uvm_fault.c revision 1.27.2.1.2.1 1 /* $NetBSD: uvm_fault.c,v 1.27.2.1.2.1 1999/06/07 04:25:36 chs Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 #include "opt_uvmhist.h"
38
39 /*
40 * uvm_fault.c: fault handler
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/proc.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/user.h>
50
51 #include <vm/vm.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_kern.h>
54
55 #include <uvm/uvm.h>
56
57 /*
58 *
59 * a word on page faults:
60 *
61 * types of page faults we handle:
62 *
63 * CASE 1: upper layer faults CASE 2: lower layer faults
64 *
65 * CASE 1A CASE 1B CASE 2A CASE 2B
66 * read/write1 write>1 read/write +-cow_write/zero
67 * | | | |
68 * +--|--+ +--|--+ +-----+ + | + | +-----+
69 * amap | V | | ----------->new| | | | ^ |
70 * +-----+ +-----+ +-----+ + | + | +--|--+
71 * | | |
72 * +-----+ +-----+ +--|--+ | +--|--+
73 * uobj | d/c | | d/c | | V | +----| |
74 * +-----+ +-----+ +-----+ +-----+
75 *
76 * d/c = don't care
77 *
78 * case [0]: layerless fault
79 * no amap or uobj is present. this is an error.
80 *
81 * case [1]: upper layer fault [anon active]
82 * 1A: [read] or [write with anon->an_ref == 1]
83 * I/O takes place in top level anon and uobj is not touched.
84 * 1B: [write with anon->an_ref > 1]
85 * new anon is alloc'd and data is copied off ["COW"]
86 *
87 * case [2]: lower layer fault [uobj]
88 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
89 * I/O takes place directly in object.
90 * 2B: [write to copy_on_write] or [read on NULL uobj]
91 * data is "promoted" from uobj to a new anon.
92 * if uobj is null, then we zero fill.
93 *
94 * we follow the standard UVM locking protocol ordering:
95 *
96 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
97 * we hold a PG_BUSY page if we unlock for I/O
98 *
99 *
100 * the code is structured as follows:
101 *
102 * - init the "IN" params in the ufi structure
103 * ReFault:
104 * - do lookups [locks maps], check protection, handle needs_copy
105 * - check for case 0 fault (error)
106 * - establish "range" of fault
107 * - if we have an amap lock it and extract the anons
108 * - if sequential advice deactivate pages behind us
109 * - at the same time check pmap for unmapped areas and anon for pages
110 * that we could map in (and do map it if found)
111 * - check object for resident pages that we could map in
112 * - if (case 2) goto Case2
113 * - >>> handle case 1
114 * - ensure source anon is resident in RAM
115 * - if case 1B alloc new anon and copy from source
116 * - map the correct page in
117 * Case2:
118 * - >>> handle case 2
119 * - ensure source page is resident (if uobj)
120 * - if case 2B alloc new anon and copy from source (could be zero
121 * fill if uobj == NULL)
122 * - map the correct page in
123 * - done!
124 *
125 * note on paging:
126 * if we have to do I/O we place a PG_BUSY page in the correct object,
127 * unlock everything, and do the I/O. when I/O is done we must reverify
128 * the state of the world before assuming that our data structures are
129 * valid. [because mappings could change while the map is unlocked]
130 *
131 * alternative 1: unbusy the page in question and restart the page fault
132 * from the top (ReFault). this is easy but does not take advantage
133 * of the information that we already have from our previous lookup,
134 * although it is possible that the "hints" in the vm_map will help here.
135 *
136 * alternative 2: the system already keeps track of a "version" number of
137 * a map. [i.e. every time you write-lock a map (e.g. to change a
138 * mapping) you bump the version number up by one...] so, we can save
139 * the version number of the map before we release the lock and start I/O.
140 * then when I/O is done we can relock and check the version numbers
141 * to see if anything changed. this might save us some over 1 because
142 * we don't have to unbusy the page and may be less compares(?).
143 *
144 * alternative 3: put in backpointers or a way to "hold" part of a map
145 * in place while I/O is in progress. this could be complex to
146 * implement (especially with structures like amap that can be referenced
147 * by multiple map entries, and figuring out what should wait could be
148 * complex as well...).
149 *
150 * given that we are not currently multiprocessor or multithreaded we might
151 * as well choose alternative 2 now. maybe alternative 3 would be useful
152 * in the future. XXX keep in mind for future consideration//rechecking.
153 */
154
155 /*
156 * local data structures
157 */
158
159 struct uvm_advice {
160 int advice;
161 int nback;
162 int nforw;
163 };
164
165 /*
166 * page range array:
167 * note: index in array must match "advice" value
168 * XXX: borrowed numbers from freebsd. do they work well for us?
169 */
170
171 static struct uvm_advice uvmadvice[] = {
172 #if 1
173 /* XXX no fault-ahead for now */
174 { MADV_NORMAL, 0, 0 },
175 { MADV_RANDOM, 0, 0 },
176 { MADV_SEQUENTIAL, 0, 0 },
177 #else
178 { MADV_NORMAL, 3, 4 },
179 { MADV_RANDOM, 0, 0 },
180 { MADV_SEQUENTIAL, 8, 7},
181 #endif
182 };
183
184 #define UVM_MAXRANGE 16 /* must be max() of nback+nforw+1 */
185
186 /*
187 * private prototypes
188 */
189
190 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
191 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
192
193 /*
194 * inline functions
195 */
196
197 /*
198 * uvmfault_anonflush: try and deactivate pages in specified anons
199 *
200 * => does not have to deactivate page if it is busy
201 */
202
203 static __inline void
204 uvmfault_anonflush(anons, n)
205 struct vm_anon **anons;
206 int n;
207 {
208 int lcv;
209 struct vm_page *pg;
210
211 for (lcv = 0 ; lcv < n ; lcv++) {
212 if (anons[lcv] == NULL)
213 continue;
214 simple_lock(&anons[lcv]->an_lock);
215 pg = anons[lcv]->u.an_page;
216 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
217 uvm_lock_pageq();
218 if (pg->wire_count == 0) {
219 pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
220 uvm_pagedeactivate(pg);
221 }
222 uvm_unlock_pageq();
223 }
224 simple_unlock(&anons[lcv]->an_lock);
225 }
226 }
227
228 /*
229 * normal functions
230 */
231
232 /*
233 * uvmfault_amapcopy: clear "needs_copy" in a map.
234 *
235 * => called with VM data structures unlocked (usually, see below)
236 * => we get a write lock on the maps and clear needs_copy for a VA
237 * => if we are out of RAM we sleep (waiting for more)
238 */
239
240 static void
241 uvmfault_amapcopy(ufi)
242 struct uvm_faultinfo *ufi;
243 {
244 /*
245 * while we haven't done the job
246 */
247
248 while (1) {
249
250 /*
251 * no mapping? give up.
