uvm_fault.c revision 1.51 1 /* $NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 #include "opt_uvmhist.h"
38
39 /*
40 * uvm_fault.c: fault handler
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/proc.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/user.h>
50
51 #include <uvm/uvm.h>
52
53 /*
54 *
55 * a word on page faults:
56 *
57 * types of page faults we handle:
58 *
59 * CASE 1: upper layer faults CASE 2: lower layer faults
60 *
61 * CASE 1A CASE 1B CASE 2A CASE 2B
62 * read/write1 write>1 read/write +-cow_write/zero
63 * | | | |
64 * +--|--+ +--|--+ +-----+ + | + | +-----+
65 * amap | V | | ----------->new| | | | ^ |
66 * +-----+ +-----+ +-----+ + | + | +--|--+
67 * | | |
68 * +-----+ +-----+ +--|--+ | +--|--+
69 * uobj | d/c | | d/c | | V | +----| |
70 * +-----+ +-----+ +-----+ +-----+
71 *
72 * d/c = don't care
73 *
74 * case [0]: layerless fault
75 * no amap or uobj is present. this is an error.
76 *
77 * case [1]: upper layer fault [anon active]
78 * 1A: [read] or [write with anon->an_ref == 1]
79 * I/O takes place in top level anon and uobj is not touched.
80 * 1B: [write with anon->an_ref > 1]
81 * new anon is alloc'd and data is copied off ["COW"]
82 *
83 * case [2]: lower layer fault [uobj]
84 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
85 * I/O takes place directly in object.
86 * 2B: [write to copy_on_write] or [read on NULL uobj]
87 * data is "promoted" from uobj to a new anon.
88 * if uobj is null, then we zero fill.
89 *
90 * we follow the standard UVM locking protocol ordering:
91 *
92 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
93 * we hold a PG_BUSY page if we unlock for I/O
94 *
95 *
96 * the code is structured as follows:
97 *
98 * - init the "IN" params in the ufi structure
99 * ReFault:
100 * - do lookups [locks maps], check protection, handle needs_copy
101 * - check for case 0 fault (error)
102 * - establish "range" of fault
103 * - if we have an amap lock it and extract the anons
104 * - if sequential advice deactivate pages behind us
105 * - at the same time check pmap for unmapped areas and anon for pages
106 * that we could map in (and do map it if found)
107 * - check object for resident pages that we could map in
108 * - if (case 2) goto Case2
109 * - >>> handle case 1
110 * - ensure source anon is resident in RAM
111 * - if case 1B alloc new anon and copy from source
112 * - map the correct page in
113 * Case2:
114 * - >>> handle case 2
115 * - ensure source page is resident (if uobj)
116 * - if case 2B alloc new anon and copy from source (could be zero
117 * fill if uobj == NULL)
118 * - map the correct page in
119 * - done!
120 *
121 * note on paging:
122 * if we have to do I/O we place a PG_BUSY page in the correct object,
123 * unlock everything, and do the I/O. when I/O is done we must reverify
124 * the state of the world before assuming that our data structures are
125 * valid. [because mappings could change while the map is unlocked]
126 *
127 * alternative 1: unbusy the page in question and restart the page fault
128 * from the top (ReFault). this is easy but does not take advantage
129 * of the information that we already have from our previous lookup,
130 * although it is possible that the "hints" in the vm_map will help here.
131 *
132 * alternative 2: the system already keeps track of a "version" number of
133 * a map. [i.e. every time you write-lock a map (e.g. to change a
134 * mapping) you bump the version number up by one...] so, we can save
135 * the version number of the map before we release the lock and start I/O.
136 * then when I/O is done we can relock and check the version numbers
137 * to see if anything changed. this might save us some over 1 because
138 * we don't have to unbusy the page and may be less compares(?).
139 *
140 * alternative 3: put in backpointers or a way to "hold" part of a map
141 * in place while I/O is in progress. this could be complex to
142 * implement (especially with structures like amap that can be referenced
143 * by multiple map entries, and figuring out what should wait could be
144 * complex as well...).
145 *
146 * given that we are not currently multiprocessor or multithreaded we might
147 * as well choose alternative 2 now. maybe alternative 3 would be useful
148 * in the future. XXX keep in mind for future consideration//rechecking.
149 */
150
151 /*
152 * local data structures
153 */
154
155 struct uvm_advice {
156 int advice;
157 int nback;
158 int nforw;
159 };
160
161 /*
162 * page range array:
163 * note: index in array must match "advice" value
164 * XXX: borrowed numbers from freebsd. do they work well for us?
165 */
166
167 static struct uvm_advice uvmadvice[] = {
168 { MADV_NORMAL, 3, 4 },
169 { MADV_RANDOM, 0, 0 },
170 { MADV_SEQUENTIAL, 8, 7},
171 };
172
173 #define UVM_MAXRANGE 16 /* must be max() of nback+nforw+1 */
174
175 /*
176 * private prototypes
177 */
178
179 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
180 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
181
182 /*
183 * inline functions
184 */
185
186 /*
187 * uvmfault_anonflush: try and deactivate pages in specified anons
188 *
189 * => does not have to deactivate page if it is busy
190 */
191
192 static __inline void
193 uvmfault_anonflush(anons, n)
194 struct vm_anon **anons;
195 int n;
196 {
197 int lcv;
198 struct vm_page *pg;
199
200 for (lcv = 0 ; lcv < n ; lcv++) {
201 if (anons[lcv] == NULL)
202 continue;
203 simple_lock(&anons[lcv]->an_lock);
204 pg = anons[lcv]->u.an_page;
205 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
206 uvm_lock_pageq();
207 if (pg->wire_count == 0) {
208 pmap_page_protect(pg, VM_PROT_NONE);
209 uvm_pagedeactivate(pg);
210 }
211 uvm_unlock_pageq();
212 }
213 simple_unlock(&anons[lcv]->an_lock);
214 }
215 }
216
217 /*
218 * normal functions
219 */
220
221 /*
222 * uvmfault_amapcopy: clear "needs_copy" in a map.
223 *
224 * => called with VM data structures unlocked (usually, see below)
225 * => we get a write lock on the maps and clear needs_copy for a VA
226 * => if we are out of RAM we sleep (waiting for more)
227 */
228
229 static void
230 uvmfault_amapcopy(ufi)
231 struct uvm_faultinfo *ufi;
232 {
233
234 /*
235 * while we haven't done the job
236 */
237
238 while (1) {
239
240 /*
241 * no mapping? give up.
242 */
243
244 if (uvmfault_lookup(ufi, TRUE) == FALSE)
245 return;
246
247 /*
248 * copy if needed.
249 */
250
251 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
252 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
253 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
254
255 /*
256 * didn't work? must be out of RAM. unlock and sleep.
257 */
258
259 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
260 uvmfault_unlockmaps(ufi, TRUE);
261 uvm_wait("fltamapcopy");
262 continue;
263 }
264
265 /*
266 * got it! unlock and return.
267 */
268
269 uvmfault_unlockmaps(ufi, TRUE);
270 return;
271 }
272 /*NOTREACHED*/
273 }
274
275 /*
276 * uvmfault_anonget: get data in an anon into a non-busy, non-released
277 * page in that anon.
278 *
279 * => maps, amap, and anon locked by caller.
280 * => if we fail (result != VM_PAGER_OK) we unlock everything.
