uvm_fault.c revision 1.36 1 /* $NetBSD: uvm_fault.c,v 1.36 1999/06/16 22:11:23 thorpej Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 #include "opt_uvmhist.h"
38
39 /*
40 * uvm_fault.c: fault handler
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/proc.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/user.h>
50
51 #include <vm/vm.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_kern.h>
54
55 #include <uvm/uvm.h>
56
57 /*
58 *
59 * a word on page faults:
60 *
61 * types of page faults we handle:
62 *
63 * CASE 1: upper layer faults CASE 2: lower layer faults
64 *
65 * CASE 1A CASE 1B CASE 2A CASE 2B
66 * read/write1 write>1 read/write +-cow_write/zero
67 * | | | |
68 * +--|--+ +--|--+ +-----+ + | + | +-----+
69 * amap | V | | ----------->new| | | | ^ |
70 * +-----+ +-----+ +-----+ + | + | +--|--+
71 * | | |
72 * +-----+ +-----+ +--|--+ | +--|--+
73 * uobj | d/c | | d/c | | V | +----| |
74 * +-----+ +-----+ +-----+ +-----+
75 *
76 * d/c = don't care
77 *
78 * case [0]: layerless fault
79 * no amap or uobj is present. this is an error.
80 *
81 * case [1]: upper layer fault [anon active]
82 * 1A: [read] or [write with anon->an_ref == 1]
83 * I/O takes place in top level anon and uobj is not touched.
84 * 1B: [write with anon->an_ref > 1]
85 * new anon is alloc'd and data is copied off ["COW"]
86 *
87 * case [2]: lower layer fault [uobj]
88 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
89 * I/O takes place directly in object.
90 * 2B: [write to copy_on_write] or [read on NULL uobj]
91 * data is "promoted" from uobj to a new anon.
92 * if uobj is null, then we zero fill.
93 *
94 * we follow the standard UVM locking protocol ordering:
95 *
96 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
97 * we hold a PG_BUSY page if we unlock for I/O
98 *
99 *
100 * the code is structured as follows:
101 *
102 * - init the "IN" params in the ufi structure
103 * ReFault:
104 * - do lookups [locks maps], check protection, handle needs_copy
105 * - check for case 0 fault (error)
106 * - establish "range" of fault
107 * - if we have an amap lock it and extract the anons
108 * - if sequential advice deactivate pages behind us
109 * - at the same time check pmap for unmapped areas and anon for pages
110 * that we could map in (and do map it if found)
111 * - check object for resident pages that we could map in
112 * - if (case 2) goto Case2
113 * - >>> handle case 1
114 * - ensure source anon is resident in RAM
115 * - if case 1B alloc new anon and copy from source
116 * - map the correct page in
117 * Case2:
118 * - >>> handle case 2
119 * - ensure source page is resident (if uobj)
120 * - if case 2B alloc new anon and copy from source (could be zero
121 * fill if uobj == NULL)
122 * - map the correct page in
123 * - done!
124 *
125 * note on paging:
126 * if we have to do I/O we place a PG_BUSY page in the correct object,
127 * unlock everything, and do the I/O. when I/O is done we must reverify
128 * the state of the world before assuming that our data structures are
129 * valid. [because mappings could change while the map is unlocked]
130 *
131 * alternative 1: unbusy the page in question and restart the page fault
132 * from the top (ReFault). this is easy but does not take advantage
133 * of the information that we already have from our previous lookup,
134 * although it is possible that the "hints" in the vm_map will help here.
135 *
136 * alternative 2: the system already keeps track of a "version" number of
137 * a map. [i.e. every time you write-lock a map (e.g. to change a
138 * mapping) you bump the version number up by one...] so, we can save
139 * the version number of the map before we release the lock and start I/O.
140 * then when I/O is done we can relock and check the version numbers
141 * to see if anything changed. this might save us some over 1 because
142 * we don't have to unbusy the page and may be less compares(?).
143 *
144 * alternative 3: put in backpointers or a way to "hold" part of a map
145 * in place while I/O is in progress. this could be complex to
146 * implement (especially with structures like amap that can be referenced
147 * by multiple map entries, and figuring out what should wait could be
148 * complex as well...).
149 *
150 * given that we are not currently multiprocessor or multithreaded we might
151 * as well choose alternative 2 now. maybe alternative 3 would be useful
152 * in the future. XXX keep in mind for future consideration//rechecking.
153 */
154
155 /*
156 * local data structures
157 */
158
159 struct uvm_advice {
160 int advice;
161 int nback;
162 int nforw;
163 };
164
165 /*
166 * page range array:
167 * note: index in array must match "advice" value
168 * XXX: borrowed numbers from freebsd. do they work well for us?
169 */
170
171 static struct uvm_advice uvmadvice[] = {
172 { MADV_NORMAL, 3, 4 },
173 { MADV_RANDOM, 0, 0 },
174 { MADV_SEQUENTIAL, 8, 7},
175 };
176
177 #define UVM_MAXRANGE 16 /* must be max() of nback+nforw+1 */
178
179 /*
180 * private prototypes
181 */
182
183 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
184 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
185
186 /*
187 * inline functions
188 */
189
190 /*
191 * uvmfault_anonflush: try and deactivate pages in specified anons
192 *
193 * => does not have to deactivate page if it is busy
194 */
195
196 static __inline void
197 uvmfault_anonflush(anons, n)
198 struct vm_anon **anons;
199 int n;
200 {
201 int lcv;
202 struct vm_page *pg;
203
204 for (lcv = 0 ; lcv < n ; lcv++) {
205 if (anons[lcv] == NULL)
206 continue;
207 simple_lock(&anons[lcv]->an_lock);
208 pg = anons[lcv]->u.an_page;
209 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
210 uvm_lock_pageq();
211 if (pg->wire_count == 0) {
212 pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
213 uvm_pagedeactivate(pg);
214 }
215 uvm_unlock_pageq();
216 }
217 simple_unlock(&anons[lcv]->an_lock);
218 }
219 }
220
221 /*
222 * normal functions
223 */
224
225 /*
226 * uvmfault_amapcopy: clear "needs_copy" in a map.
227 *
228 * => called with VM data structures unlocked (usually, see below)
229 * => we get a write lock on the maps and clear needs_copy for a VA
230 * => if we are out of RAM we sleep (waiting for more)
231 */
232
233 static void
234 uvmfault_amapcopy(ufi)
235 struct uvm_faultinfo *ufi;
236 {
237
238 /*
239 * while we haven't done the job
240 */
241
242 while (1) {
243
244 /*
245 * no mapping? give up.
246 */
247
248 if (uvmfault_lookup(ufi, TRUE) == FALSE)
249 return;
250
251 /*
252 * copy if needed.
253 */
254
255 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
256 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
257 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
258
259 /*
260 * didn't work? must be out of RAM. unlock and sleep.
