uvm_fault.c revision 1.48 1 /* $NetBSD: uvm_fault.c,v 1.48 2000/04/10 01:17:41 thorpej Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 #include "opt_uvmhist.h"
38
39 /*
40 * uvm_fault.c: fault handler
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/proc.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/user.h>
50
51 #include <vm/vm.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_kern.h>
54
55 #include <uvm/uvm.h>
56
57 /*
58 *
59 * a word on page faults:
60 *
61 * types of page faults we handle:
62 *
63 * CASE 1: upper layer faults CASE 2: lower layer faults
64 *
65 * CASE 1A CASE 1B CASE 2A CASE 2B
66 * read/write1 write>1 read/write +-cow_write/zero
67 * | | | |
68 * +--|--+ +--|--+ +-----+ + | + | +-----+
69 * amap | V | | ----------->new| | | | ^ |
70 * +-----+ +-----+ +-----+ + | + | +--|--+
71 * | | |
72 * +-----+ +-----+ +--|--+ | +--|--+
73 * uobj | d/c | | d/c | | V | +----| |
74 * +-----+ +-----+ +-----+ +-----+
75 *
76 * d/c = don't care
77 *
78 * case [0]: layerless fault
79 * no amap or uobj is present. this is an error.
80 *
81 * case [1]: upper layer fault [anon active]
82 * 1A: [read] or [write with anon->an_ref == 1]
83 * I/O takes place in top level anon and uobj is not touched.
84 * 1B: [write with anon->an_ref > 1]
85 * new anon is alloc'd and data is copied off ["COW"]
86 *
87 * case [2]: lower layer fault [uobj]
88 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
89 * I/O takes place directly in object.
90 * 2B: [write to copy_on_write] or [read on NULL uobj]
91 * data is "promoted" from uobj to a new anon.
92 * if uobj is null, then we zero fill.
93 *
94 * we follow the standard UVM locking protocol ordering:
95 *
96 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
97 * we hold a PG_BUSY page if we unlock for I/O
98 *
99 *
100 * the code is structured as follows:
101 *
102 * - init the "IN" params in the ufi structure
103 * ReFault:
104 * - do lookups [locks maps], check protection, handle needs_copy
105 * - check for case 0 fault (error)
106 * - establish "range" of fault
107 * - if we have an amap lock it and extract the anons
108 * - if sequential advice deactivate pages behind us
109 * - at the same time check pmap for unmapped areas and anon for pages
110 * that we could map in (and do map it if found)
111 * - check object for resident pages that we could map in
112 * - if (case 2) goto Case2
113 * - >>> handle case 1
114 * - ensure source anon is resident in RAM
115 * - if case 1B alloc new anon and copy from source
116 * - map the correct page in
117 * Case2:
118 * - >>> handle case 2
119 * - ensure source page is resident (if uobj)
120 * - if case 2B alloc new anon and copy from source (could be zero
121 * fill if uobj == NULL)
122 * - map the correct page in
123 * - done!
124 *
125 * note on paging:
126 * if we have to do I/O we place a PG_BUSY page in the correct object,
127 * unlock everything, and do the I/O. when I/O is done we must reverify
128 * the state of the world before assuming that our data structures are
129 * valid. [because mappings could change while the map is unlocked]
130 *
131 * alternative 1: unbusy the page in question and restart the page fault
132 * from the top (ReFault). this is easy but does not take advantage
133 * of the information that we already have from our previous lookup,
134 * although it is possible that the "hints" in the vm_map will help here.
135 *
136 * alternative 2: the system already keeps track of a "version" number of
137 * a map. [i.e. every time you write-lock a map (e.g. to change a
138 * mapping) you bump the version number up by one...] so, we can save
139 * the version number of the map before we release the lock and start I/O.
140 * then when I/O is done we can relock and check the version numbers
141 * to see if anything changed. this might save us some over 1 because
142 * we don't have to unbusy the page and may be less compares(?).
143 *
144 * alternative 3: put in backpointers or a way to "hold" part of a map
145 * in place while I/O is in progress. this could be complex to
146 * implement (especially with structures like amap that can be referenced
147 * by multiple map entries, and figuring out what should wait could be
148 * complex as well...).
149 *
150 * given that we are not currently multiprocessor or multithreaded we might
151 * as well choose alternative 2 now. maybe alternative 3 would be useful
152 * in the future. XXX keep in mind for future consideration//rechecking.
153 */
154
155 /*
156 * local data structures
157 */
158
159 struct uvm_advice {
160 int advice;
161 int nback;
162 int nforw;
163 };
164
165 /*
166 * page range array:
167 * note: index in array must match "advice" value
168 * XXX: borrowed numbers from freebsd. do they work well for us?
169 */
170
171 static struct uvm_advice uvmadvice[] = {
172 { MADV_NORMAL, 3, 4 },
173 { MADV_RANDOM, 0, 0 },
174 { MADV_SEQUENTIAL, 8, 7},
175 };
176
177 #define UVM_MAXRANGE 16 /* must be max() of nback+nforw+1 */
178
179 /*
180 * private prototypes
181 */
182
183 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
184 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
185
186 /*
187 * inline functions
188 */
189
190 /*
191 * uvmfault_anonflush: try and deactivate pages in specified anons
192 *
193 * => does not have to deactivate page if it is busy
194 */
195
196 static __inline void
197 uvmfault_anonflush(anons, n)
198 struct vm_anon **anons;
199 int n;
200 {
201 int lcv;
202 struct vm_page *pg;
203
204 for (lcv = 0 ; lcv < n ; lcv++) {
205 if (anons[lcv] == NULL)
206 continue;
207 simple_lock(&anons[lcv]->an_lock);
208 pg = anons[lcv]->u.an_page;
209 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
210 uvm_lock_pageq();
211 if (pg->wire_count == 0) {
212 pmap_page_protect(pg, VM_PROT_NONE);
213 uvm_pagedeactivate(pg);
214 }
215 uvm_unlock_pageq();
216 }
217 simple_unlock(&anons[lcv]->an_lock);
218 }
219 }
220
221 /*
222 * normal functions
223 */
224
225 /*
226 * uvmfault_amapcopy: clear "needs_copy" in a map.
227 *
228 * => called with VM data structures unlocked (usually, see below)
229 * => we get a write lock on the maps and clear needs_copy for a VA
230 * => if we are out of RAM we sleep (waiting for more)
231 */
232
233 static void
234 uvmfault_amapcopy(ufi)
235 struct uvm_faultinfo *ufi;
236 {
237
238 /*
239 * while we haven't done the job
240 */
241
242 while (1) {
243
244 /*
245 * no mapping? give up.
246 */
247
248 if (uvmfault_lookup(ufi, TRUE) == FALSE)
249 return;
250
251 /*
252 * copy if needed.
253 */
254
255 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
256 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
257 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
258
259 /*
260 * didn't work? must be out of RAM. unlock and sleep.
261 */
262
263 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
264 uvmfault_unlockmaps(ufi, TRUE);
265 uvm_wait("fltamapcopy");
266 continue;
267 }
268
269 /*
270 * got it! unlock and return.
271 */
272
273 uvmfault_unlockmaps(ufi, TRUE);
274 return;
275 }
276 /*NOTREACHED*/
277 }
278
279 /*
280 * uvmfault_anonget: get data in an anon into a non-busy, non-released
281 * page in that anon.
