uvm_fault.c revision 1.45.2.6 1 /* $NetBSD: uvm_fault.c,v 1.45.2.6 2001/04/21 17:47:06 bouyer Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 #include "opt_uvmhist.h"
38
39 /*
40 * uvm_fault.c: fault handler
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/proc.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/user.h>
50
51 #include <uvm/uvm.h>
52
53 /*
54 *
55 * a word on page faults:
56 *
57 * types of page faults we handle:
58 *
59 * CASE 1: upper layer faults CASE 2: lower layer faults
60 *
61 * CASE 1A CASE 1B CASE 2A CASE 2B
62 * read/write1 write>1 read/write +-cow_write/zero
63 * | | | |
64 * +--|--+ +--|--+ +-----+ + | + | +-----+
65 * amap | V | | ----------->new| | | | ^ |
66 * +-----+ +-----+ +-----+ + | + | +--|--+
67 * | | |
68 * +-----+ +-----+ +--|--+ | +--|--+
69 * uobj | d/c | | d/c | | V | +----| |
70 * +-----+ +-----+ +-----+ +-----+
71 *
72 * d/c = don't care
73 *
74 * case [0]: layerless fault
75 * no amap or uobj is present. this is an error.
76 *
77 * case [1]: upper layer fault [anon active]
78 * 1A: [read] or [write with anon->an_ref == 1]
79 * I/O takes place in top level anon and uobj is not touched.
80 * 1B: [write with anon->an_ref > 1]
81 * new anon is alloc'd and data is copied off ["COW"]
82 *
83 * case [2]: lower layer fault [uobj]
84 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
85 * I/O takes place directly in object.
86 * 2B: [write to copy_on_write] or [read on NULL uobj]
87 * data is "promoted" from uobj to a new anon.
88 * if uobj is null, then we zero fill.
89 *
90 * we follow the standard UVM locking protocol ordering:
91 *
92 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
93 * we hold a PG_BUSY page if we unlock for I/O
94 *
95 *
96 * the code is structured as follows:
97 *
98 * - init the "IN" params in the ufi structure
99 * ReFault:
100 * - do lookups [locks maps], check protection, handle needs_copy
101 * - check for case 0 fault (error)
102 * - establish "range" of fault
103 * - if we have an amap lock it and extract the anons
104 * - if sequential advice deactivate pages behind us
105 * - at the same time check pmap for unmapped areas and anon for pages
106 * that we could map in (and do map it if found)
107 * - check object for resident pages that we could map in
108 * - if (case 2) goto Case2
109 * - >>> handle case 1
110 * - ensure source anon is resident in RAM
111 * - if case 1B alloc new anon and copy from source
112 * - map the correct page in
113 * Case2:
114 * - >>> handle case 2
115 * - ensure source page is resident (if uobj)
116 * - if case 2B alloc new anon and copy from source (could be zero
117 * fill if uobj == NULL)
118 * - map the correct page in
119 * - done!
120 *
121 * note on paging:
122 * if we have to do I/O we place a PG_BUSY page in the correct object,
123 * unlock everything, and do the I/O. when I/O is done we must reverify
124 * the state of the world before assuming that our data structures are
125 * valid. [because mappings could change while the map is unlocked]
126 *
127 * alternative 1: unbusy the page in question and restart the page fault
128 * from the top (ReFault). this is easy but does not take advantage
129 * of the information that we already have from our previous lookup,
130 * although it is possible that the "hints" in the vm_map will help here.
131 *
132 * alternative 2: the system already keeps track of a "version" number of
133 * a map. [i.e. every time you write-lock a map (e.g. to change a
134 * mapping) you bump the version number up by one...] so, we can save
135 * the version number of the map before we release the lock and start I/O.
136 * then when I/O is done we can relock and check the version numbers
137 * to see if anything changed. this might save us some over 1 because
138 * we don't have to unbusy the page and may be less compares(?).
139 *
140 * alternative 3: put in backpointers or a way to "hold" part of a map
141 * in place while I/O is in progress. this could be complex to
142 * implement (especially with structures like amap that can be referenced
143 * by multiple map entries, and figuring out what should wait could be
144 * complex as well...).
145 *
146 * given that we are not currently multiprocessor or multithreaded we might
147 * as well choose alternative 2 now. maybe alternative 3 would be useful
148 * in the future. XXX keep in mind for future consideration//rechecking.
149 */
150
151 /*
152 * local data structures
153 */
154
155 struct uvm_advice {
156 int advice;
157 int nback;
158 int nforw;
159 };
160
161 /*
162 * page range array:
163 * note: index in array must match "advice" value
164 * XXX: borrowed numbers from freebsd. do they work well for us?
165 */
166
167 static struct uvm_advice uvmadvice[] = {
168 { MADV_NORMAL, 3, 4 },
169 { MADV_RANDOM, 0, 0 },
170 { MADV_SEQUENTIAL, 8, 7},
171 };
172
173 #define UVM_MAXRANGE 16 /* must be max() of nback+nforw+1 */
174
175 /*
176 * private prototypes
177 */
178
179 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
180 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
181
182 /*
183 * inline functions
184 */
185
186 /*
187 * uvmfault_anonflush: try and deactivate pages in specified anons
188 *
189 * => does not have to deactivate page if it is busy
190 */
191
192 static __inline void
193 uvmfault_anonflush(anons, n)
194 struct vm_anon **anons;
195 int n;
196 {
197 int lcv;
198 struct vm_page *pg;
199
200 for (lcv = 0 ; lcv < n ; lcv++) {
201 if (anons[lcv] == NULL)
202 continue;
203 simple_lock(&anons[lcv]->an_lock);
204 pg = anons[lcv]->u.an_page;
205 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
206 uvm_lock_pageq();
207 if (pg->wire_count == 0) {
208 pmap_clear_reference(pg);
209 uvm_pagedeactivate(pg);
210 }
211 uvm_unlock_pageq();
212 }
213 simple_unlock(&anons[lcv]->an_lock);
214 }
215 }
216
217 /*
218 * normal functions
219 */
220
221 /*
222 * uvmfault_amapcopy: clear "needs_copy" in a map.
223 *
224 * => called with VM data structures unlocked (usually, see below)
225 * => we get a write lock on the maps and clear needs_copy for a VA
226 * => if we are out of RAM we sleep (waiting for more)
227 */
228
229 static void
230 uvmfault_amapcopy(ufi)
231 struct uvm_faultinfo *ufi;
232 {
233
234 /*
235 * while we haven't done the job
236 */
237
238 while (1) {
239
240 /*
241 * no mapping? give up.
242 */
243
244 if (uvmfault_lookup(ufi, TRUE) == FALSE)
245 return;
246
247 /*
248 * copy if needed.
249 */
250
251 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
252 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
253 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
254
255 /*
256 * didn't work? must be out of RAM. unlock and sleep.
