uvm_fault.c revision 1.52 1 /* $NetBSD: uvm_fault.c,v 1.52 2000/11/27 08:40:03 chs Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 #include "opt_uvmhist.h"
38
39 /*
40 * uvm_fault.c: fault handler
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/proc.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/user.h>
50
51 #include <uvm/uvm.h>
52
53 /*
54 *
55 * a word on page faults:
56 *
57 * types of page faults we handle:
58 *
59 * CASE 1: upper layer faults CASE 2: lower layer faults
60 *
61 * CASE 1A CASE 1B CASE 2A CASE 2B
62 * read/write1 write>1 read/write +-cow_write/zero
63 * | | | |
64 * +--|--+ +--|--+ +-----+ + | + | +-----+
65 * amap | V | | ----------->new| | | | ^ |
66 * +-----+ +-----+ +-----+ + | + | +--|--+
67 * | | |
68 * +-----+ +-----+ +--|--+ | +--|--+
69 * uobj | d/c | | d/c | | V | +----| |
70 * +-----+ +-----+ +-----+ +-----+
71 *
72 * d/c = don't care
73 *
74 * case [0]: layerless fault
75 * no amap or uobj is present. this is an error.
76 *
77 * case [1]: upper layer fault [anon active]
78 * 1A: [read] or [write with anon->an_ref == 1]
79 * I/O takes place in top level anon and uobj is not touched.
80 * 1B: [write with anon->an_ref > 1]
81 * new anon is alloc'd and data is copied off ["COW"]
82 *
83 * case [2]: lower layer fault [uobj]
84 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
85 * I/O takes place directly in object.
86 * 2B: [write to copy_on_write] or [read on NULL uobj]
87 * data is "promoted" from uobj to a new anon.
88 * if uobj is null, then we zero fill.
89 *
90 * we follow the standard UVM locking protocol ordering:
91 *
92 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
93 * we hold a PG_BUSY page if we unlock for I/O
94 *
95 *
96 * the code is structured as follows:
97 *
98 * - init the "IN" params in the ufi structure
99 * ReFault:
100 * - do lookups [locks maps], check protection, handle needs_copy
101 * - check for case 0 fault (error)
102 * - establish "range" of fault
103 * - if we have an amap lock it and extract the anons
104 * - if sequential advice deactivate pages behind us
105 * - at the same time check pmap for unmapped areas and anon for pages
106 * that we could map in (and do map it if found)
107 * - check object for resident pages that we could map in
108 * - if (case 2) goto Case2
109 * - >>> handle case 1
110 * - ensure source anon is resident in RAM
111 * - if case 1B alloc new anon and copy from source
112 * - map the correct page in
113 * Case2:
114 * - >>> handle case 2
115 * - ensure source page is resident (if uobj)
116 * - if case 2B alloc new anon and copy from source (could be zero
117 * fill if uobj == NULL)
118 * - map the correct page in
119 * - done!
120 *
121 * note on paging:
122 * if we have to do I/O we place a PG_BUSY page in the correct object,
123 * unlock everything, and do the I/O. when I/O is done we must reverify
124 * the state of the world before assuming that our data structures are
125 * valid. [because mappings could change while the map is unlocked]
126 *
127 * alternative 1: unbusy the page in question and restart the page fault
128 * from the top (ReFault). this is easy but does not take advantage
129 * of the information that we already have from our previous lookup,
130 * although it is possible that the "hints" in the vm_map will help here.
131 *
132 * alternative 2: the system already keeps track of a "version" number of
133 * a map. [i.e. every time you write-lock a map (e.g. to change a
134 * mapping) you bump the version number up by one...] so, we can save
135 * the version number of the map before we release the lock and start I/O.
136 * then when I/O is done we can relock and check the version numbers
137 * to see if anything changed. this might save us some over 1 because
138 * we don't have to unbusy the page and may be less compares(?).
139 *
140 * alternative 3: put in backpointers or a way to "hold" part of a map
141 * in place while I/O is in progress. this could be complex to
142 * implement (especially with structures like amap that can be referenced
143 * by multiple map entries, and figuring out what should wait could be
144 * complex as well...).
145 *
146 * given that we are not currently multiprocessor or multithreaded we might
147 * as well choose alternative 2 now. maybe alternative 3 would be useful
148 * in the future. XXX keep in mind for future consideration//rechecking.
149 */
150
151 /*
152 * local data structures
153 */
154
155 struct uvm_advice {
156 int advice;
157 int nback;
158 int nforw;
159 };
160
161 /*
162 * page range array:
163 * note: index in array must match "advice" value
164 * XXX: borrowed numbers from freebsd. do they work well for us?
165 */
166
167 static struct uvm_advice uvmadvice[] = {
168 { MADV_NORMAL, 3, 4 },
169 { MADV_RANDOM, 0, 0 },
170 { MADV_SEQUENTIAL, 8, 7},
171 };
172
173 #define UVM_MAXRANGE 16 /* must be max() of nback+nforw+1 */
174
175 /*
176 * private prototypes
177 */
178
179 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
180 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
181
182 /*
183 * inline functions
184 */
185
186 /*
187 * uvmfault_anonflush: try and deactivate pages in specified anons
188 *
189 * => does not have to deactivate page if it is busy
190 */
191
192 static __inline void
193 uvmfault_anonflush(anons, n)
194 struct vm_anon **anons;
195 int n;
196 {
197 int lcv;
198 struct vm_page *pg;
199
200 for (lcv = 0 ; lcv < n ; lcv++) {
201 if (anons[lcv] == NULL)
202 continue;
203 simple_lock(&anons[lcv]->an_lock);
204 pg = anons[lcv]->u.an_page;
205 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
206 uvm_lock_pageq();
207 if (pg->wire_count == 0) {
208 pmap_page_protect(pg, VM_PROT_NONE);
209 uvm_pagedeactivate(pg);
210 }
211 uvm_unlock_pageq();
212 }
213 simple_unlock(&anons[lcv]->an_lock);
214 }
215 }
216
217 /*
218 * normal functions
219 */
220
221 /*
222 * uvmfault_amapcopy: clear "needs_copy" in a map.
223 *
224 * => called with VM data structures unlocked (usually, see below)
225 * => we get a write lock on the maps and clear needs_copy for a VA
226 * => if we are out of RAM we sleep (waiting for more)
227 */
228
229 static void
230 uvmfault_amapcopy(ufi)
231 struct uvm_faultinfo *ufi;
232 {
233
234 /*
235 * while we haven't done the job
236 */
237
238 while (1) {
239
240 /*
241 * no mapping? give up.
242 */
243
244 if (uvmfault_lookup(ufi, TRUE) == FALSE)
245 return;
246
247 /*
248 * copy if needed.
249 */
250
251 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
252 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
253 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
254
255 /*
256 * didn't work? must be out of RAM. unlock and sleep.
257 */
258
259 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
260 uvmfault_unlockmaps(ufi, TRUE);
261 uvm_wait("fltamapcopy");
262 continue;
263 }
264
265 /*
266 * got it! unlock and return.
