the desired page is not shadowed by the amap and we have
   1867 	 * a backing object that does not have a special fault routine, then
   1868 	 * we ask (with pgo_get) the object for resident pages that we care
   1869 	 * about and attempt to map them in.  we do not let pgo_get block
   1870 	 * (PGO_LOCKED).
   1871 	 */
   1872 
   1873 	if (uobj == NULL) {
   1874 		/* zero fill; don't care neighbor pages */
   1875 		uobjpage = NULL;
   1876 	} else {
   1877 		uvm_fault_lower_lookup(ufi, flt, pages);
   1878 		uobjpage = pages[flt->centeridx];
   1879 	}
   1880 
   1881 	/*
   1882 	 * note that at this point we are done with any front or back pages.
   1883 	 * we are now going to focus on the center page (i.e. the one we've
   1884 	 * faulted on).  if we have faulted on the upper (anon) layer
   1885 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
   1886 	 * not touched it yet).  if we have faulted on the bottom (uobj)
   1887 	 * layer [i.e. case 2] and the page was both present and available,
   1888 	 * then we've got a pointer to it as "uobjpage" and we've already
   1889 	 * made it BUSY.
   1890 	 */
   1891 
   1892 	/*
   1893 	 * locked:
   1894 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
   1895 	 */
   1896 	KASSERT(amap == NULL ||
   1897 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   1898 	KASSERT(uobj == NULL ||
   1899 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
   1900 
   1901 	/*
   1902 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
   1903 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
   1904 	 * have a backing object, check and see if we are going to promote
   1905 	 * the data up to an anon during the fault.
   1906 	 */
   1907 
   1908 	if (uobj == NULL) {
   1909 		uobjpage = PGO_DONTCARE;
   1910 		flt->promote = true;		/* always need anon here */
   1911 	} else {
   1912 		KASSERT(uobjpage != PGO_DONTCARE);
   1913 		flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
   1914 	}
   1915 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%jd, zfill=%jd",
   1916 	    flt->promote, (uobj == NULL), 0,0);
   1917 
   1918 	/*
   1919 	 * if uobjpage is not null then we do not need to do I/O to get the
   1920 	 * uobjpage.
   1921 	 *
   1922 	 * if uobjpage is null, then we need to unlock and ask the pager to
   1923 	 * get the data for us.   once we have the data, we need to reverify
   1924 	 * the state the world.   we are currently not holding any resources.
   1925 	 */
   1926 
   1927 	if (uobjpage) {
   1928 		/* update rusage counters */
   1929 		curlwp->l_ru.ru_minflt++;
   1930 	} else {
   1931 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
   1932 		if (error != 0)
   1933 			return error;
   1934 	}
   1935 
   1936 	/*
   1937 	 * locked:
   1938 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
   1939 	 */
   1940 	KASSERT(amap == NULL ||
   1941 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   1942 	KASSERT(uobj == NULL ||
   1943 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
   1944 
   1945 	/*
   1946 	 * notes:
   1947 	 *  - at this point uobjpage can not be NULL
   1948 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
   1949 	 *  for it above)
   1950 	 *  - at this point uobjpage could be waited on (handle later)
   1951 	 *  - uobjpage can be from a different object if tmpfs (vnode vs UAO)
   1952 	 */
   1953 
   1954 	KASSERT(uobjpage != NULL);
   1955 	KASSERT(uobj == NULL ||
   1956 	    uobjpage->uobject->vmobjlock == uobj->vmobjlock);
   1957 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
   1958 	    uvm_pagegetdirty(uobjpage) == UVM_PAGE_STATUS_CLEAN);
   1959 
   1960 	if (!flt->promote) {
   1961 		error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
   1962 	} else {
   1963 		error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
   1964 	}
   1965 	return error;
   1966 }
   1967 
   1968 /*
   1969  * uvm_fault_lower_lookup: look up on-memory uobj pages.
   1970  *
   1971  *	1. get on-memory pages.
   1972  *	2. if failed, give up (get only center page later).