257 */
258
259 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
260 uvmfault_unlockmaps(ufi, TRUE);
261 uvm_wait("fltamapcopy");
262 continue;
263 }
264
265 /*
266 * got it! unlock and return.
267 */
268
269 uvmfault_unlockmaps(ufi, TRUE);
270 return;
271 }
272 /*NOTREACHED*/
273 }
274
275 /*
276 * uvmfault_anonget: get data in an anon into a non-busy, non-released
277 * page in that anon.
278 *
279 * => maps, amap, and anon locked by caller.
280 * => if we fail (result != 0) we unlock everything.
281 * => if we are successful, we return with everything still locked.
282 * => we don't move the page on the queues [gets moved later]
283 * => if we allocate a new page [we_own], it gets put on the queues.
284 * either way, the result is that the page is on the queues at return time
285 * => for pages which are on loan from a uvm_object (and thus are not
286 * owned by the anon): if successful, we return with the owning object
287 * locked. the caller must unlock this object when it unlocks everything
288 * else.
289 */
290
291 int
292 uvmfault_anonget(ufi, amap, anon)
293 struct uvm_faultinfo *ufi;
294 struct vm_amap *amap;
295 struct vm_anon *anon;
296 {
297 boolean_t we_own; /* we own anon's page? */
298 boolean_t locked; /* did we relock? */
299 struct vm_page *pg;
300 int error;
301 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
302
303 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
304
305 error = 0;
306 uvmexp.fltanget++;
307 /* bump rusage counters */
308 if (anon->u.an_page)
309 curproc->p_addr->u_stats.p_ru.ru_minflt++;
310 else
311 curproc->p_addr->u_stats.p_ru.ru_majflt++;
312
313 /*
314 * loop until we get it, or fail.
315 */
316
317 while (1) {
318
319 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
320 pg = anon->u.an_page;
321
322 /*
323 * if there is a resident page and it is loaned, then anon
324 * may not own it. call out to uvm_anon_lockpage() to ensure
325 * the real owner of the page has been identified and locked.
326 */
327
328 if (pg && pg->loan_count)
329 pg = uvm_anon_lockloanpg(anon);
330
331 /*
332 * page there? make sure it is not busy/released.
333 */
334
335 if (pg) {
336
337 /*
338 * at this point, if the page has a uobject [meaning
339 * we have it on loan], then that uobject is locked
340 * by us! if the page is busy, we drop all the
341 * locks (including uobject) and try again.
342 */
343
344 if ((pg->flags & (PG_BUSY|PG_RELEASED)) == 0) {
345 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
346 return (0);
347 }
348 pg->flags |= PG_WANTED;
349 uvmexp.fltpgwait++;
350
351 /*
352 * the last unlock must be an atomic unlock+wait on
353 * the owner of page
354 */
355 if (pg->uobject) { /* owner is uobject ? */
356 uvmfault_unlockall(ufi, amap, NULL, anon);
357 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
358 0,0,0);
359 UVM_UNLOCK_AND_WAIT(pg,
360 &pg->uobject->vmobjlock,
361 FALSE, "anonget1",0);
362 } else {
363 /* anon owns page */
364 uvmfault_unlockall(ufi, amap, NULL, NULL);
365 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
366 0,0,0);
367 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
368 "anonget2",0);
369 }
370 /* ready to relock and try again */
371
372 } else {
373
374 /*
375 * no page, we must try and bring it in.
376 */
377 pg = uvm_pagealloc(NULL, 0, anon, 0);
378
379 if (pg == NULL) { /* out of RAM. */
380
381 uvmfault_unlockall(ufi, amap, NULL, anon);
382 uvmexp.fltnoram++;
383 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
384 0,0,0);
385 uvm_wait("flt_noram1");
386 /* ready to relock and try again */
387
388 } else {
389
390 /* we set the PG_BUSY bit */
391 we_own = TRUE;
392 uvmfault_unlockall(ufi, amap, NULL, anon);
393
394 /*
395 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
396 * page into the uvm_swap_get function with
397 * all data structures unlocked. note that
398 * it is ok to read an_swslot here because
399 * we hold PG_BUSY on the page.
400 */
401 uvmexp.pageins++;
402 error = uvm_swap_get(pg, anon->an_swslot,
403 PGO_SYNCIO);
404
405 /*
406 * we clean up after the i/o below in the
407 * "we_own" case
408 */
409 /* ready to relock and try again */
410 }
411 }
412
413 /*
414 * now relock and try again
415 */
416
417 locked = uvmfault_relock(ufi);
418 if (locked && amap != NULL) {
419 amap_lock(amap);
420 }
421 if (locked || we_own)
422 simple_lock(&anon->an_lock);
423
424 /*
425 * if we own the page (i.e. we set PG_BUSY), then we need
426 * to clean up after the I/O. there are three cases to
427 * consider:
428 * [1] page released during I/O: free anon and ReFault.
429 * [2] I/O not OK. free the page and cause the fault
430 * to fail.
431 * [3] I/O OK! activate the page and sync with the
432 * non-we_own case (i.e. drop anon lock if not locked).
433 */
434
435 if (we_own) {
436
437 if (pg->flags & PG_WANTED) {
438 /* still holding object lock */
439 wakeup(pg);
440 }
441 /* un-busy! */
442 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
443 UVM_PAGE_OWN(pg, NULL);
444
445 /*
446 * if we were RELEASED during I/O, then our anon is
447 * no longer part of an amap. we need to free the
448 * anon and try again.
449 */
450 if (pg->flags & PG_RELEASED) {
451 pmap_page_protect(pg, VM_PROT_NONE);
452 simple_unlock(&anon->an_lock);
453 uvm_anfree(anon); /* frees page for us */
454 if (locked)
455 uvmfault_unlockall(ufi, amap, NULL,
456 NULL);
457 uvmexp.fltpgrele++;
458 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
459 return (ERESTART); /* refault! */
460 }
461
462 if (error) {
463 /* remove page from anon */
464 anon->u.an_page = NULL;
465
466 /*
467 * remove the swap slot from the anon
468 * and mark the anon as having no real slot.
469 * don't free the swap slot, thus preventing
470 * it from being used again.
471 */
472 uvm_swap_markbad(anon->an_swslot, 1);
473 anon->an_swslot = SWSLOT_BAD;
474
475 /*
476 * note: page was never !PG_BUSY, so it
477 * can't be mapped and thus no need to
478 * pmap_page_protect it...
479 */
480 uvm_lock_pageq();
481 uvm_pagefree(pg);
482 uvm_unlock_pageq();
483
484 if (locked)
485 uvmfault_unlockall(ufi, amap, NULL,
486 anon);
487 else
488 simple_unlock(&anon->an_lock);
489 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
490 return error;
491 }
492
493 /*
494 * must be OK, clear modify (already PG_CLEAN)
495 * and activate
496 */
497 pmap_clear_modify(pg);
498 uvm_lock_pageq();
499 uvm_pageactivate(pg);
500 uvm_unlock_pageq();
501 if (!locked)
502 simple_unlock(&anon->an_lock);
503 }
504
505 /*
506 * we were not able to relock. restart fault.