267 */
268
269 uvmfault_unlockmaps(ufi, TRUE);
270 return;
271 }
272 /*NOTREACHED*/
273 }
274
275 /*
276 * uvmfault_anonget: get data in an anon into a non-busy, non-released
277 * page in that anon.
278 *
279 * => maps, amap, and anon locked by caller.
280 * => if we fail (result != VM_PAGER_OK) we unlock everything.
281 * => if we are successful, we return with everything still locked.
282 * => we don't move the page on the queues [gets moved later]
283 * => if we allocate a new page [we_own], it gets put on the queues.
284 * either way, the result is that the page is on the queues at return time
285 * => for pages which are on loan from a uvm_object (and thus are not
286 * owned by the anon): if successful, we return with the owning object
287 * locked. the caller must unlock this object when it unlocks everything
288 * else.
289 */
290
291 int
292 uvmfault_anonget(ufi, amap, anon)
293 struct uvm_faultinfo *ufi;
294 struct vm_amap *amap;
295 struct vm_anon *anon;
296 {
297 boolean_t we_own; /* we own anon's page? */
298 boolean_t locked; /* did we relock? */
299 struct vm_page *pg;
300 int result;
301 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
302
303 result = 0; /* XXX shut up gcc */
304 uvmexp.fltanget++;
305 /* bump rusage counters */
306 if (anon->u.an_page)
307 curproc->p_addr->u_stats.p_ru.ru_minflt++;
308 else
309 curproc->p_addr->u_stats.p_ru.ru_majflt++;
310
311 /*
312 * loop until we get it, or fail.
313 */
314
315 while (1) {
316
317 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
318 pg = anon->u.an_page;
319
320 /*
321 * if there is a resident page and it is loaned, then anon
322 * may not own it. call out to uvm_anon_lockpage() to ensure
323 * the real owner of the page has been identified and locked.
324 */
325
326 if (pg && pg->loan_count)
327 pg = uvm_anon_lockloanpg(anon);
328
329 /*
330 * page there? make sure it is not busy/released.
331 */
332
333 if (pg) {
334
335 /*
336 * at this point, if the page has a uobject [meaning
337 * we have it on loan], then that uobject is locked
338 * by us! if the page is busy, we drop all the
339 * locks (including uobject) and try again.
340 */
341
342 if ((pg->flags & (PG_BUSY|PG_RELEASED)) == 0) {
343 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
344 return (VM_PAGER_OK);
345 }
346 pg->flags |= PG_WANTED;
347 uvmexp.fltpgwait++;
348
349 /*
350 * the last unlock must be an atomic unlock+wait on
351 * the owner of page
352 */
353 if (pg->uobject) { /* owner is uobject ? */
354 uvmfault_unlockall(ufi, amap, NULL, anon);
355 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
356 0,0,0);
357 UVM_UNLOCK_AND_WAIT(pg,
358 &pg->uobject->vmobjlock,
359 FALSE, "anonget1",0);
360 } else {
361 /* anon owns page */
362 uvmfault_unlockall(ufi, amap, NULL, NULL);
363 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
364 0,0,0);
365 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
366 "anonget2",0);
367 }
368 /* ready to relock and try again */
369
370 } else {
371
372 /*
373 * no page, we must try and bring it in.
374 */
375 pg = uvm_pagealloc(NULL, 0, anon, 0);
376
377 if (pg == NULL) { /* out of RAM. */
378
379 uvmfault_unlockall(ufi, amap, NULL, anon);
380 uvmexp.fltnoram++;
381 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
382 0,0,0);
383 uvm_wait("flt_noram1");
384 /* ready to relock and try again */
385
386 } else {
387
388 /* we set the PG_BUSY bit */
389 we_own = TRUE;
390 uvmfault_unlockall(ufi, amap, NULL, anon);
391
392 /*
393 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
394 * page into the uvm_swap_get function with
395 * all data structures unlocked. note that
396 * it is ok to read an_swslot here because
397 * we hold PG_BUSY on the page.
398 */
399 uvmexp.pageins++;
400 result = uvm_swap_get(pg, anon->an_swslot,
401 PGO_SYNCIO);
402
403 /*
404 * we clean up after the i/o below in the
405 * "we_own" case
406 */
407 /* ready to relock and try again */
408 }
409 }
410
411 /*
412 * now relock and try again
413 */
414
415 locked = uvmfault_relock(ufi);
416 if (locked && amap != NULL) {
417 amap_lock(amap);
418 }
419 if (locked || we_own)
420 simple_lock(&anon->an_lock);
421
422 /*
423 * if we own the page (i.e. we set PG_BUSY), then we need
424 * to clean up after the I/O. there are three cases to
425 * consider:
426 * [1] page released during I/O: free anon and ReFault.
427 * [2] I/O not OK. free the page and cause the fault
428 * to fail.
429 * [3] I/O OK! activate the page and sync with the
430 * non-we_own case (i.e. drop anon lock if not locked).
431 */
432
433 if (we_own) {
434
435 if (pg->flags & PG_WANTED) {
436 /* still holding object lock */
437 wakeup(pg);
438 }
439 /* un-busy! */
440 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
441 UVM_PAGE_OWN(pg, NULL);
442
443 /*
444 * if we were RELEASED during I/O, then our anon is
445 * no longer part of an amap. we need to free the
446 * anon and try again.
447 */
448 if (pg->flags & PG_RELEASED) {
449 pmap_page_protect(pg, VM_PROT_NONE);
450 simple_unlock(&anon->an_lock);
451 uvm_anfree(anon); /* frees page for us */
452 if (locked)
453 uvmfault_unlockall(ufi, amap, NULL,
454 NULL);
455 uvmexp.fltpgrele++;
456 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
457 return (VM_PAGER_REFAULT); /* refault! */
458 }
459
460 if (result != VM_PAGER_OK) {
461 KASSERT(result != VM_PAGER_PEND);
462
463 /* remove page from anon */
464 anon->u.an_page = NULL;
465
466 /*
467 * remove the swap slot from the anon
468 * and mark the anon as having no real slot.
469 * don't free the swap slot, thus preventing
470 * it from being used again.
471 */
472 uvm_swap_markbad(anon->an_swslot, 1);
473 anon->an_swslot = SWSLOT_BAD;
474
475 /*
476 * note: page was never !PG_BUSY, so it
477 * can't be mapped and thus no need to
478 * pmap_page_protect it...
479 */
480 uvm_lock_pageq();
481 uvm_pagefree(pg);
482 uvm_unlock_pageq();
483
484 if (locked)
485 uvmfault_unlockall(ufi, amap, NULL,
486 anon);
487 else
488 simple_unlock(&anon->an_lock);
489 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
490 return (VM_PAGER_ERROR);
491 }
492
493 /*
494 * must be OK, clear modify (already PG_CLEAN)
495 * and activate
496 */
497 pmap_clear_modify(pg);
498 uvm_lock_pageq();
499 uvm_pageactivate(pg);
500 uvm_unlock_pageq();
501 if (!locked)
502 simple_unlock(&anon->an_lock);
503 }
504
505 /*
506 * we were not able to relock. restart fault.