252 */
253
254 if (uvmfault_lookup(ufi, TRUE) == FALSE)
255 return;
256
257 /*
258 * copy if needed.
259 */
260
261 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
262 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
263 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
264
265 /*
266 * didn't work? must be out of RAM. unlock and sleep.
267 */
268
269 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
270 uvmfault_unlockmaps(ufi, TRUE);
271 uvm_wait("fltamapcopy");
272 continue;
273 }
274
275 /*
276 * got it! unlock and return.
277 */
278
279 uvmfault_unlockmaps(ufi, TRUE);
280 return;
281 }
282 /*NOTREACHED*/
283 }
284
285 /*
286 * uvmfault_anonget: get data in an anon into a non-busy, non-released
287 * page in that anon.
288 *
289 * => maps, amap, and anon locked by caller.
290 * => if we fail (result != VM_PAGER_OK) we unlock everything.
291 * => if we are successful, we return with everything still locked.
292 * => we don't move the page on the queues [gets moved later]
293 * => if we allocate a new page [we_own], it gets put on the queues.
294 * either way, the result is that the page is on the queues at return time
295 * => for pages which are on loan from a uvm_object (and thus are not
296 * owned by the anon): if successful, we return with the owning object
297 * locked. the caller must unlock this object when it unlocks everything
298 * else.
299 */
300
301 int uvmfault_anonget(ufi, amap, anon)
302 struct uvm_faultinfo *ufi;
303 struct vm_amap *amap;
304 struct vm_anon *anon;
305 {
306 boolean_t we_own; /* we own anon's page? */
307 boolean_t locked; /* did we relock? */
308 struct vm_page *pg;
309 int result;
310 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
311
312 result = 0; /* XXX shut up gcc */
313 uvmexp.fltanget++;
314 /* bump rusage counters */
315 if (anon->u.an_page)
316 curproc->p_addr->u_stats.p_ru.ru_minflt++;
317 else
318 curproc->p_addr->u_stats.p_ru.ru_majflt++;
319
320 /*
321 * loop until we get it, or fail.
322 */
323
324 while (1) {
325
326 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
327 pg = anon->u.an_page;
328
329 /*
330 * if there is a resident page and it is loaned, then anon
331 * may not own it. call out to uvm_anon_lockpage() to ensure
332 * the real owner of the page has been identified and locked.
333 */
334
335 if (pg && pg->loan_count)
336 pg = uvm_anon_lockloanpg(anon);
337
338 /*
339 * page there? make sure it is not busy/released.
340 */
341
342 if (pg) {
343
344 /*
345 * at this point, if the page has a uobject [meaning
346 * we have it on loan], then that uobject is locked
347 * by us! if the page is busy, we drop all the
348 * locks (including uobject) and try again.
349 */
350
351 if ((pg->flags & (PG_BUSY|PG_RELEASED)) == 0) {
352 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
353 return (VM_PAGER_OK);
354 }
355 pg->flags |= PG_WANTED;
356 uvmexp.fltpgwait++;
357
358 /*
359 * the last unlock must be an atomic unlock+wait on
360 * the owner of page
361 */
362 if (pg->uobject) { /* owner is uobject ? */
363 uvmfault_unlockall(ufi, amap, NULL, anon);
364 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
365 0,0,0);
366 UVM_UNLOCK_AND_WAIT(pg,
367 &pg->uobject->vmobjlock,
368 FALSE, "anonget1",0);
369 } else {
370 /* anon owns page */
371 uvmfault_unlockall(ufi, amap, NULL, NULL);
372 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
373 0,0,0);
374 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
375 "anonget2",0);
376 }
377 /* ready to relock and try again */
378
379 } else {
380
381 /*
382 * no page, we must try and bring it in.
383 */
384 pg = uvm_pagealloc(NULL, 0, anon, 0);
385
386 if (pg == NULL) { /* out of RAM. */
387
388 uvmfault_unlockall(ufi, amap, NULL, anon);
389 uvmexp.fltnoram++;
390 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
391 0,0,0);
392 uvm_wait("flt_noram1");
393 /* ready to relock and try again */
394
395 } else {
396
397 /* we set the PG_BUSY bit */
398 we_own = TRUE;
399 uvmfault_unlockall(ufi, amap, NULL, anon);
400
401 /*
402 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
403 * page into the uvm_swap_get function with
404 * all data structures unlocked. note that
405 * it is ok to read an_swslot here because
406 * we hold PG_BUSY on the page.
407 */
408 uvmexp.pageins++;
409 result = uvm_swap_get(pg, anon->an_swslot,
410 PGO_SYNCIO);
411
412 /*
413 * we clean up after the i/o below in the
414 * "we_own" case
415 */
416 /* ready to relock and try again */
417 }
418 }
419
420 /*
421 * now relock and try again
422 */
423
424 locked = uvmfault_relock(ufi);
425 if (locked) {
426 amap_lock(amap);
427 }
428 if (locked || we_own)
429 simple_lock(&anon->an_lock);
430
431 /*
432 * if we own the page (i.e. we set PG_BUSY), then we need
433 * to clean up after the I/O. there are three cases to
434 * consider:
435 * [1] page released during I/O: free anon and ReFault.
436 * [2] I/O not OK. free the page and cause the fault
437 * to fail.
438 * [3] I/O OK! activate the page and sync with the
439 * non-we_own case (i.e. drop anon lock if not locked).
440 */
441
442 if (we_own) {
443
444 if (pg->flags & PG_WANTED) {
445 /* still holding object lock */
446 wakeup(pg);
447 }
448 /* un-busy! */
449 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
450 UVM_PAGE_OWN(pg, NULL);
451
452 /*
453 * if we were RELEASED during I/O, then our anon is
454 * no longer part of an amap. we need to free the
455 * anon and try again.
456 */
457 if (pg->flags & PG_RELEASED) {
458 pmap_page_protect(PMAP_PGARG(pg),
459 VM_PROT_NONE); /* to be safe */
460 simple_unlock(&anon->an_lock);
461 uvm_anfree(anon); /* frees page for us */
462 if (locked)
463 uvmfault_unlockall(ufi, amap, NULL, NULL);
464 uvmexp.fltpgrele++;
465 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
466 return (VM_PAGER_REFAULT); /* refault! */
467 }
468
469 if (result != VM_PAGER_OK) {
470 #ifdef DIAGNOSTIC
471 if (result == VM_PAGER_PEND)
472 panic("uvmfault_anonget: got PENDING for non-async I/O");
473 #endif
474 /* remove page from anon */
475 anon->u.an_page = NULL;
476
477 /*
478 * note: page was never !PG_BUSY, so it
479 * can't be mapped and thus no need to
480 * pmap_page_protect it...