507 */
508
509 if (!locked) {
510 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
511 return (ERESTART);
512 }
513
514 /*
515 * verify no one has touched the amap and moved the anon on us.
516 */
517
518 if (ufi != NULL &&
519 amap_lookup(&ufi->entry->aref,
520 ufi->orig_rvaddr - ufi->entry->start) != anon) {
521
522 uvmfault_unlockall(ufi, amap, NULL, anon);
523 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
524 return (ERESTART);
525 }
526
527 /*
528 * try it again!
529 */
530
531 uvmexp.fltanretry++;
532 continue;
533
534 } /* while (1) */
535
536 /*NOTREACHED*/
537 }
538
539 /*
540 * F A U L T - m a i n e n t r y p o i n t
541 */
542
543 /*
544 * uvm_fault: page fault handler
545 *
546 * => called from MD code to resolve a page fault
547 * => VM data structures usually should be unlocked. however, it is
548 * possible to call here with the main map locked if the caller
549 * gets a write lock, sets it recusive, and then calls us (c.f.
550 * uvm_map_pageable). this should be avoided because it keeps
551 * the map locked off during I/O.
552 */
553
554 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
555 ~VM_PROT_WRITE : VM_PROT_ALL)
556
557 int
558 uvm_fault(orig_map, vaddr, fault_type, access_type)
559 vm_map_t orig_map;
560 vaddr_t vaddr;
561 vm_fault_t fault_type;
562 vm_prot_t access_type;
563 {
564 struct uvm_faultinfo ufi;
565 vm_prot_t enter_prot;
566 boolean_t wired, narrow, promote, locked, shadowed;
567 int npages, nback, nforw, centeridx, error, lcv, gotpages;
568 vaddr_t startva, objaddr, currva, offset, uoff;
569 paddr_t pa;
570 struct vm_amap *amap;
571 struct uvm_object *uobj;
572 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
573 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
574 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
575
576 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
577 orig_map, vaddr, fault_type, access_type);
578
579 anon = NULL;
580 pg = NULL;
581
582 uvmexp.faults++; /* XXX: locking? */
583
584 /*
585 * init the IN parameters in the ufi
586 */
587
588 ufi.orig_map = orig_map;
589 ufi.orig_rvaddr = trunc_page(vaddr);
590 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
591 if (fault_type == VM_FAULT_WIRE)
592 narrow = TRUE; /* don't look for neighborhood
593 * pages on wire */
594 else
595 narrow = FALSE; /* normal fault */
596
597 /*
598 * before we do anything else, if this is a fault on a kernel
599 * address, check to see if the address is managed by an
600 * interrupt-safe map. If it is, we fail immediately. Intrsafe
601 * maps are never pageable, and this approach avoids an evil
602 * locking mess.
603 */
604
605 if (orig_map == kernel_map && uvmfault_check_intrsafe(&ufi)) {
606 UVMHIST_LOG(maphist, "<- VA 0x%lx in intrsafe map %p",
607 ufi.orig_rvaddr, ufi.map, 0, 0);
608 return EFAULT;
609 }
610
611 /*
612 * "goto ReFault" means restart the page fault from ground zero.
613 */
614 ReFault:
615
616 /*
617 * lookup and lock the maps
618 */
619
620 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
621 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
622 return (EFAULT);
623 }
624 /* locked: maps(read) */
625
626 KASSERT(ufi.map->flags & VM_MAP_PAGEABLE);
627
628 /*
629 * check protection
630 */
631
632 if ((ufi.entry->protection & access_type) != access_type) {
633 UVMHIST_LOG(maphist,
634 "<- protection failure (prot=0x%x, access=0x%x)",
635 ufi.entry->protection, access_type, 0, 0);
636 uvmfault_unlockmaps(&ufi, FALSE);
637 return EACCES;
638 }
639
640 /*
641 * "enter_prot" is the protection we want to enter the page in at.
642 * for certain pages (e.g. copy-on-write pages) this protection can
643 * be more strict than ufi.entry->protection. "wired" means either
644 * the entry is wired or we are fault-wiring the pg.
645 */
646
647 enter_prot = ufi.entry->protection;
648 wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE);
649 if (wired)
650 access_type = enter_prot; /* full access for wired */
651
652 /*
653 * handle "needs_copy" case. if we need to copy the amap we will
654 * have to drop our readlock and relock it with a write lock. (we
655 * need a write lock to change anything in a map entry [e.g.
656 * needs_copy]).
657 */
658
659 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
660 if ((access_type & VM_PROT_WRITE) ||
661 (ufi.entry->object.uvm_obj == NULL)) {
662 /* need to clear */
663 UVMHIST_LOG(maphist,
664 " need to clear needs_copy and refault",0,0,0,0);
665 uvmfault_unlockmaps(&ufi, FALSE);
666 uvmfault_amapcopy(&ufi);
667 uvmexp.fltamcopy++;
668 goto ReFault;
669
670 } else {
671
672 /*
673 * ensure that we pmap_enter page R/O since
674 * needs_copy is still true
675 */
676 enter_prot &= ~VM_PROT_WRITE;
677
678 }
679 }
680
681 /*
682 * identify the players
683 */
684
685 amap = ufi.entry->aref.ar_amap; /* top layer */
686 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
687
688 /*
689 * check for a case 0 fault. if nothing backing the entry then
690 * error now.
691 */
692
693 if (amap == NULL && uobj == NULL) {
694 uvmfault_unlockmaps(&ufi, FALSE);
695 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
696 return (EFAULT);
697 }
698
699 /*
700 * establish range of interest based on advice from mapper
701 * and then clip to fit map entry. note that we only want
702 * to do this the first time through the fault. if we
703 * ReFault we will disable this by setting "narrow" to true.
704 */
705
706 if (narrow == FALSE) {
707
708 /* wide fault (!narrow) */
709 KASSERT(uvmadvice[ufi.entry->advice].advice ==
710 ufi.entry->advice);
711 nback = min(uvmadvice[ufi.entry->advice].nback,
712 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
713 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
714 nforw = min(uvmadvice[ufi.entry->advice].nforw,
715 ((ufi.entry->end - ufi.orig_rvaddr) >>
716 PAGE_SHIFT) - 1);
717 /*
718 * note: "-1" because we don't want to count the
719 * faulting page as forw
720 */
721 npages = nback + nforw + 1;
722 centeridx = nback;
723
724 narrow = TRUE; /* ensure only once per-fault */
725
726 } else {
727
728 /* narrow fault! */
729 nback = nforw = 0;
730 startva = ufi.orig_rvaddr;
731 npages = 1;
732 centeridx = 0;
733
734 }
735
736 /* locked: maps(read) */
737 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
738 narrow, nback, nforw, startva);
739 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
740 amap, uobj, 0);
741
742 /*
743 * if we've got an amap, lock it and extract current anons.