507 */
508
509 if (!locked) {
510 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
511 return (VM_PAGER_REFAULT);
512 }
513
514 /*
515 * verify no one has touched the amap and moved the anon on us.
516 */
517
518 if (ufi != NULL &&
519 amap_lookup(&ufi->entry->aref,
520 ufi->orig_rvaddr - ufi->entry->start) != anon) {
521
522 uvmfault_unlockall(ufi, amap, NULL, anon);
523 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
524 return (VM_PAGER_REFAULT);
525 }
526
527 /*
528 * try it again!
529 */
530
531 uvmexp.fltanretry++;
532 continue;
533
534 } /* while (1) */
535
536 /*NOTREACHED*/
537 }
538
539 /*
540 * F A U L T - m a i n e n t r y p o i n t
541 */
542
543 /*
544 * uvm_fault: page fault handler
545 *
546 * => called from MD code to resolve a page fault
547 * => VM data structures usually should be unlocked. however, it is
548 * possible to call here with the main map locked if the caller
549 * gets a write lock, sets it recusive, and then calls us (c.f.
550 * uvm_map_pageable). this should be avoided because it keeps
551 * the map locked off during I/O.
552 */
553
554 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
555 ~VM_PROT_WRITE : VM_PROT_ALL)
556
557 int
558 uvm_fault(orig_map, vaddr, fault_type, access_type)
559 vm_map_t orig_map;
560 vaddr_t vaddr;
561 vm_fault_t fault_type;
562 vm_prot_t access_type;
563 {
564 struct uvm_faultinfo ufi;
565 vm_prot_t enter_prot;
566 boolean_t wired, narrow, promote, locked, shadowed;
567 int npages, nback, nforw, centeridx, result, lcv, gotpages;
568 vaddr_t startva, objaddr, currva, offset, uoff;
569 paddr_t pa;
570 struct vm_amap *amap;
571 struct uvm_object *uobj;
572 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
573 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
574 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
575
576 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
577 orig_map, vaddr, fault_type, access_type);
578
579 anon = NULL;
580 pg = NULL;
581
582 uvmexp.faults++; /* XXX: locking? */
583
584 /*
585 * init the IN parameters in the ufi
586 */
587
588 ufi.orig_map = orig_map;
589 ufi.orig_rvaddr = trunc_page(vaddr);
590 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
591 if (fault_type == VM_FAULT_WIRE)
592 narrow = TRUE; /* don't look for neighborhood
593 * pages on wire */
594 else
595 narrow = FALSE; /* normal fault */
596
597 /*
598 * before we do anything else, if this is a fault on a kernel
599 * address, check to see if the address is managed by an
600 * interrupt-safe map. If it is, we fail immediately. Intrsafe
601 * maps are never pageable, and this approach avoids an evil
602 * locking mess.
603 */
604 if (orig_map == kernel_map && uvmfault_check_intrsafe(&ufi)) {
605 UVMHIST_LOG(maphist, "<- VA 0x%lx in intrsafe map %p",
606 ufi.orig_rvaddr, ufi.map, 0, 0);
607 return (KERN_FAILURE);
608 }
609
610 /*
611 * "goto ReFault" means restart the page fault from ground zero.
612 */
613 ReFault:
614
615 /*
616 * lookup and lock the maps
617 */
618
619 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
620 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
621 return (KERN_INVALID_ADDRESS);
622 }
623 /* locked: maps(read) */
624
625 /*
626 * check protection
627 */
628
629 if ((ufi.entry->protection & access_type) != access_type) {
630 UVMHIST_LOG(maphist,
631 "<- protection failure (prot=0x%x, access=0x%x)",
632 ufi.entry->protection, access_type, 0, 0);
633 uvmfault_unlockmaps(&ufi, FALSE);
634 return (KERN_PROTECTION_FAILURE);
635 }
636
637 /*
638 * if the map is not a pageable map, a page fault always fails.
639 */
640
641 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
642 UVMHIST_LOG(maphist,
643 "<- map %p not pageable", ufi.map, 0, 0, 0);
644 uvmfault_unlockmaps(&ufi, FALSE);
645 return (KERN_FAILURE);
646 }
647
648 /*
649 * "enter_prot" is the protection we want to enter the page in at.
650 * for certain pages (e.g. copy-on-write pages) this protection can
651 * be more strict than ufi.entry->protection. "wired" means either
652 * the entry is wired or we are fault-wiring the pg.
653 */
654
655 enter_prot = ufi.entry->protection;
656 wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE);
657 if (wired)
658 access_type = enter_prot; /* full access for wired */
659
660 /*
661 * handle "needs_copy" case. if we need to copy the amap we will
662 * have to drop our readlock and relock it with a write lock. (we
663 * need a write lock to change anything in a map entry [e.g.
664 * needs_copy]).
665 */
666
667 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
668 if ((access_type & VM_PROT_WRITE) ||
669 (ufi.entry->object.uvm_obj == NULL)) {
670 /* need to clear */
671 UVMHIST_LOG(maphist,
672 " need to clear needs_copy and refault",0,0,0,0);
673 uvmfault_unlockmaps(&ufi, FALSE);
674 uvmfault_amapcopy(&ufi);
675 uvmexp.fltamcopy++;
676 goto ReFault;
677
678 } else {
679
680 /*
681 * ensure that we pmap_enter page R/O since
682 * needs_copy is still true
683 */
684 enter_prot &= ~VM_PROT_WRITE;
685
686 }
687 }
688
689 /*
690 * identify the players
691 */
692
693 amap = ufi.entry->aref.ar_amap; /* top layer */
694 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
695
696 /*
697 * check for a case 0 fault. if nothing backing the entry then
698 * error now.
699 */
700
701 if (amap == NULL && uobj == NULL) {
702 uvmfault_unlockmaps(&ufi, FALSE);
703 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
704 return (KERN_INVALID_ADDRESS);
705 }
706
707 /*
708 * establish range of interest based on advice from mapper
709 * and then clip to fit map entry. note that we only want
710 * to do this the first time through the fault. if we
711 * ReFault we will disable this by setting "narrow" to true.
712 */
713
714 if (narrow == FALSE) {
715
716 /* wide fault (!narrow) */
717 KASSERT(uvmadvice[ufi.entry->advice].advice ==
718 ufi.entry->advice);
719 nback = min(uvmadvice[ufi.entry->advice].nback,
720 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
721 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
722 nforw = min(uvmadvice[ufi.entry->advice].nforw,
723 ((ufi.entry->end - ufi.orig_rvaddr) >>
724 PAGE_SHIFT) - 1);
725 /*
726 * note: "-1" because we don't want to count the
727 * faulting page as forw
728 */
729 npages = nback + nforw + 1;
730 centeridx = nback;
731
732 narrow = TRUE; /* ensure only once per-fault */
733
734 } else {
735
736 /* narrow fault! */
737 nback = nforw = 0;
738 startva = ufi.orig_rvaddr;
739 npages = 1;
740 centeridx = 0;
741
742 }
743
744 /* locked: maps(read) */
745 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
746 narrow, nback, nforw, startva);
747 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
748 amap, uobj, 0);
749
750 /*
751 * if we've got an amap, lock it and extract current anons.
