uvm_fault.c revision 1.56.2.1 1 /* $NetBSD: uvm_fault.c,v 1.56.2.1 2001/03/05 22:50:09 nathanw Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 #include "opt_uvmhist.h"
38
39 /*
40 * uvm_fault.c: fault handler
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/lwp.h>
47 #include <sys/proc.h>
48 #include <sys/malloc.h>
49 #include <sys/mman.h>
50 #include <sys/user.h>
51
52 #include <uvm/uvm.h>
53
54 /*
55 *
56 * a word on page faults:
57 *
58 * types of page faults we handle:
59 *
60 * CASE 1: upper layer faults CASE 2: lower layer faults
61 *
62 * CASE 1A CASE 1B CASE 2A CASE 2B
63 * read/write1 write>1 read/write +-cow_write/zero
64 * | | | |
65 * +--|--+ +--|--+ +-----+ + | + | +-----+
66 * amap | V | | ----------->new| | | | ^ |
67 * +-----+ +-----+ +-----+ + | + | +--|--+
68 * | | |
69 * +-----+ +-----+ +--|--+ | +--|--+
70 * uobj | d/c | | d/c | | V | +----| |
71 * +-----+ +-----+ +-----+ +-----+
72 *
73 * d/c = don't care
74 *
75 * case [0]: layerless fault
76 * no amap or uobj is present. this is an error.
77 *
78 * case [1]: upper layer fault [anon active]
79 * 1A: [read] or [write with anon->an_ref == 1]
80 * I/O takes place in top level anon and uobj is not touched.
81 * 1B: [write with anon->an_ref > 1]
82 * new anon is alloc'd and data is copied off ["COW"]
83 *
84 * case [2]: lower layer fault [uobj]
85 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
86 * I/O takes place directly in object.
87 * 2B: [write to copy_on_write] or [read on NULL uobj]
88 * data is "promoted" from uobj to a new anon.
89 * if uobj is null, then we zero fill.
90 *
91 * we follow the standard UVM locking protocol ordering:
92 *
93 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
94 * we hold a PG_BUSY page if we unlock for I/O
95 *
96 *
97 * the code is structured as follows:
98 *
99 * - init the "IN" params in the ufi structure
100 * ReFault:
101 * - do lookups [locks maps], check protection, handle needs_copy
102 * - check for case 0 fault (error)
103 * - establish "range" of fault
104 * - if we have an amap lock it and extract the anons
105 * - if sequential advice deactivate pages behind us
106 * - at the same time check pmap for unmapped areas and anon for pages
107 * that we could map in (and do map it if found)
108 * - check object for resident pages that we could map in
109 * - if (case 2) goto Case2
110 * - >>> handle case 1
111 * - ensure source anon is resident in RAM
112 * - if case 1B alloc new anon and copy from source
113 * - map the correct page in
114 * Case2:
115 * - >>> handle case 2
116 * - ensure source page is resident (if uobj)
117 * - if case 2B alloc new anon and copy from source (could be zero
118 * fill if uobj == NULL)
119 * - map the correct page in
120 * - done!
121 *
122 * note on paging:
123 * if we have to do I/O we place a PG_BUSY page in the correct object,
124 * unlock everything, and do the I/O. when I/O is done we must reverify
125 * the state of the world before assuming that our data structures are
126 * valid. [because mappings could change while the map is unlocked]
127 *
128 * alternative 1: unbusy the page in question and restart the page fault
129 * from the top (ReFault). this is easy but does not take advantage
130 * of the information that we already have from our previous lookup,
131 * although it is possible that the "hints" in the vm_map will help here.
132 *
133 * alternative 2: the system already keeps track of a "version" number of
134 * a map. [i.e. every time you write-lock a map (e.g. to change a
135 * mapping) you bump the version number up by one...] so, we can save
136 * the version number of the map before we release the lock and start I/O.
137 * then when I/O is done we can relock and check the version numbers
138 * to see if anything changed. this might save us some over 1 because
139 * we don't have to unbusy the page and may be less compares(?).
140 *
141 * alternative 3: put in backpointers or a way to "hold" part of a map
142 * in place while I/O is in progress. this could be complex to
143 * implement (especially with structures like amap that can be referenced
144 * by multiple map entries, and figuring out what should wait could be
145 * complex as well...).
146 *
147 * given that we are not currently multiprocessor or multithreaded we might
148 * as well choose alternative 2 now. maybe alternative 3 would be useful
149 * in the future. XXX keep in mind for future consideration//rechecking.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be max() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
181 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
182
183 /*
184 * inline functions
185 */
186
187 /*
188 * uvmfault_anonflush: try and deactivate pages in specified anons
189 *
190 * => does not have to deactivate page if it is busy
191 */
192
193 static __inline void
194 uvmfault_anonflush(anons, n)
195 struct vm_anon **anons;
196 int n;
197 {
198 int lcv;
199 struct vm_page *pg;
200
201 for (lcv = 0 ; lcv < n ; lcv++) {
202 if (anons[lcv] == NULL)
203 continue;
204 simple_lock(&anons[lcv]->an_lock);
205 pg = anons[lcv]->u.an_page;
206 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
207 uvm_lock_pageq();
208 if (pg->wire_count == 0) {
209 pmap_clear_reference(pg);
210 uvm_pagedeactivate(pg);
211 }
212 uvm_unlock_pageq();
213 }
214 simple_unlock(&anons[lcv]->an_lock);
215 }
216 }
217
218 /*
219 * normal functions
220 */
221
222 /*
223 * uvmfault_amapcopy: clear "needs_copy" in a map.
224 *
225 * => called with VM data structures unlocked (usually, see below)
226 * => we get a write lock on the maps and clear needs_copy for a VA
227 * => if we are out of RAM we sleep (waiting for more)
228 */
229
230 static void
231 uvmfault_amapcopy(ufi)
232 struct uvm_faultinfo *ufi;
233 {
234
235 /*
236 * while we haven't done the job
237 */
238
239 while (1) {
240
241 /*
242 * no mapping? give up.
243 */
244
245 if (uvmfault_lookup(ufi, TRUE) == FALSE)
246 return;
247
248 /*
249 * copy if needed.
250 */
251
252 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
253 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
254 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
255
256 /*
257 * didn't work? must be out of RAM. unlock and sleep.
258 */
259
260 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
261 uvmfault_unlockmaps(ufi, TRUE);
262 uvm_wait("fltamapcopy");
263 continue;
264 }
265
266 /*
267 * got it! unlock and return.
268 */
269
270 uvmfault_unlockmaps(ufi, TRUE);
271 return;
272 }
273 /*NOTREACHED*/
274 }
275
276 /*
277 * uvmfault_anonget: get data in an anon into a non-busy, non-released
278 * page in that anon.
279 *
280 * => maps, amap, and anon locked by caller.
281 * => if we fail (result != VM_PAGER_OK) we unlock everything.
282 * => if we are successful, we return with everything still locked.
283 * => we don't move the page on the queues [gets moved later]
284 * => if we allocate a new page [we_own], it gets put on the queues.