282 *
283 * => maps, amap, and anon locked by caller.
284 * => if we fail (result != VM_PAGER_OK) we unlock everything except anon.
285 * => if we are successful, we return with everything still locked.
286 * => we don't move the page on the queues [gets moved later]
287 * => if we allocate a new page [we_own], it gets put on the queues.
288 * either way, the result is that the page is on the queues at return time
289 * => for pages which are on loan from a uvm_object (and thus are not
290 * owned by the anon): if successful, we return with the owning object
291 * locked. the caller must unlock this object when it unlocks everything
292 * else.
293 */
294
295 int
296 uvmfault_anonget(ufi, amap, anon)
297 struct uvm_faultinfo *ufi;
298 struct vm_amap *amap;
299 struct vm_anon *anon;
300 {
301 boolean_t we_own; /* we own anon's page? */
302 boolean_t locked; /* did we relock? */
303 struct vm_page *pg;
304 int result;
305 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
306
307 result = 0; /* XXX shut up gcc */
308 uvmexp.fltanget++;
309 /* bump rusage counters */
310 if (anon->u.an_page)
311 curproc->p_addr->u_stats.p_ru.ru_minflt++;
312 else
313 curproc->p_addr->u_stats.p_ru.ru_majflt++;
314
315 /*
316 * loop until we get it, or fail.
317 */
318
319 while (1) {
320
321 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
322 pg = anon->u.an_page;
323
324 /*
325 * if there is a resident page and it is loaned, then anon
326 * may not own it. call out to uvm_anon_lockpage() to ensure
327 * the real owner of the page has been identified and locked.
328 */
329
330 if (pg && pg->loan_count)
331 pg = uvm_anon_lockloanpg(anon);
332
333 /*
334 * page there? make sure it is not busy/released.
335 */
336
337 if (pg) {
338
339 /*
340 * at this point, if the page has a uobject [meaning
341 * we have it on loan], then that uobject is locked
342 * by us! if the page is busy, we drop all the
343 * locks (including uobject) and try again.
344 */
345
346 if ((pg->flags & (PG_BUSY|PG_RELEASED)) == 0) {
347 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
348 return (VM_PAGER_OK);
349 }
350 pg->flags |= PG_WANTED;
351 uvmexp.fltpgwait++;
352
353 /*
354 * the last unlock must be an atomic unlock+wait on
355 * the owner of page
356 */
357 if (pg->uobject) { /* owner is uobject ? */
358 uvmfault_unlockall(ufi, amap, NULL, anon);
359 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
360 0,0,0);
361 UVM_UNLOCK_AND_WAIT(pg,
362 &pg->uobject->vmobjlock,
363 FALSE, "anonget1",0);
364 } else {
365 /* anon owns page */
366 uvmfault_unlockall(ufi, amap, NULL, NULL);
367 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
368 0,0,0);
369 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
370 "anonget2",0);
371 }
372 /* ready to relock and try again */
373
374 } else {
375
376 /*
377 * no page, we must try and bring it in.
378 */
379 pg = uvm_pagealloc(NULL, 0, anon, 0);
380
381 if (pg == NULL) { /* out of RAM. */
382
383 uvmfault_unlockall(ufi, amap, NULL, anon);
384 uvmexp.fltnoram++;
385 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
386 0,0,0);
387 uvm_wait("flt_noram1");
388 /* ready to relock and try again */
389
390 } else {
391
392 /* we set the PG_BUSY bit */
393 we_own = TRUE;
394 uvmfault_unlockall(ufi, amap, NULL, anon);
395
396 /*
397 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
398 * page into the uvm_swap_get function with
399 * all data structures unlocked. note that
400 * it is ok to read an_swslot here because
401 * we hold PG_BUSY on the page.
402 */
403 uvmexp.pageins++;
404 result = uvm_swap_get(pg, anon->an_swslot,
405 PGO_SYNCIO);
406
407 /*
408 * we clean up after the i/o below in the
409 * "we_own" case
410 */
411 /* ready to relock and try again */
412 }
413 }
414
415 /*
416 * now relock and try again
417 */
418
419 locked = uvmfault_relock(ufi);
420 if (locked && amap != NULL) {
421 amap_lock(amap);
422 }
423 if (locked || we_own)
424 simple_lock(&anon->an_lock);
425
426 /*
427 * if we own the page (i.e. we set PG_BUSY), then we need
428 * to clean up after the I/O. there are three cases to
429 * consider:
430 * [1] page released during I/O: free anon and ReFault.
431 * [2] I/O not OK. free the page and cause the fault
432 * to fail.
433 * [3] I/O OK! activate the page and sync with the
434 * non-we_own case (i.e. drop anon lock if not locked).
435 */
436
437 if (we_own) {
438
439 if (pg->flags & PG_WANTED) {
440 /* still holding object lock */
441 wakeup(pg);
442 }
443 /* un-busy! */
444 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
445 UVM_PAGE_OWN(pg, NULL);
446
447 /*
448 * if we were RELEASED during I/O, then our anon is
449 * no longer part of an amap. we need to free the
450 * anon and try again.
451 */
452 if (pg->flags & PG_RELEASED) {
453 pmap_page_protect(pg, VM_PROT_NONE);
454 simple_unlock(&anon->an_lock);
455 uvm_anfree(anon); /* frees page for us */
456 if (locked)
457 uvmfault_unlockall(ufi, amap, NULL,
458 NULL);
459 uvmexp.fltpgrele++;
460 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
461 return (VM_PAGER_REFAULT); /* refault! */
462 }
463
464 if (result != VM_PAGER_OK) {
465 #ifdef DIAGNOSTIC
466 if (result == VM_PAGER_PEND) {
467 panic("uvmfault_anonget: "
468 "got PENDING for non-async I/O");
469 }
470 #endif
471 /* remove page from anon */
472 anon->u.an_page = NULL;
473
474 /*
475 * remove the swap slot from the anon
476 * and mark the anon as having no real slot.
477 * don't free the swap slot, thus preventing
478 * it from being used again.
479 */
480 uvm_swap_markbad(anon->an_swslot, 1);
481 anon->an_swslot = SWSLOT_BAD;
482
483 /*
484 * note: page was never !PG_BUSY, so it
485 * can't be mapped and thus no need to
486 * pmap_page_protect it...
487 */
488 uvm_lock_pageq();
489 uvm_pagefree(pg);
490 uvm_unlock_pageq();
491
492 if (locked)
493 uvmfault_unlockall(ufi, amap, NULL,
494 anon);
495 else
496 simple_unlock(&anon->an_lock);
497 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
498 return (VM_PAGER_ERROR);
499 }
500
501 /*
502 * must be OK, clear modify (already PG_CLEAN)
503 * and activate
504 */
505 pmap_clear_modify(pg);
506 uvm_lock_pageq();
507 uvm_pageactivate(pg);
508 uvm_unlock_pageq();
509 if (!locked)
510 simple_unlock(&anon->an_lock);
511 }
512
513 /*
514 * we were not able to relock. restart fault.
515 */
516
517 if (!locked) {
518 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
519 return (VM_PAGER_REFAULT);
520 }
521
522 /*
523 * verify no one has touched the amap and moved the anon on us.