481 */
482 uvm_lock_pageq();
483 uvm_pagefree(pg);
484 uvm_unlock_pageq();
485
486 if (locked)
487 uvmfault_unlockall(ufi, amap, NULL,
488 anon);
489 else
490 simple_unlock(&anon->an_lock);
491 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
492 return (VM_PAGER_ERROR);
493 }
494
495 /*
496 * must be OK, clear modify (already PG_CLEAN)
497 * and activate
498 */
499 pmap_clear_modify(PMAP_PGARG(pg));
500 uvm_lock_pageq();
501 uvm_pageactivate(pg);
502 uvm_unlock_pageq();
503 if (!locked)
504 simple_unlock(&anon->an_lock);
505 }
506
507 /*
508 * we were not able to relock. restart fault.
509 */
510
511 if (!locked) {
512 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
513 return (VM_PAGER_REFAULT);
514 }
515
516 /*
517 * verify no one has touched the amap and moved the anon on us.
518 */
519
520 if (amap_lookup(&ufi->entry->aref,
521 ufi->orig_rvaddr - ufi->entry->start) != anon) {
522
523 uvmfault_unlockall(ufi, amap, NULL, anon);
524 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
525 return (VM_PAGER_REFAULT);
526 }
527
528 /*
529 * try it again!
530 */
531
532 uvmexp.fltanretry++;
533 continue;
534
535 } /* while (1) */
536
537 /*NOTREACHED*/
538 }
539
540 /*
541 * F A U L T - m a i n e n t r y p o i n t
542 */
543
544 /*
545 * uvm_fault: page fault handler
546 *
547 * => called from MD code to resolve a page fault
548 * => VM data structures usually should be unlocked. however, it is
549 * possible to call here with the main map locked if the caller
550 * gets a write lock, sets it recusive, and then calls us (c.f.
551 * uvm_map_pageable). this should be avoided because it keeps
552 * the map locked off during I/O.
553 */
554
555 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
556 ~VM_PROT_WRITE : VM_PROT_ALL)
557
558 int
559 uvm_fault(orig_map, vaddr, fault_type, access_type)
560 vm_map_t orig_map;
561 vaddr_t vaddr;
562 vm_fault_t fault_type;
563 vm_prot_t access_type;
564 {
565 struct uvm_faultinfo ufi;
566 vm_prot_t enter_prot;
567 boolean_t wired, narrow, promote, locked, shadowed;
568 int npages, nback, nforw, centeridx, result, lcv, gotpages;
569 vaddr_t startva, objaddr, currva, offset, uoff;
570 paddr_t pa;
571 struct vm_amap *amap;
572 struct uvm_object *uobj;
573 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
574 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
575 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
576
577 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
578 orig_map, vaddr, fault_type, access_type);
579
580 anon = NULL; /* XXX: shut up gcc */
581
582 uvmexp.faults++; /* XXX: locking? */
583
584 /*
585 * init the IN parameters in the ufi
586 */
587
588 ufi.orig_map = orig_map;
589 ufi.orig_rvaddr = trunc_page(vaddr);
590 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
591 if (fault_type == VM_FAULT_WIRE)
592 narrow = TRUE; /* don't look for neighborhood
593 * pages on wire */
594 else
595 narrow = FALSE; /* normal fault */
596
597 /*
598 * "goto ReFault" means restart the page fault from ground zero.
599 */
600 ReFault:
601
602 /*
603 * lookup and lock the maps
604 */
605
606 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
607 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
608 return (KERN_INVALID_ADDRESS);
609 }
610 /* locked: maps(read) */
611
612 /*
613 * check protection
614 */
615
616 if ((ufi.entry->protection & access_type) != access_type) {
617 UVMHIST_LOG(maphist,
618 "<- protection failure (prot=0x%x, access=0x%x)",
619 ufi.entry->protection, access_type, 0, 0);
620 uvmfault_unlockmaps(&ufi, FALSE);
621 return (KERN_PROTECTION_FAILURE);
622 }
623
624 /*
625 * "enter_prot" is the protection we want to enter the page in at.
626 * for certain pages (e.g. copy-on-write pages) this protection can
627 * be more strict than ufi.entry->protection. "wired" means either
628 * the entry is wired or we are fault-wiring the pg.
629 */
630
631 enter_prot = ufi.entry->protection;
632 wired = (ufi.entry->wired_count != 0) || (fault_type == VM_FAULT_WIRE);
633 if (wired)
634 access_type = enter_prot; /* full access for wired */
635
636 /*
637 * handle "needs_copy" case. if we need to copy the amap we will
638 * have to drop our readlock and relock it with a write lock. (we
639 * need a write lock to change anything in a map entry [e.g.
640 * needs_copy]).
641 */
642
643 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
644 if ((access_type & VM_PROT_WRITE) ||
645 (ufi.entry->object.uvm_obj == NULL)) {
646 /* need to clear */
647 UVMHIST_LOG(maphist,
648 " need to clear needs_copy and refault",0,0,0,0);
649 uvmfault_unlockmaps(&ufi, FALSE);
650 uvmfault_amapcopy(&ufi);
651 uvmexp.fltamcopy++;
652 goto ReFault;
653
654 } else {
655
656 /*
657 * ensure that we pmap_enter page R/O since
658 * needs_copy is still true
659 */
660 enter_prot &= ~VM_PROT_WRITE;
661
662 }
663 }
664
665 /*
666 * identify the players
667 */
668
669 amap = ufi.entry->aref.ar_amap; /* top layer */
670 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
671
672 /*
673 * check for a case 0 fault. if nothing backing the entry then
674 * error now.
675 */
676
677 if (amap == NULL && uobj == NULL) {
678 uvmfault_unlockmaps(&ufi, FALSE);
679 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
680 return (KERN_INVALID_ADDRESS);
681 }
682
683 /*
684 * establish range of interest based on advice from mapper
685 * and then clip to fit map entry. note that we only want
686 * to do this the first time through the fault. if we
687 * ReFault we will disable this by setting "narrow" to true.
688 */
689
690 if (narrow == FALSE) {
691
692 /* wide fault (!narrow) */
693 #ifdef DIAGNOSTIC
694 if (uvmadvice[ufi.entry->advice].advice != ufi.entry->advice)
695 panic("fault: advice mismatch!");
696 #endif
697 nback = min(uvmadvice[ufi.entry->advice].nback,
698 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
699 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
700 nforw = min(uvmadvice[ufi.entry->advice].nforw,
701 ((ufi.entry->end - ufi.orig_rvaddr) >>
702 PAGE_SHIFT) - 1);
703 /*
704 * note: "-1" because we don't want to count the
705 * faulting page as forw
706 */
707 npages = nback + nforw + 1;
708 centeridx = nback;
709
710 narrow = FALSE; /* ensure only once per-fault */
711
712 } else {
713
714 /* narrow fault! */
715 nback = nforw = 0;
716 startva = ufi.orig_rvaddr;
717 npages = 1;
718 centeridx = 0;
719
720 }
721
722 /* locked: maps(read) */
723 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
724 narrow, nback, nforw, startva);
725 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
726 amap, uobj, 0);
727
728 /*
729 * if we've got an amap, lock it and extract current anons.