285 * either way, the result is that the page is on the queues at return time
286 * => for pages which are on loan from a uvm_object (and thus are not
287 * owned by the anon): if successful, we return with the owning object
288 * locked. the caller must unlock this object when it unlocks everything
289 * else.
290 */
291
292 int
293 uvmfault_anonget(ufi, amap, anon)
294 struct uvm_faultinfo *ufi;
295 struct vm_amap *amap;
296 struct vm_anon *anon;
297 {
298 boolean_t we_own; /* we own anon's page? */
299 boolean_t locked; /* did we relock? */
300 struct vm_page *pg;
301 int result;
302 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
303
304 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
305
306 result = 0; /* XXX shut up gcc */
307 uvmexp.fltanget++;
308 /* bump rusage counters */
309 if (anon->u.an_page)
310 curproc->l_proc->p_stats->p_ru.ru_minflt++;
311 else
312 curproc->l_proc->p_stats->p_ru.ru_majflt++;
313
314 /*
315 * loop until we get it, or fail.
316 */
317
318 while (1) {
319
320 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
321 pg = anon->u.an_page;
322
323 /*
324 * if there is a resident page and it is loaned, then anon
325 * may not own it. call out to uvm_anon_lockpage() to ensure
326 * the real owner of the page has been identified and locked.
327 */
328
329 if (pg && pg->loan_count)
330 pg = uvm_anon_lockloanpg(anon);
331
332 /*
333 * page there? make sure it is not busy/released.
334 */
335
336 if (pg) {
337
338 /*
339 * at this point, if the page has a uobject [meaning
340 * we have it on loan], then that uobject is locked
341 * by us! if the page is busy, we drop all the
342 * locks (including uobject) and try again.
343 */
344
345 if ((pg->flags & (PG_BUSY|PG_RELEASED)) == 0) {
346 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
347 return (VM_PAGER_OK);
348 }
349 pg->flags |= PG_WANTED;
350 uvmexp.fltpgwait++;
351
352 /*
353 * the last unlock must be an atomic unlock+wait on
354 * the owner of page
355 */
356 if (pg->uobject) { /* owner is uobject ? */
357 uvmfault_unlockall(ufi, amap, NULL, anon);
358 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
359 0,0,0);
360 UVM_UNLOCK_AND_WAIT(pg,
361 &pg->uobject->vmobjlock,
362 FALSE, "anonget1",0);
363 } else {
364 /* anon owns page */
365 uvmfault_unlockall(ufi, amap, NULL, NULL);
366 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
367 0,0,0);
368 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
369 "anonget2",0);
370 }
371 /* ready to relock and try again */
372
373 } else {
374
375 /*
376 * no page, we must try and bring it in.
377 */
378 pg = uvm_pagealloc(NULL, 0, anon, 0);
379
380 if (pg == NULL) { /* out of RAM. */
381
382 uvmfault_unlockall(ufi, amap, NULL, anon);
383 uvmexp.fltnoram++;
384 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
385 0,0,0);
386 uvm_wait("flt_noram1");
387 /* ready to relock and try again */
388
389 } else {
390
391 /* we set the PG_BUSY bit */
392 we_own = TRUE;
393 uvmfault_unlockall(ufi, amap, NULL, anon);
394
395 /*
396 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
397 * page into the uvm_swap_get function with
398 * all data structures unlocked. note that
399 * it is ok to read an_swslot here because
400 * we hold PG_BUSY on the page.
401 */
402 uvmexp.pageins++;
403 result = uvm_swap_get(pg, anon->an_swslot,
404 PGO_SYNCIO);
405
406 /*
407 * we clean up after the i/o below in the
408 * "we_own" case
409 */
410 /* ready to relock and try again */
411 }
412 }
413
414 /*
415 * now relock and try again
416 */
417
418 locked = uvmfault_relock(ufi);
419 if (locked && amap != NULL) {
420 amap_lock(amap);
421 }
422 if (locked || we_own)
423 simple_lock(&anon->an_lock);
424
425 /*
426 * if we own the page (i.e. we set PG_BUSY), then we need
427 * to clean up after the I/O. there are three cases to
428 * consider:
429 * [1] page released during I/O: free anon and ReFault.
430 * [2] I/O not OK. free the page and cause the fault
431 * to fail.
432 * [3] I/O OK! activate the page and sync with the
433 * non-we_own case (i.e. drop anon lock if not locked).
434 */
435
436 if (we_own) {
437
438 if (pg->flags & PG_WANTED) {
439 /* still holding object lock */
440 wakeup(pg);
441 }
442 /* un-busy! */
443 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
444 UVM_PAGE_OWN(pg, NULL);
445
446 /*
447 * if we were RELEASED during I/O, then our anon is
448 * no longer part of an amap. we need to free the
449 * anon and try again.
450 */
451 if (pg->flags & PG_RELEASED) {
452 pmap_page_protect(pg, VM_PROT_NONE);
453 simple_unlock(&anon->an_lock);
454 uvm_anfree(anon); /* frees page for us */
455 if (locked)
456 uvmfault_unlockall(ufi, amap, NULL,
457 NULL);
458 uvmexp.fltpgrele++;
459 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
460 return (VM_PAGER_REFAULT); /* refault! */
461 }
462
463 if (result != VM_PAGER_OK) {
464 KASSERT(result != VM_PAGER_PEND);
465
466 /* remove page from anon */
467 anon->u.an_page = NULL;
468
469 /*
470 * remove the swap slot from the anon
471 * and mark the anon as having no real slot.
472 * don't free the swap slot, thus preventing
473 * it from being used again.
474 */
475 uvm_swap_markbad(anon->an_swslot, 1);
476 anon->an_swslot = SWSLOT_BAD;
477
478 /*
479 * note: page was never !PG_BUSY, so it
480 * can't be mapped and thus no need to
481 * pmap_page_protect it...
482 */
483 uvm_lock_pageq();
484 uvm_pagefree(pg);
485 uvm_unlock_pageq();
486
487 if (locked)
488 uvmfault_unlockall(ufi, amap, NULL,
489 anon);
490 else
491 simple_unlock(&anon->an_lock);
492 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
493 return (VM_PAGER_ERROR);
494 }
495
496 /*
497 * must be OK, clear modify (already PG_CLEAN)
498 * and activate
499 */
500 pmap_clear_modify(pg);
501 uvm_lock_pageq();
502 uvm_pageactivate(pg);
503 uvm_unlock_pageq();
504 if (!locked)
505 simple_unlock(&anon->an_lock);
506 }
507
508 /*
509 * we were not able to relock. restart fault.
510 */
511
512 if (!locked) {
513 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
514 return (VM_PAGER_REFAULT);
515 }
516
517 /*
518 * verify no one has touched the amap and moved the anon on us.
519 */
520
521 if (ufi != NULL &&
522 amap_lookup(&ufi->entry->aref,
523 ufi->orig_rvaddr - ufi->entry->start) != anon) {
524
525 uvmfault_unlockall(ufi, amap, NULL, anon);
526 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
527 return (VM_PAGER_REFAULT);
528 }
529
530 /*
531 * try it again!