744 */
745
746 if (amap) {
747 amap_lock(amap);
748 anons = anons_store;
749 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
750 anons, npages);
751 } else {
752 anons = NULL; /* to be safe */
753 }
754
755 /* locked: maps(read), amap(if there) */
756
757 /*
758 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
759 * now and then forget about them (for the rest of the fault).
760 */
761
762 if (ufi.entry->advice == MADV_SEQUENTIAL) {
763
764 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
765 0,0,0,0);
766 /* flush back-page anons? */
767 if (amap)
768 uvmfault_anonflush(anons, nback);
769
770 /* flush object? */
771 if (uobj) {
772 objaddr =
773 (startva - ufi.entry->start) + ufi.entry->offset;
774 simple_lock(&uobj->vmobjlock);
775 (void) uobj->pgops->pgo_flush(uobj, objaddr, objaddr +
776 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
777 simple_unlock(&uobj->vmobjlock);
778 }
779
780 /* now forget about the backpages */
781 if (amap)
782 anons += nback;
783 startva += (nback << PAGE_SHIFT);
784 npages -= nback;
785 nback = centeridx = 0;
786 }
787
788 /* locked: maps(read), amap(if there) */
789
790 /*
791 * map in the backpages and frontpages we found in the amap in hopes
792 * of preventing future faults. we also init the pages[] array as
793 * we go.
794 */
795
796 currva = startva;
797 shadowed = FALSE;
798 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
799
800 /*
801 * dont play with VAs that are already mapped
802 * except for center)
803 */
804 if (lcv != centeridx &&
805 pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
806 pages[lcv] = PGO_DONTCARE;
807 continue;
808 }
809
810 /*
811 * unmapped or center page. check if any anon at this level.
812 */
813 if (amap == NULL || anons[lcv] == NULL) {
814 pages[lcv] = NULL;
815 continue;
816 }
817
818 /*
819 * check for present page and map if possible. re-activate it.
820 */
821
822 pages[lcv] = PGO_DONTCARE;
823 if (lcv == centeridx) { /* save center for later! */
824 shadowed = TRUE;
825 continue;
826 }
827 anon = anons[lcv];
828 simple_lock(&anon->an_lock);
829 /* ignore loaned pages */
830 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
831 (anon->u.an_page->flags & (PG_RELEASED|PG_BUSY)) == 0) {
832 uvm_lock_pageq();
833 uvm_pageactivate(anon->u.an_page); /* reactivate */
834 uvm_unlock_pageq();
835 UVMHIST_LOG(maphist,
836 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
837 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
838 uvmexp.fltnamap++;
839
840 /*
841 * Since this isn't the page that's actually faulting,
842 * ignore pmap_enter() failures; it's not critical
843 * that we enter these right now.
844 */
845
846 (void) pmap_enter(ufi.orig_map->pmap, currva,
847 VM_PAGE_TO_PHYS(anon->u.an_page),
848 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
849 enter_prot,
850 PMAP_CANFAIL |
851 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
852 }
853 simple_unlock(&anon->an_lock);
854 }
855
856 /* locked: maps(read), amap(if there) */
857 /* (shadowed == TRUE) if there is an anon at the faulting address */
858 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
859 (uobj && shadowed == FALSE),0,0);
860
861 /*
862 * note that if we are really short of RAM we could sleep in the above
863 * call to pmap_enter with everything locked. bad?
864 *
865 * XXX Actually, that is bad; pmap_enter() should just fail in that
866 * XXX case. --thorpej
867 */
868
869 /*
870 * if the desired page is not shadowed by the amap and we have a
871 * backing object, then we check to see if the backing object would
872 * prefer to handle the fault itself (rather than letting us do it
873 * with the usual pgo_get hook). the backing object signals this by
874 * providing a pgo_fault routine.
875 */
876
877 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
878 simple_lock(&uobj->vmobjlock);
879
880 /* locked: maps(read), amap (if there), uobj */
881 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
882 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
883
884 /* locked: nothing, pgo_fault has unlocked everything */
885
886 if (error == ERESTART)
887 goto ReFault; /* try again! */
888 return error;
889 }
890
891 /*
892 * now, if the desired page is not shadowed by the amap and we have
893 * a backing object that does not have a special fault routine, then
894 * we ask (with pgo_get) the object for resident pages that we care
895 * about and attempt to map them in. we do not let pgo_get block
896 * (PGO_LOCKED).
897 *
898 * ("get" has the option of doing a pmap_enter for us)
899 */
900
901 if (uobj && shadowed == FALSE) {
902 simple_lock(&uobj->vmobjlock);
903
904 /* locked (!shadowed): maps(read), amap (if there), uobj */
905 /*
906 * the following call to pgo_get does _not_ change locking state
907 */
908
909 uvmexp.fltlget++;
910 gotpages = npages;
911 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
912 (startva - ufi.entry->start),
913 pages, &gotpages, centeridx,
914 access_type & MASK(ufi.entry),
915 ufi.entry->advice, PGO_LOCKED);
916
917 /*
918 * check for pages to map, if we got any
919 */
920
921 uobjpage = NULL;
922
923 if (gotpages) {
924 currva = startva;
925 for (lcv = 0 ; lcv < npages ;
926 lcv++, currva += PAGE_SIZE) {
927
928 if (pages[lcv] == NULL ||
929 pages[lcv] == PGO_DONTCARE)
930 continue;
931
932 KASSERT((pages[lcv]->flags & PG_RELEASED) == 0);
933
934 /*
935 * if center page is resident and not
936 * PG_BUSY|PG_RELEASED then pgo_get
937 * made it PG_BUSY for us and gave
938 * us a handle to it. remember this
939 * page as "uobjpage." (for later use).
940 */
941
942 if (lcv == centeridx) {
943 uobjpage = pages[lcv];
944 UVMHIST_LOG(maphist, " got uobjpage "
945 "(0x%x) with locked get",
946 uobjpage, 0,0,0);
947 continue;
948 }
949
950 /*
951 * note: calling pgo_get with locked data
952 * structures returns us pages which are
953 * neither busy nor released, so we don't
954 * need to check for this. we can just
955 * directly enter the page (after moving it
956 * to the head of the active queue [useful?]).
957 */
958
959 uvm_lock_pageq();
960 uvm_pageactivate(pages[lcv]); /* reactivate */
961 uvm_unlock_pageq();
962 UVMHIST_LOG(maphist,
963 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
964 ufi.orig_map->pmap, currva, pages[lcv], 0);
965 uvmexp.fltnomap++;
966
967 /*
968 * Since this page isn't the page that's
969 * actually fauling, ignore pmap_enter()
970 * failures; it's not critical that we
971 * enter these right now.
972 */
973
974 (void) pmap_enter(ufi.orig_map->pmap, currva,
975 VM_PAGE_TO_PHYS(pages[lcv]),
976 pages[lcv]->flags & PG_RDONLY ?