   1973  *	3. if succeeded, enter h/w mapping of neighbor pages.
   1974  */
   1975 
   1976 static void
   1977 uvm_fault_lower_lookup(
   1978 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   1979 	struct vm_page **pages)
   1980 {
   1981 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
   1982 	int lcv, gotpages;
   1983 	vaddr_t currva;
   1984 	bool entered;
   1985 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   1986 
   1987 	rw_enter(uobj->vmobjlock, flt->lower_lock_type);
   1988 
   1989 	/*
   1990 	 * Locked: maps(read), amap(if there), uobj
   1991 	 */
   1992 
   1993 	cpu_count(CPU_COUNT_FLTLGET, 1);
   1994 	gotpages = flt->npages;
   1995 	(void) uobj->pgops->pgo_get(uobj,
   1996 	    ufi->entry->offset + flt->startva - ufi->entry->start,
   1997 	    pages, &gotpages, flt->centeridx,
   1998 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice,
   1999 	    PGO_LOCKED);
   2000 
   2001 	KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
   2002 
   2003 	/*
   2004 	 * check for pages to map, if we got any
   2005 	 */
   2006 
   2007 	if (gotpages == 0) {
   2008 		pages[flt->centeridx] = NULL;
   2009 		return;
   2010 	}
   2011 
   2012 	entered = false;
   2013 	currva = flt->startva;
   2014 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
   2015 		struct vm_page *curpg;
   2016 
   2017 		curpg = pages[lcv];
   2018 		if (curpg == NULL || curpg == PGO_DONTCARE) {
   2019 			continue;
   2020 		}
   2021 
   2022 		/*
   2023 		 * in the case of tmpfs, the pages might be from a different
   2024 		 * uvm_object.  just make sure that they have the same lock.
   2025 		 */
   2026 
   2027 		KASSERT(curpg->uobject->vmobjlock == uobj->vmobjlock);
   2028 		KASSERT((curpg->flags & PG_BUSY) == 0);
   2029 
   2030 		/*
   2031 		 * leave the centre page for later.  don't screw with
   2032 		 * existing mappings (needless & expensive).
   2033 		 */
   2034 
   2035 		if (lcv == flt->centeridx) {
   2036 			UVMHIST_LOG(maphist, "  got uobjpage (%#jx) "
   2037 			    "with locked get", (uintptr_t)curpg, 0, 0, 0);
   2038 		} else if (!pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
   2039 			uvm_fault_lower_neighbor(ufi, flt, currva, curpg);
   2040 			entered = true;
   2041 		}
   2042 	}
   2043 	if (entered) {
   2044 		pmap_update(ufi->orig_map->pmap);
   2045 	}
   2046 }
   2047 
   2048 /*
   2049  * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
   2050  */
   2051 
   2052 static void
   2053 uvm_fault_lower_neighbor(
   2054 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2055 	vaddr_t currva, struct vm_page *pg)
   2056 {
   2057 	const bool readonly = uvm_pagereadonly_p(pg) || pg->loan_count > 0;
   2058 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   2059 
   2060 	/* locked: maps(read), amap(if there), uobj */
   2061 
   2062 	/*
   2063 	 * calling pgo_get with PGO_LOCKED returns us pages which
   2064 	 * are neither busy nor released, so we don't need to check
   2065 	 * for this.  we can just directly enter the pages.
   2066 	 *
   2067 	 * there wasn't a direct fault on the page, so avoid the cost of
   2068 	 * activating it.
   2069 	 */
   2070 
   2071 	if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) {
   2072 		uvm_pagelock(pg);
   2073 		uvm_pageenqueue(pg);
   2074 		uvm_pageunlock(pg);
   2075 	}
   2076 
   2077 	UVMHIST_LOG(maphist,
   2078 	    "  MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx",
   2079 	    (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
   2080 	cpu_count(CPU_COUNT_FLTNOMAP, 1);
   2081 
   2082 	/*
   2083 	 * Since this page isn't the page that's actually faulting,
   2084 	 * ignore pmap_enter() failures; it's not critical that we
   2085 	 * enter these right now.