730 */
731
732 if (amap) {
733 amap_lock(amap);
734 anons = anons_store;
735 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
736 anons, npages);
737 } else {
738 anons = NULL; /* to be safe */
739 }
740
741 /* locked: maps(read), amap(if there) */
742
743 /*
744 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
745 * now and then forget about them (for the rest of the fault).
746 */
747
748 if (ufi.entry->advice == MADV_SEQUENTIAL) {
749
750 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
751 0,0,0,0);
752 /* flush back-page anons? */
753 if (amap)
754 uvmfault_anonflush(anons, nback);
755
756 /* flush object? */
757 if (uobj) {
758 objaddr =
759 (startva - ufi.entry->start) + ufi.entry->offset;
760 simple_lock(&uobj->vmobjlock);
761 (void) uobj->pgops->pgo_flush(uobj, objaddr, objaddr +
762 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
763 simple_unlock(&uobj->vmobjlock);
764 }
765
766 /* now forget about the backpages */
767 if (amap)
768 anons += nback;
769 startva += (nback << PAGE_SHIFT);
770 npages -= nback;
771 nback = centeridx = 0;
772 }
773
774 /* locked: maps(read), amap(if there) */
775
776 /*
777 * map in the backpages and frontpages we found in the amap in hopes
778 * of preventing future faults. we also init the pages[] array as
779 * we go.
780 */
781
782 currva = startva;
783 shadowed = FALSE;
784 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
785
786 /*
787 * dont play with VAs that are already mapped
788 * except for center)
789 * XXX: return value of pmap_extract disallows PA 0
790 */
791 if (lcv != centeridx) {
792 pa = pmap_extract(ufi.orig_map->pmap, currva);
793 if (pa != NULL) {
794 pages[lcv] = PGO_DONTCARE;
795 continue;
796 }
797 }
798
799 /*
800 * unmapped or center page. check if any anon at this level.
801 */
802 if (amap == NULL || anons[lcv] == NULL) {
803 pages[lcv] = NULL;
804 continue;
805 }
806
807 /*
808 * check for present page and map if possible. re-activate it.
809 */
810
811 pages[lcv] = PGO_DONTCARE;
812 if (lcv == centeridx) { /* save center for later! */
813 shadowed = TRUE;
814 continue;
815 }
816 anon = anons[lcv];
817 simple_lock(&anon->an_lock);
818 /* ignore loaned pages */
819 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
820 (anon->u.an_page->flags & (PG_RELEASED|PG_BUSY)) == 0) {
821 uvm_lock_pageq();
822 uvm_pageactivate(anon->u.an_page); /* reactivate */
823 uvm_unlock_pageq();
824 UVMHIST_LOG(maphist,
825 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
826 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
827 uvmexp.fltnamap++;
828 pmap_enter(ufi.orig_map->pmap, currva,
829 VM_PAGE_TO_PHYS(anon->u.an_page),
830 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
831 enter_prot,
832 (ufi.entry->wired_count != 0), 0);
833 }
834 simple_unlock(&anon->an_lock);
835 }
836
837 /* locked: maps(read), amap(if there) */
838 /* (shadowed == TRUE) if there is an anon at the faulting address */
839 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
840 (uobj && shadowed == FALSE),0,0);
841
842 /*
843 * note that if we are really short of RAM we could sleep in the above
844 * call to pmap_enter with everything locked. bad?
845 * XXXCDC: this is fixed in PMAP_NEW (no sleep alloc's in pmap)
846 */
847
848 /*
849 * if the desired page is not shadowed by the amap and we have a
850 * backing object, then we check to see if the backing object would
851 * prefer to handle the fault itself (rather than letting us do it
852 * with the usual pgo_get hook). the backing object signals this by
853 * providing a pgo_fault routine.
854 */
855
856 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
857 simple_lock(&uobj->vmobjlock);
858
859 /* locked: maps(read), amap (if there), uobj */
860 result = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
861 centeridx, fault_type, access_type,
862 PGO_LOCKED);
863
864 /* locked: nothing, pgo_fault has unlocked everything */
865 simple_lock_assert(&uobj->vmobjlock, SLOCK_UNLOCKED);
866
867 if (result == VM_PAGER_OK)
868 return (KERN_SUCCESS); /* pgo_fault did pmap enter */
869 else if (result == VM_PAGER_REFAULT)
870 goto ReFault; /* try again! */
871 else
872 return (KERN_PROTECTION_FAILURE);
873 }
874
875 /*
876 * now, if the desired page is not shadowed by the amap and we have
877 * a backing object that does not have a special fault routine, then
878 * we ask (with pgo_get) the object for resident pages that we care
879 * about and attempt to map them in. we do not let pgo_get block
880 * (PGO_LOCKED).
881 *
882 * ("get" has the option of doing a pmap_enter for us)
883 */
884
885 if (uobj && shadowed == FALSE) {
886 simple_lock(&uobj->vmobjlock);
887
888 /* locked (!shadowed): maps(read), amap (if there), uobj */
889 /*
890 * the following call to pgo_get does _not_ change locking state
891 */
892
893 uvmexp.fltlget++;
894 gotpages = npages;
895 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
896 (startva - ufi.entry->start),
897 pages, &gotpages, centeridx,
898 access_type & MASK(ufi.entry),
899 ufi.entry->advice, PGO_LOCKED);
900
901 simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
902
903 /*
904 * check for pages to map, if we got any
905 */
906
907 uobjpage = NULL;
908
909 if (gotpages) {
910 currva = startva;
911 for (lcv = 0 ; lcv < npages ;
912 lcv++, currva += PAGE_SIZE) {
913
914 if (pages[lcv] == NULL ||
915 pages[lcv] == PGO_DONTCARE)
916 continue;
917
918 #ifdef DIAGNOSTIC
919 /*
920 * pager sanity check: pgo_get with
921 * PGO_LOCKED should never return a
922 * released page to us.
923 */
924 if (pages[lcv]->flags & PG_RELEASED)
925 panic("uvm_fault: pgo_get PGO_LOCKED gave us a RELEASED page");
926 #endif
927
928 /*
929 * if center page is resident and not
930 * PG_BUSY|PG_RELEASED then pgo_get
931 * made it PG_BUSY for us and gave
932 * us a handle to it. remember this
933 * page as "uobjpage." (for later use).