261 */
262
263 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
264 uvmfault_unlockmaps(ufi, TRUE);
265 uvm_wait("fltamapcopy");
266 continue;
267 }
268
269 /*
270 * got it! unlock and return.
271 */
272
273 uvmfault_unlockmaps(ufi, TRUE);
274 return;
275 }
276 /*NOTREACHED*/
277 }
278
279 /*
280 * uvmfault_anonget: get data in an anon into a non-busy, non-released
281 * page in that anon.
282 *
283 * => maps, amap, and anon locked by caller.
284 * => if we fail (result != VM_PAGER_OK) we unlock everything.
285 * => if we are successful, we return with everything still locked.
286 * => we don't move the page on the queues [gets moved later]
287 * => if we allocate a new page [we_own], it gets put on the queues.
288 * either way, the result is that the page is on the queues at return time
289 * => for pages which are on loan from a uvm_object (and thus are not
290 * owned by the anon): if successful, we return with the owning object
291 * locked. the caller must unlock this object when it unlocks everything
292 * else.
293 */
294
295 int uvmfault_anonget(ufi, amap, anon)
296 struct uvm_faultinfo *ufi;
297 struct vm_amap *amap;
298 struct vm_anon *anon;
299 {
300 boolean_t we_own; /* we own anon's page? */
301 boolean_t locked; /* did we relock? */
302 struct vm_page *pg;
303 int result;
304 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
305
306 result = 0; /* XXX shut up gcc */
307 uvmexp.fltanget++;
308 /* bump rusage counters */
309 if (anon->u.an_page)
310 curproc->p_addr->u_stats.p_ru.ru_minflt++;
311 else
312 curproc->p_addr->u_stats.p_ru.ru_majflt++;
313
314 /*
315 * loop until we get it, or fail.
316 */
317
318 while (1) {
319
320 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
321 pg = anon->u.an_page;
322
323 /*
324 * if there is a resident page and it is loaned, then anon
325 * may not own it. call out to uvm_anon_lockpage() to ensure
326 * the real owner of the page has been identified and locked.
327 */
328
329 if (pg && pg->loan_count)
330 pg = uvm_anon_lockloanpg(anon);
331
332 /*
333 * page there? make sure it is not busy/released.
334 */
335
336 if (pg) {
337
338 /*
339 * at this point, if the page has a uobject [meaning
340 * we have it on loan], then that uobject is locked
341 * by us! if the page is busy, we drop all the
342 * locks (including uobject) and try again.
343 */
344
345 if ((pg->flags & (PG_BUSY|PG_RELEASED)) == 0) {
346 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
347 return (VM_PAGER_OK);
348 }
349 pg->flags |= PG_WANTED;
350 uvmexp.fltpgwait++;
351
352 /*
353 * the last unlock must be an atomic unlock+wait on
354 * the owner of page
355 */
356 if (pg->uobject) { /* owner is uobject ? */
357 uvmfault_unlockall(ufi, amap, NULL, anon);
358 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
359 0,0,0);
360 UVM_UNLOCK_AND_WAIT(pg,
361 &pg->uobject->vmobjlock,
362 FALSE, "anonget1",0);
363 } else {
364 /* anon owns page */
365 uvmfault_unlockall(ufi, amap, NULL, NULL);
366 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
367 0,0,0);
368 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
369 "anonget2",0);
370 }
371 /* ready to relock and try again */
372
373 } else {
374
375 /*
376 * no page, we must try and bring it in.
377 */
378 pg = uvm_pagealloc(NULL, 0, anon, 0);
379
380 if (pg == NULL) { /* out of RAM. */
381
382 uvmfault_unlockall(ufi, amap, NULL, anon);
383 uvmexp.fltnoram++;
384 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
385 0,0,0);
386 uvm_wait("flt_noram1");
387 /* ready to relock and try again */
388
389 } else {
390
391 /* we set the PG_BUSY bit */
392 we_own = TRUE;
393 uvmfault_unlockall(ufi, amap, NULL, anon);
394
395 /*
396 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
397 * page into the uvm_swap_get function with
398 * all data structures unlocked. note that
399 * it is ok to read an_swslot here because
400 * we hold PG_BUSY on the page.
401 */
402 uvmexp.pageins++;
403 result = uvm_swap_get(pg, anon->an_swslot,
404 PGO_SYNCIO);
405
406 /*
407 * we clean up after the i/o below in the
408 * "we_own" case
409 */
410 /* ready to relock and try again */
411 }
412 }
413
414 /*
415 * now relock and try again
416 */
417
418 locked = uvmfault_relock(ufi);
419 if (locked) {
420 amap_lock(amap);
421 }
422 if (locked || we_own)
423 simple_lock(&anon->an_lock);
424
425 /*
426 * if we own the page (i.e. we set PG_BUSY), then we need
427 * to clean up after the I/O. there are three cases to
428 * consider:
429 * [1] page released during I/O: free anon and ReFault.
430 * [2] I/O not OK. free the page and cause the fault
431 * to fail.
432 * [3] I/O OK! activate the page and sync with the
433 * non-we_own case (i.e. drop anon lock if not locked).
434 */
435
436 if (we_own) {
437
438 if (pg->flags & PG_WANTED) {
439 /* still holding object lock */
440 thread_wakeup(pg);
441 }
442 /* un-busy! */
443 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
444 UVM_PAGE_OWN(pg, NULL);
445
446 /*
447 * if we were RELEASED during I/O, then our anon is
448 * no longer part of an amap. we need to free the
449 * anon and try again.
450 */
451 if (pg->flags & PG_RELEASED) {
452 pmap_page_protect(PMAP_PGARG(pg),
453 VM_PROT_NONE); /* to be safe */
454 simple_unlock(&anon->an_lock);
455 uvm_anfree(anon); /* frees page for us */
456 if (locked)
457 uvmfault_unlockall(ufi, amap, NULL, NULL);
458 uvmexp.fltpgrele++;
459 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
460 return (VM_PAGER_REFAULT); /* refault! */
461 }
462
463 if (result != VM_PAGER_OK) {
464 #ifdef DIAGNOSTIC
465 if (result == VM_PAGER_PEND)
466 panic("uvmfault_anonget: got PENDING for non-async I/O");
467 #endif
468 /* remove page from anon */
469 anon->u.an_page = NULL;
470
471 /*
472 * note: page was never !PG_BUSY, so it
473 * can't be mapped and thus no need to
474 * pmap_page_protect it...
475 */
476 uvm_lock_pageq();
477 uvm_pagefree(pg);
478 uvm_unlock_pageq();
479
480 if (locked)
481 uvmfault_unlockall(ufi, amap, NULL,
482 anon);
483 else
484 simple_unlock(&anon->an_lock);
485 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
486 return (VM_PAGER_ERROR);
487 }
488
489 /*
490 * must be OK, clear modify (already PG_CLEAN)
491 * and activate
492 */
493 pmap_clear_modify(PMAP_PGARG(pg));
494 uvm_lock_pageq();
495 uvm_pageactivate(pg);
496 uvm_unlock_pageq();
497 if (!locked)
498 simple_unlock(&anon->an_lock);
499 }
500
501 /*
502 * we were not able to relock. restart fault.