281 * => if we are successful, we return with everything still locked.
282 * => we don't move the page on the queues [gets moved later]
283 * => if we allocate a new page [we_own], it gets put on the queues.
284 * either way, the result is that the page is on the queues at return time
285 * => for pages which are on loan from a uvm_object (and thus are not
286 * owned by the anon): if successful, we return with the owning object
287 * locked. the caller must unlock this object when it unlocks everything
288 * else.
289 */
290
291 int
292 uvmfault_anonget(ufi, amap, anon)
293 struct uvm_faultinfo *ufi;
294 struct vm_amap *amap;
295 struct vm_anon *anon;
296 {
297 boolean_t we_own; /* we own anon's page? */
298 boolean_t locked; /* did we relock? */
299 struct vm_page *pg;
300 int result;
301 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
302
303 result = 0; /* XXX shut up gcc */
304 uvmexp.fltanget++;
305 /* bump rusage counters */
306 if (anon->u.an_page)
307 curproc->p_addr->u_stats.p_ru.ru_minflt++;
308 else
309 curproc->p_addr->u_stats.p_ru.ru_majflt++;
310
311 /*
312 * loop until we get it, or fail.
313 */
314
315 while (1) {
316
317 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
318 pg = anon->u.an_page;
319
320 /*
321 * if there is a resident page and it is loaned, then anon
322 * may not own it. call out to uvm_anon_lockpage() to ensure
323 * the real owner of the page has been identified and locked.
324 */
325
326 if (pg && pg->loan_count)
327 pg = uvm_anon_lockloanpg(anon);
328
329 /*
330 * page there? make sure it is not busy/released.
331 */
332
333 if (pg) {
334
335 /*
336 * at this point, if the page has a uobject [meaning
337 * we have it on loan], then that uobject is locked
338 * by us! if the page is busy, we drop all the
339 * locks (including uobject) and try again.
340 */
341
342 if ((pg->flags & (PG_BUSY|PG_RELEASED)) == 0) {
343 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
344 return (VM_PAGER_OK);
345 }
346 pg->flags |= PG_WANTED;
347 uvmexp.fltpgwait++;
348
349 /*
350 * the last unlock must be an atomic unlock+wait on
351 * the owner of page
352 */
353 if (pg->uobject) { /* owner is uobject ? */
354 uvmfault_unlockall(ufi, amap, NULL, anon);
355 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
356 0,0,0);
357 UVM_UNLOCK_AND_WAIT(pg,
358 &pg->uobject->vmobjlock,
359 FALSE, "anonget1",0);
360 } else {
361 /* anon owns page */
362 uvmfault_unlockall(ufi, amap, NULL, NULL);
363 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
364 0,0,0);
365 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
366 "anonget2",0);
367 }
368 /* ready to relock and try again */
369
370 } else {
371
372 /*
373 * no page, we must try and bring it in.
374 */
375 pg = uvm_pagealloc(NULL, 0, anon, 0);
376
377 if (pg == NULL) { /* out of RAM. */
378
379 uvmfault_unlockall(ufi, amap, NULL, anon);
380 uvmexp.fltnoram++;
381 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
382 0,0,0);
383 uvm_wait("flt_noram1");
384 /* ready to relock and try again */
385
386 } else {
387
388 /* we set the PG_BUSY bit */
389 we_own = TRUE;
390 uvmfault_unlockall(ufi, amap, NULL, anon);
391
392 /*
393 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
394 * page into the uvm_swap_get function with
395 * all data structures unlocked. note that
396 * it is ok to read an_swslot here because
397 * we hold PG_BUSY on the page.
398 */
399 uvmexp.pageins++;
400 result = uvm_swap_get(pg, anon->an_swslot,
401 PGO_SYNCIO);
402
403 /*
404 * we clean up after the i/o below in the
405 * "we_own" case
406 */
407 /* ready to relock and try again */
408 }
409 }
410
411 /*
412 * now relock and try again
413 */
414
415 locked = uvmfault_relock(ufi);
416 if (locked && amap != NULL) {
417 amap_lock(amap);
418 }
419 if (locked || we_own)
420 simple_lock(&anon->an_lock);
421
422 /*
423 * if we own the page (i.e. we set PG_BUSY), then we need
424 * to clean up after the I/O. there are three cases to
425 * consider:
426 * [1] page released during I/O: free anon and ReFault.
427 * [2] I/O not OK. free the page and cause the fault
428 * to fail.
429 * [3] I/O OK! activate the page and sync with the
430 * non-we_own case (i.e. drop anon lock if not locked).
431 */
432
433 if (we_own) {
434
435 if (pg->flags & PG_WANTED) {
436 /* still holding object lock */
437 wakeup(pg);
438 }
439 /* un-busy! */
440 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
441 UVM_PAGE_OWN(pg, NULL);
442
443 /*
444 * if we were RELEASED during I/O, then our anon is
445 * no longer part of an amap. we need to free the
446 * anon and try again.
447 */
448 if (pg->flags & PG_RELEASED) {
449 pmap_page_protect(pg, VM_PROT_NONE);
450 simple_unlock(&anon->an_lock);
451 uvm_anfree(anon); /* frees page for us */
452 if (locked)
453 uvmfault_unlockall(ufi, amap, NULL,
454 NULL);
455 uvmexp.fltpgrele++;
456 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
457 return (VM_PAGER_REFAULT); /* refault! */
458 }
459
460 if (result != VM_PAGER_OK) {
461 #ifdef DIAGNOSTIC
462 if (result == VM_PAGER_PEND) {
463 panic("uvmfault_anonget: "
464 "got PENDING for non-async I/O");
465 }
466 #endif
467 /* remove page from anon */
468 anon->u.an_page = NULL;
469
470 /*
471 * remove the swap slot from the anon
472 * and mark the anon as having no real slot.
473 * don't free the swap slot, thus preventing
474 * it from being used again.
475 */
476 uvm_swap_markbad(anon->an_swslot, 1);
477 anon->an_swslot = SWSLOT_BAD;
478
479 /*
480 * note: page was never !PG_BUSY, so it
481 * can't be mapped and thus no need to
482 * pmap_page_protect it...
483 */
484 uvm_lock_pageq();
485 uvm_pagefree(pg);
486 uvm_unlock_pageq();
487
488 if (locked)
489 uvmfault_unlockall(ufi, amap, NULL,
490 anon);
491 else
492 simple_unlock(&anon->an_lock);
493 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
494 return (VM_PAGER_ERROR);
495 }
496
497 /*
498 * must be OK, clear modify (already PG_CLEAN)
499 * and activate
500 */
501 pmap_clear_modify(pg);
502 uvm_lock_pageq();
503 uvm_pageactivate(pg);
504 uvm_unlock_pageq();
505 if (!locked)
506 simple_unlock(&anon->an_lock);
507 }
508
509 /*
510 * we were not able to relock. restart fault.
511 */
512
513 if (!locked) {
514 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
515 return (VM_PAGER_REFAULT);
516 }
517
518 /*
519 * verify no one has touched the amap and moved the anon on us.
520 */
521
522 if (ufi != NULL &&
523 amap_lookup(&ufi->entry->aref,
524 ufi->orig_rvaddr - ufi->entry->start) != anon) {
525
526 uvmfault_unlockall(ufi, amap, NULL, anon);
527 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
528 return (VM_PAGER_REFAULT);
529 }
530
531 /*
532 * try it again!