934 */
935
936 if (lcv == centeridx) {
937 uobjpage = pages[lcv];
938 UVMHIST_LOG(maphist, " got uobjpage (0x%x) with locked get",
939 uobjpage, 0,0,0);
940 continue;
941 }
942
943 /*
944 * note: calling pgo_get with locked data
945 * structures returns us pages which are
946 * neither busy nor released, so we don't
947 * need to check for this. we can just
948 * directly enter the page (after moving it
949 * to the head of the active queue [useful?]).
950 */
951
952 uvm_lock_pageq();
953 uvm_pageactivate(pages[lcv]); /* reactivate */
954 uvm_unlock_pageq();
955 UVMHIST_LOG(maphist,
956 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
957 ufi.orig_map->pmap, currva, pages[lcv], 0);
958 uvmexp.fltnomap++;
959 pmap_enter(ufi.orig_map->pmap, currva,
960 VM_PAGE_TO_PHYS(pages[lcv]),
961 pages[lcv]->flags & PG_RDONLY ?
962 VM_PROT_READ : enter_prot & MASK(ufi.entry),
963 wired, 0);
964
965 /*
966 * NOTE: page can't be PG_WANTED or PG_RELEASED
967 * because we've held the lock the whole time
968 * we've had the handle.
969 */
970 pages[lcv]->flags &= ~(PG_BUSY); /* un-busy! */
971 UVM_PAGE_OWN(pages[lcv], NULL);
972
973 /* done! */
974 } /* for "lcv" loop */
975 } /* "gotpages" != 0 */
976
977 /* note: object still _locked_ */
978 simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
979 } else {
980
981 uobjpage = NULL;
982
983 }
984
985 /* locked (shadowed): maps(read), amap */
986 /* locked (!shadowed): maps(read), amap(if there),
987 uobj(if !null), uobjpage(if !null) */
988
989 /*
990 * note that at this point we are done with any front or back pages.
991 * we are now going to focus on the center page (i.e. the one we've
992 * faulted on). if we have faulted on the top (anon) layer
993 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
994 * not touched it yet). if we have faulted on the bottom (uobj)
995 * layer [i.e. case 2] and the page was both present and available,
996 * then we've got a pointer to it as "uobjpage" and we've already
997 * made it BUSY.
998 */
999
1000 /*
1001 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1002 */
1003
1004 /*
1005 * redirect case 2: if we are not shadowed, go to case 2.
1006 */
1007
1008 if (shadowed == FALSE)
1009 goto Case2;
1010
1011 /* locked: maps(read), amap */
1012
1013 /*
1014 * handle case 1: fault on an anon in our amap
1015 */
1016
1017 anon = anons[centeridx];
1018 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1019 simple_lock(&anon->an_lock);
1020
1021 /* locked: maps(read), amap, anon */
1022
1023 simple_lock_assert(&amap->am_l, SLOCK_LOCKED);
1024 simple_lock_assert(&anon->an_lock, SLOCK_LOCKED);
1025
1026 /*
1027 * no matter if we have case 1A or case 1B we are going to need to
1028 * have the anon's memory resident. ensure that now.
1029 */
1030
1031 /*
1032 * let uvmfault_anonget do the dirty work. if it fails (!OK) it will
1033 * unlock for us. if it is OK, locks are still valid and locked.
1034 * also, if it is OK, then the anon's page is on the queues.
1035 * if the page is on loan from a uvm_object, then anonget will
1036 * lock that object for us if it does not fail.
1037 */
1038
1039 result = uvmfault_anonget(&ufi, amap, anon);
1040
1041 if (result == VM_PAGER_REFAULT)
1042 goto ReFault;
1043
1044 if (result == VM_PAGER_AGAIN) {
1045 tsleep(&lbolt, PVM, "fltagain1", 0);
1046 goto ReFault;
1047 }
1048
1049 if (result != VM_PAGER_OK)
1050 return (KERN_PROTECTION_FAILURE); /* XXX??? */
1051
1052 /*
1053 * uobj is non null if the page is on loan from an object (i.e. uobj)
1054 */
1055
1056 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1057
1058 /* locked: maps(read), amap, anon, uobj(if one) */
1059 simple_lock_assert(&amap->am_l, SLOCK_LOCKED);
1060 simple_lock_assert(&anon->an_lock, SLOCK_LOCKED);
1061 if (uobj) {
1062 simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
1063 }
1064
1065 /*
1066 * special handling for loaned pages
1067 */
1068 if (anon->u.an_page->loan_count) {
1069
1070 if ((access_type & VM_PROT_WRITE) == 0) {
1071
1072 /*
1073 * for read faults on loaned pages we just cap the
1074 * protection at read-only.
1075 */
1076
1077 enter_prot = enter_prot & ~VM_PROT_WRITE;
1078
1079 } else {
1080 /*
1081 * note that we can't allow writes into a loaned page!
1082 *
1083 * if we have a write fault on a loaned page in an
1084 * anon then we need to look at the anon's ref count.
1085 * if it is greater than one then we are going to do
1086 * a normal copy-on-write fault into a new anon (this
1087 * is not a problem). however, if the reference count
1088 * is one (a case where we would normally allow a
1089 * write directly to the page) then we need to kill
1090 * the loan before we continue.
1091 */
1092
1093 /* >1 case is already ok */
1094 if (anon->an_ref == 1) {
1095
1096 /* get new un-owned replacement page */
1097 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1098 if (pg == NULL) {
1099 uvmfault_unlockall(&ufi, amap, uobj,
1100 anon);
1101 uvm_wait("flt_noram2");
1102 goto ReFault;
1103 }
1104
1105 /*
1106 * copy data, kill loan, and drop uobj lock
1107 * (if any)
1108 */
1109 /* copy old -> new */
1110 uvm_pagecopy(anon->u.an_page, pg);
1111
1112 /* force reload */
1113 pmap_page_protect(PMAP_PGARG(anon->u.an_page),
1114 VM_PROT_NONE);
1115 uvm_lock_pageq(); /* KILL loan */
1116 if (uobj)
1117 /* if we were loaning */
1118 anon->u.an_page->loan_count--;
1119 anon->u.an_page->uanon = NULL;
1120 /* in case we owned */
1121 anon->u.an_page->pqflags &= ~PQ_ANON;
1122 uvm_unlock_pageq();
1123 if (uobj) {
1124 simple_unlock(&uobj->vmobjlock);
1125 uobj = NULL;
1126 }
1127
1128 /* install new page in anon */
1129 anon->u.an_page = pg;
1130 pg->uanon = anon;
1131 pg->pqflags |= PQ_ANON;
1132 pg->flags &= ~(PG_BUSY|PG_FAKE);
1133 UVM_PAGE_OWN(pg, NULL);
1134
1135 /* done! */
1136 } /* ref == 1 */
1137 } /* write fault */
1138 } /* loan count */
1139
1140 /*
1141 * if we are case 1B then we will need to allocate a new blank
1142 * anon to transfer the data into. note that we have a lock
1143 * on anon, so no one can busy or release the page until we are done.