   2086 	 * NOTE: page can't be waited on or PG_RELEASED because we've
   2087 	 * held the lock the whole time we've had the handle.
   2088 	 */
   2089 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   2090 	KASSERT((pg->flags & PG_RELEASED) == 0);
   2091 	KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
   2092 	    uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN);
   2093 	KASSERT((pg->flags & PG_BUSY) == 0);
   2094 	KASSERT(rw_lock_op(pg->uobject->vmobjlock) == flt->lower_lock_type);
   2095 
   2096 	const vm_prot_t mapprot =
   2097 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
   2098 	    flt->enter_prot & MASK(ufi->entry);
   2099 	const u_int mapflags =
   2100 	    PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0);
   2101 	(void) pmap_enter(ufi->orig_map->pmap, currva,
   2102 	    VM_PAGE_TO_PHYS(pg), mapprot, mapflags);
   2103 }
   2104 
   2105 /*
   2106  * uvm_fault_lower_io: get lower page from backing store.
   2107  *
   2108  *	1. unlock everything, because i/o will block.
   2109  *	2. call pgo_get.
   2110  *	3. if failed, recover.
   2111  *	4. if succeeded, relock everything and verify things.
   2112  */
   2113 
   2114 static int
   2115 uvm_fault_lower_io(
   2116 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2117 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
   2118 {
   2119 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2120 	struct uvm_object *uobj = *ruobj;
   2121 	struct vm_page *pg;
   2122 	bool locked;
   2123 	int gotpages;
   2124 	int error;
   2125 	voff_t uoff;
   2126 	vm_prot_t access_type;
   2127 	int advice;
   2128 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   2129 
   2130 	/* update rusage counters */
   2131 	curlwp->l_ru.ru_majflt++;
   2132 
   2133 	/* grab everything we need from the entry before we unlock */
   2134 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
   2135 	access_type = flt->access_type & MASK(ufi->entry);
   2136 	advice = ufi->entry->advice;
   2137 
   2138 	/* Locked: maps(read), amap(if there), uobj */
   2139 	KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
   2140 
   2141 	/* Upgrade to a write lock if needed. */
   2142 	error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, NULL);
   2143 	if (error != 0) {
   2144 		return error;
   2145 	}
   2146 	uvmfault_unlockall(ufi, amap, NULL);
   2147 
   2148 	/* Locked: uobj(write) */
   2149 	KASSERT(rw_write_held(uobj->vmobjlock));
   2150 
   2151 	cpu_count(CPU_COUNT_FLTGET, 1);
   2152 	gotpages = 1;
   2153 	pg = NULL;
   2154 	error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
   2155 	    0, access_type, advice, PGO_SYNCIO);
   2156 	/* locked: pg(if no error) */
   2157 
   2158 	/*
   2159 	 * recover from I/O
   2160 	 */
   2161 
   2162 	if (error) {
   2163 		if (error == EAGAIN) {
   2164 			UVMHIST_LOG(maphist,
   2165 			    "  pgo_get says TRY AGAIN!",0,0,0,0);
   2166 			kpause("fltagain2", false, hz/2, NULL);
   2167 			return ERESTART;
   2168 		}
   2169 
   2170 #if 0
   2171 		KASSERT(error != ERESTART);
   2172 #else
   2173 		/* XXXUEBS don't re-fault? */
   2174 		if (error == ERESTART)
   2175 			error = EIO;
   2176 #endif
   2177 
   2178 		UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)",
   2179 		    error, 0,0,0);
   2180 		return error;
   2181 	}
   2182 
   2183 	/*
   2184 	 * re-verify the state of the world by first trying to relock
   2185 	 * the maps.  always relock the object.