533 */
534
535 uvmexp.fltanretry++;
536 continue;
537
538 } /* while (1) */
539
540 /*NOTREACHED*/
541 }
542
543 /*
544 * F A U L T - m a i n e n t r y p o i n t
545 */
546
547 /*
548 * uvm_fault: page fault handler
549 *
550 * => called from MD code to resolve a page fault
551 * => VM data structures usually should be unlocked. however, it is
552 * possible to call here with the main map locked if the caller
553 * gets a write lock, sets it recusive, and then calls us (c.f.
554 * uvm_map_pageable). this should be avoided because it keeps
555 * the map locked off during I/O.
556 */
557
558 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
559 ~VM_PROT_WRITE : VM_PROT_ALL)
560
561 int
562 uvm_fault(orig_map, vaddr, fault_type, access_type)
563 vm_map_t orig_map;
564 vaddr_t vaddr;
565 vm_fault_t fault_type;
566 vm_prot_t access_type;
567 {
568 struct uvm_faultinfo ufi;
569 vm_prot_t enter_prot;
570 boolean_t wired, narrow, promote, locked, shadowed;
571 int npages, nback, nforw, centeridx, result, lcv, gotpages;
572 vaddr_t startva, objaddr, currva, offset;
573 paddr_t pa;
574 struct vm_amap *amap;
575 struct uvm_object *uobj;
576 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
577 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
578 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
579
580 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
581 orig_map, vaddr, fault_type, access_type);
582
583 anon = NULL; /* XXX: shut up gcc */
584
585 uvmexp.faults++; /* XXX: locking? */
586
587 /*
588 * init the IN parameters in the ufi
589 */
590
591 ufi.orig_map = orig_map;
592 ufi.orig_rvaddr = trunc_page(vaddr);
593 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
594 if (fault_type == VM_FAULT_WIRE)
595 narrow = TRUE; /* don't look for neighborhood
596 * pages on wire */
597 else
598 narrow = FALSE; /* normal fault */
599
600 /*
601 * before we do anything else, if this is a fault on a kernel
602 * address, check to see if the address is managed by an
603 * interrupt-safe map. If it is, we fail immediately. Intrsafe
604 * maps are never pageable, and this approach avoids an evil
605 * locking mess.
606 */
607 if (orig_map == kernel_map && uvmfault_check_intrsafe(&ufi)) {
608 UVMHIST_LOG(maphist, "<- VA 0x%lx in intrsafe map %p",
609 ufi.orig_rvaddr, ufi.map, 0, 0);
610 return (KERN_FAILURE);
611 }
612
613 /*
614 * "goto ReFault" means restart the page fault from ground zero.
615 */
616 ReFault:
617
618 /*
619 * lookup and lock the maps
620 */
621
622 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
623 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
624 return (KERN_INVALID_ADDRESS);
625 }
626 /* locked: maps(read) */
627
628 /*
629 * check protection
630 */
631
632 if ((ufi.entry->protection & access_type) != access_type) {
633 UVMHIST_LOG(maphist,
634 "<- protection failure (prot=0x%x, access=0x%x)",
635 ufi.entry->protection, access_type, 0, 0);
636 uvmfault_unlockmaps(&ufi, FALSE);
637 return (KERN_PROTECTION_FAILURE);
638 }
639
640 /*
641 * if the map is not a pageable map, a page fault always fails.
642 */
643
644 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
645 UVMHIST_LOG(maphist,
646 "<- map %p not pageable", ufi.map, 0, 0, 0);
647 uvmfault_unlockmaps(&ufi, FALSE);
648 return (KERN_FAILURE);
649 }
650
651 /*
652 * "enter_prot" is the protection we want to enter the page in at.
653 * for certain pages (e.g. copy-on-write pages) this protection can
654 * be more strict than ufi.entry->protection. "wired" means either
655 * the entry is wired or we are fault-wiring the pg.
656 */
657
658 enter_prot = ufi.entry->protection;
659 wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE);
660 if (wired)
661 access_type = enter_prot; /* full access for wired */
662
663 /*
664 * handle "needs_copy" case. if we need to copy the amap we will
665 * have to drop our readlock and relock it with a write lock. (we
666 * need a write lock to change anything in a map entry [e.g.
667 * needs_copy]).
668 */
669
670 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
671 if ((access_type & VM_PROT_WRITE) ||
672 (ufi.entry->object.uvm_obj == NULL)) {
673 /* need to clear */
674 UVMHIST_LOG(maphist,
675 " need to clear needs_copy and refault",0,0,0,0);
676 uvmfault_unlockmaps(&ufi, FALSE);
677 uvmfault_amapcopy(&ufi);
678 uvmexp.fltamcopy++;
679 goto ReFault;
680
681 } else {
682
683 /*
684 * ensure that we pmap_enter page R/O since
685 * needs_copy is still true
686 */
687 enter_prot &= ~VM_PROT_WRITE;
688
689 }
690 }
691
692 /*
693 * identify the players
694 */
695
696 amap = ufi.entry->aref.ar_amap; /* top layer */
697 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
698
699 /*
700 * check for a case 0 fault. if nothing backing the entry then
701 * error now.
702 */
703
704 if (amap == NULL && uobj == NULL) {
705 uvmfault_unlockmaps(&ufi, FALSE);
706 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
707 return (KERN_INVALID_ADDRESS);
708 }
709
710 /*
711 * establish range of interest based on advice from mapper
712 * and then clip to fit map entry. note that we only want
713 * to do this the first time through the fault. if we
714 * ReFault we will disable this by setting "narrow" to true.
715 */
716
717 if (narrow == FALSE) {
718
719 /* wide fault (!narrow) */
720 #ifdef DIAGNOSTIC
721 if (uvmadvice[ufi.entry->advice].advice != ufi.entry->advice)
722 panic("fault: advice mismatch!");
723 #endif
724 nback = min(uvmadvice[ufi.entry->advice].nback,
725 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
726 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
727 nforw = min(uvmadvice[ufi.entry->advice].nforw,
728 ((ufi.entry->end - ufi.orig_rvaddr) >>
729 PAGE_SHIFT) - 1);
730 /*
731 * note: "-1" because we don't want to count the
732 * faulting page as forw
733 */
734 npages = nback + nforw + 1;
735 centeridx = nback;
736
737 narrow = TRUE; /* ensure only once per-fault */
738
739 } else {
740
741 /* narrow fault! */
742 nback = nforw = 0;
743 startva = ufi.orig_rvaddr;
744 npages = 1;
745 centeridx = 0;
746
747 }
748
749 /* locked: maps(read) */
750 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
751 narrow, nback, nforw, startva);
752 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
753 amap, uobj, 0);
754
755 /*
756 * if we've got an amap, lock it and extract current anons.
757 */
758
759 if (amap) {
760 amap_lock(amap);
761 anons = anons_store;
762 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
763 anons, npages);
764 } else {
765 anons = NULL; /* to be safe */
766 }
767
768 /* locked: maps(read), amap(if there) */
769
770 /*
771 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
772 * now and then forget about them (for the rest of the fault).