977 VM_PROT_READ : enter_prot & MASK(ufi.entry),
978 PMAP_CANFAIL |
979 (wired ? PMAP_WIRED : 0));
980
981 /*
982 * NOTE: page can't be PG_WANTED or PG_RELEASED
983 * because we've held the lock the whole time
984 * we've had the handle.
985 */
986
987 pages[lcv]->flags &= ~(PG_BUSY); /* un-busy! */
988 UVM_PAGE_OWN(pages[lcv], NULL);
989 } /* for "lcv" loop */
990 } /* "gotpages" != 0 */
991 /* note: object still _locked_ */
992 } else {
993 uobjpage = NULL;
994 }
995
996 /* locked (shadowed): maps(read), amap */
997 /* locked (!shadowed): maps(read), amap(if there),
998 uobj(if !null), uobjpage(if !null) */
999
1000 /*
1001 * note that at this point we are done with any front or back pages.
1002 * we are now going to focus on the center page (i.e. the one we've
1003 * faulted on). if we have faulted on the top (anon) layer
1004 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1005 * not touched it yet). if we have faulted on the bottom (uobj)
1006 * layer [i.e. case 2] and the page was both present and available,
1007 * then we've got a pointer to it as "uobjpage" and we've already
1008 * made it BUSY.
1009 */
1010
1011 /*
1012 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1013 */
1014
1015 /*
1016 * redirect case 2: if we are not shadowed, go to case 2.
1017 */
1018
1019 if (shadowed == FALSE)
1020 goto Case2;
1021
1022 /* locked: maps(read), amap */
1023
1024 /*
1025 * handle case 1: fault on an anon in our amap
1026 */
1027
1028 anon = anons[centeridx];
1029 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1030 simple_lock(&anon->an_lock);
1031
1032 /* locked: maps(read), amap, anon */
1033
1034 /*
1035 * no matter if we have case 1A or case 1B we are going to need to
1036 * have the anon's memory resident. ensure that now.
1037 */
1038
1039 /*
1040 * let uvmfault_anonget do the dirty work.
1041 * if it fails (!OK) it will unlock everything for us.
1042 * if it succeeds, locks are still valid and locked.
1043 * also, if it is OK, then the anon's page is on the queues.
1044 * if the page is on loan from a uvm_object, then anonget will
1045 * lock that object for us if it does not fail.
1046 */
1047
1048 error = uvmfault_anonget(&ufi, amap, anon);
1049 switch (error) {
1050 case 0:
1051 break;
1052
1053 case ERESTART:
1054 goto ReFault;
1055
1056 case EAGAIN:
1057 tsleep(&lbolt, PVM, "fltagain1", 0);
1058 goto ReFault;
1059
1060 default:
1061 return error;
1062 }
1063
1064 /*
1065 * uobj is non null if the page is on loan from an object (i.e. uobj)
1066 */
1067
1068 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1069
1070 /* locked: maps(read), amap, anon, uobj(if one) */
1071
1072 /*
1073 * special handling for loaned pages
1074 */
1075
1076 if (anon->u.an_page->loan_count) {
1077
1078 if ((access_type & VM_PROT_WRITE) == 0) {
1079
1080 /*
1081 * for read faults on loaned pages we just cap the
1082 * protection at read-only.
1083 */
1084
1085 enter_prot = enter_prot & ~VM_PROT_WRITE;
1086
1087 } else {
1088 /*
1089 * note that we can't allow writes into a loaned page!
1090 *
1091 * if we have a write fault on a loaned page in an
1092 * anon then we need to look at the anon's ref count.
1093 * if it is greater than one then we are going to do
1094 * a normal copy-on-write fault into a new anon (this
1095 * is not a problem). however, if the reference count
1096 * is one (a case where we would normally allow a
1097 * write directly to the page) then we need to kill
1098 * the loan before we continue.
1099 */
1100
1101 /* >1 case is already ok */
1102 if (anon->an_ref == 1) {
1103
1104 /* get new un-owned replacement page */
1105 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1106 if (pg == NULL) {
1107 uvmfault_unlockall(&ufi, amap, uobj,
1108 anon);
1109 uvm_wait("flt_noram2");
1110 goto ReFault;
1111 }
1112
1113 /*
1114 * copy data, kill loan, and drop uobj lock
1115 * (if any)
1116 */
1117 /* copy old -> new */
1118 uvm_pagecopy(anon->u.an_page, pg);
1119
1120 /* force reload */
1121 pmap_page_protect(anon->u.an_page,
1122 VM_PROT_NONE);
1123 uvm_lock_pageq(); /* KILL loan */
1124 if (uobj)
1125 /* if we were loaning */
1126 anon->u.an_page->loan_count--;
1127 anon->u.an_page->uanon = NULL;
1128 /* in case we owned */
1129 anon->u.an_page->pqflags &= ~PQ_ANON;
1130 uvm_unlock_pageq();
1131 if (uobj) {
1132 simple_unlock(&uobj->vmobjlock);
1133 uobj = NULL;
1134 }
1135
1136 /* install new page in anon */
1137 anon->u.an_page = pg;
1138 pg->uanon = anon;
1139 pg->pqflags |= PQ_ANON;
1140 pg->flags &= ~(PG_BUSY|PG_FAKE);
1141 UVM_PAGE_OWN(pg, NULL);
1142
1143 /* done! */
1144 } /* ref == 1 */
1145 } /* write fault */
1146 } /* loan count */
1147
1148 /*
1149 * if we are case 1B then we will need to allocate a new blank
1150 * anon to transfer the data into. note that we have a lock
1151 * on anon, so no one can busy or release the page until we are done.
1152 * also note that the ref count can't drop to zero here because
1153 * it is > 1 and we are only dropping one ref.
1154 *
1155 * in the (hopefully very rare) case that we are out of RAM we
1156 * will unlock, wait for more RAM, and refault.
1157 *
1158 * if we are out of anon VM we kill the process (XXX: could wait?).
1159 */
1160
1161 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) {
1162
1163 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1164 uvmexp.flt_acow++;
1165 oanon = anon; /* oanon = old, locked anon */
1166 anon = uvm_analloc();
1167 if (anon) {
1168 /* new anon is locked! */
1169 pg = uvm_pagealloc(NULL, 0, anon, 0);
1170 }
1171
1172 /* check for out of RAM */
1173 if (anon == NULL || pg == NULL) {
1174 if (anon) {
1175 anon->an_ref--;
1176 simple_unlock(&anon->an_lock);
1177 uvm_anfree(anon);
1178 }
1179 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1180 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1181 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1182 UVMHIST_LOG(maphist,
1183 "<- failed. out of VM",0,0,0,0);
1184 uvmexp.fltnoanon++;
1185 return ENOMEM;
1186 }
1187
1188 uvmexp.fltnoram++;
1189 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1190 goto ReFault;
1191 }
1192
1193 /* got all resources, replace anon with nanon */
1194
1195 uvm_pagecopy(oanon->u.an_page, pg); /* pg now !PG_CLEAN */
1196 pg->flags &= ~(PG_BUSY|PG_FAKE); /* un-busy! new page */
1197 UVM_PAGE_OWN(pg, NULL);
1198 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1199 anon, 1);
1200
1201 /* deref: can not drop to zero here by defn! */
1202 oanon->an_ref--;
1203
1204 /*
1205 * note: oanon is still locked, as is the new anon. we
1206 * need to check for this later when we unlock oanon; if
1207 * oanon != anon, we'll have to unlock anon, too.