524 */
525
526 if (ufi != NULL &&
527 amap_lookup(&ufi->entry->aref,
528 ufi->orig_rvaddr - ufi->entry->start) != anon) {
529
530 uvmfault_unlockall(ufi, amap, NULL, anon);
531 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
532 return (VM_PAGER_REFAULT);
533 }
534
535 /*
536 * try it again!
537 */
538
539 uvmexp.fltanretry++;
540 continue;
541
542 } /* while (1) */
543
544 /*NOTREACHED*/
545 }
546
547 /*
548 * F A U L T - m a i n e n t r y p o i n t
549 */
550
551 /*
552 * uvm_fault: page fault handler
553 *
554 * => called from MD code to resolve a page fault
555 * => VM data structures usually should be unlocked. however, it is
556 * possible to call here with the main map locked if the caller
557 * gets a write lock, sets it recusive, and then calls us (c.f.
558 * uvm_map_pageable). this should be avoided because it keeps
559 * the map locked off during I/O.
560 */
561
562 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
563 ~VM_PROT_WRITE : VM_PROT_ALL)
564
565 int
566 uvm_fault(orig_map, vaddr, fault_type, access_type)
567 vm_map_t orig_map;
568 vaddr_t vaddr;
569 vm_fault_t fault_type;
570 vm_prot_t access_type;
571 {
572 struct uvm_faultinfo ufi;
573 vm_prot_t enter_prot;
574 boolean_t wired, narrow, promote, locked, shadowed;
575 int npages, nback, nforw, centeridx, result, lcv, gotpages;
576 vaddr_t startva, objaddr, currva, offset;
577 paddr_t pa;
578 struct vm_amap *amap;
579 struct uvm_object *uobj;
580 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
581 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
582 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
583
584 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
585 orig_map, vaddr, fault_type, access_type);
586
587 anon = NULL; /* XXX: shut up gcc */
588
589 uvmexp.faults++; /* XXX: locking? */
590
591 /*
592 * init the IN parameters in the ufi
593 */
594
595 ufi.orig_map = orig_map;
596 ufi.orig_rvaddr = trunc_page(vaddr);
597 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
598 if (fault_type == VM_FAULT_WIRE)
599 narrow = TRUE; /* don't look for neighborhood
600 * pages on wire */
601 else
602 narrow = FALSE; /* normal fault */
603
604 /*
605 * before we do anything else, if this is a fault on a kernel
606 * address, check to see if the address is managed by an
607 * interrupt-safe map. If it is, we fail immediately. Intrsafe
608 * maps are never pageable, and this approach avoids an evil
609 * locking mess.
610 */
611 if (orig_map == kernel_map && uvmfault_check_intrsafe(&ufi)) {
612 UVMHIST_LOG(maphist, "<- VA 0x%lx in intrsafe map %p",
613 ufi.orig_rvaddr, ufi.map, 0, 0);
614 return (KERN_FAILURE);
615 }
616
617 /*
618 * "goto ReFault" means restart the page fault from ground zero.
619 */
620 ReFault:
621
622 /*
623 * lookup and lock the maps
624 */
625
626 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
627 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
628 return (KERN_INVALID_ADDRESS);
629 }
630 /* locked: maps(read) */
631
632 /*
633 * check protection
634 */
635
636 if ((ufi.entry->protection & access_type) != access_type) {
637 UVMHIST_LOG(maphist,
638 "<- protection failure (prot=0x%x, access=0x%x)",
639 ufi.entry->protection, access_type, 0, 0);
640 uvmfault_unlockmaps(&ufi, FALSE);
641 return (KERN_PROTECTION_FAILURE);
642 }
643
644 /*
645 * if the map is not a pageable map, a page fault always fails.
646 */
647
648 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
649 UVMHIST_LOG(maphist,
650 "<- map %p not pageable", ufi.map, 0, 0, 0);
651 uvmfault_unlockmaps(&ufi, FALSE);
652 return (KERN_FAILURE);
653 }
654
655 /*
656 * "enter_prot" is the protection we want to enter the page in at.
657 * for certain pages (e.g. copy-on-write pages) this protection can
658 * be more strict than ufi.entry->protection. "wired" means either
659 * the entry is wired or we are fault-wiring the pg.
660 */
661
662 enter_prot = ufi.entry->protection;
663 wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE);
664 if (wired)
665 access_type = enter_prot; /* full access for wired */
666
667 /*
668 * handle "needs_copy" case. if we need to copy the amap we will
669 * have to drop our readlock and relock it with a write lock. (we
670 * need a write lock to change anything in a map entry [e.g.
671 * needs_copy]).
672 */
673
674 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
675 if ((access_type & VM_PROT_WRITE) ||
676 (ufi.entry->object.uvm_obj == NULL)) {
677 /* need to clear */
678 UVMHIST_LOG(maphist,
679 " need to clear needs_copy and refault",0,0,0,0);
680 uvmfault_unlockmaps(&ufi, FALSE);
681 uvmfault_amapcopy(&ufi);
682 uvmexp.fltamcopy++;
683 goto ReFault;
684
685 } else {
686
687 /*
688 * ensure that we pmap_enter page R/O since
689 * needs_copy is still true
690 */
691 enter_prot &= ~VM_PROT_WRITE;
692
693 }
694 }
695
696 /*
697 * identify the players
698 */
699
700 amap = ufi.entry->aref.ar_amap; /* top layer */
701 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
702
703 /*
704 * check for a case 0 fault. if nothing backing the entry then
705 * error now.
706 */
707
708 if (amap == NULL && uobj == NULL) {
709 uvmfault_unlockmaps(&ufi, FALSE);
710 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
711 return (KERN_INVALID_ADDRESS);
712 }
713
714 /*
715 * establish range of interest based on advice from mapper
716 * and then clip to fit map entry. note that we only want
717 * to do this the first time through the fault. if we
718 * ReFault we will disable this by setting "narrow" to true.
719 */
720
721 if (narrow == FALSE) {
722
723 /* wide fault (!narrow) */
724 #ifdef DIAGNOSTIC
725 if (uvmadvice[ufi.entry->advice].advice != ufi.entry->advice)
726 panic("fault: advice mismatch!");
727 #endif
728 nback = min(uvmadvice[ufi.entry->advice].nback,
729 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
730 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
731 nforw = min(uvmadvice[ufi.entry->advice].nforw,
732 ((ufi.entry->end - ufi.orig_rvaddr) >>
733 PAGE_SHIFT) - 1);
734 /*
735 * note: "-1" because we don't want to count the
736 * faulting page as forw
737 */
738 npages = nback + nforw + 1;
739 centeridx = nback;
740
741 narrow = TRUE; /* ensure only once per-fault */
742
743 } else {
744
745 /* narrow fault! */
746 nback = nforw = 0;
747 startva = ufi.orig_rvaddr;
748 npages = 1;
749 centeridx = 0;
750
751 }
752
753 /* locked: maps(read) */
754 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
755 narrow, nback, nforw, startva);
756 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
757 amap, uobj, 0);
758
759 /*
760 * if we've got an amap, lock it and extract current anons.
761 */
762
763 if (amap) {
764 amap_lock(amap);
765 anons = anons_store;
766 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
767 anons, npages);
768 } else {
769 anons = NULL; /* to be safe */
770 }
771
772 /* locked: maps(read), amap(if there) */
773
774 /*
775 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
776 * now and then forget about them (for the rest of the fault).