752 */
753
754 if (amap) {
755 amap_lock(amap);
756 anons = anons_store;
757 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
758 anons, npages);
759 } else {
760 anons = NULL; /* to be safe */
761 }
762
763 /* locked: maps(read), amap(if there) */
764
765 /*
766 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
767 * now and then forget about them (for the rest of the fault).
768 */
769
770 if (ufi.entry->advice == MADV_SEQUENTIAL) {
771
772 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
773 0,0,0,0);
774 /* flush back-page anons? */
775 if (amap)
776 uvmfault_anonflush(anons, nback);
777
778 /* flush object? */
779 if (uobj) {
780 objaddr =
781 (startva - ufi.entry->start) + ufi.entry->offset;
782 simple_lock(&uobj->vmobjlock);
783 (void) uobj->pgops->pgo_flush(uobj, objaddr, objaddr +
784 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
785 simple_unlock(&uobj->vmobjlock);
786 }
787
788 /* now forget about the backpages */
789 if (amap)
790 anons += nback;
791 startva += (nback << PAGE_SHIFT);
792 npages -= nback;
793 nback = centeridx = 0;
794 }
795
796 /* locked: maps(read), amap(if there) */
797
798 /*
799 * map in the backpages and frontpages we found in the amap in hopes
800 * of preventing future faults. we also init the pages[] array as
801 * we go.
802 */
803
804 currva = startva;
805 shadowed = FALSE;
806 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
807
808 /*
809 * dont play with VAs that are already mapped
810 * except for center)
811 */
812 if (lcv != centeridx &&
813 pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
814 pages[lcv] = PGO_DONTCARE;
815 continue;
816 }
817
818 /*
819 * unmapped or center page. check if any anon at this level.
820 */
821 if (amap == NULL || anons[lcv] == NULL) {
822 pages[lcv] = NULL;
823 continue;
824 }
825
826 /*
827 * check for present page and map if possible. re-activate it.
828 */
829
830 pages[lcv] = PGO_DONTCARE;
831 if (lcv == centeridx) { /* save center for later! */
832 shadowed = TRUE;
833 continue;
834 }
835 anon = anons[lcv];
836 simple_lock(&anon->an_lock);
837 /* ignore loaned pages */
838 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
839 (anon->u.an_page->flags & (PG_RELEASED|PG_BUSY)) == 0) {
840 uvm_lock_pageq();
841 uvm_pageactivate(anon->u.an_page); /* reactivate */
842 uvm_unlock_pageq();
843 UVMHIST_LOG(maphist,
844 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
845 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
846 uvmexp.fltnamap++;
847
848 /*
849 * Since this isn't the page that's actually faulting,
850 * ignore pmap_enter() failures; it's not critical
851 * that we enter these right now.
852 */
853
854 (void) pmap_enter(ufi.orig_map->pmap, currva,
855 VM_PAGE_TO_PHYS(anon->u.an_page),
856 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
857 enter_prot,
858 PMAP_CANFAIL |
859 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
860 }
861 simple_unlock(&anon->an_lock);
862 }
863
864 /* locked: maps(read), amap(if there) */
865 /* (shadowed == TRUE) if there is an anon at the faulting address */
866 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
867 (uobj && shadowed == FALSE),0,0);
868
869 /*
870 * note that if we are really short of RAM we could sleep in the above
871 * call to pmap_enter with everything locked. bad?
872 *
873 * XXX Actually, that is bad; pmap_enter() should just fail in that
874 * XXX case. --thorpej
875 */
876
877 /*
878 * if the desired page is not shadowed by the amap and we have a
879 * backing object, then we check to see if the backing object would
880 * prefer to handle the fault itself (rather than letting us do it
881 * with the usual pgo_get hook). the backing object signals this by
882 * providing a pgo_fault routine.
883 */
884
885 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
886 simple_lock(&uobj->vmobjlock);
887
888 /* locked: maps(read), amap (if there), uobj */
889 result = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
890 centeridx, fault_type, access_type,
891 PGO_LOCKED|PGO_SYNCIO);
892
893 /* locked: nothing, pgo_fault has unlocked everything */
894
895 if (result == VM_PAGER_OK)
896 return (KERN_SUCCESS); /* pgo_fault did pmap enter */
897 else if (result == VM_PAGER_REFAULT)
898 goto ReFault; /* try again! */
899 else
900 return (KERN_PROTECTION_FAILURE);
901 }
902
903 /*
904 * now, if the desired page is not shadowed by the amap and we have
905 * a backing object that does not have a special fault routine, then
906 * we ask (with pgo_get) the object for resident pages that we care
907 * about and attempt to map them in. we do not let pgo_get block
908 * (PGO_LOCKED).
909 *
910 * ("get" has the option of doing a pmap_enter for us)
911 */
912
913 if (uobj && shadowed == FALSE) {
914 simple_lock(&uobj->vmobjlock);
915
916 /* locked (!shadowed): maps(read), amap (if there), uobj */
917 /*
918 * the following call to pgo_get does _not_ change locking state
919 */
920
921 uvmexp.fltlget++;
922 gotpages = npages;
923 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
924 (startva - ufi.entry->start),
925 pages, &gotpages, centeridx,
926 access_type & MASK(ufi.entry),
927 ufi.entry->advice, PGO_LOCKED);
928
929 /*
930 * check for pages to map, if we got any
931 */
932
933 uobjpage = NULL;
934
935 if (gotpages) {
936 currva = startva;
937 for (lcv = 0 ; lcv < npages ;
938 lcv++, currva += PAGE_SIZE) {
939
940 if (pages[lcv] == NULL ||
941 pages[lcv] == PGO_DONTCARE)
942 continue;
943
944 KASSERT((pages[lcv]->flags & PG_RELEASED) == 0);
945
946 /*
947 * if center page is resident and not
948 * PG_BUSY|PG_RELEASED then pgo_get
949 * made it PG_BUSY for us and gave
950 * us a handle to it. remember this
951 * page as "uobjpage." (for later use).
952 */
953
954 if (lcv == centeridx) {
955 uobjpage = pages[lcv];
956 UVMHIST_LOG(maphist, " got uobjpage "
957 "(0x%x) with locked get",
958 uobjpage, 0,0,0);
959 continue;
960 }
961
962 /*
963 * note: calling pgo_get with locked data
964 * structures returns us pages which are
965 * neither busy nor released, so we don't
966 * need to check for this. we can just
967 * directly enter the page (after moving it
968 * to the head of the active queue [useful?]).
969 */
970
971 uvm_lock_pageq();
972 uvm_pageactivate(pages[lcv]); /* reactivate */
973 uvm_unlock_pageq();
974 UVMHIST_LOG(maphist,
975 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
976 ufi.orig_map->pmap, currva, pages[lcv], 0);
977 uvmexp.fltnomap++;
978
979 /*
980 * Since this page isn't the page that's
981 * actually fauling, ignore pmap_enter()
982 * failures; it's not critical that we
983 * enter these right now.