503 */
504
505 if (!locked) {
506 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
507 return (VM_PAGER_REFAULT);
508 }
509
510 /*
511 * verify no one has touched the amap and moved the anon on us.
512 */
513
514 if (amap_lookup(&ufi->entry->aref,
515 ufi->orig_rvaddr - ufi->entry->start) != anon) {
516
517 uvmfault_unlockall(ufi, amap, NULL, anon);
518 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
519 return (VM_PAGER_REFAULT);
520 }
521
522 /*
523 * try it again!
524 */
525
526 uvmexp.fltanretry++;
527 continue;
528
529 } /* while (1) */
530
531 /*NOTREACHED*/
532 }
533
534 /*
535 * F A U L T - m a i n e n t r y p o i n t
536 */
537
538 /*
539 * uvm_fault: page fault handler
540 *
541 * => called from MD code to resolve a page fault
542 * => VM data structures usually should be unlocked. however, it is
543 * possible to call here with the main map locked if the caller
544 * gets a write lock, sets it recusive, and then calls us (c.f.
545 * uvm_map_pageable). this should be avoided because it keeps
546 * the map locked off during I/O.
547 */
548
549 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
550 ~VM_PROT_WRITE : VM_PROT_ALL)
551
552 int
553 uvm_fault(orig_map, vaddr, fault_type, access_type)
554 vm_map_t orig_map;
555 vaddr_t vaddr;
556 vm_fault_t fault_type;
557 vm_prot_t access_type;
558 {
559 struct uvm_faultinfo ufi;
560 vm_prot_t enter_prot;
561 boolean_t wired, narrow, promote, locked, shadowed;
562 int npages, nback, nforw, centeridx, result, lcv, gotpages;
563 vaddr_t startva, objaddr, currva, offset;
564 paddr_t pa;
565 struct vm_amap *amap;
566 struct uvm_object *uobj;
567 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
568 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
569 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
570
571 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
572 orig_map, vaddr, fault_type, access_type);
573
574 anon = NULL; /* XXX: shut up gcc */
575
576 uvmexp.faults++; /* XXX: locking? */
577
578 /*
579 * init the IN parameters in the ufi
580 */
581
582 ufi.orig_map = orig_map;
583 ufi.orig_rvaddr = trunc_page(vaddr);
584 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
585 if (fault_type == VM_FAULT_WIRE)
586 narrow = TRUE; /* don't look for neighborhood
587 * pages on wire */
588 else
589 narrow = FALSE; /* normal fault */
590
591 /*
592 * before we do anything else, if this is a fault on a kernel
593 * address, check to see if the address is managed by an
594 * interrupt-safe map. If it is, we fail immediately. Intrsafe
595 * maps are never pageable, and this approach avoids an evil
596 * locking mess.
597 */
598 if (orig_map == kernel_map && uvmfault_check_intrsafe(&ufi)) {
599 UVMHIST_LOG(maphist, "<- VA 0x%lx in intrsafe map %p",
600 ufi.orig_rvaddr, ufi.map, 0, 0);
601 return (KERN_FAILURE);
602 }
603
604 /*
605 * "goto ReFault" means restart the page fault from ground zero.
606 */
607 ReFault:
608
609 /*
610 * lookup and lock the maps
611 */
612
613 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
614 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
615 return (KERN_INVALID_ADDRESS);
616 }
617 /* locked: maps(read) */
618
619 /*
620 * check protection
621 */
622
623 if ((ufi.entry->protection & access_type) != access_type) {
624 UVMHIST_LOG(maphist,
625 "<- protection failure (prot=0x%x, access=0x%x)",
626 ufi.entry->protection, access_type, 0, 0);
627 uvmfault_unlockmaps(&ufi, FALSE);
628 return (KERN_PROTECTION_FAILURE);
629 }
630
631 /*
632 * if the map is not a pageable map, a page fault always fails.
633 */
634
635 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
636 UVMHIST_LOG(maphist,
637 "<- map %p not pageable", ufi.map, 0, 0, 0);
638 uvmfault_unlockmaps(&ufi, FALSE);
639 return (KERN_FAILURE);
640 }
641
642 /*
643 * "enter_prot" is the protection we want to enter the page in at.
644 * for certain pages (e.g. copy-on-write pages) this protection can
645 * be more strict than ufi.entry->protection. "wired" means either
646 * the entry is wired or we are fault-wiring the pg.
647 */
648
649 enter_prot = ufi.entry->protection;
650 wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE);
651 if (wired)
652 access_type = enter_prot; /* full access for wired */
653
654 /*
655 * handle "needs_copy" case. if we need to copy the amap we will
656 * have to drop our readlock and relock it with a write lock. (we
657 * need a write lock to change anything in a map entry [e.g.
658 * needs_copy]).
659 */
660
661 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
662 if ((access_type & VM_PROT_WRITE) ||
663 (ufi.entry->object.uvm_obj == NULL)) {
664 /* need to clear */
665 UVMHIST_LOG(maphist,
666 " need to clear needs_copy and refault",0,0,0,0);
667 uvmfault_unlockmaps(&ufi, FALSE);
668 uvmfault_amapcopy(&ufi);
669 uvmexp.fltamcopy++;
670 goto ReFault;
671
672 } else {
673
674 /*
675 * ensure that we pmap_enter page R/O since
676 * needs_copy is still true
677 */
678 enter_prot &= ~VM_PROT_WRITE;
679
680 }
681 }
682
683 /*
684 * identify the players
685 */
686
687 amap = ufi.entry->aref.ar_amap; /* top layer */
688 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
689
690 /*
691 * check for a case 0 fault. if nothing backing the entry then
692 * error now.
693 */
694
695 if (amap == NULL && uobj == NULL) {
696 uvmfault_unlockmaps(&ufi, FALSE);
697 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
698 return (KERN_INVALID_ADDRESS);
699 }
700
701 /*
702 * establish range of interest based on advice from mapper
703 * and then clip to fit map entry. note that we only want
704 * to do this the first time through the fault. if we
705 * ReFault we will disable this by setting "narrow" to true.