777 */
778
779 if (ufi.entry->advice == MADV_SEQUENTIAL) {
780
781 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
782 0,0,0,0);
783 /* flush back-page anons? */
784 if (amap)
785 uvmfault_anonflush(anons, nback);
786
787 /* flush object? */
788 if (uobj) {
789 objaddr =
790 (startva - ufi.entry->start) + ufi.entry->offset;
791 simple_lock(&uobj->vmobjlock);
792 (void) uobj->pgops->pgo_flush(uobj, objaddr, objaddr +
793 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
794 simple_unlock(&uobj->vmobjlock);
795 }
796
797 /* now forget about the backpages */
798 if (amap)
799 anons += nback;
800 startva = startva + (nback << PAGE_SHIFT);
801 npages -= nback;
802 nback = centeridx = 0;
803 }
804
805 /* locked: maps(read), amap(if there) */
806
807 /*
808 * map in the backpages and frontpages we found in the amap in hopes
809 * of preventing future faults. we also init the pages[] array as
810 * we go.
811 */
812
813 currva = startva;
814 shadowed = FALSE;
815 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
816
817 /*
818 * dont play with VAs that are already mapped
819 * except for center)
820 */
821 if (lcv != centeridx) {
822 if (pmap_extract(ufi.orig_map->pmap, currva, &pa) ==
823 TRUE) {
824 pages[lcv] = PGO_DONTCARE;
825 continue;
826 }
827 }
828
829 /*
830 * unmapped or center page. check if any anon at this level.
831 */
832 if (amap == NULL || anons[lcv] == NULL) {
833 pages[lcv] = NULL;
834 continue;
835 }
836
837 /*
838 * check for present page and map if possible. re-activate it.
839 */
840
841 pages[lcv] = PGO_DONTCARE;
842 if (lcv == centeridx) { /* save center for later! */
843 shadowed = TRUE;
844 continue;
845 }
846 anon = anons[lcv];
847 simple_lock(&anon->an_lock);
848 /* ignore loaned pages */
849 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
850 (anon->u.an_page->flags & (PG_RELEASED|PG_BUSY)) == 0) {
851 uvm_lock_pageq();
852 uvm_pageactivate(anon->u.an_page); /* reactivate */
853 uvm_unlock_pageq();
854 UVMHIST_LOG(maphist,
855 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
856 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
857 uvmexp.fltnamap++;
858 /*
859 * Since this isn't the page that's actually faulting,
860 * ignore pmap_enter() failures; it's not critical
861 * that we enter these right now.
862 */
863 (void) pmap_enter(ufi.orig_map->pmap, currva,
864 VM_PAGE_TO_PHYS(anon->u.an_page),
865 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
866 enter_prot,
867 PMAP_CANFAIL |
868 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
869 }
870 simple_unlock(&anon->an_lock);
871 }
872
873 /* locked: maps(read), amap(if there) */
874 /* (shadowed == TRUE) if there is an anon at the faulting address */
875 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
876 (uobj && shadowed == FALSE),0,0);
877
878 /*
879 * note that if we are really short of RAM we could sleep in the above
880 * call to pmap_enter with everything locked. bad?
881 *
882 * XXX Actually, that is bad; pmap_enter() should just fail in that
883 * XXX case. --thorpej
884 */
885
886 /*
887 * if the desired page is not shadowed by the amap and we have a
888 * backing object, then we check to see if the backing object would
889 * prefer to handle the fault itself (rather than letting us do it
890 * with the usual pgo_get hook). the backing object signals this by
891 * providing a pgo_fault routine.
892 */
893
894 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
895
896 simple_lock(&uobj->vmobjlock);
897
898 /* locked: maps(read), amap (if there), uobj */
899 result = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
900 centeridx, fault_type, access_type,
901 PGO_LOCKED);
902 /* locked: nothing, pgo_fault has unlocked everything */
903
904 if (result == VM_PAGER_OK)
905 return (KERN_SUCCESS); /* pgo_fault did pmap enter */
906 else if (result == VM_PAGER_REFAULT)
907 goto ReFault; /* try again! */
908 else
909 return (KERN_PROTECTION_FAILURE);
910 }
911
912 /*
913 * now, if the desired page is not shadowed by the amap and we have
914 * a backing object that does not have a special fault routine, then
915 * we ask (with pgo_get) the object for resident pages that we care
916 * about and attempt to map them in. we do not let pgo_get block
917 * (PGO_LOCKED).
918 *
919 * ("get" has the option of doing a pmap_enter for us)
920 */
921
922 if (uobj && shadowed == FALSE) {
923 simple_lock(&uobj->vmobjlock);
924
925 /* locked (!shadowed): maps(read), amap (if there), uobj */
926 /*
927 * the following call to pgo_get does _not_ change locking state
928 */
929
930 uvmexp.fltlget++;
931 gotpages = npages;
932 result = uobj->pgops->pgo_get(uobj, ufi.entry->offset +
933 (startva - ufi.entry->start),
934 pages, &gotpages, centeridx,
935 access_type & MASK(ufi.entry),
936 ufi.entry->advice, PGO_LOCKED);
937
938 /*
939 * check for pages to map, if we got any
940 */
941
942 uobjpage = NULL;
943
944 if (gotpages) {
945 currva = startva;
946 for (lcv = 0 ; lcv < npages ;
947 lcv++, currva += PAGE_SIZE) {
948
949 if (pages[lcv] == NULL ||
950 pages[lcv] == PGO_DONTCARE)
951 continue;
952
953 #ifdef DIAGNOSTIC
954 /*
955 * pager sanity check: pgo_get with
956 * PGO_LOCKED should never return a
957 * released page to us.
958 */
959 if (pages[lcv]->flags & PG_RELEASED)
960 panic("uvm_fault: pgo_get PGO_LOCKED gave us a RELEASED page");
961 #endif
962
963 /*
964 * if center page is resident and not
965 * PG_BUSY|PG_RELEASED then pgo_get
966 * made it PG_BUSY for us and gave
967 * us a handle to it. remember this
968 * page as "uobjpage." (for later use).
969 */
970
971 if (lcv == centeridx) {
972 uobjpage = pages[lcv];
973 UVMHIST_LOG(maphist, " got uobjpage (0x%x) with locked get",
974 uobjpage, 0,0,0);
975 continue;
976 }
977
978 /*
979 * note: calling pgo_get with locked data
980 * structures returns us pages which are
981 * neither busy nor released, so we don't
982 * need to check for this. we can just
983 * directly enter the page (after moving it
984 * to the head of the active queue [useful?]).
985 */
986
987 uvm_lock_pageq();
988 uvm_pageactivate(pages[lcv]); /* reactivate */
989 uvm_unlock_pageq();
990 UVMHIST_LOG(maphist,
991 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
992 ufi.orig_map->pmap, currva, pages[lcv], 0);
993 uvmexp.fltnomap++;
994 /*
995 * Since this page isn't the page that's
996 * actually fauling, ignore pmap_enter()
997 * failures; it's not critical that we
998 * enter these right now.
999 */
1000 (void) pmap_enter(ufi.orig_map->pmap, currva,
1001 VM_PAGE_TO_PHYS(pages[lcv]),
1002 enter_prot & MASK(ufi.entry),
1003 PMAP_CANFAIL |
1004 (wired ? PMAP_WIRED : 0));
1005
1006 /*
1007 * NOTE: page can't be PG_WANTED or PG_RELEASED
1008 * because we've held the lock the whole time
1009 * we've had the handle.