532 */
533
534 uvmexp.fltanretry++;
535 continue;
536
537 } /* while (1) */
538
539 /*NOTREACHED*/
540 }
541
542 /*
543 * F A U L T - m a i n e n t r y p o i n t
544 */
545
546 /*
547 * uvm_fault: page fault handler
548 *
549 * => called from MD code to resolve a page fault
550 * => VM data structures usually should be unlocked. however, it is
551 * possible to call here with the main map locked if the caller
552 * gets a write lock, sets it recusive, and then calls us (c.f.
553 * uvm_map_pageable). this should be avoided because it keeps
554 * the map locked off during I/O.
555 */
556
557 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
558 ~VM_PROT_WRITE : VM_PROT_ALL)
559
560 int
561 uvm_fault(orig_map, vaddr, fault_type, access_type)
562 vm_map_t orig_map;
563 vaddr_t vaddr;
564 vm_fault_t fault_type;
565 vm_prot_t access_type;
566 {
567 struct uvm_faultinfo ufi;
568 vm_prot_t enter_prot;
569 boolean_t wired, narrow, promote, locked, shadowed;
570 int npages, nback, nforw, centeridx, result, lcv, gotpages;
571 vaddr_t startva, objaddr, currva, offset, uoff;
572 paddr_t pa;
573 struct vm_amap *amap;
574 struct uvm_object *uobj;
575 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
576 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
577 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
578
579 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
580 orig_map, vaddr, fault_type, access_type);
581
582 anon = NULL;
583 pg = NULL;
584
585 uvmexp.faults++; /* XXX: locking? */
586
587 /*
588 * init the IN parameters in the ufi
589 */
590
591 ufi.orig_map = orig_map;
592 ufi.orig_rvaddr = trunc_page(vaddr);
593 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
594 if (fault_type == VM_FAULT_WIRE)
595 narrow = TRUE; /* don't look for neighborhood
596 * pages on wire */
597 else
598 narrow = FALSE; /* normal fault */
599
600 /*
601 * before we do anything else, if this is a fault on a kernel
602 * address, check to see if the address is managed by an
603 * interrupt-safe map. If it is, we fail immediately. Intrsafe
604 * maps are never pageable, and this approach avoids an evil
605 * locking mess.
606 */
607 if (orig_map == kernel_map && uvmfault_check_intrsafe(&ufi)) {
608 UVMHIST_LOG(maphist, "<- VA 0x%lx in intrsafe map %p",
609 ufi.orig_rvaddr, ufi.map, 0, 0);
610 return (KERN_FAILURE);
611 }
612
613 /*
614 * "goto ReFault" means restart the page fault from ground zero.
615 */
616 ReFault:
617
618 /*
619 * lookup and lock the maps
620 */
621
622 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
623 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
624 return (KERN_INVALID_ADDRESS);
625 }
626 /* locked: maps(read) */
627
628 /*
629 * check protection
630 */
631
632 if ((ufi.entry->protection & access_type) != access_type) {
633 UVMHIST_LOG(maphist,
634 "<- protection failure (prot=0x%x, access=0x%x)",
635 ufi.entry->protection, access_type, 0, 0);
636 uvmfault_unlockmaps(&ufi, FALSE);
637 return (KERN_PROTECTION_FAILURE);
638 }
639
640 /*
641 * if the map is not a pageable map, a page fault always fails.
642 */
643
644 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
645 UVMHIST_LOG(maphist,
646 "<- map %p not pageable", ufi.map, 0, 0, 0);
647 uvmfault_unlockmaps(&ufi, FALSE);
648 return (KERN_FAILURE);
649 }
650
651 /*
652 * "enter_prot" is the protection we want to enter the page in at.
653 * for certain pages (e.g. copy-on-write pages) this protection can
654 * be more strict than ufi.entry->protection. "wired" means either
655 * the entry is wired or we are fault-wiring the pg.
656 */
657
658 enter_prot = ufi.entry->protection;
659 wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE);
660 if (wired)
661 access_type = enter_prot; /* full access for wired */
662
663 /*
664 * handle "needs_copy" case. if we need to copy the amap we will
665 * have to drop our readlock and relock it with a write lock. (we
666 * need a write lock to change anything in a map entry [e.g.
667 * needs_copy]).
668 */
669
670 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
671 if ((access_type & VM_PROT_WRITE) ||
672 (ufi.entry->object.uvm_obj == NULL)) {
673 /* need to clear */
674 UVMHIST_LOG(maphist,
675 " need to clear needs_copy and refault",0,0,0,0);
676 uvmfault_unlockmaps(&ufi, FALSE);
677 uvmfault_amapcopy(&ufi);
678 uvmexp.fltamcopy++;
679 goto ReFault;
680
681 } else {
682
683 /*
684 * ensure that we pmap_enter page R/O since
685 * needs_copy is still true
686 */
687 enter_prot &= ~VM_PROT_WRITE;
688
689 }
690 }
691
692 /*
693 * identify the players
694 */
695
696 amap = ufi.entry->aref.ar_amap; /* top layer */
697 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
698
699 /*
700 * check for a case 0 fault. if nothing backing the entry then
701 * error now.
702 */
703
704 if (amap == NULL && uobj == NULL) {
705 uvmfault_unlockmaps(&ufi, FALSE);
706 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
707 return (KERN_INVALID_ADDRESS);
708 }
709
710 /*
711 * establish range of interest based on advice from mapper
712 * and then clip to fit map entry. note that we only want
713 * to do this the first time through the fault. if we
714 * ReFault we will disable this by setting "narrow" to true.
715 */
716
717 if (narrow == FALSE) {
718
719 /* wide fault (!narrow) */
720 KASSERT(uvmadvice[ufi.entry->advice].advice ==
721 ufi.entry->advice);
722 nback = min(uvmadvice[ufi.entry->advice].nback,
723 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
724 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
725 nforw = min(uvmadvice[ufi.entry->advice].nforw,
726 ((ufi.entry->end - ufi.orig_rvaddr) >>
727 PAGE_SHIFT) - 1);
728 /*
729 * note: "-1" because we don't want to count the
730 * faulting page as forw
731 */
732 npages = nback + nforw + 1;
733 centeridx = nback;
734
735 narrow = TRUE; /* ensure only once per-fault */
736
737 } else {
738
739 /* narrow fault! */
740 nback = nforw = 0;
741 startva = ufi.orig_rvaddr;
742 npages = 1;
743 centeridx = 0;
744
745 }
746
747 /* locked: maps(read) */
748 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
749 narrow, nback, nforw, startva);
750 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
751 amap, uobj, 0);
752
753 /*
754 * if we've got an amap, lock it and extract current anons.
755 */
756
757 if (amap) {
758 amap_lock(amap);
759 anons = anons_store;
760 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
761 anons, npages);
762 } else {
763 anons = NULL; /* to be safe */
764 }
765
766 /* locked: maps(read), amap(if there) */
767
768 /*
769 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
770 * now and then forget about them (for the rest of the fault).