1144 * also note that the ref count can't drop to zero here because
1145 * it is > 1 and we are only dropping one ref.
1146 *
1147 * in the (hopefully very rare) case that we are out of RAM we
1148 * will unlock, wait for more RAM, and refault.
1149 *
1150 * if we are out of anon VM we kill the process (XXX: could wait?).
1151 */
1152
1153 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) {
1154
1155 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1156 uvmexp.flt_acow++;
1157 oanon = anon; /* oanon = old, locked anon */
1158 anon = uvm_analloc();
1159 if (anon)
1160 pg = uvm_pagealloc(NULL, 0, anon, 0);
1161 #ifdef __GNUC__
1162 else
1163 pg = NULL; /* XXX: gcc */
1164 #endif
1165
1166 /* check for out of RAM */
1167 if (anon == NULL || pg == NULL) {
1168 if (anon)
1169 uvm_anfree(anon);
1170 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1171 #ifdef DIAGNOSTIC
1172 if (uvmexp.swpgonly > uvmexp.swpages) {
1173 panic("uvmexp.swpgonly botch");
1174 }
1175 #endif
1176 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1177 UVMHIST_LOG(maphist,
1178 "<- failed. out of VM",0,0,0,0);
1179 uvmexp.fltnoanon++;
1180 return (KERN_RESOURCE_SHORTAGE);
1181 }
1182
1183 uvmexp.fltnoram++;
1184 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1185 goto ReFault;
1186 }
1187
1188 /* got all resources, replace anon with nanon */
1189
1190 uvm_pagecopy(oanon->u.an_page, pg); /* pg now !PG_CLEAN */
1191 pg->flags &= ~(PG_BUSY|PG_FAKE); /* un-busy! new page */
1192 UVM_PAGE_OWN(pg, NULL);
1193 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1194 anon, 1);
1195
1196 /* deref: can not drop to zero here by defn! */
1197 oanon->an_ref--;
1198
1199 /*
1200 * note: oanon still locked. anon is _not_ locked, but we
1201 * have the sole references to in from amap which _is_ locked.
1202 * thus, no one can get at it until we are done with it.
1203 */
1204
1205 } else {
1206
1207 uvmexp.flt_anon++;
1208 oanon = anon; /* old, locked anon is same as anon */
1209 pg = anon->u.an_page;
1210 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1211 enter_prot = enter_prot & ~VM_PROT_WRITE;
1212
1213 }
1214
1215 /* locked: maps(read), amap, oanon */
1216 simple_lock_assert(&amap->am_l, SLOCK_LOCKED);
1217 simple_lock_assert(&oanon->an_lock, SLOCK_LOCKED);
1218
1219 /*
1220 * now map the page in ...
1221 * XXX: old fault unlocks object before pmap_enter. this seems
1222 * suspect since some other thread could blast the page out from
1223 * under us between the unlock and the pmap_enter.
1224 */
1225
1226 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1227 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1228 pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1229 enter_prot, wired, access_type);
1230
1231 /*
1232 * ... and update the page queues.
1233 */
1234
1235 uvm_lock_pageq();
1236
1237 if (fault_type == VM_FAULT_WIRE) {
1238 uvm_pagewire(pg);
1239 uvm_anon_dropswap(anon);
1240 } else {
1241 /* activate it */
1242 uvm_pageactivate(pg);
1243
1244 }
1245
1246 uvm_unlock_pageq();
1247
1248 /*
1249 * done case 1! finish up by unlocking everything and returning success
1250 */
1251
1252 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1253 return (KERN_SUCCESS);
1254
1255
1256 Case2:
1257 /*
1258 * handle case 2: faulting on backing object or zero fill
1259 */
1260
1261 /*
1262 * locked:
1263 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1264 */
1265 if (uobj) {
1266 simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
1267 }
1268
1269 /*
1270 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1271 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1272 * have a backing object, check and see if we are going to promote
1273 * the data up to an anon during the fault.
1274 */
1275
1276 if (uobj == NULL) {
1277 uobjpage = PGO_DONTCARE;
1278 promote = TRUE; /* always need anon here */
1279 } else {
1280 /* assert(uobjpage != PGO_DONTCARE) */
1281 promote = (access_type & VM_PROT_WRITE) &&
1282 UVM_ET_ISCOPYONWRITE(ufi.entry);
1283 }
1284 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1285 promote, (uobj == NULL), 0,0);
1286
1287 /*
1288 * if uobjpage is not null then we do not need to do I/O to get the
1289 * uobjpage.
1290 *
1291 * if uobjpage is null, then we need to unlock and ask the pager to
1292 * get the data for us. once we have the data, we need to reverify
1293 * the state the world. we are currently not holding any resources.
1294 */
1295
1296 if (uobjpage) {
1297 /* update rusage counters */
1298 curproc->p_addr->u_stats.p_ru.ru_minflt++;
1299 } else {
1300 /* update rusage counters */
1301 curproc->p_addr->u_stats.p_ru.ru_majflt++;
1302
1303 /* locked: maps(read), amap(if there), uobj */
1304 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1305 /* locked: uobj */
1306 simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
1307
1308 uvmexp.fltget++;
1309 gotpages = 1;
1310 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1311 result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1312 0, access_type & MASK(ufi.entry), ufi.entry->advice, 0);
1313
1314 /* locked: uobjpage(if result OK) */
1315 simple_lock_assert(&uobj->vmobjlock, SLOCK_UNLOCKED);
1316
1317 /*
1318 * recover from I/O
1319 */
1320
1321 if (result != VM_PAGER_OK) {
1322
1323 #ifdef DIAGNOSTIC
1324 if (result == VM_PAGER_PEND)
1325 panic("uvm_fault: pgo_get got PENDing "
1326 "on non-async I/O");
1327 #endif
1328
1329 if (result == VM_PAGER_AGAIN) {
1330 UVMHIST_LOG(maphist, " pgo_get says AGAIN!",
1331 0,0,0,0);
1332 tsleep(&lbolt, PVM, "fltagain2", 0);
1333 goto ReFault;
1334 }
1335
1336 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1337 result, 0,0,0);
1338 return (KERN_PROTECTION_FAILURE); /* XXX i/o error */
1339 }
1340
1341 /* locked: uobjpage */
1342
1343 /*
1344 * re-verify the state of the world by first trying to relock
1345 * the maps. always relock the object.