   2186 	 */
   2187 
   2188 	locked = uvmfault_relock(ufi);
   2189 	if (locked && amap)
   2190 		amap_lock(amap, flt->upper_lock_type);
   2191 
   2192 	/* might be changed */
   2193 	uobj = pg->uobject;
   2194 
   2195 	rw_enter(uobj->vmobjlock, flt->lower_lock_type);
   2196 	KASSERT((pg->flags & PG_BUSY) != 0);
   2197 	KASSERT(flt->lower_lock_type == RW_WRITER);
   2198 
   2199 	uvm_pagelock(pg);
   2200 	uvm_pageactivate(pg);
   2201 	uvm_pageunlock(pg);
   2202 
   2203 	/* locked(locked): maps(read), amap(if !null), uobj, pg */
   2204 	/* locked(!locked): uobj, pg */
   2205 
   2206 	/*
   2207 	 * verify that the page has not be released and re-verify
   2208 	 * that amap slot is still free.   if there is a problem,
   2209 	 * we unlock and clean up.
   2210 	 */
   2211 
   2212 	if ((pg->flags & PG_RELEASED) != 0 ||
   2213 	    (locked && amap && amap_lookup(&ufi->entry->aref,
   2214 	      ufi->orig_rvaddr - ufi->entry->start))) {
   2215 		if (locked)
   2216 			uvmfault_unlockall(ufi, amap, NULL);
   2217 		locked = false;
   2218 	}
   2219 
   2220 	/*
   2221 	 * unbusy/release the page.
   2222 	 */
   2223 
   2224 	if ((pg->flags & PG_RELEASED) == 0) {
   2225 		pg->flags &= ~PG_BUSY;
   2226 		uvm_pagelock(pg);
   2227 		uvm_pagewakeup(pg);
   2228 		uvm_pageunlock(pg);
   2229 		UVM_PAGE_OWN(pg, NULL);
   2230 	} else {
   2231 		cpu_count(CPU_COUNT_FLTPGRELE, 1);
   2232 		uvm_pagefree(pg);
   2233 	}
   2234 
   2235 	/*
   2236 	 * didn't get the lock?   retry.
   2237 	 */
   2238 
   2239 	if (locked == false) {
   2240 		UVMHIST_LOG(maphist,
   2241 		    "  wasn't able to relock after fault: retry",
   2242 		    0,0,0,0);
   2243 		rw_exit(uobj->vmobjlock);
   2244 		return ERESTART;
   2245 	}
   2246 
   2247 	/*
   2248 	 * we have the data in pg.  we are holding object lock (so the page
   2249 	 * can't be released on us).
   2250 	 */
   2251 
   2252 	/* locked: maps(read), amap(if !null), uobj */
   2253 
   2254 	*ruobj = uobj;
   2255 	*ruobjpage = pg;
   2256 	return 0;
   2257 }
   2258 
   2259 /*
   2260  * uvm_fault_lower_direct: fault lower center page
   2261  *
   2262  *	1. adjust flt->enter_prot.
   2263  *	2. if page is loaned, resolve.
   2264  */
   2265 
   2266 int
   2267 uvm_fault_lower_direct(
   2268 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2269 	struct uvm_object *uobj, struct vm_page *uobjpage)
   2270 {
   2271 	struct vm_page *pg;
   2272 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   2273 
   2274 	/*
   2275 	 * we are not promoting.   if the mapping is COW ensure that we
   2276 	 * don't give more access than we should (e.g. when doing a read
   2277 	 * fault on a COPYONWRITE mapping we want to map the COW page in
   2278 	 * R/O even though the entry protection could be R/W).
   2279 	 *
   2280 	 * set "pg" to the page we want to map in (uobjpage, usually)
   2281 	 */
   2282 
   2283 	cpu_count(CPU_COUNT_FLT_OBJ, 1);
   2284 	if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
   2285 	    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
   2286 		flt->enter_prot &= ~VM_PROT_WRITE;
   2287 	pg = uobjpage;		/* map in the actual object */
   2288 
   2289 	KASSERT(uobjpage != PGO_DONTCARE);
   2290 
   2291 	/*
   2292 	 * we are faulting directly on the page.   be careful
   2293 	 * about writing to loaned pages...