984 */
985
986 (void) pmap_enter(ufi.orig_map->pmap, currva,
987 VM_PAGE_TO_PHYS(pages[lcv]),
988 pages[lcv]->flags & PG_RDONLY ?
989 VM_PROT_READ : enter_prot & MASK(ufi.entry),
990 PMAP_CANFAIL |
991 (wired ? PMAP_WIRED : 0));
992
993 /*
994 * NOTE: page can't be PG_WANTED or PG_RELEASED
995 * because we've held the lock the whole time
996 * we've had the handle.
997 */
998
999 pages[lcv]->flags &= ~(PG_BUSY); /* un-busy! */
1000 UVM_PAGE_OWN(pages[lcv], NULL);
1001 } /* for "lcv" loop */
1002 } /* "gotpages" != 0 */
1003 /* note: object still _locked_ */
1004 } else {
1005 uobjpage = NULL;
1006 }
1007
1008 /* locked (shadowed): maps(read), amap */
1009 /* locked (!shadowed): maps(read), amap(if there),
1010 uobj(if !null), uobjpage(if !null) */
1011
1012 /*
1013 * note that at this point we are done with any front or back pages.
1014 * we are now going to focus on the center page (i.e. the one we've
1015 * faulted on). if we have faulted on the top (anon) layer
1016 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1017 * not touched it yet). if we have faulted on the bottom (uobj)
1018 * layer [i.e. case 2] and the page was both present and available,
1019 * then we've got a pointer to it as "uobjpage" and we've already
1020 * made it BUSY.
1021 */
1022
1023 /*
1024 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1025 */
1026
1027 /*
1028 * redirect case 2: if we are not shadowed, go to case 2.
1029 */
1030
1031 if (shadowed == FALSE)
1032 goto Case2;
1033
1034 /* locked: maps(read), amap */
1035
1036 /*
1037 * handle case 1: fault on an anon in our amap
1038 */
1039
1040 anon = anons[centeridx];
1041 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1042 simple_lock(&anon->an_lock);
1043
1044 /* locked: maps(read), amap, anon */
1045
1046 /*
1047 * no matter if we have case 1A or case 1B we are going to need to
1048 * have the anon's memory resident. ensure that now.
1049 */
1050
1051 /*
1052 * let uvmfault_anonget do the dirty work.
1053 * if it fails (!OK) it will unlock everything for us.
1054 * if it succeeds, locks are still valid and locked.
1055 * also, if it is OK, then the anon's page is on the queues.
1056 * if the page is on loan from a uvm_object, then anonget will
1057 * lock that object for us if it does not fail.
1058 */
1059
1060 result = uvmfault_anonget(&ufi, amap, anon);
1061 switch (result) {
1062 case VM_PAGER_OK:
1063 break;
1064
1065 case VM_PAGER_REFAULT:
1066 goto ReFault;
1067
1068 case VM_PAGER_AGAIN:
1069 tsleep(&lbolt, PVM, "fltagain1", 0);
1070 goto ReFault;
1071
1072 default:
1073 #ifdef DIAGNOSTIC
1074 panic("uvm_fault: uvmfault_anonget -> %d", result);
1075 #else
1076 return (KERN_PROTECTION_FAILURE);
1077 #endif
1078 }
1079
1080 /*
1081 * uobj is non null if the page is on loan from an object (i.e. uobj)
1082 */
1083
1084 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1085
1086 /* locked: maps(read), amap, anon, uobj(if one) */
1087
1088 /*
1089 * special handling for loaned pages
1090 */
1091
1092 if (anon->u.an_page->loan_count) {
1093
1094 if ((access_type & VM_PROT_WRITE) == 0) {
1095
1096 /*
1097 * for read faults on loaned pages we just cap the
1098 * protection at read-only.
1099 */
1100
1101 enter_prot = enter_prot & ~VM_PROT_WRITE;
1102
1103 } else {
1104 /*
1105 * note that we can't allow writes into a loaned page!
1106 *
1107 * if we have a write fault on a loaned page in an
1108 * anon then we need to look at the anon's ref count.
1109 * if it is greater than one then we are going to do
1110 * a normal copy-on-write fault into a new anon (this
1111 * is not a problem). however, if the reference count
1112 * is one (a case where we would normally allow a
1113 * write directly to the page) then we need to kill
1114 * the loan before we continue.
1115 */
1116
1117 /* >1 case is already ok */
1118 if (anon->an_ref == 1) {
1119
1120 /* get new un-owned replacement page */
1121 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1122 if (pg == NULL) {
1123 uvmfault_unlockall(&ufi, amap, uobj,
1124 anon);
1125 uvm_wait("flt_noram2");
1126 goto ReFault;
1127 }
1128
1129 /*
1130 * copy data, kill loan, and drop uobj lock
1131 * (if any)
1132 */
1133 /* copy old -> new */
1134 uvm_pagecopy(anon->u.an_page, pg);
1135
1136 /* force reload */
1137 pmap_page_protect(anon->u.an_page,
1138 VM_PROT_NONE);
1139 uvm_lock_pageq(); /* KILL loan */
1140 if (uobj)
1141 /* if we were loaning */
1142 anon->u.an_page->loan_count--;
1143 anon->u.an_page->uanon = NULL;
1144 /* in case we owned */
1145 anon->u.an_page->pqflags &= ~PQ_ANON;
1146 uvm_unlock_pageq();
1147 if (uobj) {
1148 simple_unlock(&uobj->vmobjlock);
1149 uobj = NULL;
1150 }
1151
1152 /* install new page in anon */
1153 anon->u.an_page = pg;
1154 pg->uanon = anon;
1155 pg->pqflags |= PQ_ANON;
1156 pg->flags &= ~(PG_BUSY|PG_FAKE);
1157 UVM_PAGE_OWN(pg, NULL);
1158
1159 /* done! */
1160 } /* ref == 1 */
1161 } /* write fault */
1162 } /* loan count */
1163
1164 /*
1165 * if we are case 1B then we will need to allocate a new blank
1166 * anon to transfer the data into. note that we have a lock
1167 * on anon, so no one can busy or release the page until we are done.
1168 * also note that the ref count can't drop to zero here because
1169 * it is > 1 and we are only dropping one ref.
1170 *
1171 * in the (hopefully very rare) case that we are out of RAM we
1172 * will unlock, wait for more RAM, and refault.
1173 *
1174 * if we are out of anon VM we kill the process (XXX: could wait?).