771 */
772
773 if (ufi.entry->advice == MADV_SEQUENTIAL) {
774
775 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
776 0,0,0,0);
777 /* flush back-page anons? */
778 if (amap)
779 uvmfault_anonflush(anons, nback);
780
781 /* flush object? */
782 if (uobj) {
783 objaddr =
784 (startva - ufi.entry->start) + ufi.entry->offset;
785 simple_lock(&uobj->vmobjlock);
786 (void) uobj->pgops->pgo_flush(uobj, objaddr, objaddr +
787 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
788 simple_unlock(&uobj->vmobjlock);
789 }
790
791 /* now forget about the backpages */
792 if (amap)
793 anons += nback;
794 startva += (nback << PAGE_SHIFT);
795 npages -= nback;
796 nback = centeridx = 0;
797 }
798
799 /* locked: maps(read), amap(if there) */
800
801 /*
802 * map in the backpages and frontpages we found in the amap in hopes
803 * of preventing future faults. we also init the pages[] array as
804 * we go.
805 */
806
807 currva = startva;
808 shadowed = FALSE;
809 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
810
811 /*
812 * dont play with VAs that are already mapped
813 * except for center)
814 */
815 if (lcv != centeridx &&
816 pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
817 pages[lcv] = PGO_DONTCARE;
818 continue;
819 }
820
821 /*
822 * unmapped or center page. check if any anon at this level.
823 */
824 if (amap == NULL || anons[lcv] == NULL) {
825 pages[lcv] = NULL;
826 continue;
827 }
828
829 /*
830 * check for present page and map if possible. re-activate it.
831 */
832
833 pages[lcv] = PGO_DONTCARE;
834 if (lcv == centeridx) { /* save center for later! */
835 shadowed = TRUE;
836 continue;
837 }
838 anon = anons[lcv];
839 simple_lock(&anon->an_lock);
840 /* ignore loaned pages */
841 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
842 (anon->u.an_page->flags & (PG_RELEASED|PG_BUSY)) == 0) {
843 uvm_lock_pageq();
844 uvm_pageactivate(anon->u.an_page); /* reactivate */
845 uvm_unlock_pageq();
846 UVMHIST_LOG(maphist,
847 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
848 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
849 uvmexp.fltnamap++;
850
851 /*
852 * Since this isn't the page that's actually faulting,
853 * ignore pmap_enter() failures; it's not critical
854 * that we enter these right now.
855 */
856
857 (void) pmap_enter(ufi.orig_map->pmap, currva,
858 VM_PAGE_TO_PHYS(anon->u.an_page),
859 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
860 enter_prot,
861 PMAP_CANFAIL |
862 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
863 }
864 simple_unlock(&anon->an_lock);
865 }
866
867 /* locked: maps(read), amap(if there) */
868 /* (shadowed == TRUE) if there is an anon at the faulting address */
869 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
870 (uobj && shadowed == FALSE),0,0);
871
872 /*
873 * note that if we are really short of RAM we could sleep in the above
874 * call to pmap_enter with everything locked. bad?
875 *
876 * XXX Actually, that is bad; pmap_enter() should just fail in that
877 * XXX case. --thorpej
878 */
879
880 /*
881 * if the desired page is not shadowed by the amap and we have a
882 * backing object, then we check to see if the backing object would
883 * prefer to handle the fault itself (rather than letting us do it
884 * with the usual pgo_get hook). the backing object signals this by
885 * providing a pgo_fault routine.
886 */
887
888 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
889 simple_lock(&uobj->vmobjlock);
890
891 /* locked: maps(read), amap (if there), uobj */
892 result = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
893 centeridx, fault_type, access_type,
894 PGO_LOCKED|PGO_SYNCIO);
895
896 /* locked: nothing, pgo_fault has unlocked everything */
897
898 if (result == VM_PAGER_OK)
899 return (KERN_SUCCESS); /* pgo_fault did pmap enter */
900 else if (result == VM_PAGER_REFAULT)
901 goto ReFault; /* try again! */
902 else
903 return (KERN_PROTECTION_FAILURE);
904 }
905
906 /*
907 * now, if the desired page is not shadowed by the amap and we have
908 * a backing object that does not have a special fault routine, then
909 * we ask (with pgo_get) the object for resident pages that we care
910 * about and attempt to map them in. we do not let pgo_get block
911 * (PGO_LOCKED).
912 *
913 * ("get" has the option of doing a pmap_enter for us)
914 */
915
916 if (uobj && shadowed == FALSE) {
917 simple_lock(&uobj->vmobjlock);
918
919 /* locked (!shadowed): maps(read), amap (if there), uobj */
920 /*
921 * the following call to pgo_get does _not_ change locking state
922 */
923
924 uvmexp.fltlget++;
925 gotpages = npages;
926 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
927 (startva - ufi.entry->start),
928 pages, &gotpages, centeridx,
929 access_type & MASK(ufi.entry),
930 ufi.entry->advice, PGO_LOCKED);
931
932 /*
933 * check for pages to map, if we got any
934 */
935
936 uobjpage = NULL;
937
938 if (gotpages) {
939 currva = startva;
940 for (lcv = 0 ; lcv < npages ;
941 lcv++, currva += PAGE_SIZE) {
942
943 if (pages[lcv] == NULL ||
944 pages[lcv] == PGO_DONTCARE)
945 continue;
946
947 KASSERT((pages[lcv]->flags & PG_RELEASED) == 0);
948
949 /*
950 * if center page is resident and not
951 * PG_BUSY|PG_RELEASED then pgo_get
952 * made it PG_BUSY for us and gave
953 * us a handle to it. remember this
954 * page as "uobjpage." (for later use).
955 */
956
957 if (lcv == centeridx) {
958 uobjpage = pages[lcv];
959 UVMHIST_LOG(maphist, " got uobjpage "
960 "(0x%x) with locked get",
961 uobjpage, 0,0,0);
962 continue;
963 }
964
965 /*
966 * note: calling pgo_get with locked data
967 * structures returns us pages which are
968 * neither busy nor released, so we don't
969 * need to check for this. we can just
970 * directly enter the page (after moving it
971 * to the head of the active queue [useful?]).
972 */
973
974 uvm_lock_pageq();
975 uvm_pageactivate(pages[lcv]); /* reactivate */
976 uvm_unlock_pageq();
977 UVMHIST_LOG(maphist,
978 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
979 ufi.orig_map->pmap, currva, pages[lcv], 0);
980 uvmexp.fltnomap++;
981
982 /*
983 * Since this page isn't the page that's
984 * actually fauling, ignore pmap_enter()
985 * failures; it's not critical that we
986 * enter these right now.
987 */
988
989 (void) pmap_enter(ufi.orig_map->pmap, currva,
990 VM_PAGE_TO_PHYS(pages[lcv]),
991 pages[lcv]->flags & PG_RDONLY ?