773 */
774
775 if (ufi.entry->advice == MADV_SEQUENTIAL) {
776
777 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
778 0,0,0,0);
779 /* flush back-page anons? */
780 if (amap)
781 uvmfault_anonflush(anons, nback);
782
783 /* flush object? */
784 if (uobj) {
785 objaddr =
786 (startva - ufi.entry->start) + ufi.entry->offset;
787 simple_lock(&uobj->vmobjlock);
788 (void) uobj->pgops->pgo_flush(uobj, objaddr, objaddr +
789 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
790 simple_unlock(&uobj->vmobjlock);
791 }
792
793 /* now forget about the backpages */
794 if (amap)
795 anons += nback;
796 startva = startva + (nback << PAGE_SHIFT);
797 npages -= nback;
798 nback = centeridx = 0;
799 }
800
801 /* locked: maps(read), amap(if there) */
802
803 /*
804 * map in the backpages and frontpages we found in the amap in hopes
805 * of preventing future faults. we also init the pages[] array as
806 * we go.
807 */
808
809 currva = startva;
810 shadowed = FALSE;
811 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
812
813 /*
814 * dont play with VAs that are already mapped
815 * except for center)
816 */
817 if (lcv != centeridx) {
818 if (pmap_extract(ufi.orig_map->pmap, currva, &pa) ==
819 TRUE) {
820 pages[lcv] = PGO_DONTCARE;
821 continue;
822 }
823 }
824
825 /*
826 * unmapped or center page. check if any anon at this level.
827 */
828 if (amap == NULL || anons[lcv] == NULL) {
829 pages[lcv] = NULL;
830 continue;
831 }
832
833 /*
834 * check for present page and map if possible. re-activate it.
835 */
836
837 pages[lcv] = PGO_DONTCARE;
838 if (lcv == centeridx) { /* save center for later! */
839 shadowed = TRUE;
840 continue;
841 }
842 anon = anons[lcv];
843 simple_lock(&anon->an_lock);
844 /* ignore loaned pages */
845 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
846 (anon->u.an_page->flags & (PG_RELEASED|PG_BUSY)) == 0) {
847 uvm_lock_pageq();
848 uvm_pageactivate(anon->u.an_page); /* reactivate */
849 uvm_unlock_pageq();
850 UVMHIST_LOG(maphist,
851 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
852 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
853 uvmexp.fltnamap++;
854 /*
855 * Since this isn't the page that's actually faulting,
856 * ignore pmap_enter() failures; it's not critical
857 * that we enter these right now.
858 */
859 (void) pmap_enter(ufi.orig_map->pmap, currva,
860 VM_PAGE_TO_PHYS(anon->u.an_page),
861 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
862 enter_prot,
863 PMAP_CANFAIL |
864 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
865 }
866 simple_unlock(&anon->an_lock);
867 }
868
869 /* locked: maps(read), amap(if there) */
870 /* (shadowed == TRUE) if there is an anon at the faulting address */
871 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
872 (uobj && shadowed == FALSE),0,0);
873
874 /*
875 * note that if we are really short of RAM we could sleep in the above
876 * call to pmap_enter with everything locked. bad?
877 *
878 * XXX Actually, that is bad; pmap_enter() should just fail in that
879 * XXX case. --thorpej
880 */
881
882 /*
883 * if the desired page is not shadowed by the amap and we have a
884 * backing object, then we check to see if the backing object would
885 * prefer to handle the fault itself (rather than letting us do it
886 * with the usual pgo_get hook). the backing object signals this by
887 * providing a pgo_fault routine.
888 */
889
890 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
891
892 simple_lock(&uobj->vmobjlock);
893
894 /* locked: maps(read), amap (if there), uobj */
895 result = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
896 centeridx, fault_type, access_type,
897 PGO_LOCKED);
898 /* locked: nothing, pgo_fault has unlocked everything */
899
900 if (result == VM_PAGER_OK)
901 return (KERN_SUCCESS); /* pgo_fault did pmap enter */
902 else if (result == VM_PAGER_REFAULT)
903 goto ReFault; /* try again! */
904 else
905 return (KERN_PROTECTION_FAILURE);
906 }
907
908 /*
909 * now, if the desired page is not shadowed by the amap and we have
910 * a backing object that does not have a special fault routine, then
911 * we ask (with pgo_get) the object for resident pages that we care
912 * about and attempt to map them in. we do not let pgo_get block
913 * (PGO_LOCKED).
914 *
915 * ("get" has the option of doing a pmap_enter for us)
916 */
917
918 if (uobj && shadowed == FALSE) {
919 simple_lock(&uobj->vmobjlock);
920
921 /* locked (!shadowed): maps(read), amap (if there), uobj */
922 /*
923 * the following call to pgo_get does _not_ change locking state
924 */
925
926 uvmexp.fltlget++;
927 gotpages = npages;
928 result = uobj->pgops->pgo_get(uobj, ufi.entry->offset +
929 (startva - ufi.entry->start),
930 pages, &gotpages, centeridx,
931 access_type & MASK(ufi.entry),
932 ufi.entry->advice, PGO_LOCKED);
933
934 /*
935 * check for pages to map, if we got any
936 */
937
938 uobjpage = NULL;
939
940 if (gotpages) {
941 currva = startva;
942 for (lcv = 0 ; lcv < npages ;
943 lcv++, currva += PAGE_SIZE) {
944
945 if (pages[lcv] == NULL ||
946 pages[lcv] == PGO_DONTCARE)
947 continue;
948
949 #ifdef DIAGNOSTIC
950 /*
951 * pager sanity check: pgo_get with
952 * PGO_LOCKED should never return a
953 * released page to us.
954 */
955 if (pages[lcv]->flags & PG_RELEASED)
956 panic("uvm_fault: pgo_get PGO_LOCKED gave us a RELEASED page");
957 #endif
958
959 /*
960 * if center page is resident and not
961 * PG_BUSY|PG_RELEASED then pgo_get
962 * made it PG_BUSY for us and gave
963 * us a handle to it. remember this
964 * page as "uobjpage." (for later use).
965 */
966
967 if (lcv == centeridx) {
968 uobjpage = pages[lcv];
969 UVMHIST_LOG(maphist, " got uobjpage (0x%x) with locked get",
970 uobjpage, 0,0,0);
971 continue;
972 }
973
974 /*
975 * note: calling pgo_get with locked data
976 * structures returns us pages which are
977 * neither busy nor released, so we don't
978 * need to check for this. we can just
979 * directly enter the page (after moving it
980 * to the head of the active queue [useful?]).
981 */
982
983 uvm_lock_pageq();
984 uvm_pageactivate(pages[lcv]); /* reactivate */
985 uvm_unlock_pageq();
986 UVMHIST_LOG(maphist,
987 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
988 ufi.orig_map->pmap, currva, pages[lcv], 0);
989 uvmexp.fltnomap++;
990 /*
991 * Since this page isn't the page that's
992 * actually fauling, ignore pmap_enter()
993 * failures; it's not critical that we
994 * enter these right now.
995 */
996 (void) pmap_enter(ufi.orig_map->pmap, currva,
997 VM_PAGE_TO_PHYS(pages[lcv]),
998 enter_prot & MASK(ufi.entry),
999 PMAP_CANFAIL |
1000 (wired ? PMAP_WIRED : 0));
1001
1002 /*
1003 * NOTE: page can't be PG_WANTED or PG_RELEASED
1004 * because we've held the lock the whole time
1005 * we've had the handle.