1175 */
1176
1177 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) {
1178
1179 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1180 uvmexp.flt_acow++;
1181 oanon = anon; /* oanon = old, locked anon */
1182 anon = uvm_analloc();
1183 if (anon)
1184 pg = uvm_pagealloc(NULL, 0, anon, 0);
1185
1186 /* check for out of RAM */
1187 if (anon == NULL || pg == NULL) {
1188 if (anon)
1189 uvm_anfree(anon);
1190 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1191 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1192 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1193 UVMHIST_LOG(maphist,
1194 "<- failed. out of VM",0,0,0,0);
1195 uvmexp.fltnoanon++;
1196 return (KERN_RESOURCE_SHORTAGE);
1197 }
1198
1199 uvmexp.fltnoram++;
1200 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1201 goto ReFault;
1202 }
1203
1204 /* got all resources, replace anon with nanon */
1205
1206 uvm_pagecopy(oanon->u.an_page, pg); /* pg now !PG_CLEAN */
1207 pg->flags &= ~(PG_BUSY|PG_FAKE); /* un-busy! new page */
1208 UVM_PAGE_OWN(pg, NULL);
1209 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1210 anon, 1);
1211
1212 /* deref: can not drop to zero here by defn! */
1213 oanon->an_ref--;
1214
1215 /*
1216 * note: oanon still locked. anon is _not_ locked, but we
1217 * have the sole references to in from amap which _is_ locked.
1218 * thus, no one can get at it until we are done with it.
1219 */
1220
1221 } else {
1222
1223 uvmexp.flt_anon++;
1224 oanon = anon; /* old, locked anon is same as anon */
1225 pg = anon->u.an_page;
1226 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1227 enter_prot = enter_prot & ~VM_PROT_WRITE;
1228
1229 }
1230
1231 /* locked: maps(read), amap, oanon */
1232
1233 /*
1234 * now map the page in ...
1235 * XXX: old fault unlocks object before pmap_enter. this seems
1236 * suspect since some other thread could blast the page out from
1237 * under us between the unlock and the pmap_enter.
1238 */
1239
1240 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1241 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1242 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1243 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1244 != KERN_SUCCESS) {
1245 /*
1246 * No need to undo what we did; we can simply think of
1247 * this as the pmap throwing away the mapping information.
1248 *
1249 * We do, however, have to go through the ReFault path,
1250 * as the map may change while we're asleep.
1251 */
1252 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1253 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1254 if (uvmexp.swpgonly == uvmexp.swpages) {
1255 UVMHIST_LOG(maphist,
1256 "<- failed. out of VM",0,0,0,0);
1257 /* XXX instrumentation */
1258 return (KERN_RESOURCE_SHORTAGE);
1259 }
1260 /* XXX instrumentation */
1261 uvm_wait("flt_pmfail1");
1262 goto ReFault;
1263 }
1264
1265 /*
1266 * ... update the page queues.
1267 */
1268
1269 uvm_lock_pageq();
1270
1271 if (fault_type == VM_FAULT_WIRE) {
1272 uvm_pagewire(pg);
1273
1274 /*
1275 * since the now-wired page cannot be paged out,
1276 * release its swap resources for others to use.
1277 * since an anon with no swap cannot be PG_CLEAN,
1278 * clear its clean flag now.
1279 */
1280
1281 pg->flags &= ~(PG_CLEAN);
1282 uvm_anon_dropswap(anon);
1283 } else {
1284 /* activate it */
1285 uvm_pageactivate(pg);
1286 }
1287
1288 uvm_unlock_pageq();
1289
1290 /*
1291 * done case 1! finish up by unlocking everything and returning success
1292 */
1293
1294 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1295 return (KERN_SUCCESS);
1296
1297
1298 Case2:
1299 /*
1300 * handle case 2: faulting on backing object or zero fill
1301 */
1302
1303 /*
1304 * locked:
1305 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1306 */
1307
1308 /*
1309 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1310 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1311 * have a backing object, check and see if we are going to promote
1312 * the data up to an anon during the fault.
1313 */
1314
1315 if (uobj == NULL) {
1316 uobjpage = PGO_DONTCARE;
1317 promote = TRUE; /* always need anon here */
1318 } else {
1319 KASSERT(uobjpage != PGO_DONTCARE);
1320 promote = (access_type & VM_PROT_WRITE) &&
1321 UVM_ET_ISCOPYONWRITE(ufi.entry);
1322 }
1323 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1324 promote, (uobj == NULL), 0,0);
1325
1326 /*
1327 * if uobjpage is not null then we do not need to do I/O to get the
1328 * uobjpage.
1329 *
1330 * if uobjpage is null, then we need to unlock and ask the pager to
1331 * get the data for us. once we have the data, we need to reverify
1332 * the state the world. we are currently not holding any resources.
1333 */
1334
1335 if (uobjpage) {
1336 /* update rusage counters */
1337 curproc->p_addr->u_stats.p_ru.ru_minflt++;
1338 } else {
1339 /* update rusage counters */
1340 curproc->p_addr->u_stats.p_ru.ru_majflt++;
1341
1342 /* locked: maps(read), amap(if there), uobj */
1343 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1344 /* locked: uobj */
1345
1346 uvmexp.fltget++;
1347 gotpages = 1;
1348 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1349 result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1350 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1351 PGO_SYNCIO);
1352
1353 /* locked: uobjpage(if result OK) */
1354
1355 /*
1356 * recover from I/O
1357 */
1358
1359 if (result != VM_PAGER_OK) {
1360 KASSERT(result != VM_PAGER_PEND);
1361
1362 if (result == VM_PAGER_AGAIN) {
1363 UVMHIST_LOG(maphist,
1364 " pgo_get says TRY AGAIN!",0,0,0,0);
1365 tsleep((caddr_t)&lbolt, PVM, "fltagain2", 0);
1366 goto ReFault;
1367 }
1368
1369 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1370 result, 0,0,0);
1371 return (KERN_PROTECTION_FAILURE); /* XXX i/o error */
1372 }
1373
1374 /* locked: uobjpage */
1375
1376 /*
1377 * re-verify the state of the world by first trying to relock
1378 * the maps. always relock the object.
1379 */
1380
1381 locked = uvmfault_relock(&ufi);
1382 if (locked && amap)
1383 amap_lock(amap);
1384 simple_lock(&uobj->vmobjlock);
1385
1386 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1387 /* locked(!locked): uobj, uobjpage */
1388
1389 /*
1390 * verify that the page has not be released and re-verify
1391 * that amap slot is still free. if there is a problem,
1392 * we unlock and clean up.
1393 */
1394
1395 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1396 (locked && amap &&
1397 amap_lookup(&ufi.entry->aref,
1398 ufi.orig_rvaddr - ufi.entry->start))) {
1399 if (locked)
1400 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1401 locked = FALSE;
1402 }
1403
1404 /*
1405 * didn't get the lock? release the page and retry.
1406 */
1407
1408 if (locked == FALSE) {
1409
1410 UVMHIST_LOG(maphist,
1411 " wasn't able to relock after fault: retry",
1412 0,0,0,0);
1413 if (uobjpage->flags & PG_WANTED)
1414 /* still holding object lock */
1415 wakeup(uobjpage);
1416
1417 if (uobjpage->flags & PG_RELEASED) {
1418 uvmexp.fltpgrele++;
1419 KASSERT(uobj->pgops->pgo_releasepg != NULL);
1420
1421 /* frees page */
1422 if (uobj->pgops->pgo_releasepg(uobjpage,NULL))
1423 /* unlock if still alive */
1424 simple_unlock(&uobj->vmobjlock);
1425 goto ReFault;
1426 }
1427
1428 uvm_lock_pageq();
1429 /* make sure it is in queues */
1430 uvm_pageactivate(uobjpage);
1431
1432 uvm_unlock_pageq();
1433 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1434 UVM_PAGE_OWN(uobjpage, NULL);
1435 simple_unlock(&uobj->vmobjlock);
1436 goto ReFault;
1437
1438 }
1439
1440 /*
1441 * we have the data in uobjpage which is PG_BUSY and
1442 * !PG_RELEASED. we are holding object lock (so the page
1443 * can't be released on us).