1208 */
1209
1210 } else {
1211
1212 uvmexp.flt_anon++;
1213 oanon = anon; /* old, locked anon is same as anon */
1214 pg = anon->u.an_page;
1215 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1216 enter_prot = enter_prot & ~VM_PROT_WRITE;
1217
1218 }
1219
1220 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1221
1222 /*
1223 * now map the page in ...
1224 * XXX: old fault unlocks object before pmap_enter. this seems
1225 * suspect since some other thread could blast the page out from
1226 * under us between the unlock and the pmap_enter.
1227 */
1228
1229 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1230 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1231 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1232 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1233 != 0) {
1234 /*
1235 * No need to undo what we did; we can simply think of
1236 * this as the pmap throwing away the mapping information.
1237 *
1238 * We do, however, have to go through the ReFault path,
1239 * as the map may change while we're asleep.
1240 */
1241 if (anon != oanon)
1242 simple_unlock(&anon->an_lock);
1243 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1244 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1245 if (uvmexp.swpgonly == uvmexp.swpages) {
1246 UVMHIST_LOG(maphist,
1247 "<- failed. out of VM",0,0,0,0);
1248 /* XXX instrumentation */
1249 return ENOMEM;
1250 }
1251 /* XXX instrumentation */
1252 uvm_wait("flt_pmfail1");
1253 goto ReFault;
1254 }
1255
1256 /*
1257 * ... update the page queues.
1258 */
1259
1260 uvm_lock_pageq();
1261
1262 if (fault_type == VM_FAULT_WIRE) {
1263 uvm_pagewire(pg);
1264
1265 /*
1266 * since the now-wired page cannot be paged out,
1267 * release its swap resources for others to use.
1268 * since an anon with no swap cannot be PG_CLEAN,
1269 * clear its clean flag now.
1270 */
1271
1272 pg->flags &= ~(PG_CLEAN);
1273 uvm_anon_dropswap(anon);
1274 } else {
1275 /* activate it */
1276 uvm_pageactivate(pg);
1277 }
1278
1279 uvm_unlock_pageq();
1280
1281 /*
1282 * done case 1! finish up by unlocking everything and returning success
1283 */
1284
1285 if (anon != oanon)
1286 simple_unlock(&anon->an_lock);
1287 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1288 return 0;
1289
1290
1291 Case2:
1292 /*
1293 * handle case 2: faulting on backing object or zero fill
1294 */
1295
1296 /*
1297 * locked:
1298 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1299 */
1300
1301 /*
1302 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1303 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1304 * have a backing object, check and see if we are going to promote
1305 * the data up to an anon during the fault.
1306 */
1307
1308 if (uobj == NULL) {
1309 uobjpage = PGO_DONTCARE;
1310 promote = TRUE; /* always need anon here */
1311 } else {
1312 KASSERT(uobjpage != PGO_DONTCARE);
1313 promote = (access_type & VM_PROT_WRITE) &&
1314 UVM_ET_ISCOPYONWRITE(ufi.entry);
1315 }
1316 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1317 promote, (uobj == NULL), 0,0);
1318
1319 /*
1320 * if uobjpage is not null then we do not need to do I/O to get the
1321 * uobjpage.
1322 *
1323 * if uobjpage is null, then we need to unlock and ask the pager to
1324 * get the data for us. once we have the data, we need to reverify
1325 * the state the world. we are currently not holding any resources.
1326 */
1327
1328 if (uobjpage) {
1329 /* update rusage counters */
1330 curproc->p_addr->u_stats.p_ru.ru_minflt++;
1331 } else {
1332 /* update rusage counters */
1333 curproc->p_addr->u_stats.p_ru.ru_majflt++;
1334
1335 /* locked: maps(read), amap(if there), uobj */
1336 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1337 /* locked: uobj */
1338
1339 uvmexp.fltget++;
1340 gotpages = 1;
1341 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1342 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1343 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1344 PGO_SYNCIO);
1345
1346 /* locked: uobjpage(if no error) */
1347
1348 /*
1349 * recover from I/O
1350 */
1351
1352 if (error) {
1353 if (error == EAGAIN) {
1354 UVMHIST_LOG(maphist,
1355 " pgo_get says TRY AGAIN!",0,0,0,0);
1356 tsleep(&lbolt, PVM, "fltagain2", 0);
1357 goto ReFault;
1358 }
1359
1360 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1361 error, 0,0,0);
1362 return error;
1363 }
1364
1365 /* locked: uobjpage */
1366
1367 /*
1368 * re-verify the state of the world by first trying to relock
1369 * the maps. always relock the object.
1370 */
1371
1372 locked = uvmfault_relock(&ufi);
1373 if (locked && amap)
1374 amap_lock(amap);
1375 simple_lock(&uobj->vmobjlock);
1376
1377 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1378 /* locked(!locked): uobj, uobjpage */
1379
1380 /*
1381 * verify that the page has not be released and re-verify
1382 * that amap slot is still free. if there is a problem,
1383 * we unlock and clean up.
1384 */
1385
1386 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1387 (locked && amap &&
1388 amap_lookup(&ufi.entry->aref,
1389 ufi.orig_rvaddr - ufi.entry->start))) {
1390 if (locked)
1391 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1392 locked = FALSE;
1393 }
1394
1395 /*
1396 * didn't get the lock? release the page and retry.
1397 */
1398
1399 if (locked == FALSE) {
1400
1401 UVMHIST_LOG(maphist,
1402 " wasn't able to relock after fault: retry",
1403 0,0,0,0);
1404 if (uobjpage->flags & PG_WANTED)
1405 /* still holding object lock */
1406 wakeup(uobjpage);
1407
1408 if (uobjpage->flags & PG_RELEASED) {
1409 uvmexp.fltpgrele++;
1410 KASSERT(uobj->pgops->pgo_releasepg != NULL);
1411
1412 /* frees page */
1413 if (uobj->pgops->pgo_releasepg(uobjpage,NULL))
1414 /* unlock if still alive */
1415 simple_unlock(&uobj->vmobjlock);
1416 goto ReFault;
1417 }
1418
1419 uvm_lock_pageq();
1420 /* make sure it is in queues */
1421 uvm_pageactivate(uobjpage);
1422
1423 uvm_unlock_pageq();
1424 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1425 UVM_PAGE_OWN(uobjpage, NULL);
1426 simple_unlock(&uobj->vmobjlock);
1427 goto ReFault;
1428
1429 }
1430
1431 /*
1432 * we have the data in uobjpage which is PG_BUSY and
1433 * !PG_RELEASED. we are holding object lock (so the page
1434 * can't be released on us).