1010 */
1011 pages[lcv]->flags &= ~(PG_BUSY); /* un-busy! */
1012 UVM_PAGE_OWN(pages[lcv], NULL);
1013
1014 /* done! */
1015 } /* for "lcv" loop */
1016 } /* "gotpages" != 0 */
1017
1018 /* note: object still _locked_ */
1019 } else {
1020
1021 uobjpage = NULL;
1022
1023 }
1024
1025 /* locked (shadowed): maps(read), amap */
1026 /* locked (!shadowed): maps(read), amap(if there),
1027 uobj(if !null), uobjpage(if !null) */
1028
1029 /*
1030 * note that at this point we are done with any front or back pages.
1031 * we are now going to focus on the center page (i.e. the one we've
1032 * faulted on). if we have faulted on the top (anon) layer
1033 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1034 * not touched it yet). if we have faulted on the bottom (uobj)
1035 * layer [i.e. case 2] and the page was both present and available,
1036 * then we've got a pointer to it as "uobjpage" and we've already
1037 * made it BUSY.
1038 */
1039
1040 /*
1041 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1042 */
1043
1044 /*
1045 * redirect case 2: if we are not shadowed, go to case 2.
1046 */
1047
1048 if (shadowed == FALSE)
1049 goto Case2;
1050
1051 /* locked: maps(read), amap */
1052
1053 /*
1054 * handle case 1: fault on an anon in our amap
1055 */
1056
1057 anon = anons[centeridx];
1058 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1059 simple_lock(&anon->an_lock);
1060
1061 /* locked: maps(read), amap, anon */
1062
1063 /*
1064 * no matter if we have case 1A or case 1B we are going to need to
1065 * have the anon's memory resident. ensure that now.
1066 */
1067
1068 /*
1069 * let uvmfault_anonget do the dirty work.
1070 * if it fails (!OK) it will unlock all but the anon for us.
1071 * if it succeeds, locks are still valid and locked.
1072 * also, if it is OK, then the anon's page is on the queues.
1073 * if the page is on loan from a uvm_object, then anonget will
1074 * lock that object for us if it does not fail.
1075 */
1076
1077 result = uvmfault_anonget(&ufi, amap, anon);
1078 if (result != VM_PAGER_OK) {
1079 simple_unlock(&anon->an_lock);
1080 }
1081
1082 if (result == VM_PAGER_REFAULT)
1083 goto ReFault;
1084
1085 if (result == VM_PAGER_AGAIN) {
1086 tsleep((caddr_t)&lbolt, PVM, "fltagain1", 0);
1087 goto ReFault;
1088 }
1089
1090 if (result != VM_PAGER_OK)
1091 return (KERN_PROTECTION_FAILURE); /* XXX??? */
1092
1093 /*
1094 * uobj is non null if the page is on loan from an object (i.e. uobj)
1095 */
1096
1097 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1098
1099 /* locked: maps(read), amap, anon, uobj(if one) */
1100
1101 /*
1102 * special handling for loaned pages
1103 */
1104 if (anon->u.an_page->loan_count) {
1105
1106 if ((access_type & VM_PROT_WRITE) == 0) {
1107
1108 /*
1109 * for read faults on loaned pages we just cap the
1110 * protection at read-only.
1111 */
1112
1113 enter_prot = enter_prot & ~VM_PROT_WRITE;
1114
1115 } else {
1116 /*
1117 * note that we can't allow writes into a loaned page!
1118 *
1119 * if we have a write fault on a loaned page in an
1120 * anon then we need to look at the anon's ref count.
1121 * if it is greater than one then we are going to do
1122 * a normal copy-on-write fault into a new anon (this
1123 * is not a problem). however, if the reference count
1124 * is one (a case where we would normally allow a
1125 * write directly to the page) then we need to kill
1126 * the loan before we continue.
1127 */
1128
1129 /* >1 case is already ok */
1130 if (anon->an_ref == 1) {
1131
1132 /* get new un-owned replacement page */
1133 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1134 if (pg == NULL) {
1135 uvmfault_unlockall(&ufi, amap, uobj,
1136 anon);
1137 uvm_wait("flt_noram2");
1138 goto ReFault;
1139 }
1140
1141 /*
1142 * copy data, kill loan, and drop uobj lock
1143 * (if any)
1144 */
1145 /* copy old -> new */
1146 uvm_pagecopy(anon->u.an_page, pg);
1147
1148 /* force reload */
1149 pmap_page_protect(anon->u.an_page,
1150 VM_PROT_NONE);
1151 uvm_lock_pageq(); /* KILL loan */
1152 if (uobj)
1153 /* if we were loaning */
1154 anon->u.an_page->loan_count--;
1155 anon->u.an_page->uanon = NULL;
1156 /* in case we owned */
1157 anon->u.an_page->pqflags &= ~PQ_ANON;
1158 uvm_unlock_pageq();
1159 if (uobj) {
1160 simple_unlock(&uobj->vmobjlock);
1161 uobj = NULL;
1162 }
1163
1164 /* install new page in anon */
1165 anon->u.an_page = pg;
1166 pg->uanon = anon;
1167 pg->pqflags |= PQ_ANON;
1168 pg->flags &= ~(PG_BUSY|PG_FAKE);
1169 UVM_PAGE_OWN(pg, NULL);
1170
1171 /* done! */
1172 } /* ref == 1 */
1173 } /* write fault */
1174 } /* loan count */
1175
1176 /*
1177 * if we are case 1B then we will need to allocate a new blank
1178 * anon to transfer the data into. note that we have a lock
1179 * on anon, so no one can busy or release the page until we are done.
1180 * also note that the ref count can't drop to zero here because
1181 * it is > 1 and we are only dropping one ref.
1182 *
1183 * in the (hopefully very rare) case that we are out of RAM we
1184 * will unlock, wait for more RAM, and refault.
1185 *
1186 * if we are out of anon VM we kill the process (XXX: could wait?).
1187 */
1188
1189 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) {
1190
1191 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1192 uvmexp.flt_acow++;
1193 oanon = anon; /* oanon = old, locked anon */
1194 anon = uvm_analloc();
1195 if (anon)
1196 pg = uvm_pagealloc(NULL, 0, anon, 0);
1197 #ifdef __GNUC__
1198 else
1199 pg = NULL; /* XXX: gcc */
1200 #endif
1201
1202 /* check for out of RAM */
1203 if (anon == NULL || pg == NULL) {
1204 if (anon)
1205 uvm_anfree(anon);
1206 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1207 #ifdef DIAGNOSTIC
1208 if (uvmexp.swpgonly > uvmexp.swpages) {
1209 panic("uvmexp.swpgonly botch");
1210 }
1211 #endif
1212 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1213 UVMHIST_LOG(maphist,
1214 "<- failed. out of VM",0,0,0,0);
1215 uvmexp.fltnoanon++;
1216 return (KERN_RESOURCE_SHORTAGE);
1217 }
1218
1219 uvmexp.fltnoram++;
1220 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1221 goto ReFault;
1222 }
1223
1224 /* got all resources, replace anon with nanon */
1225
1226 uvm_pagecopy(oanon->u.an_page, pg); /* pg now !PG_CLEAN */
1227 pg->flags &= ~(PG_BUSY|PG_FAKE); /* un-busy! new page */
1228 UVM_PAGE_OWN(pg, NULL);
1229 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1230 anon, 1);
1231
1232 /* deref: can not drop to zero here by defn! */
1233 oanon->an_ref--;
1234
1235 /*
1236 * note: oanon still locked. anon is _not_ locked, but we
1237 * have the sole references to in from amap which _is_ locked.