1006 */
1007 pages[lcv]->flags &= ~(PG_BUSY); /* un-busy! */
1008 UVM_PAGE_OWN(pages[lcv], NULL);
1009
1010 /* done! */
1011 } /* for "lcv" loop */
1012 } /* "gotpages" != 0 */
1013
1014 /* note: object still _locked_ */
1015 } else {
1016
1017 uobjpage = NULL;
1018
1019 }
1020
1021 /* locked (shadowed): maps(read), amap */
1022 /* locked (!shadowed): maps(read), amap(if there),
1023 uobj(if !null), uobjpage(if !null) */
1024
1025 /*
1026 * note that at this point we are done with any front or back pages.
1027 * we are now going to focus on the center page (i.e. the one we've
1028 * faulted on). if we have faulted on the top (anon) layer
1029 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1030 * not touched it yet). if we have faulted on the bottom (uobj)
1031 * layer [i.e. case 2] and the page was both present and available,
1032 * then we've got a pointer to it as "uobjpage" and we've already
1033 * made it BUSY.
1034 */
1035
1036 /*
1037 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1038 */
1039
1040 /*
1041 * redirect case 2: if we are not shadowed, go to case 2.
1042 */
1043
1044 if (shadowed == FALSE)
1045 goto Case2;
1046
1047 /* locked: maps(read), amap */
1048
1049 /*
1050 * handle case 1: fault on an anon in our amap
1051 */
1052
1053 anon = anons[centeridx];
1054 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1055 simple_lock(&anon->an_lock);
1056
1057 /* locked: maps(read), amap, anon */
1058
1059 /*
1060 * no matter if we have case 1A or case 1B we are going to need to
1061 * have the anon's memory resident. ensure that now.
1062 */
1063
1064 /*
1065 * let uvmfault_anonget do the dirty work.
1066 * if it fails (!OK) it will unlock everything for us.
1067 * if it succeeds, locks are still valid and locked.
1068 * also, if it is OK, then the anon's page is on the queues.
1069 * if the page is on loan from a uvm_object, then anonget will
1070 * lock that object for us if it does not fail.
1071 */
1072
1073 result = uvmfault_anonget(&ufi, amap, anon);
1074 switch (result) {
1075 case VM_PAGER_OK:
1076 break;
1077
1078 case VM_PAGER_REFAULT:
1079 goto ReFault;
1080
1081 case VM_PAGER_ERROR:
1082 /*
1083 * An error occurred while trying to bring in the
1084 * page -- this is the only error we return right
1085 * now.
1086 */
1087 return (KERN_PROTECTION_FAILURE); /* XXX */
1088
1089 default:
1090 #ifdef DIAGNOSTIC
1091 panic("uvm_fault: uvmfault_anonget -> %d", result);
1092 #else
1093 return (KERN_PROTECTION_FAILURE);
1094 #endif
1095 }
1096
1097 /*
1098 * uobj is non null if the page is on loan from an object (i.e. uobj)
1099 */
1100
1101 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1102
1103 /* locked: maps(read), amap, anon, uobj(if one) */
1104
1105 /*
1106 * special handling for loaned pages
1107 */
1108 if (anon->u.an_page->loan_count) {
1109
1110 if ((access_type & VM_PROT_WRITE) == 0) {
1111
1112 /*
1113 * for read faults on loaned pages we just cap the
1114 * protection at read-only.
1115 */
1116
1117 enter_prot = enter_prot & ~VM_PROT_WRITE;
1118
1119 } else {
1120 /*
1121 * note that we can't allow writes into a loaned page!
1122 *
1123 * if we have a write fault on a loaned page in an
1124 * anon then we need to look at the anon's ref count.
1125 * if it is greater than one then we are going to do
1126 * a normal copy-on-write fault into a new anon (this
1127 * is not a problem). however, if the reference count
1128 * is one (a case where we would normally allow a
1129 * write directly to the page) then we need to kill
1130 * the loan before we continue.
1131 */
1132
1133 /* >1 case is already ok */
1134 if (anon->an_ref == 1) {
1135
1136 /* get new un-owned replacement page */
1137 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1138 if (pg == NULL) {
1139 uvmfault_unlockall(&ufi, amap, uobj,
1140 anon);
1141 uvm_wait("flt_noram2");
1142 goto ReFault;
1143 }
1144
1145 /*
1146 * copy data, kill loan, and drop uobj lock
1147 * (if any)
1148 */
1149 /* copy old -> new */
1150 uvm_pagecopy(anon->u.an_page, pg);
1151
1152 /* force reload */
1153 pmap_page_protect(anon->u.an_page,
1154 VM_PROT_NONE);
1155 uvm_lock_pageq(); /* KILL loan */
1156 if (uobj)
1157 /* if we were loaning */
1158 anon->u.an_page->loan_count--;
1159 anon->u.an_page->uanon = NULL;
1160 /* in case we owned */
1161 anon->u.an_page->pqflags &= ~PQ_ANON;
1162 uvm_unlock_pageq();
1163 if (uobj) {
1164 simple_unlock(&uobj->vmobjlock);
1165 uobj = NULL;
1166 }
1167
1168 /* install new page in anon */
1169 anon->u.an_page = pg;
1170 pg->uanon = anon;
1171 pg->pqflags |= PQ_ANON;
1172 pg->flags &= ~(PG_BUSY|PG_FAKE);
1173 UVM_PAGE_OWN(pg, NULL);
1174
1175 /* done! */
1176 } /* ref == 1 */
1177 } /* write fault */
1178 } /* loan count */
1179
1180 /*
1181 * if we are case 1B then we will need to allocate a new blank
1182 * anon to transfer the data into. note that we have a lock
1183 * on anon, so no one can busy or release the page until we are done.
1184 * also note that the ref count can't drop to zero here because
1185 * it is > 1 and we are only dropping one ref.
1186 *
1187 * in the (hopefully very rare) case that we are out of RAM we
1188 * will unlock, wait for more RAM, and refault.
1189 *
1190 * if we are out of anon VM we kill the process (XXX: could wait?).
1191 */
1192
1193 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) {
1194
1195 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1196 uvmexp.flt_acow++;
1197 oanon = anon; /* oanon = old, locked anon */
1198 anon = uvm_analloc();
1199 if (anon)
1200 pg = uvm_pagealloc(NULL, 0, anon, 0);
1201 #ifdef __GNUC__
1202 else
1203 pg = NULL; /* XXX: gcc */
1204 #endif
1205
1206 /* check for out of RAM */
1207 if (anon == NULL || pg == NULL) {
1208 if (anon)
1209 uvm_anfree(anon);
1210 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1211 #ifdef DIAGNOSTIC
1212 if (uvmexp.swpgonly > uvmexp.swpages) {
1213 panic("uvmexp.swpgonly botch");
1214 }
1215 #endif
1216 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1217 UVMHIST_LOG(maphist,
1218 "<- failed. out of VM",0,0,0,0);
1219 uvmexp.fltnoanon++;
1220 return (KERN_RESOURCE_SHORTAGE);
1221 }
1222
1223 uvmexp.fltnoram++;
1224 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1225 goto ReFault;
1226 }
1227
1228 /* got all resources, replace anon with nanon */
1229
1230 uvm_pagecopy(oanon->u.an_page, pg); /* pg now !PG_CLEAN */
1231 pg->flags &= ~(PG_BUSY|PG_FAKE); /* un-busy! new page */
1232 UVM_PAGE_OWN(pg, NULL);
1233 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1234 anon, 1);
1235
1236 /* deref: can not drop to zero here by defn! */
1237 oanon->an_ref--;
1238
1239 /*
1240 * note: oanon still locked. anon is _not_ locked, but we
1241 * have the sole references to in from amap which _is_ locked.