1435 */
1436
1437 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1438 }
1439
1440 /*
1441 * locked:
1442 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1443 */
1444
1445 /*
1446 * notes:
1447 * - at this point uobjpage can not be NULL
1448 * - at this point uobjpage can not be PG_RELEASED (since we checked
1449 * for it above)
1450 * - at this point uobjpage could be PG_WANTED (handle later)
1451 */
1452
1453 if (promote == FALSE) {
1454
1455 /*
1456 * we are not promoting. if the mapping is COW ensure that we
1457 * don't give more access than we should (e.g. when doing a read
1458 * fault on a COPYONWRITE mapping we want to map the COW page in
1459 * R/O even though the entry protection could be R/W).
1460 *
1461 * set "pg" to the page we want to map in (uobjpage, usually)
1462 */
1463
1464 /* no anon in this case. */
1465 anon = NULL;
1466
1467 uvmexp.flt_obj++;
1468 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1469 enter_prot &= ~VM_PROT_WRITE;
1470 pg = uobjpage; /* map in the actual object */
1471
1472 /* assert(uobjpage != PGO_DONTCARE) */
1473
1474 /*
1475 * we are faulting directly on the page. be careful
1476 * about writing to loaned pages...
1477 */
1478 if (uobjpage->loan_count) {
1479
1480 if ((access_type & VM_PROT_WRITE) == 0) {
1481 /* read fault: cap the protection at readonly */
1482 /* cap! */
1483 enter_prot = enter_prot & ~VM_PROT_WRITE;
1484 } else {
1485 /* write fault: must break the loan here */
1486
1487 /* alloc new un-owned page */
1488 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1489
1490 if (pg == NULL) {
1491 /*
1492 * drop ownership of page, it can't
1493 * be released
1494 */
1495 if (uobjpage->flags & PG_WANTED)
1496 wakeup(uobjpage);
1497 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1498 UVM_PAGE_OWN(uobjpage, NULL);
1499
1500 uvm_lock_pageq();
1501 /* activate: we will need it later */
1502 uvm_pageactivate(uobjpage);
1503
1504 uvm_unlock_pageq();
1505 uvmfault_unlockall(&ufi, amap, uobj,
1506 NULL);
1507 UVMHIST_LOG(maphist,
1508 " out of RAM breaking loan, waiting",
1509 0,0,0,0);
1510 uvmexp.fltnoram++;
1511 uvm_wait("flt_noram4");
1512 goto ReFault;
1513 }
1514
1515 /*
1516 * copy the data from the old page to the new
1517 * one and clear the fake/clean flags on the
1518 * new page (keep it busy). force a reload
1519 * of the old page by clearing it from all
1520 * pmaps. then lock the page queues to
1521 * rename the pages.
1522 */
1523 uvm_pagecopy(uobjpage, pg); /* old -> new */
1524 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1525 pmap_page_protect(uobjpage, VM_PROT_NONE);
1526 if (uobjpage->flags & PG_WANTED)
1527 wakeup(uobjpage);
1528 /* uobj still locked */
1529 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1530 UVM_PAGE_OWN(uobjpage, NULL);
1531
1532 uvm_lock_pageq();
1533 offset = uobjpage->offset;
1534 /* remove old page */
1535 uvm_pagerealloc(uobjpage, NULL, 0);
1536
1537 /*
1538 * at this point we have absolutely no
1539 * control over uobjpage
1540 */
1541 /* install new page */
1542 uvm_pagerealloc(pg, uobj, offset);
1543 uvm_unlock_pageq();
1544
1545 /*
1546 * done! loan is broken and "pg" is
1547 * PG_BUSY. it can now replace uobjpage.
1548 */
1549
1550 uobjpage = pg;
1551
1552 } /* write fault case */
1553 } /* if loan_count */
1554
1555 } else {
1556
1557 /*
1558 * if we are going to promote the data to an anon we
1559 * allocate a blank anon here and plug it into our amap.
1560 */
1561 #if DIAGNOSTIC
1562 if (amap == NULL)
1563 panic("uvm_fault: want to promote data, but no anon");
1564 #endif
1565
1566 anon = uvm_analloc();
1567 if (anon) {
1568 /*
1569 * The new anon is locked.
1570 *
1571 * In `Fill in data...' below, if
1572 * uobjpage == PGO_DONTCARE, we want
1573 * a zero'd, dirty page, so have
1574 * uvm_pagealloc() do that for us.
1575 */
1576 pg = uvm_pagealloc(NULL, 0, anon,
1577 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1578 }
1579
1580 /*
1581 * out of memory resources?
1582 */
1583 if (anon == NULL || pg == NULL) {
1584
1585 if (anon != NULL) {
1586 anon->an_ref--;
1587 simple_unlock(&anon->an_lock);
1588 uvm_anfree(anon);
1589 }
1590
1591 /*
1592 * arg! must unbusy our page and fail or sleep.
1593 */
1594 if (uobjpage != PGO_DONTCARE) {
1595 if (uobjpage->flags & PG_WANTED)
1596 /* still holding object lock */
1597 wakeup(uobjpage);
1598
1599 uvm_lock_pageq();
1600 uvm_pageactivate(uobjpage);
1601 uvm_unlock_pageq();
1602 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1603 UVM_PAGE_OWN(uobjpage, NULL);
1604 }
1605
1606 /* unlock and fail ... */
1607 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1608 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1609 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1610 UVMHIST_LOG(maphist, " promote: out of VM",
1611 0,0,0,0);
1612 uvmexp.fltnoanon++;
1613 return ENOMEM;
1614 }
1615
1616 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1617 0,0,0,0);
1618 uvmexp.fltnoram++;
1619 uvm_wait("flt_noram5");
1620 goto ReFault;
1621 }
1622
1623 /*
1624 * fill in the data
1625 */
1626
1627 if (uobjpage != PGO_DONTCARE) {
1628 uvmexp.flt_prcopy++;
1629 /* copy page [pg now dirty] */
1630 uvm_pagecopy(uobjpage, pg);
1631
1632 /*
1633 * promote to shared amap? make sure all sharing
1634 * procs see it
1635 */
1636 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1637 pmap_page_protect(uobjpage, VM_PROT_NONE);
1638 }
1639
1640 /*
1641 * dispose of uobjpage. it can't be PG_RELEASED
1642 * since we still hold the object lock.
1643 * drop handle to uobj as well.