1238 * thus, no one can get at it until we are done with it.
1239 */
1240
1241 } else {
1242
1243 uvmexp.flt_anon++;
1244 oanon = anon; /* old, locked anon is same as anon */
1245 pg = anon->u.an_page;
1246 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1247 enter_prot = enter_prot & ~VM_PROT_WRITE;
1248
1249 }
1250
1251 /* locked: maps(read), amap, anon */
1252
1253 /*
1254 * now map the page in ...
1255 * XXX: old fault unlocks object before pmap_enter. this seems
1256 * suspect since some other thread could blast the page out from
1257 * under us between the unlock and the pmap_enter.
1258 */
1259
1260 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1261 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1262 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1263 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1264 != KERN_SUCCESS) {
1265 /*
1266 * No need to undo what we did; we can simply think of
1267 * this as the pmap throwing away the mapping information.
1268 *
1269 * We do, however, have to go through the ReFault path,
1270 * as the map may change while we're asleep.
1271 */
1272 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1273 #ifdef DIAGNOSTIC
1274 if (uvmexp.swpgonly > uvmexp.swpages)
1275 panic("uvmexp.swpgonly botch");
1276 #endif
1277 if (uvmexp.swpgonly == uvmexp.swpages) {
1278 UVMHIST_LOG(maphist,
1279 "<- failed. out of VM",0,0,0,0);
1280 /* XXX instrumentation */
1281 return (KERN_RESOURCE_SHORTAGE);
1282 }
1283 /* XXX instrumentation */
1284 uvm_wait("flt_pmfail1");
1285 goto ReFault;
1286 }
1287
1288 /*
1289 * ... update the page queues.
1290 */
1291
1292 uvm_lock_pageq();
1293
1294 if (fault_type == VM_FAULT_WIRE) {
1295 uvm_pagewire(pg);
1296
1297 /*
1298 * since the now-wired page cannot be paged out,
1299 * release its swap resources for others to use.
1300 * since an anon with no swap cannot be PG_CLEAN,
1301 * clear its clean flag now.
1302 */
1303
1304 pg->flags &= ~(PG_CLEAN);
1305 uvm_anon_dropswap(anon);
1306 } else {
1307 /* activate it */
1308 uvm_pageactivate(pg);
1309 }
1310
1311 uvm_unlock_pageq();
1312
1313 /*
1314 * done case 1! finish up by unlocking everything and returning success
1315 */
1316
1317 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1318 return (KERN_SUCCESS);
1319
1320
1321 Case2:
1322 /*
1323 * handle case 2: faulting on backing object or zero fill
1324 */
1325
1326 /*
1327 * locked:
1328 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1329 */
1330
1331 /*
1332 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1333 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1334 * have a backing object, check and see if we are going to promote
1335 * the data up to an anon during the fault.
1336 */
1337
1338 if (uobj == NULL) {
1339 uobjpage = PGO_DONTCARE;
1340 promote = TRUE; /* always need anon here */
1341 } else {
1342 /* assert(uobjpage != PGO_DONTCARE) */
1343 promote = (access_type & VM_PROT_WRITE) &&
1344 UVM_ET_ISCOPYONWRITE(ufi.entry);
1345 }
1346 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1347 promote, (uobj == NULL), 0,0);
1348
1349 /*
1350 * if uobjpage is not null then we do not need to do I/O to get the
1351 * uobjpage.
1352 *
1353 * if uobjpage is null, then we need to unlock and ask the pager to
1354 * get the data for us. once we have the data, we need to reverify
1355 * the state the world. we are currently not holding any resources.
1356 */
1357
1358 if (uobjpage) {
1359 /* update rusage counters */
1360 curproc->p_addr->u_stats.p_ru.ru_minflt++;
1361 } else {
1362 /* update rusage counters */
1363 curproc->p_addr->u_stats.p_ru.ru_majflt++;
1364
1365 /* locked: maps(read), amap(if there), uobj */
1366 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1367 /* locked: uobj */
1368
1369 uvmexp.fltget++;
1370 gotpages = 1;
1371 result = uobj->pgops->pgo_get(uobj,
1372 (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset,
1373 &uobjpage, &gotpages, 0,
1374 access_type & MASK(ufi.entry),
1375 ufi.entry->advice, 0);
1376
1377 /* locked: uobjpage(if result OK) */
1378
1379 /*
1380 * recover from I/O
1381 */
1382
1383 if (result != VM_PAGER_OK) {
1384 #ifdef DIAGNOSTIC
1385 if (result == VM_PAGER_PEND)
1386 panic("uvm_fault: pgo_get got PENDing "
1387 "on non-async I/O");
1388 #endif
1389
1390 if (result == VM_PAGER_AGAIN) {
1391 UVMHIST_LOG(maphist,
1392 " pgo_get says TRY AGAIN!",0,0,0,0);
1393 tsleep((caddr_t)&lbolt, PVM, "fltagain2", 0);
1394 goto ReFault;
1395 }
1396
1397 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1398 result, 0,0,0);
1399 return (KERN_PROTECTION_FAILURE); /* XXX i/o error */
1400 }
1401
1402 /* locked: uobjpage */
1403
1404 /*
1405 * re-verify the state of the world by first trying to relock
1406 * the maps. always relock the object.
1407 */
1408
1409 locked = uvmfault_relock(&ufi);
1410 if (locked && amap)
1411 amap_lock(amap);
1412 simple_lock(&uobj->vmobjlock);
1413
1414 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1415 /* locked(!locked): uobj, uobjpage */
1416
1417 /*
1418 * verify that the page has not be released and re-verify
1419 * that amap slot is still free. if there is a problem,
1420 * we unlock and clean up.
1421 */
1422
1423 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1424 (locked && amap &&
1425 amap_lookup(&ufi.entry->aref,
1426 ufi.orig_rvaddr - ufi.entry->start))) {
1427 if (locked)
1428 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1429 locked = FALSE;
1430 }
1431
1432 /*
1433 * didn't get the lock? release the page and retry.
1434 */
1435
1436 if (locked == FALSE) {
1437
1438 UVMHIST_LOG(maphist,
1439 " wasn't able to relock after fault: retry",
1440 0,0,0,0);
1441 if (uobjpage->flags & PG_WANTED)
1442 /* still holding object lock */
1443 wakeup(uobjpage);
1444
1445 if (uobjpage->flags & PG_RELEASED) {
1446 uvmexp.fltpgrele++;
1447 #ifdef DIAGNOSTIC
1448 if (uobj->pgops->pgo_releasepg == NULL)
1449 panic("uvm_fault: object has no "
1450 "releasepg function");
1451 #endif
1452 /* frees page */
1453 if (uobj->pgops->pgo_releasepg(uobjpage,NULL))
1454 /* unlock if still alive */
1455 simple_unlock(&uobj->vmobjlock);
1456 goto ReFault;
1457 }
1458
1459 uvm_lock_pageq();
1460 /* make sure it is in queues */
1461 uvm_pageactivate(uobjpage);
1462
1463 uvm_unlock_pageq();
1464 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1465 UVM_PAGE_OWN(uobjpage, NULL);
1466 simple_unlock(&uobj->vmobjlock);
1467 goto ReFault;
1468
1469 }
1470
1471 /*
1472 * we have the data in uobjpage which is PG_BUSY and
1473 * !PG_RELEASED. we are holding object lock (so the page
1474 * can't be released on us).