992 VM_PROT_READ : enter_prot & MASK(ufi.entry),
993 PMAP_CANFAIL |
994 (wired ? PMAP_WIRED : 0));
995
996 /*
997 * NOTE: page can't be PG_WANTED or PG_RELEASED
998 * because we've held the lock the whole time
999 * we've had the handle.
1000 */
1001
1002 pages[lcv]->flags &= ~(PG_BUSY); /* un-busy! */
1003 UVM_PAGE_OWN(pages[lcv], NULL);
1004 } /* for "lcv" loop */
1005 } /* "gotpages" != 0 */
1006 /* note: object still _locked_ */
1007 } else {
1008 uobjpage = NULL;
1009 }
1010
1011 /* locked (shadowed): maps(read), amap */
1012 /* locked (!shadowed): maps(read), amap(if there),
1013 uobj(if !null), uobjpage(if !null) */
1014
1015 /*
1016 * note that at this point we are done with any front or back pages.
1017 * we are now going to focus on the center page (i.e. the one we've
1018 * faulted on). if we have faulted on the top (anon) layer
1019 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1020 * not touched it yet). if we have faulted on the bottom (uobj)
1021 * layer [i.e. case 2] and the page was both present and available,
1022 * then we've got a pointer to it as "uobjpage" and we've already
1023 * made it BUSY.
1024 */
1025
1026 /*
1027 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1028 */
1029
1030 /*
1031 * redirect case 2: if we are not shadowed, go to case 2.
1032 */
1033
1034 if (shadowed == FALSE)
1035 goto Case2;
1036
1037 /* locked: maps(read), amap */
1038
1039 /*
1040 * handle case 1: fault on an anon in our amap
1041 */
1042
1043 anon = anons[centeridx];
1044 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1045 simple_lock(&anon->an_lock);
1046
1047 /* locked: maps(read), amap, anon */
1048
1049 /*
1050 * no matter if we have case 1A or case 1B we are going to need to
1051 * have the anon's memory resident. ensure that now.
1052 */
1053
1054 /*
1055 * let uvmfault_anonget do the dirty work.
1056 * if it fails (!OK) it will unlock everything for us.
1057 * if it succeeds, locks are still valid and locked.
1058 * also, if it is OK, then the anon's page is on the queues.
1059 * if the page is on loan from a uvm_object, then anonget will
1060 * lock that object for us if it does not fail.
1061 */
1062
1063 result = uvmfault_anonget(&ufi, amap, anon);
1064 switch (result) {
1065 case VM_PAGER_OK:
1066 break;
1067
1068 case VM_PAGER_REFAULT:
1069 goto ReFault;
1070
1071 case VM_PAGER_AGAIN:
1072 tsleep(&lbolt, PVM, "fltagain1", 0);
1073 goto ReFault;
1074
1075 default:
1076 #ifdef DIAGNOSTIC
1077 panic("uvm_fault: uvmfault_anonget -> %d", result);
1078 #else
1079 return (KERN_PROTECTION_FAILURE);
1080 #endif
1081 }
1082
1083 /*
1084 * uobj is non null if the page is on loan from an object (i.e. uobj)
1085 */
1086
1087 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1088
1089 /* locked: maps(read), amap, anon, uobj(if one) */
1090
1091 /*
1092 * special handling for loaned pages
1093 */
1094
1095 if (anon->u.an_page->loan_count) {
1096
1097 if ((access_type & VM_PROT_WRITE) == 0) {
1098
1099 /*
1100 * for read faults on loaned pages we just cap the
1101 * protection at read-only.
1102 */
1103
1104 enter_prot = enter_prot & ~VM_PROT_WRITE;
1105
1106 } else {
1107 /*
1108 * note that we can't allow writes into a loaned page!
1109 *
1110 * if we have a write fault on a loaned page in an
1111 * anon then we need to look at the anon's ref count.
1112 * if it is greater than one then we are going to do
1113 * a normal copy-on-write fault into a new anon (this
1114 * is not a problem). however, if the reference count
1115 * is one (a case where we would normally allow a
1116 * write directly to the page) then we need to kill
1117 * the loan before we continue.
1118 */
1119
1120 /* >1 case is already ok */
1121 if (anon->an_ref == 1) {
1122
1123 /* get new un-owned replacement page */
1124 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1125 if (pg == NULL) {
1126 uvmfault_unlockall(&ufi, amap, uobj,
1127 anon);
1128 uvm_wait("flt_noram2");
1129 goto ReFault;
1130 }
1131
1132 /*
1133 * copy data, kill loan, and drop uobj lock
1134 * (if any)
1135 */
1136 /* copy old -> new */
1137 uvm_pagecopy(anon->u.an_page, pg);
1138
1139 /* force reload */
1140 pmap_page_protect(anon->u.an_page,
1141 VM_PROT_NONE);
1142 uvm_lock_pageq(); /* KILL loan */
1143 if (uobj)
1144 /* if we were loaning */
1145 anon->u.an_page->loan_count--;
1146 anon->u.an_page->uanon = NULL;
1147 /* in case we owned */
1148 anon->u.an_page->pqflags &= ~PQ_ANON;
1149 uvm_unlock_pageq();
1150 if (uobj) {
1151 simple_unlock(&uobj->vmobjlock);
1152 uobj = NULL;
1153 }
1154
1155 /* install new page in anon */
1156 anon->u.an_page = pg;
1157 pg->uanon = anon;
1158 pg->pqflags |= PQ_ANON;
1159 pg->flags &= ~(PG_BUSY|PG_FAKE);
1160 UVM_PAGE_OWN(pg, NULL);
1161
1162 /* done! */
1163 } /* ref == 1 */
1164 } /* write fault */
1165 } /* loan count */
1166
1167 /*
1168 * if we are case 1B then we will need to allocate a new blank
1169 * anon to transfer the data into. note that we have a lock
1170 * on anon, so no one can busy or release the page until we are done.
1171 * also note that the ref count can't drop to zero here because
1172 * it is > 1 and we are only dropping one ref.
1173 *
1174 * in the (hopefully very rare) case that we are out of RAM we
1175 * will unlock, wait for more RAM, and refault.
1176 *
1177 * if we are out of anon VM we kill the process (XXX: could wait?).
1178 */
1179
1180 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) {
1181
1182 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1183 uvmexp.flt_acow++;
1184 oanon = anon; /* oanon = old, locked anon */
1185 anon = uvm_analloc();
1186 if (anon) {
1187 /* new anon is locked! */
1188 pg = uvm_pagealloc(NULL, 0, anon, 0);
1189 }
1190
1191 /* check for out of RAM */
1192 if (anon == NULL || pg == NULL) {
1193 if (anon) {
1194 anon->an_ref--;
1195 simple_unlock(&anon->an_lock);
1196 uvm_anfree(anon);
1197 }
1198 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1199 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1200 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1201 UVMHIST_LOG(maphist,
1202 "<- failed. out of VM",0,0,0,0);
1203 uvmexp.fltnoanon++;
1204 return (KERN_RESOURCE_SHORTAGE);
1205 }
1206
1207 uvmexp.fltnoram++;
1208 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1209 goto ReFault;
1210 }
1211
1212 /* got all resources, replace anon with nanon */
1213
1214 uvm_pagecopy(oanon->u.an_page, pg); /* pg now !PG_CLEAN */
1215 pg->flags &= ~(PG_BUSY|PG_FAKE); /* un-busy! new page */
1216 UVM_PAGE_OWN(pg, NULL);
1217 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1218 anon, 1);
1219
1220 /* deref: can not drop to zero here by defn! */
1221 oanon->an_ref--;
1222
1223 /*
1224 * note: oanon is still locked, as is the new anon. we
1225 * need to check for this later when we unlock oanon; if
1226 * oanon != anon, we'll have to unlock anon, too.