1346 */
1347
1348 locked = uvmfault_relock(&ufi);
1349 if (locked && amap)
1350 amap_lock(amap);
1351 simple_lock(&uobj->vmobjlock);
1352
1353 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1354 /* locked(!locked): uobj, uobjpage */
1355 simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
1356
1357 /*
1358 * verify that the page has not be released and re-verify
1359 * that amap slot is still free. if there is a problem,
1360 * we unlock and clean up.
1361 */
1362
1363 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1364 (locked && amap &&
1365 amap_lookup(&ufi.entry->aref,
1366 ufi.orig_rvaddr - ufi.entry->start))) {
1367 if (locked)
1368 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1369 locked = FALSE;
1370 }
1371
1372 /*
1373 * didn't get the lock? release the page and retry.
1374 */
1375
1376 if (locked == FALSE) {
1377
1378 UVMHIST_LOG(maphist,
1379 " wasn't able to relock after fault: retry",
1380 0,0,0,0);
1381 if (uobjpage->flags & PG_WANTED)
1382 /* still holding object lock */
1383 wakeup(uobjpage);
1384
1385 if (uobjpage->flags & PG_RELEASED) {
1386 uvmexp.fltpgrele++;
1387 #ifdef DIAGNOSTIC
1388 if (uobj->pgops->pgo_releasepg == NULL)
1389 panic("uvm_fault: object has no releasepg function");
1390 #endif
1391 /* frees page */
1392 if (uobj->pgops->pgo_releasepg(uobjpage,NULL))
1393 /* unlock if still alive */
1394 simple_unlock(&uobj->vmobjlock);
1395 goto ReFault;
1396 }
1397
1398 uvm_lock_pageq();
1399 /* make sure it is in queues */
1400 uvm_pageactivate(uobjpage);
1401
1402 uvm_unlock_pageq();
1403 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1404 UVM_PAGE_OWN(uobjpage, NULL);
1405 simple_unlock(&uobj->vmobjlock);
1406 goto ReFault;
1407
1408 }
1409
1410 /*
1411 * we have the data in uobjpage which is PG_BUSY and
1412 * !PG_RELEASED. we are holding object lock (so the page
1413 * can't be released on us).
1414 */
1415
1416 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1417 simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
1418 }
1419
1420 /*
1421 * locked:
1422 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1423 */
1424 if (amap) {
1425 simple_lock_assert(&amap->am_l, SLOCK_LOCKED);
1426 }
1427 if (uobj) {
1428 simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
1429 }
1430
1431 /*
1432 * notes:
1433 * - at this point uobjpage can not be NULL
1434 * - at this point uobjpage can not be PG_RELEASED (since we checked
1435 * for it above)
1436 * - at this point uobjpage could be PG_WANTED (handle later)
1437 */
1438
1439 if (promote == FALSE) {
1440
1441 /*
1442 * we are not promoting. if the mapping is COW ensure that we
1443 * don't give more access than we should (e.g. when doing a read
1444 * fault on a COPYONWRITE mapping we want to map the COW page in
1445 * R/O even though the entry protection could be R/W).
1446 *
1447 * set "pg" to the page we want to map in (uobjpage, usually)
1448 */
1449
1450 uvmexp.flt_obj++;
1451 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1452 enter_prot &= ~VM_PROT_WRITE;
1453 pg = uobjpage; /* map in the actual object */
1454
1455 /* assert(uobjpage != PGO_DONTCARE) */
1456
1457 /*
1458 * we are faulting directly on the page. be careful
1459 * about writing to loaned pages...
1460 */
1461 if (uobjpage->loan_count) {
1462
1463 if ((access_type & VM_PROT_WRITE) == 0) {
1464 /* read fault: cap the protection at readonly */
1465 /* cap! */
1466 enter_prot = enter_prot & ~VM_PROT_WRITE;
1467 } else {
1468 /* write fault: must break the loan here */
1469
1470 /* alloc new un-owned page */
1471 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1472
1473 if (pg == NULL) {
1474 /*
1475 * drop ownership of page, it can't
1476 * be released
1477 * */
1478 if (uobjpage->flags & PG_WANTED)
1479 wakeup(uobjpage);
1480 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1481 UVM_PAGE_OWN(uobjpage, NULL);
1482
1483 uvm_lock_pageq();
1484 /* activate: we will need it later */
1485 uvm_pageactivate(uobjpage);
1486
1487 uvm_unlock_pageq();
1488 uvmfault_unlockall(&ufi, amap, uobj,
1489 NULL);
1490 UVMHIST_LOG(maphist,
1491 " out of RAM breaking loan, waiting",
1492 0,0,0,0);
1493 uvmexp.fltnoram++;
1494 uvm_wait("flt_noram4");
1495 goto ReFault;
1496 }
1497
1498 /*
1499 * copy the data from the old page to the new
1500 * one and clear the fake/clean flags on the
1501 * new page (keep it busy). force a reload
1502 * of the old page by clearing it from all
1503 * pmaps. then lock the page queues to
1504 * rename the pages.
1505 */
1506 uvm_pagecopy(uobjpage, pg); /* old -> new */
1507 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1508 pmap_page_protect(PMAP_PGARG(uobjpage),
1509 VM_PROT_NONE);
1510 if (uobjpage->flags & PG_WANTED)
1511 wakeup(uobjpage);
1512 /* uobj still locked */
1513 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1514 UVM_PAGE_OWN(uobjpage, NULL);
1515
1516 uvm_lock_pageq();
1517 offset = uobjpage->offset;
1518 /* remove old page */
1519 uvm_pagerealloc(uobjpage, NULL, 0);
1520
1521 /*
1522 * at this point we have absolutely no
1523 * control over uobjpage
1524 */
1525 /* install new page */
1526 uvm_pagerealloc(pg, uobj, offset);
1527 uvm_unlock_pageq();
1528
1529 /*
1530 * done! loan is broken and "pg" is
1531 * PG_BUSY. it can now replace uobjpage.
1532 */
1533
1534 uobjpage = pg;
1535
1536 } /* write fault case */
1537 } /* if loan_count */
1538
1539 } else {
1540
1541 /*
1542 * if we are going to promote the data to an anon we
1543 * allocate a blank anon here and plug it into our amap.
1544 */
1545 #if DIAGNOSTIC
1546 if (amap == NULL)
1547 panic("uvm_fault: want to promote data, but no anon");
1548 #endif
1549
1550 anon = uvm_analloc();
1551 if (anon)
1552 pg = uvm_pagealloc(NULL, 0, anon, 0);
1553 #ifdef __GNUC__
1554 else
1555 pg = NULL; /* XXX: gcc */
1556 #endif
1557
1558 /*
1559 * out of memory resources?
1560 */
1561 if (anon == NULL || pg == NULL) {
1562
1563 /*
1564 * arg! must unbusy our page and fail or sleep.