1242 * thus, no one can get at it until we are done with it.
1243 */
1244
1245 } else {
1246
1247 uvmexp.flt_anon++;
1248 oanon = anon; /* old, locked anon is same as anon */
1249 pg = anon->u.an_page;
1250 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1251 enter_prot = enter_prot & ~VM_PROT_WRITE;
1252
1253 }
1254
1255 /* locked: maps(read), amap, anon */
1256
1257 /*
1258 * now map the page in ...
1259 * XXX: old fault unlocks object before pmap_enter. this seems
1260 * suspect since some other thread could blast the page out from
1261 * under us between the unlock and the pmap_enter.
1262 */
1263
1264 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1265 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1266 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1267 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1268 != KERN_SUCCESS) {
1269 /*
1270 * No need to undo what we did; we can simply think of
1271 * this as the pmap throwing away the mapping information.
1272 *
1273 * We do, however, have to go through the ReFault path,
1274 * as the map may change while we're asleep.
1275 */
1276 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1277 #ifdef DIAGNOSTIC
1278 if (uvmexp.swpgonly > uvmexp.swpages)
1279 panic("uvmexp.swpgonly botch");
1280 #endif
1281 if (uvmexp.swpgonly == uvmexp.swpages) {
1282 UVMHIST_LOG(maphist,
1283 "<- failed. out of VM",0,0,0,0);
1284 /* XXX instrumentation */
1285 return (KERN_RESOURCE_SHORTAGE);
1286 }
1287 /* XXX instrumentation */
1288 uvm_wait("flt_pmfail1");
1289 goto ReFault;
1290 }
1291
1292 /*
1293 * ... update the page queues.
1294 */
1295
1296 uvm_lock_pageq();
1297
1298 if (fault_type == VM_FAULT_WIRE) {
1299 uvm_pagewire(pg);
1300
1301 /*
1302 * since the now-wired page cannot be paged out,
1303 * release its swap resources for others to use.
1304 * since an anon with no swap cannot be PG_CLEAN,
1305 * clear its clean flag now.
1306 */
1307
1308 pg->flags &= ~(PG_CLEAN);
1309 uvm_anon_dropswap(anon);
1310 } else {
1311 /* activate it */
1312 uvm_pageactivate(pg);
1313 }
1314
1315 uvm_unlock_pageq();
1316
1317 /*
1318 * done case 1! finish up by unlocking everything and returning success
1319 */
1320
1321 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1322 return (KERN_SUCCESS);
1323
1324
1325 Case2:
1326 /*
1327 * handle case 2: faulting on backing object or zero fill
1328 */
1329
1330 /*
1331 * locked:
1332 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1333 */
1334
1335 /*
1336 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1337 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1338 * have a backing object, check and see if we are going to promote
1339 * the data up to an anon during the fault.
1340 */
1341
1342 if (uobj == NULL) {
1343 uobjpage = PGO_DONTCARE;
1344 promote = TRUE; /* always need anon here */
1345 } else {
1346 /* assert(uobjpage != PGO_DONTCARE) */
1347 promote = (access_type & VM_PROT_WRITE) &&
1348 UVM_ET_ISCOPYONWRITE(ufi.entry);
1349 }
1350 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1351 promote, (uobj == NULL), 0,0);
1352
1353 /*
1354 * if uobjpage is not null then we do not need to do I/O to get the
1355 * uobjpage.
1356 *
1357 * if uobjpage is null, then we need to unlock and ask the pager to
1358 * get the data for us. once we have the data, we need to reverify
1359 * the state the world. we are currently not holding any resources.
1360 */
1361
1362 if (uobjpage) {
1363 /* update rusage counters */
1364 curproc->p_addr->u_stats.p_ru.ru_minflt++;
1365 } else {
1366 /* update rusage counters */
1367 curproc->p_addr->u_stats.p_ru.ru_majflt++;
1368
1369 /* locked: maps(read), amap(if there), uobj */
1370 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1371 /* locked: uobj */
1372
1373 uvmexp.fltget++;
1374 gotpages = 1;
1375 result = uobj->pgops->pgo_get(uobj,
1376 (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset,
1377 &uobjpage, &gotpages, 0,
1378 access_type & MASK(ufi.entry),
1379 ufi.entry->advice, 0);
1380
1381 /* locked: uobjpage(if result OK) */
1382
1383 /*
1384 * recover from I/O
1385 */
1386
1387 if (result != VM_PAGER_OK) {
1388 #ifdef DIAGNOSTIC
1389 if (result == VM_PAGER_PEND)
1390 panic("uvm_fault: pgo_get got PENDing "
1391 "on non-async I/O");
1392 #endif
1393
1394 if (result == VM_PAGER_AGAIN) {
1395 UVMHIST_LOG(maphist,
1396 " pgo_get says TRY AGAIN!",0,0,0,0);
1397 tsleep((caddr_t)&lbolt, PVM, "fltagain2", 0);
1398 goto ReFault;
1399 }
1400
1401 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1402 result, 0,0,0);
1403 return (KERN_PROTECTION_FAILURE); /* XXX i/o error */
1404 }
1405
1406 /* locked: uobjpage */
1407
1408 /*
1409 * re-verify the state of the world by first trying to relock
1410 * the maps. always relock the object.
1411 */
1412
1413 locked = uvmfault_relock(&ufi);
1414 if (locked && amap)
1415 amap_lock(amap);
1416 simple_lock(&uobj->vmobjlock);
1417
1418 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1419 /* locked(!locked): uobj, uobjpage */
1420
1421 /*
1422 * verify that the page has not be released and re-verify
1423 * that amap slot is still free. if there is a problem,
1424 * we unlock and clean up.
1425 */
1426
1427 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1428 (locked && amap &&
1429 amap_lookup(&ufi.entry->aref,
1430 ufi.orig_rvaddr - ufi.entry->start))) {
1431 if (locked)
1432 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1433 locked = FALSE;
1434 }
1435
1436 /*
1437 * didn't get the lock? release the page and retry.
1438 */
1439
1440 if (locked == FALSE) {
1441
1442 UVMHIST_LOG(maphist,
1443 " wasn't able to relock after fault: retry",
1444 0,0,0,0);
1445 if (uobjpage->flags & PG_WANTED)
1446 /* still holding object lock */
1447 wakeup(uobjpage);
1448
1449 if (uobjpage->flags & PG_RELEASED) {
1450 uvmexp.fltpgrele++;
1451 #ifdef DIAGNOSTIC
1452 if (uobj->pgops->pgo_releasepg == NULL)
1453 panic("uvm_fault: object has no "
1454 "releasepg function");
1455 #endif
1456 /* frees page */
1457 if (uobj->pgops->pgo_releasepg(uobjpage,NULL))
1458 /* unlock if still alive */
1459 simple_unlock(&uobj->vmobjlock);
1460 goto ReFault;
1461 }
1462
1463 uvm_lock_pageq();
1464 /* make sure it is in queues */
1465 uvm_pageactivate(uobjpage);
1466
1467 uvm_unlock_pageq();
1468 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1469 UVM_PAGE_OWN(uobjpage, NULL);
1470 simple_unlock(&uobj->vmobjlock);
1471 goto ReFault;
1472
1473 }
1474
1475 /*
1476 * we have the data in uobjpage which is PG_BUSY and
1477 * !PG_RELEASED. we are holding object lock (so the page
1478 * can't be released on us).