1444 */
1445
1446 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1447 }
1448
1449 /*
1450 * locked:
1451 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1452 */
1453
1454 /*
1455 * notes:
1456 * - at this point uobjpage can not be NULL
1457 * - at this point uobjpage can not be PG_RELEASED (since we checked
1458 * for it above)
1459 * - at this point uobjpage could be PG_WANTED (handle later)
1460 */
1461
1462 if (promote == FALSE) {
1463
1464 /*
1465 * we are not promoting. if the mapping is COW ensure that we
1466 * don't give more access than we should (e.g. when doing a read
1467 * fault on a COPYONWRITE mapping we want to map the COW page in
1468 * R/O even though the entry protection could be R/W).
1469 *
1470 * set "pg" to the page we want to map in (uobjpage, usually)
1471 */
1472
1473 uvmexp.flt_obj++;
1474 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1475 enter_prot &= ~VM_PROT_WRITE;
1476 pg = uobjpage; /* map in the actual object */
1477
1478 /* assert(uobjpage != PGO_DONTCARE) */
1479
1480 /*
1481 * we are faulting directly on the page. be careful
1482 * about writing to loaned pages...
1483 */
1484 if (uobjpage->loan_count) {
1485
1486 if ((access_type & VM_PROT_WRITE) == 0) {
1487 /* read fault: cap the protection at readonly */
1488 /* cap! */
1489 enter_prot = enter_prot & ~VM_PROT_WRITE;
1490 } else {
1491 /* write fault: must break the loan here */
1492
1493 /* alloc new un-owned page */
1494 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1495
1496 if (pg == NULL) {
1497 /*
1498 * drop ownership of page, it can't
1499 * be released
1500 */
1501 if (uobjpage->flags & PG_WANTED)
1502 wakeup(uobjpage);
1503 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1504 UVM_PAGE_OWN(uobjpage, NULL);
1505
1506 uvm_lock_pageq();
1507 /* activate: we will need it later */
1508 uvm_pageactivate(uobjpage);
1509
1510 uvm_unlock_pageq();
1511 uvmfault_unlockall(&ufi, amap, uobj,
1512 NULL);
1513 UVMHIST_LOG(maphist,
1514 " out of RAM breaking loan, waiting",
1515 0,0,0,0);
1516 uvmexp.fltnoram++;
1517 uvm_wait("flt_noram4");
1518 goto ReFault;
1519 }
1520
1521 /*
1522 * copy the data from the old page to the new
1523 * one and clear the fake/clean flags on the
1524 * new page (keep it busy). force a reload
1525 * of the old page by clearing it from all
1526 * pmaps. then lock the page queues to
1527 * rename the pages.
1528 */
1529 uvm_pagecopy(uobjpage, pg); /* old -> new */
1530 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1531 pmap_page_protect(uobjpage, VM_PROT_NONE);
1532 if (uobjpage->flags & PG_WANTED)
1533 wakeup(uobjpage);
1534 /* uobj still locked */
1535 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1536 UVM_PAGE_OWN(uobjpage, NULL);
1537
1538 uvm_lock_pageq();
1539 offset = uobjpage->offset;
1540 /* remove old page */
1541 uvm_pagerealloc(uobjpage, NULL, 0);
1542
1543 /*
1544 * at this point we have absolutely no
1545 * control over uobjpage
1546 */
1547 /* install new page */
1548 uvm_pagerealloc(pg, uobj, offset);
1549 uvm_unlock_pageq();
1550
1551 /*
1552 * done! loan is broken and "pg" is
1553 * PG_BUSY. it can now replace uobjpage.
1554 */
1555
1556 uobjpage = pg;
1557
1558 } /* write fault case */
1559 } /* if loan_count */
1560
1561 } else {
1562
1563 /*
1564 * if we are going to promote the data to an anon we
1565 * allocate a blank anon here and plug it into our amap.
1566 */
1567 #if DIAGNOSTIC
1568 if (amap == NULL)
1569 panic("uvm_fault: want to promote data, but no anon");
1570 #endif
1571
1572 anon = uvm_analloc();
1573 if (anon) {
1574 /*
1575 * In `Fill in data...' below, if
1576 * uobjpage == PGO_DONTCARE, we want
1577 * a zero'd, dirty page, so have
1578 * uvm_pagealloc() do that for us.
1579 */
1580 pg = uvm_pagealloc(NULL, 0, anon,
1581 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1582 }
1583
1584 /*
1585 * out of memory resources?
1586 */
1587 if (anon == NULL || pg == NULL) {
1588
1589 /*
1590 * arg! must unbusy our page and fail or sleep.
1591 */
1592 if (uobjpage != PGO_DONTCARE) {
1593 if (uobjpage->flags & PG_WANTED)
1594 /* still holding object lock */
1595 wakeup(uobjpage);
1596
1597 uvm_lock_pageq();
1598 uvm_pageactivate(uobjpage);
1599 uvm_unlock_pageq();
1600 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1601 UVM_PAGE_OWN(uobjpage, NULL);
1602 }
1603
1604 /* unlock and fail ... */
1605 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1606 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1607 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1608 UVMHIST_LOG(maphist, " promote: out of VM",
1609 0,0,0,0);
1610 uvmexp.fltnoanon++;
1611 return (KERN_RESOURCE_SHORTAGE);
1612 }
1613
1614 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1615 0,0,0,0);
1616 anon->an_ref--;
1617 uvm_anfree(anon);
1618 uvmexp.fltnoram++;
1619 uvm_wait("flt_noram5");
1620 goto ReFault;
1621 }
1622
1623 /*
1624 * fill in the data
1625 */
1626
1627 if (uobjpage != PGO_DONTCARE) {
1628 uvmexp.flt_prcopy++;
1629 /* copy page [pg now dirty] */
1630 uvm_pagecopy(uobjpage, pg);
1631
1632 /*
1633 * promote to shared amap? make sure all sharing
1634 * procs see it
1635 */
1636 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1637 pmap_page_protect(uobjpage, VM_PROT_NONE);
1638 }
1639
1640 /*
1641 * dispose of uobjpage. it can't be PG_RELEASED
1642 * since we still hold the object lock.
1643 * drop handle to uobj as well.