1227 */
1228
1229 } else {
1230
1231 uvmexp.flt_anon++;
1232 oanon = anon; /* old, locked anon is same as anon */
1233 pg = anon->u.an_page;
1234 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1235 enter_prot = enter_prot & ~VM_PROT_WRITE;
1236
1237 }
1238
1239 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1240
1241 /*
1242 * now map the page in ...
1243 * XXX: old fault unlocks object before pmap_enter. this seems
1244 * suspect since some other thread could blast the page out from
1245 * under us between the unlock and the pmap_enter.
1246 */
1247
1248 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1249 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1250 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1251 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1252 != KERN_SUCCESS) {
1253 /*
1254 * No need to undo what we did; we can simply think of
1255 * this as the pmap throwing away the mapping information.
1256 *
1257 * We do, however, have to go through the ReFault path,
1258 * as the map may change while we're asleep.
1259 */
1260 if (anon != oanon)
1261 simple_unlock(&anon->an_lock);
1262 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1263 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1264 if (uvmexp.swpgonly == uvmexp.swpages) {
1265 UVMHIST_LOG(maphist,
1266 "<- failed. out of VM",0,0,0,0);
1267 /* XXX instrumentation */
1268 return (KERN_RESOURCE_SHORTAGE);
1269 }
1270 /* XXX instrumentation */
1271 uvm_wait("flt_pmfail1");
1272 goto ReFault;
1273 }
1274
1275 /*
1276 * ... update the page queues.
1277 */
1278
1279 uvm_lock_pageq();
1280
1281 if (fault_type == VM_FAULT_WIRE) {
1282 uvm_pagewire(pg);
1283
1284 /*
1285 * since the now-wired page cannot be paged out,
1286 * release its swap resources for others to use.
1287 * since an anon with no swap cannot be PG_CLEAN,
1288 * clear its clean flag now.
1289 */
1290
1291 pg->flags &= ~(PG_CLEAN);
1292 uvm_anon_dropswap(anon);
1293 } else {
1294 /* activate it */
1295 uvm_pageactivate(pg);
1296 }
1297
1298 uvm_unlock_pageq();
1299
1300 /*
1301 * done case 1! finish up by unlocking everything and returning success
1302 */
1303
1304 if (anon != oanon)
1305 simple_unlock(&anon->an_lock);
1306 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1307 return (KERN_SUCCESS);
1308
1309
1310 Case2:
1311 /*
1312 * handle case 2: faulting on backing object or zero fill
1313 */
1314
1315 /*
1316 * locked:
1317 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1318 */
1319
1320 /*
1321 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1322 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1323 * have a backing object, check and see if we are going to promote
1324 * the data up to an anon during the fault.
1325 */
1326
1327 if (uobj == NULL) {
1328 uobjpage = PGO_DONTCARE;
1329 promote = TRUE; /* always need anon here */
1330 } else {
1331 KASSERT(uobjpage != PGO_DONTCARE);
1332 promote = (access_type & VM_PROT_WRITE) &&
1333 UVM_ET_ISCOPYONWRITE(ufi.entry);
1334 }
1335 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1336 promote, (uobj == NULL), 0,0);
1337
1338 /*
1339 * if uobjpage is not null then we do not need to do I/O to get the
1340 * uobjpage.
1341 *
1342 * if uobjpage is null, then we need to unlock and ask the pager to
1343 * get the data for us. once we have the data, we need to reverify
1344 * the state the world. we are currently not holding any resources.
1345 */
1346
1347 if (uobjpage) {
1348 /* update rusage counters */
1349 curproc->l_proc->p_stats->p_ru.ru_minflt++;
1350 } else {
1351 /* update rusage counters */
1352 curproc->l_proc->p_stats->p_ru.ru_majflt++;
1353
1354 /* locked: maps(read), amap(if there), uobj */
1355 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1356 /* locked: uobj */
1357
1358 uvmexp.fltget++;
1359 gotpages = 1;
1360 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1361 result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1362 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1363 PGO_SYNCIO);
1364
1365 /* locked: uobjpage(if result OK) */
1366
1367 /*
1368 * recover from I/O
1369 */
1370
1371 if (result != VM_PAGER_OK) {
1372 KASSERT(result != VM_PAGER_PEND);
1373
1374 if (result == VM_PAGER_AGAIN) {
1375 UVMHIST_LOG(maphist,
1376 " pgo_get says TRY AGAIN!",0,0,0,0);
1377 tsleep((caddr_t)&lbolt, PVM, "fltagain2", 0);
1378 goto ReFault;
1379 }
1380
1381 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1382 result, 0,0,0);
1383 return (KERN_PROTECTION_FAILURE); /* XXX i/o error */
1384 }
1385
1386 /* locked: uobjpage */
1387
1388 /*
1389 * re-verify the state of the world by first trying to relock
1390 * the maps. always relock the object.
1391 */
1392
1393 locked = uvmfault_relock(&ufi);
1394 if (locked && amap)
1395 amap_lock(amap);
1396 simple_lock(&uobj->vmobjlock);
1397
1398 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1399 /* locked(!locked): uobj, uobjpage */
1400
1401 /*
1402 * verify that the page has not be released and re-verify
1403 * that amap slot is still free. if there is a problem,
1404 * we unlock and clean up.
1405 */
1406
1407 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1408 (locked && amap &&
1409 amap_lookup(&ufi.entry->aref,
1410 ufi.orig_rvaddr - ufi.entry->start))) {
1411 if (locked)
1412 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1413 locked = FALSE;
1414 }
1415
1416 /*
1417 * didn't get the lock? release the page and retry.
1418 */
1419
1420 if (locked == FALSE) {
1421
1422 UVMHIST_LOG(maphist,
1423 " wasn't able to relock after fault: retry",
1424 0,0,0,0);
1425 if (uobjpage->flags & PG_WANTED)
1426 /* still holding object lock */
1427 wakeup(uobjpage);
1428
1429 if (uobjpage->flags & PG_RELEASED) {
1430 uvmexp.fltpgrele++;
1431 KASSERT(uobj->pgops->pgo_releasepg != NULL);
1432
1433 /* frees page */
1434 if (uobj->pgops->pgo_releasepg(uobjpage,NULL))
1435 /* unlock if still alive */
1436 simple_unlock(&uobj->vmobjlock);
1437 goto ReFault;
1438 }
1439
1440 uvm_lock_pageq();
1441 /* make sure it is in queues */
1442 uvm_pageactivate(uobjpage);
1443
1444 uvm_unlock_pageq();
1445 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1446 UVM_PAGE_OWN(uobjpage, NULL);
1447 simple_unlock(&uobj->vmobjlock);
1448 goto ReFault;
1449
1450 }
1451
1452 /*
1453 * we have the data in uobjpage which is PG_BUSY and
1454 * !PG_RELEASED. we are holding object lock (so the page
1455 * can't be released on us).