706 */
707
708 if (narrow == FALSE) {
709
710 /* wide fault (!narrow) */
711 #ifdef DIAGNOSTIC
712 if (uvmadvice[ufi.entry->advice].advice != ufi.entry->advice)
713 panic("fault: advice mismatch!");
714 #endif
715 nback = min(uvmadvice[ufi.entry->advice].nback,
716 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
717 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
718 nforw = min(uvmadvice[ufi.entry->advice].nforw,
719 ((ufi.entry->end - ufi.orig_rvaddr) >>
720 PAGE_SHIFT) - 1);
721 /*
722 * note: "-1" because we don't want to count the
723 * faulting page as forw
724 */
725 npages = nback + nforw + 1;
726 centeridx = nback;
727
728 narrow = FALSE; /* ensure only once per-fault */
729
730 } else {
731
732 /* narrow fault! */
733 nback = nforw = 0;
734 startva = ufi.orig_rvaddr;
735 npages = 1;
736 centeridx = 0;
737
738 }
739
740 /* locked: maps(read) */
741 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
742 narrow, nback, nforw, startva);
743 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
744 amap, uobj, 0);
745
746 /*
747 * if we've got an amap, lock it and extract current anons.
748 */
749
750 if (amap) {
751 amap_lock(amap);
752 anons = anons_store;
753 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
754 anons, npages);
755 } else {
756 anons = NULL; /* to be safe */
757 }
758
759 /* locked: maps(read), amap(if there) */
760
761 /*
762 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
763 * now and then forget about them (for the rest of the fault).
764 */
765
766 if (ufi.entry->advice == MADV_SEQUENTIAL) {
767
768 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
769 0,0,0,0);
770 /* flush back-page anons? */
771 if (amap)
772 uvmfault_anonflush(anons, nback);
773
774 /* flush object? */
775 if (uobj) {
776 objaddr =
777 (startva - ufi.entry->start) + ufi.entry->offset;
778 simple_lock(&uobj->vmobjlock);
779 (void) uobj->pgops->pgo_flush(uobj, objaddr, objaddr +
780 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
781 simple_unlock(&uobj->vmobjlock);
782 }
783
784 /* now forget about the backpages */
785 if (amap)
786 anons += nback;
787 startva = startva + (nback << PAGE_SHIFT);
788 npages -= nback;
789 nback = centeridx = 0;
790 }
791
792 /* locked: maps(read), amap(if there) */
793
794 /*
795 * map in the backpages and frontpages we found in the amap in hopes
796 * of preventing future faults. we also init the pages[] array as
797 * we go.
798 */
799
800 currva = startva;
801 shadowed = FALSE;
802 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
803
804 /*
805 * dont play with VAs that are already mapped
806 * except for center)
807 * XXX: return value of pmap_extract disallows PA 0
808 */
809 if (lcv != centeridx) {
810 pa = pmap_extract(ufi.orig_map->pmap, currva);
811 if (pa != NULL) {
812 pages[lcv] = PGO_DONTCARE;
813 continue;
814 }
815 }
816
817 /*
818 * unmapped or center page. check if any anon at this level.
819 */
820 if (amap == NULL || anons[lcv] == NULL) {
821 pages[lcv] = NULL;
822 continue;
823 }
824
825 /*
826 * check for present page and map if possible. re-activate it.
827 */
828
829 pages[lcv] = PGO_DONTCARE;
830 if (lcv == centeridx) { /* save center for later! */
831 shadowed = TRUE;
832 continue;
833 }
834 anon = anons[lcv];
835 simple_lock(&anon->an_lock);
836 /* ignore loaned pages */
837 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
838 (anon->u.an_page->flags & (PG_RELEASED|PG_BUSY)) == 0) {
839 uvm_lock_pageq();
840 uvm_pageactivate(anon->u.an_page); /* reactivate */
841 uvm_unlock_pageq();
842 UVMHIST_LOG(maphist,
843 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
844 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
845 uvmexp.fltnamap++;
846 pmap_enter(ufi.orig_map->pmap, currva,
847 VM_PAGE_TO_PHYS(anon->u.an_page),
848 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
849 enter_prot,
850 VM_MAPENT_ISWIRED(ufi.entry), 0);
851 }
852 simple_unlock(&anon->an_lock);
853 }
854
855 /* locked: maps(read), amap(if there) */
856 /* (shadowed == TRUE) if there is an anon at the faulting address */
857 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
858 (uobj && shadowed == FALSE),0,0);
859
860 /*
861 * note that if we are really short of RAM we could sleep in the above
862 * call to pmap_enter with everything locked. bad?
863 * XXXCDC: this is fixed in PMAP_NEW (no sleep alloc's in pmap)
864 */
865
866 /*
867 * if the desired page is not shadowed by the amap and we have a
868 * backing object, then we check to see if the backing object would
869 * prefer to handle the fault itself (rather than letting us do it
870 * with the usual pgo_get hook). the backing object signals this by
871 * providing a pgo_fault routine.
872 */
873
874 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
875
876 simple_lock(&uobj->vmobjlock);
877
878 /* locked: maps(read), amap (if there), uobj */
879 result = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
880 centeridx, fault_type, access_type,
881 PGO_LOCKED);
882 /* locked: nothing, pgo_fault has unlocked everything */
883
884 if (result == VM_PAGER_OK)
885 return (KERN_SUCCESS); /* pgo_fault did pmap enter */
886 else if (result == VM_PAGER_REFAULT)
887 goto ReFault; /* try again! */
888 else
889 return (KERN_PROTECTION_FAILURE);
890 }
891
892 /*
893 * now, if the desired page is not shadowed by the amap and we have
894 * a backing object that does not have a special fault routine, then
895 * we ask (with pgo_get) the object for resident pages that we care
896 * about and attempt to map them in. we do not let pgo_get block
897 * (PGO_LOCKED).
898 *
899 * ("get" has the option of doing a pmap_enter for us)
900 */
901
902 if (uobj && shadowed == FALSE) {
903 simple_lock(&uobj->vmobjlock);
904
905 /* locked (!shadowed): maps(read), amap (if there), uobj */
906 /*
907 * the following call to pgo_get does _not_ change locking state
908 */
909
910 uvmexp.fltlget++;
911 gotpages = npages;
912 result = uobj->pgops->pgo_get(uobj, ufi.entry->offset +
913 (startva - ufi.entry->start),
914 pages, &gotpages, centeridx,
915 access_type & MASK(ufi.entry),
916 ufi.entry->advice, PGO_LOCKED);
917
918 /*
919 * check for pages to map, if we got any
920 */
921
922 uobjpage = NULL;
923
924 if (gotpages) {
925 currva = startva;
926 for (lcv = 0 ; lcv < npages ;
927 lcv++, currva += PAGE_SIZE) {
928
929 if (pages[lcv] == NULL ||
930 pages[lcv] == PGO_DONTCARE)
931 continue;
932
933 #ifdef DIAGNOSTIC
934 /*
935 * pager sanity check: pgo_get with
936 * PGO_LOCKED should never return a
937 * released page to us.
938 */
939 if (pages[lcv]->flags & PG_RELEASED)
940 panic("uvm_fault: pgo_get PGO_LOCKED gave us a RELEASED page");
941 #endif
942
943 /*
944 * if center page is resident and not
945 * PG_BUSY|PG_RELEASED then pgo_get
946 * made it PG_BUSY for us and gave
947 * us a handle to it. remember this
948 * page as "uobjpage." (for later use).