1644 */
1645
1646 if (uobjpage->flags & PG_WANTED)
1647 /* still have the obj lock */
1648 wakeup(uobjpage);
1649 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1650 UVM_PAGE_OWN(uobjpage, NULL);
1651 uvm_lock_pageq();
1652 uvm_pageactivate(uobjpage);
1653 uvm_unlock_pageq();
1654 simple_unlock(&uobj->vmobjlock);
1655 uobj = NULL;
1656
1657 UVMHIST_LOG(maphist,
1658 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1659 uobjpage, anon, pg, 0);
1660
1661 } else {
1662 uvmexp.flt_przero++;
1663 /*
1664 * Page is zero'd and marked dirty by uvm_pagealloc()
1665 * above.
1666 */
1667 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1668 anon, pg, 0, 0);
1669 }
1670
1671 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1672 anon, 0);
1673
1674 }
1675
1676 /*
1677 * locked:
1678 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1679 *
1680 * note: pg is either the uobjpage or the new page in the new anon
1681 */
1682
1683 /*
1684 * all resources are present. we can now map it in and free our
1685 * resources.
1686 */
1687
1688 UVMHIST_LOG(maphist,
1689 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1690 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1691 KASSERT(access_type == VM_PROT_READ || (pg->flags & PG_RDONLY) == 0);
1692 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1693 pg->flags & PG_RDONLY ? VM_PROT_READ : enter_prot,
1694 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1695 != KERN_SUCCESS) {
1696
1697 /*
1698 * No need to undo what we did; we can simply think of
1699 * this as the pmap throwing away the mapping information.
1700 *
1701 * We do, however, have to go through the ReFault path,
1702 * as the map may change while we're asleep.
1703 */
1704
1705 if (pg->flags & PG_WANTED)
1706 wakeup(pg); /* lock still held */
1707
1708 /*
1709 * note that pg can't be PG_RELEASED since we did not drop
1710 * the object lock since the last time we checked.
1711 */
1712
1713 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1714 UVM_PAGE_OWN(pg, NULL);
1715 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1716 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1717 if (uvmexp.swpgonly == uvmexp.swpages) {
1718 UVMHIST_LOG(maphist,
1719 "<- failed. out of VM",0,0,0,0);
1720 /* XXX instrumentation */
1721 return (KERN_RESOURCE_SHORTAGE);
1722 }
1723 /* XXX instrumentation */
1724 uvm_wait("flt_pmfail2");
1725 goto ReFault;
1726 }
1727
1728 uvm_lock_pageq();
1729
1730 if (fault_type == VM_FAULT_WIRE) {
1731 uvm_pagewire(pg);
1732 if (pg->pqflags & PQ_AOBJ) {
1733
1734 /*
1735 * since the now-wired page cannot be paged out,
1736 * release its swap resources for others to use.
1737 * since an aobj page with no swap cannot be PG_CLEAN,
1738 * clear its clean flag now.
1739 */
1740
1741 pg->flags &= ~(PG_CLEAN);
1742 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1743 }
1744 } else {
1745 /* activate it */
1746 uvm_pageactivate(pg);
1747 }
1748 uvm_unlock_pageq();
1749
1750 if (pg->flags & PG_WANTED)
1751 wakeup(pg); /* lock still held */
1752
1753 /*
1754 * note that pg can't be PG_RELEASED since we did not drop the object
1755 * lock since the last time we checked.
1756 */
1757
1758 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1759 UVM_PAGE_OWN(pg, NULL);
1760 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1761
1762 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1763 return (KERN_SUCCESS);
1764 }
1765
1766
1767 /*
1768 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1769 *
1770 * => map may be read-locked by caller, but MUST NOT be write-locked.
1771 * => if map is read-locked, any operations which may cause map to
1772 * be write-locked in uvm_fault() must be taken care of by
1773 * the caller. See uvm_map_pageable().
1774 */
1775
1776 int
1777 uvm_fault_wire(map, start, end, access_type)
1778 vm_map_t map;
1779 vaddr_t start, end;
1780 vm_prot_t access_type;
1781 {
1782 vaddr_t va;
1783 pmap_t pmap;
1784 int rv;
1785
1786 pmap = vm_map_pmap(map);
1787
1788 /*
1789 * now fault it in a page at a time. if the fault fails then we have
1790 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1791 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1792 */
1793
1794 for (va = start ; va < end ; va += PAGE_SIZE) {
1795 rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1796 if (rv) {
1797 if (va != start) {
1798 uvm_fault_unwire(map, start, va);
1799 }
1800 return (rv);
1801 }
1802 }
1803
1804 return (KERN_SUCCESS);
1805 }
1806
1807 /*
1808 * uvm_fault_unwire(): unwire range of virtual space.
1809 */
1810
1811 void
1812 uvm_fault_unwire(map, start, end)
1813 vm_map_t map;
1814 vaddr_t start, end;
1815 {
1816
1817 vm_map_lock_read(map);
1818 uvm_fault_unwire_locked(map, start, end);
1819 vm_map_unlock_read(map);
1820 }
1821
1822 /*
1823 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1824 *
1825 * => map must be at least read-locked.
1826 */
1827
1828 void
1829 uvm_fault_unwire_locked(map, start, end)
1830 vm_map_t map;
1831 vaddr_t start, end;
1832 {
1833 vm_map_entry_t entry;
1834 pmap_t pmap = vm_map_pmap(map);
1835 vaddr_t va;
1836 paddr_t pa;
1837 struct vm_page *pg;
1838
1839 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1840
1841 /*
1842 * we assume that the area we are unwiring has actually been wired
1843 * in the first place. this means that we should be able to extract
1844 * the PAs from the pmap. we also lock out the page daemon so that
1845 * we can call uvm_pageunwire.
1846 */
1847
1848 uvm_lock_pageq();
1849
1850 /*
1851 * find the beginning map entry for the region.
1852 */
1853 #ifdef DIAGNOSTIC
1854 if (start < vm_map_min(map) || end > vm_map_max(map))
1855 panic("uvm_fault_unwire_locked: address out of range");
1856 #endif
1857 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1858 panic("uvm_fault_unwire_locked: address not in map");
1859
1860 for (va = start; va < end ; va += PAGE_SIZE) {
1861 if (pmap_extract(pmap, va, &pa) == FALSE)
1862 panic("uvm_fault_unwire_locked: unwiring "
1863 "non-wired memory");
1864
1865 /*
1866 * make sure the current entry is for the address we're
1867 * dealing with. if not, grab the next entry.
1868 */
1869 #ifdef DIAGNOSTIC
1870 if (va < entry->start)
1871 panic("uvm_fault_unwire_locked: hole 1");
1872 #endif
1873 if (va >= entry->end) {
1874 #ifdef DIAGNOSTIC
1875 if (entry->next == &map->header ||
1876 entry->next->start > entry->end)
1877 panic("uvm_fault_unwire_locked: hole 2");
1878 #endif
1879 entry = entry->next;
1880 }
1881
1882 /*
1883 * if the entry is no longer wired, tell the pmap.
1884 */
1885 if (VM_MAPENT_ISWIRED(entry) == 0)
1886 pmap_unwire(pmap, va);
1887
1888 pg = PHYS_TO_VM_PAGE(pa);
1889 if (pg)
1890 uvm_pageunwire(pg);
1891 }
1892
1893 uvm_unlock_pageq();
1894 }
1895