1456 */
1457
1458 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1459 }
1460
1461 /*
1462 * locked:
1463 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1464 */
1465
1466 /*
1467 * notes:
1468 * - at this point uobjpage can not be NULL
1469 * - at this point uobjpage can not be PG_RELEASED (since we checked
1470 * for it above)
1471 * - at this point uobjpage could be PG_WANTED (handle later)
1472 */
1473
1474 if (promote == FALSE) {
1475
1476 /*
1477 * we are not promoting. if the mapping is COW ensure that we
1478 * don't give more access than we should (e.g. when doing a read
1479 * fault on a COPYONWRITE mapping we want to map the COW page in
1480 * R/O even though the entry protection could be R/W).
1481 *
1482 * set "pg" to the page we want to map in (uobjpage, usually)
1483 */
1484
1485 /* no anon in this case. */
1486 anon = NULL;
1487
1488 uvmexp.flt_obj++;
1489 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1490 enter_prot &= ~VM_PROT_WRITE;
1491 pg = uobjpage; /* map in the actual object */
1492
1493 /* assert(uobjpage != PGO_DONTCARE) */
1494
1495 /*
1496 * we are faulting directly on the page. be careful
1497 * about writing to loaned pages...
1498 */
1499 if (uobjpage->loan_count) {
1500
1501 if ((access_type & VM_PROT_WRITE) == 0) {
1502 /* read fault: cap the protection at readonly */
1503 /* cap! */
1504 enter_prot = enter_prot & ~VM_PROT_WRITE;
1505 } else {
1506 /* write fault: must break the loan here */
1507
1508 /* alloc new un-owned page */
1509 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1510
1511 if (pg == NULL) {
1512 /*
1513 * drop ownership of page, it can't
1514 * be released
1515 */
1516 if (uobjpage->flags & PG_WANTED)
1517 wakeup(uobjpage);
1518 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1519 UVM_PAGE_OWN(uobjpage, NULL);
1520
1521 uvm_lock_pageq();
1522 /* activate: we will need it later */
1523 uvm_pageactivate(uobjpage);
1524
1525 uvm_unlock_pageq();
1526 uvmfault_unlockall(&ufi, amap, uobj,
1527 NULL);
1528 UVMHIST_LOG(maphist,
1529 " out of RAM breaking loan, waiting",
1530 0,0,0,0);
1531 uvmexp.fltnoram++;
1532 uvm_wait("flt_noram4");
1533 goto ReFault;
1534 }
1535
1536 /*
1537 * copy the data from the old page to the new
1538 * one and clear the fake/clean flags on the
1539 * new page (keep it busy). force a reload
1540 * of the old page by clearing it from all
1541 * pmaps. then lock the page queues to
1542 * rename the pages.
1543 */
1544 uvm_pagecopy(uobjpage, pg); /* old -> new */
1545 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1546 pmap_page_protect(uobjpage, VM_PROT_NONE);
1547 if (uobjpage->flags & PG_WANTED)
1548 wakeup(uobjpage);
1549 /* uobj still locked */
1550 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1551 UVM_PAGE_OWN(uobjpage, NULL);
1552
1553 uvm_lock_pageq();
1554 offset = uobjpage->offset;
1555 /* remove old page */
1556 uvm_pagerealloc(uobjpage, NULL, 0);
1557
1558 /*
1559 * at this point we have absolutely no
1560 * control over uobjpage
1561 */
1562 /* install new page */
1563 uvm_pagerealloc(pg, uobj, offset);
1564 uvm_unlock_pageq();
1565
1566 /*
1567 * done! loan is broken and "pg" is
1568 * PG_BUSY. it can now replace uobjpage.
1569 */
1570
1571 uobjpage = pg;
1572
1573 } /* write fault case */
1574 } /* if loan_count */
1575
1576 } else {
1577
1578 /*
1579 * if we are going to promote the data to an anon we
1580 * allocate a blank anon here and plug it into our amap.
1581 */
1582 #if DIAGNOSTIC
1583 if (amap == NULL)
1584 panic("uvm_fault: want to promote data, but no anon");
1585 #endif
1586
1587 anon = uvm_analloc();
1588 if (anon) {
1589 /*
1590 * The new anon is locked.
1591 *
1592 * In `Fill in data...' below, if
1593 * uobjpage == PGO_DONTCARE, we want
1594 * a zero'd, dirty page, so have
1595 * uvm_pagealloc() do that for us.
1596 */
1597 pg = uvm_pagealloc(NULL, 0, anon,
1598 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1599 }
1600
1601 /*
1602 * out of memory resources?
1603 */
1604 if (anon == NULL || pg == NULL) {
1605
1606 if (anon != NULL) {
1607 anon->an_ref--;
1608 simple_unlock(&anon->an_lock);
1609 uvm_anfree(anon);
1610 }
1611
1612 /*
1613 * arg! must unbusy our page and fail or sleep.
1614 */
1615 if (uobjpage != PGO_DONTCARE) {
1616 if (uobjpage->flags & PG_WANTED)
1617 /* still holding object lock */
1618 wakeup(uobjpage);
1619
1620 uvm_lock_pageq();
1621 uvm_pageactivate(uobjpage);
1622 uvm_unlock_pageq();
1623 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1624 UVM_PAGE_OWN(uobjpage, NULL);
1625 }
1626
1627 /* unlock and fail ... */
1628 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1629 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1630 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1631 UVMHIST_LOG(maphist, " promote: out of VM",
1632 0,0,0,0);
1633 uvmexp.fltnoanon++;
1634 return (KERN_RESOURCE_SHORTAGE);
1635 }
1636
1637 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1638 0,0,0,0);
1639 uvmexp.fltnoram++;
1640 uvm_wait("flt_noram5");
1641 goto ReFault;
1642 }
1643
1644 /*
1645 * fill in the data
1646 */
1647
1648 if (uobjpage != PGO_DONTCARE) {
1649 uvmexp.flt_prcopy++;
1650 /* copy page [pg now dirty] */
1651 uvm_pagecopy(uobjpage, pg);
1652
1653 /*
1654 * promote to shared amap? make sure all sharing
1655 * procs see it
1656 */
1657 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1658 pmap_page_protect(uobjpage, VM_PROT_NONE);
1659 }
1660
1661 /*
1662 * dispose of uobjpage. it can't be PG_RELEASED
1663 * since we still hold the object lock.
1664 * drop handle to uobj as well.