1479 */
1480
1481 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1482
1483 }
1484
1485 /*
1486 * locked:
1487 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1488 */
1489
1490 /*
1491 * notes:
1492 * - at this point uobjpage can not be NULL
1493 * - at this point uobjpage can not be PG_RELEASED (since we checked
1494 * for it above)
1495 * - at this point uobjpage could be PG_WANTED (handle later)
1496 */
1497
1498 if (promote == FALSE) {
1499
1500 /*
1501 * we are not promoting. if the mapping is COW ensure that we
1502 * don't give more access than we should (e.g. when doing a read
1503 * fault on a COPYONWRITE mapping we want to map the COW page in
1504 * R/O even though the entry protection could be R/W).
1505 *
1506 * set "pg" to the page we want to map in (uobjpage, usually)
1507 */
1508
1509 uvmexp.flt_obj++;
1510 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1511 enter_prot &= ~VM_PROT_WRITE;
1512 pg = uobjpage; /* map in the actual object */
1513
1514 /* assert(uobjpage != PGO_DONTCARE) */
1515
1516 /*
1517 * we are faulting directly on the page. be careful
1518 * about writing to loaned pages...
1519 */
1520 if (uobjpage->loan_count) {
1521
1522 if ((access_type & VM_PROT_WRITE) == 0) {
1523 /* read fault: cap the protection at readonly */
1524 /* cap! */
1525 enter_prot = enter_prot & ~VM_PROT_WRITE;
1526 } else {
1527 /* write fault: must break the loan here */
1528
1529 /* alloc new un-owned page */
1530 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1531
1532 if (pg == NULL) {
1533 /*
1534 * drop ownership of page, it can't
1535 * be released
1536 */
1537 if (uobjpage->flags & PG_WANTED)
1538 wakeup(uobjpage);
1539 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1540 UVM_PAGE_OWN(uobjpage, NULL);
1541
1542 uvm_lock_pageq();
1543 /* activate: we will need it later */
1544 uvm_pageactivate(uobjpage);
1545
1546 uvm_unlock_pageq();
1547 uvmfault_unlockall(&ufi, amap, uobj,
1548 NULL);
1549 UVMHIST_LOG(maphist,
1550 " out of RAM breaking loan, waiting",
1551 0,0,0,0);
1552 uvmexp.fltnoram++;
1553 uvm_wait("flt_noram4");
1554 goto ReFault;
1555 }
1556
1557 /*
1558 * copy the data from the old page to the new
1559 * one and clear the fake/clean flags on the
1560 * new page (keep it busy). force a reload
1561 * of the old page by clearing it from all
1562 * pmaps. then lock the page queues to
1563 * rename the pages.
1564 */
1565 uvm_pagecopy(uobjpage, pg); /* old -> new */
1566 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1567 pmap_page_protect(uobjpage, VM_PROT_NONE);
1568 if (uobjpage->flags & PG_WANTED)
1569 wakeup(uobjpage);
1570 /* uobj still locked */
1571 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1572 UVM_PAGE_OWN(uobjpage, NULL);
1573
1574 uvm_lock_pageq();
1575 offset = uobjpage->offset;
1576 /* remove old page */
1577 uvm_pagerealloc(uobjpage, NULL, 0);
1578
1579 /*
1580 * at this point we have absolutely no
1581 * control over uobjpage
1582 */
1583 /* install new page */
1584 uvm_pagerealloc(pg, uobj, offset);
1585 uvm_unlock_pageq();
1586
1587 /*
1588 * done! loan is broken and "pg" is
1589 * PG_BUSY. it can now replace uobjpage.
1590 */
1591
1592 uobjpage = pg;
1593
1594 } /* write fault case */
1595 } /* if loan_count */
1596
1597 } else {
1598
1599 /*
1600 * if we are going to promote the data to an anon we
1601 * allocate a blank anon here and plug it into our amap.
1602 */
1603 #if DIAGNOSTIC
1604 if (amap == NULL)
1605 panic("uvm_fault: want to promote data, but no anon");
1606 #endif
1607
1608 anon = uvm_analloc();
1609 if (anon) {
1610 /*
1611 * In `Fill in data...' below, if
1612 * uobjpage == PGO_DONTCARE, we want
1613 * a zero'd, dirty page, so have
1614 * uvm_pagealloc() do that for us.
1615 */
1616 pg = uvm_pagealloc(NULL, 0, anon,
1617 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1618 }
1619 #ifdef __GNUC__
1620 else
1621 pg = NULL; /* XXX: gcc */
1622 #endif
1623
1624 /*
1625 * out of memory resources?
1626 */
1627 if (anon == NULL || pg == NULL) {
1628
1629 /*
1630 * arg! must unbusy our page and fail or sleep.
1631 */
1632 if (uobjpage != PGO_DONTCARE) {
1633 if (uobjpage->flags & PG_WANTED)
1634 /* still holding object lock */
1635 wakeup(uobjpage);
1636
1637 uvm_lock_pageq();
1638 /* make sure it is in queues */
1639 uvm_pageactivate(uobjpage);
1640 uvm_unlock_pageq();
1641 /* un-busy! (still locked) */
1642 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1643 UVM_PAGE_OWN(uobjpage, NULL);
1644 }
1645
1646 /* unlock and fail ... */
1647 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1648 #ifdef DIAGNOSTIC
1649 if (uvmexp.swpgonly > uvmexp.swpages) {
1650 panic("uvmexp.swpgonly botch");
1651 }
1652 #endif
1653 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1654 UVMHIST_LOG(maphist, " promote: out of VM",
1655 0,0,0,0);
1656 uvmexp.fltnoanon++;
1657 return (KERN_RESOURCE_SHORTAGE);
1658 }
1659
1660 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1661 0,0,0,0);
1662 uvm_anfree(anon);
1663 uvmexp.fltnoram++;
1664 uvm_wait("flt_noram5");
1665 goto ReFault;
1666 }
1667
1668 /*
1669 * fill in the data
1670 */
1671
1672 if (uobjpage != PGO_DONTCARE) {
1673 uvmexp.flt_prcopy++;
1674 /* copy page [pg now dirty] */
1675 uvm_pagecopy(uobjpage, pg);
1676
1677 /*
1678 * promote to shared amap? make sure all sharing
1679 * procs see it
1680 */
1681 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1682 pmap_page_protect(uobjpage, VM_PROT_NONE);
1683 }
1684
1685 /*
1686 * dispose of uobjpage. it can't be PG_RELEASED
1687 * since we still hold the object lock. drop
1688 * handle to uobj as well.