949 */
950
951 if (lcv == centeridx) {
952 uobjpage = pages[lcv];
953 UVMHIST_LOG(maphist, " got uobjpage (0x%x) with locked get",
954 uobjpage, 0,0,0);
955 continue;
956 }
957
958 /*
959 * note: calling pgo_get with locked data
960 * structures returns us pages which are
961 * neither busy nor released, so we don't
962 * need to check for this. we can just
963 * directly enter the page (after moving it
964 * to the head of the active queue [useful?]).
965 */
966
967 uvm_lock_pageq();
968 uvm_pageactivate(pages[lcv]); /* reactivate */
969 uvm_unlock_pageq();
970 UVMHIST_LOG(maphist,
971 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
972 ufi.orig_map->pmap, currva, pages[lcv], 0);
973 uvmexp.fltnomap++;
974 pmap_enter(ufi.orig_map->pmap, currva,
975 VM_PAGE_TO_PHYS(pages[lcv]),
976 enter_prot & MASK(ufi.entry), wired, 0);
977
978 /*
979 * NOTE: page can't be PG_WANTED or PG_RELEASED
980 * because we've held the lock the whole time
981 * we've had the handle.
982 */
983 pages[lcv]->flags &= ~(PG_BUSY); /* un-busy! */
984 UVM_PAGE_OWN(pages[lcv], NULL);
985
986 /* done! */
987 } /* for "lcv" loop */
988 } /* "gotpages" != 0 */
989
990 /* note: object still _locked_ */
991 } else {
992
993 uobjpage = NULL;
994
995 }
996
997 /* locked (shadowed): maps(read), amap */
998 /* locked (!shadowed): maps(read), amap(if there),
999 uobj(if !null), uobjpage(if !null) */
1000
1001 /*
1002 * note that at this point we are done with any front or back pages.
1003 * we are now going to focus on the center page (i.e. the one we've
1004 * faulted on). if we have faulted on the top (anon) layer
1005 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1006 * not touched it yet). if we have faulted on the bottom (uobj)
1007 * layer [i.e. case 2] and the page was both present and available,
1008 * then we've got a pointer to it as "uobjpage" and we've already
1009 * made it BUSY.
1010 */
1011
1012 /*
1013 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1014 */
1015
1016 /*
1017 * redirect case 2: if we are not shadowed, go to case 2.
1018 */
1019
1020 if (shadowed == FALSE)
1021 goto Case2;
1022
1023 /* locked: maps(read), amap */
1024
1025 /*
1026 * handle case 1: fault on an anon in our amap
1027 */
1028
1029 anon = anons[centeridx];
1030 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1031 simple_lock(&anon->an_lock);
1032
1033 /* locked: maps(read), amap, anon */
1034
1035 /*
1036 * no matter if we have case 1A or case 1B we are going to need to
1037 * have the anon's memory resident. ensure that now.
1038 */
1039
1040 /*
1041 * let uvmfault_anonget do the dirty work. if it fails (!OK) it will
1042 * unlock for us. if it is OK, locks are still valid and locked.
1043 * also, if it is OK, then the anon's page is on the queues.
1044 * if the page is on loan from a uvm_object, then anonget will
1045 * lock that object for us if it does not fail.
1046 */
1047
1048 result = uvmfault_anonget(&ufi, amap, anon);
1049
1050 if (result == VM_PAGER_REFAULT)
1051 goto ReFault;
1052
1053 if (result == VM_PAGER_AGAIN) {
1054 tsleep((caddr_t)&lbolt, PVM, "fltagain1", 0);
1055 goto ReFault;
1056 }
1057
1058 if (result != VM_PAGER_OK)
1059 return (KERN_PROTECTION_FAILURE); /* XXX??? */
1060
1061 /*
1062 * uobj is non null if the page is on loan from an object (i.e. uobj)
1063 */
1064
1065 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1066
1067 /* locked: maps(read), amap, anon, uobj(if one) */
1068
1069 /*
1070 * special handling for loaned pages
1071 */
1072 if (anon->u.an_page->loan_count) {
1073
1074 if ((access_type & VM_PROT_WRITE) == 0) {
1075
1076 /*
1077 * for read faults on loaned pages we just cap the
1078 * protection at read-only.
1079 */
1080
1081 enter_prot = enter_prot & ~VM_PROT_WRITE;
1082
1083 } else {
1084 /*
1085 * note that we can't allow writes into a loaned page!
1086 *
1087 * if we have a write fault on a loaned page in an
1088 * anon then we need to look at the anon's ref count.
1089 * if it is greater than one then we are going to do
1090 * a normal copy-on-write fault into a new anon (this
1091 * is not a problem). however, if the reference count
1092 * is one (a case where we would normally allow a
1093 * write directly to the page) then we need to kill
1094 * the loan before we continue.
1095 */
1096
1097 /* >1 case is already ok */
1098 if (anon->an_ref == 1) {
1099
1100 /* get new un-owned replacement page */
1101 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1102 if (pg == NULL) {
1103 uvmfault_unlockall(&ufi, amap, uobj,
1104 anon);
1105 uvm_wait("flt_noram2");
1106 goto ReFault;
1107 }
1108
1109 /*
1110 * copy data, kill loan, and drop uobj lock
1111 * (if any)
1112 */
1113 /* copy old -> new */
1114 uvm_pagecopy(anon->u.an_page, pg);
1115
1116 /* force reload */
1117 pmap_page_protect(PMAP_PGARG(anon->u.an_page),
1118 VM_PROT_NONE);
1119 uvm_lock_pageq(); /* KILL loan */
1120 if (uobj)
1121 /* if we were loaning */
1122 anon->u.an_page->loan_count--;
1123 anon->u.an_page->uanon = NULL;
1124 /* in case we owned */
1125 anon->u.an_page->pqflags &= ~PQ_ANON;
1126 uvm_unlock_pageq();
1127 if (uobj) {
1128 simple_unlock(&uobj->vmobjlock);
1129 uobj = NULL;
1130 }
1131
1132 /* install new page in anon */
1133 anon->u.an_page = pg;
1134 pg->uanon = anon;
1135 pg->pqflags |= PQ_ANON;
1136 pg->flags &= ~(PG_BUSY|PG_FAKE);
1137 UVM_PAGE_OWN(pg, NULL);
1138
1139 /* done! */
1140 } /* ref == 1 */
1141 } /* write fault */
1142 } /* loan count */
1143
1144 /*
1145 * if we are case 1B then we will need to allocate a new blank
1146 * anon to transfer the data into. note that we have a lock
1147 * on anon, so no one can busy or release the page until we are done.
1148 * also note that the ref count can't drop to zero here because
1149 * it is > 1 and we are only dropping one ref.