1565 */
1566 if (uobjpage != PGO_DONTCARE) {
1567 /* still holding object lock */
1568 simple_lock_assert(&uobj->vmobjlock,
1569 SLOCK_LOCKED);
1570
1571 if (uobjpage->flags & PG_WANTED)
1572 wakeup(uobjpage);
1573
1574 uvm_lock_pageq();
1575 uvm_pageactivate(uobjpage);
1576 uvm_unlock_pageq();
1577 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1578 UVM_PAGE_OWN(uobjpage, NULL);
1579 }
1580
1581 /* unlock and fail ... */
1582 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1583 #ifdef DIAGNOSTIC
1584 if (uvmexp.swpgonly > uvmexp.swpages) {
1585 panic("uvmexp.swpgonly botch");
1586 }
1587 #endif
1588 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1589 UVMHIST_LOG(maphist, " promote: out of VM",
1590 0,0,0,0);
1591 uvmexp.fltnoanon++;
1592 return (KERN_RESOURCE_SHORTAGE);
1593 }
1594
1595 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1596 0,0,0,0);
1597 anon->an_ref--;
1598 uvm_anfree(anon);
1599 uvmexp.fltnoram++;
1600 uvm_wait("flt_noram5");
1601 goto ReFault;
1602 }
1603
1604 /*
1605 * fill in the data
1606 */
1607
1608 if (uobjpage != PGO_DONTCARE) {
1609 simple_lock_assert(&uobj->vmobjlock, SLOCK_LOCKED);
1610
1611 uvmexp.flt_prcopy++;
1612 /* copy page [pg now dirty] */
1613 uvm_pagecopy(uobjpage, pg);
1614
1615 /*
1616 * promote to shared amap? make sure all sharing
1617 * procs see it
1618 */
1619 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1620 pmap_page_protect(PMAP_PGARG(uobjpage),
1621 VM_PROT_NONE);
1622 }
1623
1624 /*
1625 * dispose of uobjpage. it can't be PG_RELEASED
1626 * since we still hold the object lock.
1627 * drop handle to uobj as well.
1628 */
1629
1630 if (uobjpage->flags & PG_WANTED)
1631 wakeup(uobjpage);
1632 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1633 UVM_PAGE_OWN(uobjpage, NULL);
1634 uvm_lock_pageq();
1635 uvm_pageactivate(uobjpage);
1636 uvm_unlock_pageq();
1637 simple_unlock(&uobj->vmobjlock);
1638 uobj = NULL;
1639
1640 UVMHIST_LOG(maphist,
1641 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1642 uobjpage, anon, pg, 0);
1643
1644 } else {
1645 uvmexp.flt_przero++;
1646 uvm_pagezero(pg); /* zero page [pg now dirty] */
1647 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1648 anon, pg, 0, 0);
1649 }
1650
1651 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1652 anon, 0);
1653
1654 }
1655
1656 /*
1657 * locked:
1658 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1659 *
1660 * note: pg is either the uobjpage or the new page in the new anon
1661 */
1662
1663 /*
1664 * all resources are present. we can now map it in and free our
1665 * resources.
1666 */
1667
1668 UVMHIST_LOG(maphist,
1669 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1670 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1671 pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1672 pg->flags & PG_RDONLY ? VM_PROT_READ : enter_prot, wired,
1673 access_type);
1674
1675 uvm_lock_pageq();
1676 if (fault_type == VM_FAULT_WIRE) {
1677 uvm_pagewire(pg);
1678 if (pg->pqflags & PQ_AOBJ) {
1679 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1680 }
1681 } else {
1682 uvm_pageactivate(pg);
1683 }
1684 uvm_unlock_pageq();
1685
1686 if (pg->flags & PG_WANTED) {
1687 wakeup(pg);
1688 }
1689
1690 /*
1691 * note that pg can't be PG_RELEASED since we did not drop the object
1692 * lock since the last time we checked.
1693 */
1694
1695 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1696 UVM_PAGE_OWN(pg, NULL);
1697 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1698
1699 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1700 return (KERN_SUCCESS);
1701 }
1702
1703
1704 /*
1705 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1706 *
1707 * => map should be locked by caller? If so how can we call
1708 * uvm_fault? WRONG.
1709 * => XXXCDC: locking here is all screwed up!!! start with
1710 * uvm_map_pageable and fix it.
1711 */
1712
1713 int
1714 uvm_fault_wire(map, start, end)
1715 vm_map_t map;
1716 vaddr_t start, end;
1717 {
1718 vaddr_t va;
1719 pmap_t pmap;
1720 int rv;
1721
1722 pmap = vm_map_pmap(map);
1723
1724 /*
1725 * call pmap pageable: this tells the pmap layer to lock down these
1726 * page tables.
1727 */
1728
1729 pmap_pageable(pmap, start, end, FALSE);
1730
1731 /*
1732 * now fault it in page at a time. if the fault fails then we have
1733 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1734 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1735 */
1736
1737 for (va = start ; va < end ; va += PAGE_SIZE) {
1738 rv = uvm_fault(map, va, VM_FAULT_WIRE, VM_PROT_NONE);
1739 if (rv) {
1740 if (va != start) {
1741 uvm_fault_unwire(map->pmap, start, va);
1742 }
1743 return (rv);
1744 }
1745 }
1746
1747 return (KERN_SUCCESS);
1748 }
1749
1750 /*
1751 * uvm_fault_unwire(): unwire range of virtual space.
1752 *
1753 * => caller holds reference to pmap (via its map)
1754 */
1755
1756 void
1757 uvm_fault_unwire(pmap, start, end)
1758 struct pmap *pmap;
1759 vaddr_t start, end;
1760 {
1761 vaddr_t va;
1762 paddr_t pa;
1763 struct vm_page *pg;
1764
1765 /*
1766 * we assume that the area we are unwiring has actually been wired
1767 * in the first place. this means that we should be able to extract
1768 * the PAs from the pmap. we also lock out the page daemon so that
1769 * we can call uvm_pageunwire.
1770 */
1771
1772 uvm_lock_pageq();
1773
1774 for (va = start; va < end ; va += PAGE_SIZE) {
1775 pa = pmap_extract(pmap, va);
1776
1777 /* XXX: assumes PA 0 cannot be in map */
1778 if (pa == (paddr_t) 0) {
1779 panic("uvm_fault_unwire: unwiring non-wired memory");
1780 }
1781 pmap_change_wiring(pmap, va, FALSE); /* tell the pmap */
1782 pg = PHYS_TO_VM_PAGE(pa);
1783 if (pg)
1784 uvm_pageunwire(pg);
1785 }
1786
1787 uvm_unlock_pageq();
1788
1789 /*
1790 * now we call pmap_pageable to let the pmap know that the page tables
1791 * in this space no longer need to be wired.
1792 */
1793
1794 pmap_pageable(pmap, start, end, TRUE);
1795
1796 }
1797