   2294 	 */
   2295 
   2296 	if (uobjpage->loan_count) {
   2297 		uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
   2298 	}
   2299 	KASSERT(pg == uobjpage);
   2300 	KASSERT((pg->flags & PG_BUSY) == 0);
   2301 	return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
   2302 }
   2303 
   2304 /*
   2305  * uvm_fault_lower_direct_loan: resolve loaned page.
   2306  *
   2307  *	1. if not cow'ing, adjust flt->enter_prot.
   2308  *	2. if cow'ing, break loan.
   2309  */
   2310 
   2311 static int
   2312 uvm_fault_lower_direct_loan(
   2313 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2314 	struct uvm_object *uobj, struct vm_page **rpg,
   2315 	struct vm_page **ruobjpage)
   2316 {
   2317 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2318 	struct vm_page *pg;
   2319 	struct vm_page *uobjpage = *ruobjpage;
   2320 	int error;
   2321 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   2322 
   2323 	if (!flt->cow_now) {
   2324 		/* read fault: cap the protection at readonly */
   2325 		/* cap! */
   2326 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
   2327 	} else {
   2328 		/*
   2329 		 * write fault: must break the loan here.  to do this
   2330 		 * we need a write lock on the object.
   2331 		 */
   2332 
   2333 		error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, uobjpage);
   2334 		if (error != 0) {
   2335 			return error;
   2336 		}
   2337 		KASSERT(rw_write_held(uobj->vmobjlock));
   2338 
   2339 		pg = uvm_loanbreak(uobjpage);
   2340 		if (pg == NULL) {
   2341 
   2342 			uvmfault_unlockall(ufi, amap, uobj);
   2343 			UVMHIST_LOG(maphist,
   2344 			  "  out of RAM breaking loan, waiting",
   2345 			  0,0,0,0);
   2346 			cpu_count(CPU_COUNT_FLTNORAM, 1);
   2347 			uvm_wait("flt_noram4");
   2348 			return ERESTART;
   2349 		}
   2350 		*rpg = pg;
   2351 		*ruobjpage = pg;
   2352 
   2353 		/*
   2354 		 * drop ownership of page while still holding object lock,
   2355 		 * which won't be dropped until the page is entered.
   2356 		 */
   2357 
   2358 		uvm_pagelock(pg);
   2359 		uvm_pagewakeup(pg);
   2360 		uvm_pageunlock(pg);
   2361 		pg->flags &= ~PG_BUSY;
   2362 		UVM_PAGE_OWN(pg, NULL);
   2363 	}
   2364 	return 0;
   2365 }
   2366 
   2367 /*
   2368  * uvm_fault_lower_promote: promote lower page.
   2369  *
   2370  *	1. call uvmfault_promote.
   2371  *	2. fill in data.
   2372  *	3. if not ZFOD, dispose old page.
   2373  */
   2374 
   2375 int
   2376 uvm_fault_lower_promote(
   2377 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
   2378 	struct uvm_object *uobj, struct vm_page *uobjpage)
   2379 {
   2380 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2381 	struct vm_anon *anon;
   2382 	struct vm_page *pg;
   2383 	int error;
   2384 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   2385 
   2386 	KASSERT(amap != NULL);
   2387 
   2388 	/* promoting requires a write lock. */
   2389 	error = uvm_fault_upper_upgrade(ufi, flt, amap, uobj);
   2390 	if (error != 0) {
   2391 		return error;
   2392 	}
   2393 	KASSERT(rw_write_held(amap->am_lock));
   2394 	KASSERT(uobj == NULL ||
   2395 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
   2396 
   2397 	/*
   2398 	 * If we are going to promote the data to an anon we
   2399 	 * allocate a blank anon here and plug it into our amap.