1150 *
1151 * in the (hopefully very rare) case that we are out of RAM we
1152 * will unlock, wait for more RAM, and refault.
1153 *
1154 * if we are out of anon VM we kill the process (XXX: could wait?).
1155 */
1156
1157 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) {
1158
1159 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1160 uvmexp.flt_acow++;
1161 oanon = anon; /* oanon = old, locked anon */
1162 anon = uvm_analloc();
1163 if (anon)
1164 pg = uvm_pagealloc(NULL, 0, anon, 0);
1165 #ifdef __GNUC__
1166 else
1167 pg = NULL; /* XXX: gcc */
1168 #endif
1169
1170 /* check for out of RAM */
1171 if (anon == NULL || pg == NULL) {
1172 if (anon)
1173 uvm_anfree(anon);
1174 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1175 #ifdef DIAGNOSTIC
1176 if (uvmexp.swpgonly > uvmexp.swpages) {
1177 panic("uvmexp.swpgonly botch");
1178 }
1179 #endif
1180 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1181 UVMHIST_LOG(maphist,
1182 "<- failed. out of VM",0,0,0,0);
1183 uvmexp.fltnoanon++;
1184 return (KERN_RESOURCE_SHORTAGE);
1185 }
1186
1187 uvmexp.fltnoram++;
1188 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1189 goto ReFault;
1190 }
1191
1192 /* got all resources, replace anon with nanon */
1193
1194 uvm_pagecopy(oanon->u.an_page, pg); /* pg now !PG_CLEAN */
1195 pg->flags &= ~(PG_BUSY|PG_FAKE); /* un-busy! new page */
1196 UVM_PAGE_OWN(pg, NULL);
1197 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1198 anon, 1);
1199
1200 /* deref: can not drop to zero here by defn! */
1201 oanon->an_ref--;
1202
1203 /*
1204 * note: oanon still locked. anon is _not_ locked, but we
1205 * have the sole references to in from amap which _is_ locked.
1206 * thus, no one can get at it until we are done with it.
1207 */
1208
1209 } else {
1210
1211 uvmexp.flt_anon++;
1212 oanon = anon; /* old, locked anon is same as anon */
1213 pg = anon->u.an_page;
1214 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1215 enter_prot = enter_prot & ~VM_PROT_WRITE;
1216
1217 }
1218
1219 /* locked: maps(read), amap, anon */
1220
1221 /*
1222 * now map the page in ...
1223 * XXX: old fault unlocks object before pmap_enter. this seems
1224 * suspect since some other thread could blast the page out from
1225 * under us between the unlock and the pmap_enter.
1226 */
1227
1228 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1229 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1230 pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1231 enter_prot, wired, access_type);
1232
1233 /*
1234 * ... and update the page queues.
1235 */
1236
1237 uvm_lock_pageq();
1238
1239 if (fault_type == VM_FAULT_WIRE) {
1240 uvm_pagewire(pg);
1241
1242 /*
1243 * since the now-wired page cannot be paged out,
1244 * release its swap resources for others to use.
1245 * since an anon with no swap cannot be PG_CLEAN,
1246 * clear its clean flag now.
1247 */
1248
1249 pg->flags &= ~(PG_CLEAN);
1250 uvm_anon_dropswap(anon);
1251 } else {
1252 /* activate it */
1253 uvm_pageactivate(pg);
1254 }
1255
1256 uvm_unlock_pageq();
1257
1258 /*
1259 * done case 1! finish up by unlocking everything and returning success
1260 */
1261
1262 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1263 return (KERN_SUCCESS);
1264
1265
1266 Case2:
1267 /*
1268 * handle case 2: faulting on backing object or zero fill
1269 */
1270
1271 /*
1272 * locked:
1273 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1274 */
1275
1276 /*
1277 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1278 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1279 * have a backing object, check and see if we are going to promote
1280 * the data up to an anon during the fault.
1281 */
1282
1283 if (uobj == NULL) {
1284 uobjpage = PGO_DONTCARE;
1285 promote = TRUE; /* always need anon here */
1286 } else {
1287 /* assert(uobjpage != PGO_DONTCARE) */
1288 promote = (access_type & VM_PROT_WRITE) &&
1289 UVM_ET_ISCOPYONWRITE(ufi.entry);
1290 }
1291 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1292 promote, (uobj == NULL), 0,0);
1293
1294 /*
1295 * if uobjpage is not null then we do not need to do I/O to get the
1296 * uobjpage.
1297 *
1298 * if uobjpage is null, then we need to unlock and ask the pager to
1299 * get the data for us. once we have the data, we need to reverify
1300 * the state the world. we are currently not holding any resources.
1301 */
1302
1303 if (uobjpage) {
1304 /* update rusage counters */
1305 curproc->p_addr->u_stats.p_ru.ru_minflt++;
1306 } else {
1307 /* update rusage counters */
1308 curproc->p_addr->u_stats.p_ru.ru_majflt++;
1309
1310 /* locked: maps(read), amap(if there), uobj */
1311 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1312 /* locked: uobj */
1313
1314 uvmexp.fltget++;
1315 gotpages = 1;
1316 result = uobj->pgops->pgo_get(uobj,
1317 (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset,
1318 &uobjpage, &gotpages, 0,
1319 access_type & MASK(ufi.entry),
1320 ufi.entry->advice, 0);
1321
1322 /* locked: uobjpage(if result OK) */
1323
1324 /*
1325 * recover from I/O
1326 */
1327
1328 if (result != VM_PAGER_OK) {
1329
1330 #ifdef DIAGNOSTIC
1331 if (result == VM_PAGER_PEND)
1332 panic("uvm_fault: pgo_get got PENDing on non-async I/O");
1333 #endif
1334
1335 if (result == VM_PAGER_AGAIN) {
1336 UVMHIST_LOG(maphist, " pgo_get says TRY AGAIN!",0,0,0,0);
1337 tsleep((caddr_t)&lbolt, PVM, "fltagain2", 0);
1338 goto ReFault;
1339 }
1340
1341 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1342 result, 0,0,0);
1343 return (KERN_PROTECTION_FAILURE); /* XXX i/o error */
1344 }
1345
1346 /* locked: uobjpage */
1347
1348 /*
1349 * re-verify the state of the world by first trying to relock
1350 * the maps. always relock the object.
1351 */
1352
1353 locked = uvmfault_relock(&ufi);
1354 if (locked && amap)
1355 amap_lock(amap);
1356 simple_lock(&uobj->vmobjlock);
1357
1358 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1359 /* locked(!locked): uobj, uobjpage */
1360
1361 /*
1362 * verify that the page has not be released and re-verify
1363 * that amap slot is still free. if there is a problem,
1364 * we unlock and clean up.
1365 */
1366
1367 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1368 (locked && amap &&
1369 amap_lookup(&ufi.entry->aref,
1370 ufi.orig_rvaddr - ufi.entry->start))) {
1371 if (locked)
1372 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1373 locked = FALSE;
1374 }
1375
1376 /*
1377 * didn't get the lock? release the page and retry.