1689 */
1690
1691 if (uobjpage->flags & PG_WANTED)
1692 /* still have the obj lock */
1693 wakeup(uobjpage);
1694 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1695 UVM_PAGE_OWN(uobjpage, NULL);
1696 uvm_lock_pageq();
1697 uvm_pageactivate(uobjpage); /* put it back */
1698 uvm_unlock_pageq();
1699 simple_unlock(&uobj->vmobjlock);
1700 uobj = NULL;
1701 UVMHIST_LOG(maphist,
1702 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1703 uobjpage, anon, pg, 0);
1704
1705 } else {
1706 uvmexp.flt_przero++;
1707 /*
1708 * Page is zero'd and marked dirty by uvm_pagealloc()
1709 * above.
1710 */
1711 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1712 anon, pg, 0, 0);
1713 }
1714
1715 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1716 anon, 0);
1717
1718 }
1719
1720 /*
1721 * locked:
1722 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1723 *
1724 * note: pg is either the uobjpage or the new page in the new anon
1725 */
1726
1727 /*
1728 * all resources are present. we can now map it in and free our
1729 * resources.
1730 */
1731
1732 UVMHIST_LOG(maphist,
1733 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1734 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1735 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1736 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1737 != KERN_SUCCESS) {
1738 /*
1739 * No need to undo what we did; we can simply think of
1740 * this as the pmap throwing away the mapping information.
1741 *
1742 * We do, however, have to go through the ReFault path,
1743 * as the map may change while we're asleep.
1744 */
1745 if (pg->flags & PG_WANTED)
1746 wakeup(pg); /* lock still held */
1747
1748 /*
1749 * note that pg can't be PG_RELEASED since we did not drop
1750 * the object lock since the last time we checked.
1751 */
1752
1753 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1754 UVM_PAGE_OWN(pg, NULL);
1755 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1756 #ifdef DIAGNOSTIC
1757 if (uvmexp.swpgonly > uvmexp.swpages)
1758 panic("uvmexp.swpgonly botch");
1759 #endif
1760 if (uvmexp.swpgonly == uvmexp.swpages) {
1761 UVMHIST_LOG(maphist,
1762 "<- failed. out of VM",0,0,0,0);
1763 /* XXX instrumentation */
1764 return (KERN_RESOURCE_SHORTAGE);
1765 }
1766 /* XXX instrumentation */
1767 uvm_wait("flt_pmfail2");
1768 goto ReFault;
1769 }
1770
1771 uvm_lock_pageq();
1772
1773 if (fault_type == VM_FAULT_WIRE) {
1774 uvm_pagewire(pg);
1775 if (pg->pqflags & PQ_AOBJ) {
1776
1777 /*
1778 * since the now-wired page cannot be paged out,
1779 * release its swap resources for others to use.
1780 * since an aobj page with no swap cannot be PG_CLEAN,
1781 * clear its clean flag now.
1782 */
1783
1784 pg->flags &= ~(PG_CLEAN);
1785 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1786 }
1787 } else {
1788 /* activate it */
1789 uvm_pageactivate(pg);
1790 }
1791
1792 uvm_unlock_pageq();
1793
1794 if (pg->flags & PG_WANTED)
1795 wakeup(pg); /* lock still held */
1796
1797 /*
1798 * note that pg can't be PG_RELEASED since we did not drop the object
1799 * lock since the last time we checked.
1800 */
1801
1802 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1803 UVM_PAGE_OWN(pg, NULL);
1804 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1805
1806 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1807 return (KERN_SUCCESS);
1808 }
1809
1810
1811 /*
1812 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1813 *
1814 * => map may be read-locked by caller, but MUST NOT be write-locked.
1815 * => if map is read-locked, any operations which may cause map to
1816 * be write-locked in uvm_fault() must be taken care of by
1817 * the caller. See uvm_map_pageable().
1818 */
1819
1820 int
1821 uvm_fault_wire(map, start, end, access_type)
1822 vm_map_t map;
1823 vaddr_t start, end;
1824 vm_prot_t access_type;
1825 {
1826 vaddr_t va;
1827 pmap_t pmap;
1828 int rv;
1829
1830 pmap = vm_map_pmap(map);
1831
1832 /*
1833 * now fault it in a page at a time. if the fault fails then we have
1834 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1835 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1836 */
1837
1838 for (va = start ; va < end ; va += PAGE_SIZE) {
1839 rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1840 if (rv) {
1841 if (va != start) {
1842 uvm_fault_unwire(map, start, va);
1843 }
1844 return (rv);
1845 }
1846 }
1847
1848 return (KERN_SUCCESS);
1849 }
1850
1851 /*
1852 * uvm_fault_unwire(): unwire range of virtual space.
1853 */
1854
1855 void
1856 uvm_fault_unwire(map, start, end)
1857 vm_map_t map;
1858 vaddr_t start, end;
1859 {
1860
1861 vm_map_lock_read(map);
1862 uvm_fault_unwire_locked(map, start, end);
1863 vm_map_unlock_read(map);
1864 }
1865
1866 /*
1867 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1868 *
1869 * => map must be at least read-locked.
1870 */
1871
1872 void
1873 uvm_fault_unwire_locked(map, start, end)
1874 vm_map_t map;
1875 vaddr_t start, end;
1876 {
1877 vm_map_entry_t entry;
1878 pmap_t pmap = vm_map_pmap(map);
1879 vaddr_t va;
1880 paddr_t pa;
1881 struct vm_page *pg;
1882
1883 #ifdef DIAGNOSTIC
1884 if (map->flags & VM_MAP_INTRSAFE)
1885 panic("uvm_fault_unwire_locked: intrsafe map");
1886 #endif
1887
1888 /*
1889 * we assume that the area we are unwiring has actually been wired
1890 * in the first place. this means that we should be able to extract
1891 * the PAs from the pmap. we also lock out the page daemon so that
1892 * we can call uvm_pageunwire.
1893 */
1894
1895 uvm_lock_pageq();
1896
1897 /*
1898 * find the beginning map entry for the region.
1899 */
1900 #ifdef DIAGNOSTIC
1901 if (start < vm_map_min(map) || end > vm_map_max(map))
1902 panic("uvm_fault_unwire_locked: address out of range");
1903 #endif
1904 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1905 panic("uvm_fault_unwire_locked: address not in map");
1906
1907 for (va = start; va < end ; va += PAGE_SIZE) {
1908 if (pmap_extract(pmap, va, &pa) == FALSE)
1909 panic("uvm_fault_unwire_locked: unwiring "
1910 "non-wired memory");
1911
1912 /*
1913 * make sure the current entry is for the address we're
1914 * dealing with. if not, grab the next entry.
1915 */
1916 #ifdef DIAGNOSTIC
1917 if (va < entry->start)
1918 panic("uvm_fault_unwire_locked: hole 1");
1919 #endif
1920 if (va >= entry->end) {
1921 #ifdef DIAGNOSTIC
1922 if (entry->next == &map->header ||
1923 entry->next->start > entry->end)
1924 panic("uvm_fault_unwire_locked: hole 2");
1925 #endif
1926 entry = entry->next;
1927 }
1928
1929 /*
1930 * if the entry is no longer wired, tell the pmap.
1931 */
1932 if (VM_MAPENT_ISWIRED(entry) == 0)
1933 pmap_unwire(pmap, va);
1934
1935 pg = PHYS_TO_VM_PAGE(pa);
1936 if (pg)
1937 uvm_pageunwire(pg);
1938 }
1939
1940 uvm_unlock_pageq();
1941 }
1942