1475 */
1476
1477 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1478
1479 }
1480
1481 /*
1482 * locked:
1483 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1484 */
1485
1486 /*
1487 * notes:
1488 * - at this point uobjpage can not be NULL
1489 * - at this point uobjpage can not be PG_RELEASED (since we checked
1490 * for it above)
1491 * - at this point uobjpage could be PG_WANTED (handle later)
1492 */
1493
1494 if (promote == FALSE) {
1495
1496 /*
1497 * we are not promoting. if the mapping is COW ensure that we
1498 * don't give more access than we should (e.g. when doing a read
1499 * fault on a COPYONWRITE mapping we want to map the COW page in
1500 * R/O even though the entry protection could be R/W).
1501 *
1502 * set "pg" to the page we want to map in (uobjpage, usually)
1503 */
1504
1505 uvmexp.flt_obj++;
1506 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1507 enter_prot &= ~VM_PROT_WRITE;
1508 pg = uobjpage; /* map in the actual object */
1509
1510 /* assert(uobjpage != PGO_DONTCARE) */
1511
1512 /*
1513 * we are faulting directly on the page. be careful
1514 * about writing to loaned pages...
1515 */
1516 if (uobjpage->loan_count) {
1517
1518 if ((access_type & VM_PROT_WRITE) == 0) {
1519 /* read fault: cap the protection at readonly */
1520 /* cap! */
1521 enter_prot = enter_prot & ~VM_PROT_WRITE;
1522 } else {
1523 /* write fault: must break the loan here */
1524
1525 /* alloc new un-owned page */
1526 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1527
1528 if (pg == NULL) {
1529 /*
1530 * drop ownership of page, it can't
1531 * be released
1532 */
1533 if (uobjpage->flags & PG_WANTED)
1534 wakeup(uobjpage);
1535 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1536 UVM_PAGE_OWN(uobjpage, NULL);
1537
1538 uvm_lock_pageq();
1539 /* activate: we will need it later */
1540 uvm_pageactivate(uobjpage);
1541
1542 uvm_unlock_pageq();
1543 uvmfault_unlockall(&ufi, amap, uobj,
1544 NULL);
1545 UVMHIST_LOG(maphist,
1546 " out of RAM breaking loan, waiting",
1547 0,0,0,0);
1548 uvmexp.fltnoram++;
1549 uvm_wait("flt_noram4");
1550 goto ReFault;
1551 }
1552
1553 /*
1554 * copy the data from the old page to the new
1555 * one and clear the fake/clean flags on the
1556 * new page (keep it busy). force a reload
1557 * of the old page by clearing it from all
1558 * pmaps. then lock the page queues to
1559 * rename the pages.
1560 */
1561 uvm_pagecopy(uobjpage, pg); /* old -> new */
1562 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1563 pmap_page_protect(uobjpage, VM_PROT_NONE);
1564 if (uobjpage->flags & PG_WANTED)
1565 wakeup(uobjpage);
1566 /* uobj still locked */
1567 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1568 UVM_PAGE_OWN(uobjpage, NULL);
1569
1570 uvm_lock_pageq();
1571 offset = uobjpage->offset;
1572 /* remove old page */
1573 uvm_pagerealloc(uobjpage, NULL, 0);
1574
1575 /*
1576 * at this point we have absolutely no
1577 * control over uobjpage
1578 */
1579 /* install new page */
1580 uvm_pagerealloc(pg, uobj, offset);
1581 uvm_unlock_pageq();
1582
1583 /*
1584 * done! loan is broken and "pg" is
1585 * PG_BUSY. it can now replace uobjpage.
1586 */
1587
1588 uobjpage = pg;
1589
1590 } /* write fault case */
1591 } /* if loan_count */
1592
1593 } else {
1594
1595 /*
1596 * if we are going to promote the data to an anon we
1597 * allocate a blank anon here and plug it into our amap.
1598 */
1599 #if DIAGNOSTIC
1600 if (amap == NULL)
1601 panic("uvm_fault: want to promote data, but no anon");
1602 #endif
1603
1604 anon = uvm_analloc();
1605 if (anon) {
1606 /*
1607 * In `Fill in data...' below, if
1608 * uobjpage == PGO_DONTCARE, we want
1609 * a zero'd, dirty page, so have
1610 * uvm_pagealloc() do that for us.
1611 */
1612 pg = uvm_pagealloc(NULL, 0, anon,
1613 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1614 }
1615 #ifdef __GNUC__
1616 else
1617 pg = NULL; /* XXX: gcc */
1618 #endif
1619
1620 /*
1621 * out of memory resources?
1622 */
1623 if (anon == NULL || pg == NULL) {
1624
1625 /*
1626 * arg! must unbusy our page and fail or sleep.
1627 */
1628 if (uobjpage != PGO_DONTCARE) {
1629 if (uobjpage->flags & PG_WANTED)
1630 /* still holding object lock */
1631 wakeup(uobjpage);
1632
1633 uvm_lock_pageq();
1634 /* make sure it is in queues */
1635 uvm_pageactivate(uobjpage);
1636 uvm_unlock_pageq();
1637 /* un-busy! (still locked) */
1638 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1639 UVM_PAGE_OWN(uobjpage, NULL);
1640 }
1641
1642 /* unlock and fail ... */
1643 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1644 #ifdef DIAGNOSTIC
1645 if (uvmexp.swpgonly > uvmexp.swpages) {
1646 panic("uvmexp.swpgonly botch");
1647 }
1648 #endif
1649 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1650 UVMHIST_LOG(maphist, " promote: out of VM",
1651 0,0,0,0);
1652 uvmexp.fltnoanon++;
1653 return (KERN_RESOURCE_SHORTAGE);
1654 }
1655
1656 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1657 0,0,0,0);
1658 uvm_anfree(anon);
1659 uvmexp.fltnoram++;
1660 uvm_wait("flt_noram5");
1661 goto ReFault;
1662 }
1663
1664 /*
1665 * fill in the data
1666 */
1667
1668 if (uobjpage != PGO_DONTCARE) {
1669 uvmexp.flt_prcopy++;
1670 /* copy page [pg now dirty] */
1671 uvm_pagecopy(uobjpage, pg);
1672
1673 /*
1674 * promote to shared amap? make sure all sharing
1675 * procs see it
1676 */
1677 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1678 pmap_page_protect(uobjpage, VM_PROT_NONE);
1679 }
1680
1681 /*
1682 * dispose of uobjpage. it can't be PG_RELEASED
1683 * since we still hold the object lock. drop
1684 * handle to uobj as well.