1378 */
1379
1380 if (locked == FALSE) {
1381
1382 UVMHIST_LOG(maphist,
1383 " wasn't able to relock after fault: retry",
1384 0,0,0,0);
1385 if (uobjpage->flags & PG_WANTED)
1386 /* still holding object lock */
1387 thread_wakeup(uobjpage);
1388
1389 if (uobjpage->flags & PG_RELEASED) {
1390 uvmexp.fltpgrele++;
1391 #ifdef DIAGNOSTIC
1392 if (uobj->pgops->pgo_releasepg == NULL)
1393 panic("uvm_fault: object has no releasepg function");
1394 #endif
1395 /* frees page */
1396 if (uobj->pgops->pgo_releasepg(uobjpage,NULL))
1397 /* unlock if still alive */
1398 simple_unlock(&uobj->vmobjlock);
1399 goto ReFault;
1400 }
1401
1402 uvm_lock_pageq();
1403 /* make sure it is in queues */
1404 uvm_pageactivate(uobjpage);
1405
1406 uvm_unlock_pageq();
1407 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1408 UVM_PAGE_OWN(uobjpage, NULL);
1409 simple_unlock(&uobj->vmobjlock);
1410 goto ReFault;
1411
1412 }
1413
1414 /*
1415 * we have the data in uobjpage which is PG_BUSY and
1416 * !PG_RELEASED. we are holding object lock (so the page
1417 * can't be released on us).
1418 */
1419
1420 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1421
1422 }
1423
1424 /*
1425 * locked:
1426 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1427 */
1428
1429 /*
1430 * notes:
1431 * - at this point uobjpage can not be NULL
1432 * - at this point uobjpage can not be PG_RELEASED (since we checked
1433 * for it above)
1434 * - at this point uobjpage could be PG_WANTED (handle later)
1435 */
1436
1437 if (promote == FALSE) {
1438
1439 /*
1440 * we are not promoting. if the mapping is COW ensure that we
1441 * don't give more access than we should (e.g. when doing a read
1442 * fault on a COPYONWRITE mapping we want to map the COW page in
1443 * R/O even though the entry protection could be R/W).
1444 *
1445 * set "pg" to the page we want to map in (uobjpage, usually)
1446 */
1447
1448 uvmexp.flt_obj++;
1449 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1450 enter_prot &= ~VM_PROT_WRITE;
1451 pg = uobjpage; /* map in the actual object */
1452
1453 /* assert(uobjpage != PGO_DONTCARE) */
1454
1455 /*
1456 * we are faulting directly on the page. be careful
1457 * about writing to loaned pages...
1458 */
1459 if (uobjpage->loan_count) {
1460
1461 if ((access_type & VM_PROT_WRITE) == 0) {
1462 /* read fault: cap the protection at readonly */
1463 /* cap! */
1464 enter_prot = enter_prot & ~VM_PROT_WRITE;
1465 } else {
1466 /* write fault: must break the loan here */
1467
1468 /* alloc new un-owned page */
1469 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1470
1471 if (pg == NULL) {
1472 /*
1473 * drop ownership of page, it can't
1474 * be released
1475 * */
1476 if (uobjpage->flags & PG_WANTED)
1477 thread_wakeup(uobjpage);
1478 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1479 UVM_PAGE_OWN(uobjpage, NULL);
1480
1481 uvm_lock_pageq();
1482 /* activate: we will need it later */
1483 uvm_pageactivate(uobjpage);
1484
1485 uvm_unlock_pageq();
1486 uvmfault_unlockall(&ufi, amap, uobj,
1487 NULL);
1488 UVMHIST_LOG(maphist,
1489 " out of RAM breaking loan, waiting",
1490 0,0,0,0);
1491 uvmexp.fltnoram++;
1492 uvm_wait("flt_noram4");
1493 goto ReFault;
1494 }
1495
1496 /*
1497 * copy the data from the old page to the new
1498 * one and clear the fake/clean flags on the
1499 * new page (keep it busy). force a reload
1500 * of the old page by clearing it from all
1501 * pmaps. then lock the page queues to
1502 * rename the pages.
1503 */
1504 uvm_pagecopy(uobjpage, pg); /* old -> new */
1505 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1506 pmap_page_protect(PMAP_PGARG(uobjpage),
1507 VM_PROT_NONE);
1508 if (uobjpage->flags & PG_WANTED)
1509 thread_wakeup(uobjpage);
1510 /* uobj still locked */
1511 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1512 UVM_PAGE_OWN(uobjpage, NULL);
1513
1514 uvm_lock_pageq();
1515 offset = uobjpage->offset;
1516 /* remove old page */
1517 uvm_pagerealloc(uobjpage, NULL, 0);
1518
1519 /*
1520 * at this point we have absolutely no
1521 * control over uobjpage
1522 */
1523 /* install new page */
1524 uvm_pagerealloc(pg, uobj, offset);
1525 uvm_unlock_pageq();
1526
1527 /*
1528 * done! loan is broken and "pg" is
1529 * PG_BUSY. it can now replace uobjpage.
1530 */
1531
1532 uobjpage = pg;
1533
1534 } /* write fault case */
1535 } /* if loan_count */
1536
1537 } else {
1538
1539 /*
1540 * if we are going to promote the data to an anon we
1541 * allocate a blank anon here and plug it into our amap.
1542 */
1543 #if DIAGNOSTIC
1544 if (amap == NULL)
1545 panic("uvm_fault: want to promote data, but no anon");
1546 #endif
1547
1548 anon = uvm_analloc();
1549 if (anon)
1550 pg = uvm_pagealloc(NULL, 0, anon, 0);
1551 #ifdef __GNUC__
1552 else
1553 pg = NULL; /* XXX: gcc */
1554 #endif
1555
1556 /*
1557 * out of memory resources?
1558 */
1559 if (anon == NULL || pg == NULL) {
1560
1561 /*
1562 * arg! must unbusy our page and fail or sleep.