   2400 	 */
   2401 	error = uvmfault_promote(ufi, NULL, uobjpage, &anon, &flt->anon_spare);
   2402 	switch (error) {
   2403 	case 0:
   2404 		break;
   2405 	case ERESTART:
   2406 		return ERESTART;
   2407 	default:
   2408 		return error;
   2409 	}
   2410 
   2411 	pg = anon->an_page;
   2412 
   2413 	/*
   2414 	 * Fill in the data.
   2415 	 */
   2416 
   2417 	if (uobjpage != PGO_DONTCARE) {
   2418 		cpu_count(CPU_COUNT_FLT_PRCOPY, 1);
   2419 
   2420 		/*
   2421 		 * promote to shared amap?  make sure all sharing
   2422 		 * procs see it
   2423 		 */
   2424 
   2425 		if ((amap_flags(amap) & AMAP_SHARED) != 0) {
   2426 			pmap_page_protect(uobjpage, VM_PROT_NONE);
   2427 			/*
   2428 			 * XXX: PAGE MIGHT BE WIRED!
   2429 			 */
   2430 		}
   2431 
   2432 		UVMHIST_LOG(maphist,
   2433 		    "  promote uobjpage %#jx to anon/page %#jx/%#jx",
   2434 		    (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0);
   2435 
   2436 	} else {
   2437 		cpu_count(CPU_COUNT_FLT_PRZERO, 1);
   2438 
   2439 		/*
   2440 		 * Page is zero'd and marked dirty by
   2441 		 * uvmfault_promote().
   2442 		 */
   2443 
   2444 		UVMHIST_LOG(maphist,"  zero fill anon/page %#jx/%#jx",
   2445 		    (uintptr_t)anon, (uintptr_t)pg, 0, 0);
   2446 	}
   2447 
   2448 	return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
   2449 }
   2450 
   2451 /*
   2452  * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
   2453  * from the lower page.
   2454  */
   2455 
   2456 int
   2457 uvm_fault_lower_enter(
   2458 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2459 	struct uvm_object *uobj,
   2460 	struct vm_anon *anon, struct vm_page *pg)
   2461 {
   2462 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
   2463 	const bool readonly = uvm_pagereadonly_p(pg);
   2464 	int error;
   2465 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   2466 
   2467 	/*
   2468 	 * Locked:
   2469 	 *
   2470 	 *	maps(read), amap(if !null), uobj(if !null),
   2471 	 *	anon(if !null), pg(if anon), unlock_uobj(if !null)
   2472 	 *
   2473 	 * anon must be write locked (promotion).  uobj can be either.
   2474 	 *
   2475 	 * Note: pg is either the uobjpage or the new page in the new anon.
   2476 	 */
   2477 
   2478 	KASSERT(amap == NULL ||
   2479 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
   2480 	KASSERT(uobj == NULL ||
   2481 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
   2482 	KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
   2483 
   2484 	/*
   2485 	 * note that pg can't be PG_RELEASED or PG_BUSY since we did
   2486 	 * not drop the object lock since the last time we checked.
   2487 	 */
   2488 
   2489 	KASSERT((pg->flags & PG_RELEASED) == 0);
   2490 	KASSERT((pg->flags & PG_BUSY) == 0);
   2491 
   2492 	/*
   2493 	 * all resources are present.   we can now map it in and free our
   2494 	 * resources.
   2495 	 */
   2496 
   2497 	UVMHIST_LOG(maphist,
   2498 	    "  MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
   2499 	    (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr,
   2500 	    (uintptr_t)pg, flt->promote);
   2501 	KASSERTMSG((flt->access_type & VM_PROT_WRITE) == 0 || !readonly,
   2502 	    "promote=%u cow_now=%u access_type=%x enter_prot=%x cow=%u "
   2503 	    "entry=%p map=%p orig_rvaddr=%p pg=%p",
   2504 	    flt->promote, flt->cow_now, flt->access_type, flt->enter_prot,
   2505 	    UVM_ET_ISCOPYONWRITE(ufi->entry), ufi->entry, ufi->orig_map,
   2506 	    (void *)ufi->orig_rvaddr, pg);
   2507 	KASSERT((flt->access_type & VM_PROT_WRITE) == 0 || !readonly);
   2508 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
   2509 	    VM_PAGE_TO_PHYS(pg),
   2510 	    readonly ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
   2511 	    flt->access_type | PMAP_CANFAIL |
   2512 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
   2513 
   2514 		/*
   2515 		 * No need to undo what we did; we can simply think of
   2516 		 * this as the pmap throwing away the mapping information.