1665 */
1666
1667 if (uobjpage->flags & PG_WANTED)
1668 /* still have the obj lock */
1669 wakeup(uobjpage);
1670 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1671 UVM_PAGE_OWN(uobjpage, NULL);
1672 uvm_lock_pageq();
1673 uvm_pageactivate(uobjpage);
1674 uvm_unlock_pageq();
1675 simple_unlock(&uobj->vmobjlock);
1676 uobj = NULL;
1677
1678 UVMHIST_LOG(maphist,
1679 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1680 uobjpage, anon, pg, 0);
1681
1682 } else {
1683 uvmexp.flt_przero++;
1684 /*
1685 * Page is zero'd and marked dirty by uvm_pagealloc()
1686 * above.
1687 */
1688 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1689 anon, pg, 0, 0);
1690 }
1691
1692 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1693 anon, 0);
1694 }
1695
1696 /*
1697 * locked:
1698 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1699 * anon(if !null), pg(if anon)
1700 *
1701 * note: pg is either the uobjpage or the new page in the new anon
1702 */
1703
1704 /*
1705 * all resources are present. we can now map it in and free our
1706 * resources.
1707 */
1708
1709 UVMHIST_LOG(maphist,
1710 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1711 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1712 KASSERT(access_type == VM_PROT_READ || (pg->flags & PG_RDONLY) == 0);
1713 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1714 pg->flags & PG_RDONLY ? VM_PROT_READ : enter_prot,
1715 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1716 != KERN_SUCCESS) {
1717
1718 /*
1719 * No need to undo what we did; we can simply think of
1720 * this as the pmap throwing away the mapping information.
1721 *
1722 * We do, however, have to go through the ReFault path,
1723 * as the map may change while we're asleep.
1724 */
1725
1726 if (pg->flags & PG_WANTED)
1727 wakeup(pg); /* lock still held */
1728
1729 /*
1730 * note that pg can't be PG_RELEASED since we did not drop
1731 * the object lock since the last time we checked.
1732 */
1733
1734 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1735 UVM_PAGE_OWN(pg, NULL);
1736 uvmfault_unlockall(&ufi, amap, uobj, anon);
1737 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1738 if (uvmexp.swpgonly == uvmexp.swpages) {
1739 UVMHIST_LOG(maphist,
1740 "<- failed. out of VM",0,0,0,0);
1741 /* XXX instrumentation */
1742 return (KERN_RESOURCE_SHORTAGE);
1743 }
1744 /* XXX instrumentation */
1745 uvm_wait("flt_pmfail2");
1746 goto ReFault;
1747 }
1748
1749 uvm_lock_pageq();
1750
1751 if (fault_type == VM_FAULT_WIRE) {
1752 uvm_pagewire(pg);
1753 if (pg->pqflags & PQ_AOBJ) {
1754
1755 /*
1756 * since the now-wired page cannot be paged out,
1757 * release its swap resources for others to use.
1758 * since an aobj page with no swap cannot be PG_CLEAN,
1759 * clear its clean flag now.
1760 */
1761
1762 pg->flags &= ~(PG_CLEAN);
1763 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1764 }
1765 } else {
1766 /* activate it */
1767 uvm_pageactivate(pg);
1768 }
1769 uvm_unlock_pageq();
1770
1771 if (pg->flags & PG_WANTED)
1772 wakeup(pg); /* lock still held */
1773
1774 /*
1775 * note that pg can't be PG_RELEASED since we did not drop the object
1776 * lock since the last time we checked.
1777 */
1778
1779 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1780 UVM_PAGE_OWN(pg, NULL);
1781 uvmfault_unlockall(&ufi, amap, uobj, anon);
1782
1783 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1784 return (KERN_SUCCESS);
1785 }
1786
1787
1788 /*
1789 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1790 *
1791 * => map may be read-locked by caller, but MUST NOT be write-locked.
1792 * => if map is read-locked, any operations which may cause map to
1793 * be write-locked in uvm_fault() must be taken care of by
1794 * the caller. See uvm_map_pageable().
1795 */
1796
1797 int
1798 uvm_fault_wire(map, start, end, access_type)
1799 vm_map_t map;
1800 vaddr_t start, end;
1801 vm_prot_t access_type;
1802 {
1803 vaddr_t va;
1804 pmap_t pmap;
1805 int rv;
1806
1807 pmap = vm_map_pmap(map);
1808
1809 /*
1810 * now fault it in a page at a time. if the fault fails then we have
1811 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1812 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1813 */
1814
1815 for (va = start ; va < end ; va += PAGE_SIZE) {
1816 rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1817 if (rv) {
1818 if (va != start) {
1819 uvm_fault_unwire(map, start, va);
1820 }
1821 return (rv);
1822 }
1823 }
1824
1825 return (KERN_SUCCESS);
1826 }
1827
1828 /*
1829 * uvm_fault_unwire(): unwire range of virtual space.
1830 */
1831
1832 void
1833 uvm_fault_unwire(map, start, end)
1834 vm_map_t map;
1835 vaddr_t start, end;
1836 {
1837
1838 vm_map_lock_read(map);
1839 uvm_fault_unwire_locked(map, start, end);
1840 vm_map_unlock_read(map);
1841 }
1842
1843 /*
1844 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1845 *
1846 * => map must be at least read-locked.
1847 */
1848
1849 void
1850 uvm_fault_unwire_locked(map, start, end)
1851 vm_map_t map;
1852 vaddr_t start, end;
1853 {
1854 vm_map_entry_t entry;
1855 pmap_t pmap = vm_map_pmap(map);
1856 vaddr_t va;
1857 paddr_t pa;
1858 struct vm_page *pg;
1859
1860 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1861
1862 /*
1863 * we assume that the area we are unwiring has actually been wired
1864 * in the first place. this means that we should be able to extract
1865 * the PAs from the pmap. we also lock out the page daemon so that
1866 * we can call uvm_pageunwire.
1867 */
1868
1869 uvm_lock_pageq();
1870
1871 /*
1872 * find the beginning map entry for the region.
1873 */
1874 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1875 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1876 panic("uvm_fault_unwire_locked: address not in map");
1877
1878 for (va = start; va < end ; va += PAGE_SIZE) {
1879 if (pmap_extract(pmap, va, &pa) == FALSE)
1880 panic("uvm_fault_unwire_locked: unwiring "
1881 "non-wired memory");
1882
1883 /*
1884 * make sure the current entry is for the address we're
1885 * dealing with. if not, grab the next entry.
1886 */
1887
1888 KASSERT(va >= entry->start);
1889 if (va >= entry->end) {
1890 KASSERT(entry->next != &map->header &&
1891 entry->next->start <= entry->end);
1892 entry = entry->next;
1893 }
1894
1895 /*
1896 * if the entry is no longer wired, tell the pmap.
1897 */
1898 if (VM_MAPENT_ISWIRED(entry) == 0)
1899 pmap_unwire(pmap, va);
1900
1901 pg = PHYS_TO_VM_PAGE(pa);
1902 if (pg)
1903 uvm_pageunwire(pg);
1904 }
1905
1906 uvm_unlock_pageq();
1907 }
1908