1644 */
1645
1646 if (uobjpage->flags & PG_WANTED)
1647 /* still have the obj lock */
1648 wakeup(uobjpage);
1649 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1650 UVM_PAGE_OWN(uobjpage, NULL);
1651 uvm_lock_pageq();
1652 uvm_pageactivate(uobjpage);
1653 uvm_unlock_pageq();
1654 simple_unlock(&uobj->vmobjlock);
1655 uobj = NULL;
1656
1657 UVMHIST_LOG(maphist,
1658 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1659 uobjpage, anon, pg, 0);
1660
1661 } else {
1662 uvmexp.flt_przero++;
1663 /*
1664 * Page is zero'd and marked dirty by uvm_pagealloc()
1665 * above.
1666 */
1667 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1668 anon, pg, 0, 0);
1669 }
1670
1671 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1672 anon, 0);
1673 }
1674
1675 /*
1676 * locked:
1677 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1678 * anon(if !null), pg(if anon)
1679 *
1680 * note: pg is either the uobjpage or the new page in the new anon
1681 */
1682
1683 /*
1684 * all resources are present. we can now map it in and free our
1685 * resources.
1686 */
1687
1688 UVMHIST_LOG(maphist,
1689 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1690 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1691 KASSERT(access_type == VM_PROT_READ || (pg->flags & PG_RDONLY) == 0);
1692 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1693 pg->flags & PG_RDONLY ? VM_PROT_READ : enter_prot,
1694 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1695
1696 /*
1697 * No need to undo what we did; we can simply think of
1698 * this as the pmap throwing away the mapping information.
1699 *
1700 * We do, however, have to go through the ReFault path,
1701 * as the map may change while we're asleep.
1702 */
1703
1704 if (pg->flags & PG_WANTED)
1705 wakeup(pg); /* lock still held */
1706
1707 /*
1708 * note that pg can't be PG_RELEASED since we did not drop
1709 * the object lock since the last time we checked.
1710 */
1711
1712 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1713 UVM_PAGE_OWN(pg, NULL);
1714 uvmfault_unlockall(&ufi, amap, uobj, anon);
1715 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1716 if (uvmexp.swpgonly == uvmexp.swpages) {
1717 UVMHIST_LOG(maphist,
1718 "<- failed. out of VM",0,0,0,0);
1719 /* XXX instrumentation */
1720 return ENOMEM;
1721 }
1722 /* XXX instrumentation */
1723 uvm_wait("flt_pmfail2");
1724 goto ReFault;
1725 }
1726
1727 uvm_lock_pageq();
1728
1729 if (fault_type == VM_FAULT_WIRE) {
1730 uvm_pagewire(pg);
1731 if (pg->pqflags & PQ_AOBJ) {
1732
1733 /*
1734 * since the now-wired page cannot be paged out,
1735 * release its swap resources for others to use.
1736 * since an aobj page with no swap cannot be PG_CLEAN,
1737 * clear its clean flag now.
1738 */
1739
1740 pg->flags &= ~(PG_CLEAN);
1741 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1742 }
1743 } else {
1744 /* activate it */
1745 uvm_pageactivate(pg);
1746 }
1747 uvm_unlock_pageq();
1748
1749 if (pg->flags & PG_WANTED)
1750 wakeup(pg); /* lock still held */
1751
1752 /*
1753 * note that pg can't be PG_RELEASED since we did not drop the object
1754 * lock since the last time we checked.
1755 */
1756
1757 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1758 UVM_PAGE_OWN(pg, NULL);
1759 uvmfault_unlockall(&ufi, amap, uobj, anon);
1760
1761 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1762 return 0;
1763 }
1764
1765
1766 /*
1767 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1768 *
1769 * => map may be read-locked by caller, but MUST NOT be write-locked.
1770 * => if map is read-locked, any operations which may cause map to
1771 * be write-locked in uvm_fault() must be taken care of by
1772 * the caller. See uvm_map_pageable().
1773 */
1774
1775 int
1776 uvm_fault_wire(map, start, end, access_type)
1777 vm_map_t map;
1778 vaddr_t start, end;
1779 vm_prot_t access_type;
1780 {
1781 vaddr_t va;
1782 pmap_t pmap;
1783 int error;
1784
1785 pmap = vm_map_pmap(map);
1786
1787 /*
1788 * now fault it in a page at a time. if the fault fails then we have
1789 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1790 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1791 */
1792
1793 for (va = start ; va < end ; va += PAGE_SIZE) {
1794 error = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1795 if (error) {
1796 if (va != start) {
1797 uvm_fault_unwire(map, start, va);
1798 }
1799 return error;
1800 }
1801 }
1802
1803 return 0;
1804 }
1805
1806 /*
1807 * uvm_fault_unwire(): unwire range of virtual space.
1808 */
1809
1810 void
1811 uvm_fault_unwire(map, start, end)
1812 vm_map_t map;
1813 vaddr_t start, end;
1814 {
1815
1816 vm_map_lock_read(map);
1817 uvm_fault_unwire_locked(map, start, end);
1818 vm_map_unlock_read(map);
1819 }
1820
1821 /*
1822 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1823 *
1824 * => map must be at least read-locked.
1825 */
1826
1827 void
1828 uvm_fault_unwire_locked(map, start, end)
1829 vm_map_t map;
1830 vaddr_t start, end;
1831 {
1832 vm_map_entry_t entry;
1833 pmap_t pmap = vm_map_pmap(map);
1834 vaddr_t va;
1835 paddr_t pa;
1836 struct vm_page *pg;
1837
1838 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1839
1840 /*
1841 * we assume that the area we are unwiring has actually been wired
1842 * in the first place. this means that we should be able to extract
1843 * the PAs from the pmap. we also lock out the page daemon so that
1844 * we can call uvm_pageunwire.
1845 */
1846
1847 uvm_lock_pageq();
1848
1849 /*
1850 * find the beginning map entry for the region.
1851 */
1852 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1853 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1854 panic("uvm_fault_unwire_locked: address not in map");
1855
1856 for (va = start; va < end ; va += PAGE_SIZE) {
1857 if (pmap_extract(pmap, va, &pa) == FALSE)
1858 panic("uvm_fault_unwire_locked: unwiring "
1859 "non-wired memory");
1860
1861 /*
1862 * make sure the current entry is for the address we're
1863 * dealing with. if not, grab the next entry.
1864 */
1865
1866 KASSERT(va >= entry->start);
1867 if (va >= entry->end) {
1868 KASSERT(entry->next != &map->header &&
1869 entry->next->start <= entry->end);
1870 entry = entry->next;
1871 }
1872
1873 /*
1874 * if the entry is no longer wired, tell the pmap.
1875 */
1876 if (VM_MAPENT_ISWIRED(entry) == 0)
1877 pmap_unwire(pmap, va);
1878
1879 pg = PHYS_TO_VM_PAGE(pa);
1880 if (pg)
1881 uvm_pageunwire(pg);
1882 }
1883
1884 uvm_unlock_pageq();
1885 }
1886