   2517 		 *
   2518 		 * We do, however, have to go through the ReFault path,
   2519 		 * as the map may change while we're asleep.
   2520 		 */
   2521 
   2522 		/*
   2523 		 * ensure that the page is queued in the case that
   2524 		 * we just promoted the page.
   2525 		 */
   2526 
   2527 		if (anon != NULL) {
   2528 			uvm_pagelock(pg);
   2529 			uvm_pageenqueue(pg);
   2530 			uvm_pagewakeup(pg);
   2531 			uvm_pageunlock(pg);
   2532 		}
   2533 
   2534 		uvmfault_unlockall(ufi, amap, uobj);
   2535 		if (!uvm_reclaimable()) {
   2536 			UVMHIST_LOG(maphist,
   2537 			    "<- failed.  out of VM",0,0,0,0);
   2538 			/* XXX instrumentation */
   2539 			error = ENOMEM;
   2540 			return error;
   2541 		}
   2542 		/* XXX instrumentation */
   2543 		uvm_wait("flt_pmfail2");
   2544 		return ERESTART;
   2545 	}
   2546 
   2547 	uvm_fault_lower_done(ufi, flt, uobj, pg);
   2548 	pmap_update(ufi->orig_map->pmap);
   2549 	uvmfault_unlockall(ufi, amap, uobj);
   2550 
   2551 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
   2552 	return 0;
   2553 }
   2554 
   2555 /*
   2556  * uvm_fault_lower_done: queue lower center page.
   2557  */
   2558 
   2559 void
   2560 uvm_fault_lower_done(
   2561 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
   2562 	struct uvm_object *uobj, struct vm_page *pg)
   2563 {
   2564 
   2565 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   2566 
   2567 	if (flt->wire_paging) {
   2568 		uvm_pagelock(pg);
   2569 		uvm_pagewire(pg);
   2570 		uvm_pageunlock(pg);
   2571 		if (pg->flags & PG_AOBJ) {
   2572 
   2573 			/*
   2574 			 * since the now-wired page cannot be paged out,
   2575 			 * release its swap resources for others to use.
   2576 			 * since an aobj page with no swap cannot be clean,
   2577 			 * mark it dirty now.
   2578 			 *
   2579 			 * use pg->uobject here.  if the page is from a
   2580 			 * tmpfs vnode, the pages are backed by its UAO and
   2581 			 * not the vnode.
   2582 			 */
   2583 
   2584 			KASSERT(uobj != NULL);
   2585 			KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
   2586 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   2587 			uao_dropswap(pg->uobject, pg->offset >> PAGE_SHIFT);
   2588 		}
   2589 	} else if (uvmpdpol_pageactivate_p(pg)) {
   2590 		/*
   2591 		 * avoid re-activating the page unless needed,
   2592 		 * to avoid false sharing on multiprocessor.
   2593 		 */
   2594 
   2595 		uvm_pagelock(pg);
   2596 		uvm_pageactivate(pg);
   2597 		uvm_pageunlock(pg);
   2598 	}
   2599 }
   2600 
   2601 
   2602 /*
   2603  * uvm_fault_wire: wire down a range of virtual addresses in a map.
   2604  *
   2605  * => map may be read-locked by caller, but MUST NOT be write-locked.
   2606  * => if map is read-locked, any operations which may cause map to
   2607  *	be write-locked in uvm_fault() must be taken care of by
   2608  *	the caller.  See uvm_map_pageable().