1685 */
1686
1687 if (uobjpage->flags & PG_WANTED)
1688 /* still have the obj lock */
1689 wakeup(uobjpage);
1690 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1691 UVM_PAGE_OWN(uobjpage, NULL);
1692 uvm_lock_pageq();
1693 uvm_pageactivate(uobjpage); /* put it back */
1694 uvm_unlock_pageq();
1695 simple_unlock(&uobj->vmobjlock);
1696 uobj = NULL;
1697 UVMHIST_LOG(maphist,
1698 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1699 uobjpage, anon, pg, 0);
1700
1701 } else {
1702 uvmexp.flt_przero++;
1703 /*
1704 * Page is zero'd and marked dirty by uvm_pagealloc()
1705 * above.
1706 */
1707 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1708 anon, pg, 0, 0);
1709 }
1710
1711 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1712 anon, 0);
1713
1714 }
1715
1716 /*
1717 * locked:
1718 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1719 *
1720 * note: pg is either the uobjpage or the new page in the new anon
1721 */
1722
1723 /*
1724 * all resources are present. we can now map it in and free our
1725 * resources.
1726 */
1727
1728 UVMHIST_LOG(maphist,
1729 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1730 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1731 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1732 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1733 != KERN_SUCCESS) {
1734 /*
1735 * No need to undo what we did; we can simply think of
1736 * this as the pmap throwing away the mapping information.
1737 *
1738 * We do, however, have to go through the ReFault path,
1739 * as the map may change while we're asleep.
1740 */
1741 if (pg->flags & PG_WANTED)
1742 wakeup(pg); /* lock still held */
1743
1744 /*
1745 * note that pg can't be PG_RELEASED since we did not drop
1746 * the object lock since the last time we checked.
1747 */
1748
1749 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1750 UVM_PAGE_OWN(pg, NULL);
1751 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1752 #ifdef DIAGNOSTIC
1753 if (uvmexp.swpgonly > uvmexp.swpages)
1754 panic("uvmexp.swpgonly botch");
1755 #endif
1756 if (uvmexp.swpgonly == uvmexp.swpages) {
1757 UVMHIST_LOG(maphist,
1758 "<- failed. out of VM",0,0,0,0);
1759 /* XXX instrumentation */
1760 return (KERN_RESOURCE_SHORTAGE);
1761 }
1762 /* XXX instrumentation */
1763 uvm_wait("flt_pmfail2");
1764 goto ReFault;
1765 }
1766
1767 uvm_lock_pageq();
1768
1769 if (fault_type == VM_FAULT_WIRE) {
1770 uvm_pagewire(pg);
1771 if (pg->pqflags & PQ_AOBJ) {
1772
1773 /*
1774 * since the now-wired page cannot be paged out,
1775 * release its swap resources for others to use.
1776 * since an aobj page with no swap cannot be PG_CLEAN,
1777 * clear its clean flag now.
1778 */
1779
1780 pg->flags &= ~(PG_CLEAN);
1781 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1782 }
1783 } else {
1784 /* activate it */
1785 uvm_pageactivate(pg);
1786 }
1787
1788 uvm_unlock_pageq();
1789
1790 if (pg->flags & PG_WANTED)
1791 wakeup(pg); /* lock still held */
1792
1793 /*
1794 * note that pg can't be PG_RELEASED since we did not drop the object
1795 * lock since the last time we checked.
1796 */
1797
1798 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1799 UVM_PAGE_OWN(pg, NULL);
1800 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1801
1802 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1803 return (KERN_SUCCESS);
1804 }
1805
1806
1807 /*
1808 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1809 *
1810 * => map may be read-locked by caller, but MUST NOT be write-locked.
1811 * => if map is read-locked, any operations which may cause map to
1812 * be write-locked in uvm_fault() must be taken care of by
1813 * the caller. See uvm_map_pageable().
1814 */
1815
1816 int
1817 uvm_fault_wire(map, start, end, access_type)
1818 vm_map_t map;
1819 vaddr_t start, end;
1820 vm_prot_t access_type;
1821 {
1822 vaddr_t va;
1823 pmap_t pmap;
1824 int rv;
1825
1826 pmap = vm_map_pmap(map);
1827
1828 /*
1829 * now fault it in a page at a time. if the fault fails then we have
1830 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1831 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1832 */
1833
1834 for (va = start ; va < end ; va += PAGE_SIZE) {
1835 rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1836 if (rv) {
1837 if (va != start) {
1838 uvm_fault_unwire(map, start, va);
1839 }
1840 return (rv);
1841 }
1842 }
1843
1844 return (KERN_SUCCESS);
1845 }
1846
1847 /*
1848 * uvm_fault_unwire(): unwire range of virtual space.
1849 */
1850
1851 void
1852 uvm_fault_unwire(map, start, end)
1853 vm_map_t map;
1854 vaddr_t start, end;
1855 {
1856
1857 vm_map_lock_read(map);
1858 uvm_fault_unwire_locked(map, start, end);
1859 vm_map_unlock_read(map);
1860 }
1861
1862 /*
1863 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1864 *
1865 * => map must be at least read-locked.
1866 */
1867
1868 void
1869 uvm_fault_unwire_locked(map, start, end)
1870 vm_map_t map;
1871 vaddr_t start, end;
1872 {
1873 vm_map_entry_t entry;
1874 pmap_t pmap = vm_map_pmap(map);
1875 vaddr_t va;
1876 paddr_t pa;
1877 struct vm_page *pg;
1878
1879 #ifdef DIAGNOSTIC
1880 if (map->flags & VM_MAP_INTRSAFE)
1881 panic("uvm_fault_unwire_locked: intrsafe map");
1882 #endif
1883
1884 /*
1885 * we assume that the area we are unwiring has actually been wired
1886 * in the first place. this means that we should be able to extract
1887 * the PAs from the pmap. we also lock out the page daemon so that
1888 * we can call uvm_pageunwire.
1889 */
1890
1891 uvm_lock_pageq();
1892
1893 /*
1894 * find the beginning map entry for the region.
1895 */
1896 #ifdef DIAGNOSTIC
1897 if (start < vm_map_min(map) || end > vm_map_max(map))
1898 panic("uvm_fault_unwire_locked: address out of range");
1899 #endif
1900 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1901 panic("uvm_fault_unwire_locked: address not in map");
1902
1903 for (va = start; va < end ; va += PAGE_SIZE) {
1904 if (pmap_extract(pmap, va, &pa) == FALSE)
1905 panic("uvm_fault_unwire_locked: unwiring "
1906 "non-wired memory");
1907
1908 /*
1909 * make sure the current entry is for the address we're
1910 * dealing with. if not, grab the next entry.
1911 */
1912 #ifdef DIAGNOSTIC
1913 if (va < entry->start)
1914 panic("uvm_fault_unwire_locked: hole 1");
1915 #endif
1916 if (va >= entry->end) {
1917 #ifdef DIAGNOSTIC
1918 if (entry->next == &map->header ||
1919 entry->next->start > entry->end)
1920 panic("uvm_fault_unwire_locked: hole 2");
1921 #endif
1922 entry = entry->next;
1923 }
1924
1925 /*
1926 * if the entry is no longer wired, tell the pmap.
1927 */
1928 if (VM_MAPENT_ISWIRED(entry) == 0)
1929 pmap_unwire(pmap, va);
1930
1931 pg = PHYS_TO_VM_PAGE(pa);
1932 if (pg)
1933 uvm_pageunwire(pg);
1934 }
1935
1936 uvm_unlock_pageq();
1937 }
1938