1563 */
1564 if (uobjpage != PGO_DONTCARE) {
1565 if (uobjpage->flags & PG_WANTED)
1566 /* still holding object lock */
1567 thread_wakeup(uobjpage);
1568
1569 uvm_lock_pageq();
1570 /* make sure it is in queues */
1571 uvm_pageactivate(uobjpage);
1572 uvm_unlock_pageq();
1573 /* un-busy! (still locked) */
1574 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1575 UVM_PAGE_OWN(uobjpage, NULL);
1576 }
1577
1578 /* unlock and fail ... */
1579 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1580 #ifdef DIAGNOSTIC
1581 if (uvmexp.swpgonly > uvmexp.swpages) {
1582 panic("uvmexp.swpgonly botch");
1583 }
1584 #endif
1585 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1586 UVMHIST_LOG(maphist, " promote: out of VM",
1587 0,0,0,0);
1588 uvmexp.fltnoanon++;
1589 return (KERN_RESOURCE_SHORTAGE);
1590 }
1591
1592 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1593 0,0,0,0);
1594 uvm_anfree(anon);
1595 uvmexp.fltnoram++;
1596 uvm_wait("flt_noram5");
1597 goto ReFault;
1598 }
1599
1600 /*
1601 * fill in the data
1602 */
1603
1604 if (uobjpage != PGO_DONTCARE) {
1605 uvmexp.flt_prcopy++;
1606 /* copy page [pg now dirty] */
1607 uvm_pagecopy(uobjpage, pg);
1608
1609 /*
1610 * promote to shared amap? make sure all sharing
1611 * procs see it
1612 */
1613 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1614 pmap_page_protect(PMAP_PGARG(uobjpage),
1615 VM_PROT_NONE);
1616 }
1617
1618 /*
1619 * dispose of uobjpage. it can't be PG_RELEASED
1620 * since we still hold the object lock. drop
1621 * handle to uobj as well.
1622 */
1623
1624 if (uobjpage->flags & PG_WANTED)
1625 /* still have the obj lock */
1626 thread_wakeup(uobjpage);
1627 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1628 UVM_PAGE_OWN(uobjpage, NULL);
1629 uvm_lock_pageq();
1630 uvm_pageactivate(uobjpage); /* put it back */
1631 uvm_unlock_pageq();
1632 simple_unlock(&uobj->vmobjlock);
1633 uobj = NULL;
1634 UVMHIST_LOG(maphist,
1635 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1636 uobjpage, anon, pg, 0);
1637
1638 } else {
1639 uvmexp.flt_przero++;
1640 uvm_pagezero(pg); /* zero page [pg now dirty] */
1641 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1642 anon, pg, 0, 0);
1643 }
1644
1645 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1646 anon, 0);
1647
1648 }
1649
1650 /*
1651 * locked:
1652 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1653 *
1654 * note: pg is either the uobjpage or the new page in the new anon
1655 */
1656
1657 /*
1658 * all resources are present. we can now map it in and free our
1659 * resources.
1660 */
1661
1662 UVMHIST_LOG(maphist,
1663 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1664 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1665 pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1666 enter_prot, wired, access_type);
1667
1668 uvm_lock_pageq();
1669
1670 if (fault_type == VM_FAULT_WIRE) {
1671 uvm_pagewire(pg);
1672 if (pg->pqflags & PQ_AOBJ) {
1673
1674 /*
1675 * since the now-wired page cannot be paged out,
1676 * release its swap resources for others to use.
1677 * since an aobj page with no swap cannot be PG_CLEAN,
1678 * clear its clean flag now.
1679 */
1680
1681 pg->flags &= ~(PG_CLEAN);
1682 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1683 }
1684 } else {
1685 /* activate it */
1686 uvm_pageactivate(pg);
1687 }
1688
1689 uvm_unlock_pageq();
1690
1691 if (pg->flags & PG_WANTED)
1692 thread_wakeup(pg); /* lock still held */
1693
1694 /*
1695 * note that pg can't be PG_RELEASED since we did not drop the object
1696 * lock since the last time we checked.
1697 */
1698
1699 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1700 UVM_PAGE_OWN(pg, NULL);
1701 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1702
1703 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1704 return (KERN_SUCCESS);
1705 }
1706
1707
1708 /*
1709 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1710 *
1711 * => map may be read-locked by caller, but MUST NOT be write-locked.
1712 * => if map is read-locked, any operations which may cause map to
1713 * be write-locked in uvm_fault() must be taken care of by
1714 * the caller. See uvm_map_pageable().
1715 */
1716
1717 int
1718 uvm_fault_wire(map, start, end, access_type)
1719 vm_map_t map;
1720 vaddr_t start, end;
1721 vm_prot_t access_type;
1722 {
1723 vaddr_t va;
1724 pmap_t pmap;
1725 int rv;
1726
1727 pmap = vm_map_pmap(map);
1728
1729 /*
1730 * call pmap pageable: this tells the pmap layer to lock down these
1731 * page tables.
1732 */
1733
1734 pmap_pageable(pmap, start, end, FALSE);
1735
1736 /*
1737 * now fault it in page at a time. if the fault fails then we have
1738 * to undo what we have done.
1739 */
1740
1741 for (va = start ; va < end ; va += PAGE_SIZE) {
1742 rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1743 if (rv) {
1744 if (va != start) {
1745 uvm_fault_unwire(map, start, va);
1746 }
1747 return (rv);
1748 }
1749 }
1750
1751 return (KERN_SUCCESS);
1752 }
1753
1754 /*
1755 * uvm_fault_unwire(): unwire range of virtual space.
1756 */
1757
1758 void
1759 uvm_fault_unwire(map, start, end)
1760 vm_map_t map;
1761 vaddr_t start, end;
1762 {
1763
1764 vm_map_lock_read(map);
1765 uvm_fault_unwire_locked(map, start, end);
1766 vm_map_unlock_read(map);
1767 }
1768
1769 /*
1770 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1771 *
1772 * => map must be at least read-locked.
1773 */
1774
1775 void
1776 uvm_fault_unwire_locked(map, start, end)
1777 vm_map_t map;
1778 vaddr_t start, end;
1779 {
1780 pmap_t pmap = vm_map_pmap(map);
1781 vaddr_t va;
1782 paddr_t pa;
1783 struct vm_page *pg;
1784
1785 #ifdef DIAGNOSTIC
1786 if (map->flags & VM_MAP_INTRSAFE)
1787 panic("uvm_fault_unwire: intrsafe map");
1788 #endif
1789
1790 /*
1791 * we assume that the area we are unwiring has actually been wired
1792 * in the first place. this means that we should be able to extract
1793 * the PAs from the pmap. we also lock out the page daemon so that
1794 * we can call uvm_pageunwire.
1795 */
1796
1797 uvm_lock_pageq();
1798
1799 for (va = start; va < end ; va += PAGE_SIZE) {
1800 pa = pmap_extract(pmap, va);
1801
1802 /* XXX: assumes PA 0 cannot be in map */
1803 if (pa == (paddr_t) 0) {
1804 panic("uvm_fault_unwire: unwiring non-wired memory");
1805 }
1806 pmap_change_wiring(pmap, va, FALSE); /* tell the pmap */
1807 pg = PHYS_TO_VM_PAGE(pa);
1808 if (pg)
1809 uvm_pageunwire(pg);
1810 }
1811
1812 uvm_unlock_pageq();
1813
1814 /*
1815 * now we call pmap_pageable to let the pmap know that the page tables
1816 * in this space no longer need to be wired.
1817 */
1818
1819 pmap_pageable(pmap, start, end, TRUE);
1820
1821 }
1822