   2609  */
   2610 
   2611 int
   2612 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
   2613     vm_prot_t access_type, int maxprot)
   2614 {
   2615 	vaddr_t va;
   2616 	int error;
   2617 
   2618 	/*
   2619 	 * now fault it in a page at a time.   if the fault fails then we have
   2620 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
   2621 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
   2622 	 */
   2623 
   2624 	/*
   2625 	 * XXX work around overflowing a vaddr_t.  this prevents us from
   2626 	 * wiring the last page in the address space, though.
   2627 	 */
   2628 	if (start > end) {
   2629 		return EFAULT;
   2630 	}
   2631 
   2632 	for (va = start; va < end; va += PAGE_SIZE) {
   2633 		error = uvm_fault_internal(map, va, access_type,
   2634 		    (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
   2635 		if (error) {
   2636 			if (va != start) {
   2637 				uvm_fault_unwire(map, start, va);
   2638 			}
   2639 			return error;
   2640 		}
   2641 	}
   2642 	return 0;
   2643 }
   2644 
   2645 /*
   2646  * uvm_fault_unwire(): unwire range of virtual space.
   2647  */
   2648 
   2649 void
   2650 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
   2651 {
   2652 	vm_map_lock_read(map);
   2653 	uvm_fault_unwire_locked(map, start, end);
   2654 	vm_map_unlock_read(map);
   2655 }
   2656 
   2657 /*
   2658  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
   2659  *
   2660  * => map must be at least read-locked.
   2661  */
   2662 
   2663 void
   2664 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
   2665 {
   2666 	struct vm_map_entry *entry, *oentry;
   2667 	pmap_t pmap = vm_map_pmap(map);
   2668 	vaddr_t va;
   2669 	paddr_t pa;
   2670 	struct vm_page *pg;
   2671 
   2672 	/*
   2673 	 * we assume that the area we are unwiring has actually been wired
   2674 	 * in the first place.   this means that we should be able to extract
   2675 	 * the PAs from the pmap.   we also lock out the page daemon so that
   2676 	 * we can call uvm_pageunwire.
   2677 	 */
   2678 
   2679 	/*
   2680 	 * find the beginning map entry for the region.
   2681 	 */
   2682 
   2683 	KASSERT(start >= vm_map_min(map));
   2684 	KASSERT(end <= vm_map_max(map));
   2685 	if (uvm_map_lookup_entry(map, start, &entry) == false)
   2686 		panic("uvm_fault_unwire_locked: address not in map");
   2687 
   2688 	oentry = NULL;
   2689 	for (va = start; va < end; va += PAGE_SIZE) {
   2690 
   2691 		/*
   2692 		 * find the map entry for the current address.
   2693 		 */
   2694 
   2695 		KASSERT(va >= entry->start);
   2696 		while (va >= entry->end) {
   2697 			KASSERT(entry->next != &map->header);
   2698 			KASSERT(entry->next->start <= entry->end);
   2699 			entry = entry->next;
   2700 		}
   2701 
   2702 		/*
   2703 		 * lock it.
   2704 		 */
   2705 
   2706 		if (entry != oentry) {
   2707 			if (oentry != NULL) {
   2708 				uvm_map_unlock_entry(oentry);
   2709 			}
   2710 			uvm_map_lock_entry(entry, RW_WRITER);
   2711 			oentry = entry;
   2712 		}
   2713 
   2714 		/*
   2715 		 * if the entry is no longer wired, tell the pmap.
   2716 		 */
   2717 
   2718 		if (!pmap_extract(pmap, va, &pa))
   2719 			continue;
   2720 
   2721 		if (VM_MAPENT_ISWIRED(entry) == 0)
   2722 			pmap_unwire(pmap, va);
   2723 
   2724 		pg = PHYS_TO_VM_PAGE(pa);
   2725 		if (pg) {
   2726 			uvm_pagelock(pg);
   2727 			uvm_pageunwire(pg);
   2728 			uvm_pageunlock(pg);
   2729 		}
   2730 	}
   2731 
   2732 	if (oentry != NULL) {
   2733 		uvm_map_unlock_entry(entry);
   2734 	}
   2735 }
   2736