uvm_fault.c revision 1.56.2.12 1 /* $NetBSD: uvm_fault.c,v 1.56.2.12 2002/09/17 21:24:06 nathanw Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.56.2.12 2002/09/17 21:24:06 nathanw Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/user.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 *
58 * a word on page faults:
59 *
60 * types of page faults we handle:
61 *
62 * CASE 1: upper layer faults CASE 2: lower layer faults
63 *
64 * CASE 1A CASE 1B CASE 2A CASE 2B
65 * read/write1 write>1 read/write +-cow_write/zero
66 * | | | |
67 * +--|--+ +--|--+ +-----+ + | + | +-----+
68 * amap | V | | ----------->new| | | | ^ |
69 * +-----+ +-----+ +-----+ + | + | +--|--+
70 * | | |
71 * +-----+ +-----+ +--|--+ | +--|--+
72 * uobj | d/c | | d/c | | V | +----| |
73 * +-----+ +-----+ +-----+ +-----+
74 *
75 * d/c = don't care
76 *
77 * case [0]: layerless fault
78 * no amap or uobj is present. this is an error.
79 *
80 * case [1]: upper layer fault [anon active]
81 * 1A: [read] or [write with anon->an_ref == 1]
82 * I/O takes place in top level anon and uobj is not touched.
83 * 1B: [write with anon->an_ref > 1]
84 * new anon is alloc'd and data is copied off ["COW"]
85 *
86 * case [2]: lower layer fault [uobj]
87 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
88 * I/O takes place directly in object.
89 * 2B: [write to copy_on_write] or [read on NULL uobj]
90 * data is "promoted" from uobj to a new anon.
91 * if uobj is null, then we zero fill.
92 *
93 * we follow the standard UVM locking protocol ordering:
94 *
95 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
96 * we hold a PG_BUSY page if we unlock for I/O
97 *
98 *
99 * the code is structured as follows:
100 *
101 * - init the "IN" params in the ufi structure
102 * ReFault:
103 * - do lookups [locks maps], check protection, handle needs_copy
104 * - check for case 0 fault (error)
105 * - establish "range" of fault
106 * - if we have an amap lock it and extract the anons
107 * - if sequential advice deactivate pages behind us
108 * - at the same time check pmap for unmapped areas and anon for pages
109 * that we could map in (and do map it if found)
110 * - check object for resident pages that we could map in
111 * - if (case 2) goto Case2
112 * - >>> handle case 1
113 * - ensure source anon is resident in RAM
114 * - if case 1B alloc new anon and copy from source
115 * - map the correct page in
116 * Case2:
117 * - >>> handle case 2
118 * - ensure source page is resident (if uobj)
119 * - if case 2B alloc new anon and copy from source (could be zero
120 * fill if uobj == NULL)
121 * - map the correct page in
122 * - done!
123 *
124 * note on paging:
125 * if we have to do I/O we place a PG_BUSY page in the correct object,
126 * unlock everything, and do the I/O. when I/O is done we must reverify
127 * the state of the world before assuming that our data structures are
128 * valid. [because mappings could change while the map is unlocked]
129 *
130 * alternative 1: unbusy the page in question and restart the page fault
131 * from the top (ReFault). this is easy but does not take advantage
132 * of the information that we already have from our previous lookup,
133 * although it is possible that the "hints" in the vm_map will help here.
134 *
135 * alternative 2: the system already keeps track of a "version" number of
136 * a map. [i.e. every time you write-lock a map (e.g. to change a
137 * mapping) you bump the version number up by one...] so, we can save
138 * the version number of the map before we release the lock and start I/O.
139 * then when I/O is done we can relock and check the version numbers
140 * to see if anything changed. this might save us some over 1 because
141 * we don't have to unbusy the page and may be less compares(?).
142 *
143 * alternative 3: put in backpointers or a way to "hold" part of a map
144 * in place while I/O is in progress. this could be complex to
145 * implement (especially with structures like amap that can be referenced
146 * by multiple map entries, and figuring out what should wait could be
147 * complex as well...).
148 *
149 * given that we are not currently multiprocessor or multithreaded we might
150 * as well choose alternative 2 now. maybe alternative 3 would be useful
151 * in the future. XXX keep in mind for future consideration//rechecking.
152 */
153
154 /*
155 * local data structures
156 */
157
158 struct uvm_advice {
159 int advice;
160 int nback;
161 int nforw;
162 };
163
164 /*
165 * page range array:
166 * note: index in array must match "advice" value
167 * XXX: borrowed numbers from freebsd. do they work well for us?
168 */
169
170 static struct uvm_advice uvmadvice[] = {
171 { MADV_NORMAL, 3, 4 },
172 { MADV_RANDOM, 0, 0 },
173 { MADV_SEQUENTIAL, 8, 7},
174 };
175
176 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
177
178 /*
179 * private prototypes
180 */
181
182 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
183 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
184
185 /*
186 * inline functions
187 */
188
189 /*
190 * uvmfault_anonflush: try and deactivate pages in specified anons
191 *
192 * => does not have to deactivate page if it is busy
193 */
194
195 static __inline void
196 uvmfault_anonflush(anons, n)
197 struct vm_anon **anons;
198 int n;
199 {
200 int lcv;
201 struct vm_page *pg;
202
203 for (lcv = 0 ; lcv < n ; lcv++) {
204 if (anons[lcv] == NULL)
205 continue;
206 simple_lock(&anons[lcv]->an_lock);
207 pg = anons[lcv]->u.an_page;
208 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
209 uvm_lock_pageq();
210 if (pg->wire_count == 0) {
211 pmap_clear_reference(pg);
212 uvm_pagedeactivate(pg);
213 }
214 uvm_unlock_pageq();
215 }
216 simple_unlock(&anons[lcv]->an_lock);
217 }
218 }
219
220 /*
221 * normal functions
222 */
223
224 /*
225 * uvmfault_amapcopy: clear "needs_copy" in a map.
226 *
227 * => called with VM data structures unlocked (usually, see below)
228 * => we get a write lock on the maps and clear needs_copy for a VA
229 * => if we are out of RAM we sleep (waiting for more)
230 */
231
232 static void
233 uvmfault_amapcopy(ufi)
234 struct uvm_faultinfo *ufi;
235 {
236 for (;;) {
237
238 /*
239 * no mapping? give up.
240 */
241
242 if (uvmfault_lookup(ufi, TRUE) == FALSE)
243 return;
244
245 /*
246 * copy if needed.
247 */
248
249 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
250 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
251 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
252
253 /*
254 * didn't work? must be out of RAM. unlock and sleep.
255 */
256
257 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
258 uvmfault_unlockmaps(ufi, TRUE);
259 uvm_wait("fltamapcopy");
260 continue;
261 }
262
263 /*
264 * got it! unlock and return.
265 */
266
267 uvmfault_unlockmaps(ufi, TRUE);
268 return;
269 }
270 /*NOTREACHED*/
271 }
272
273 /*
274 * uvmfault_anonget: get data in an anon into a non-busy, non-released
275 * page in that anon.
276 *
277 * => maps, amap, and anon locked by caller.
278 * => if we fail (result != 0) we unlock everything.
279 * => if we are successful, we return with everything still locked.
280 * => we don't move the page on the queues [gets moved later]
281 * => if we allocate a new page [we_own], it gets put on the queues.
282 * either way, the result is that the page is on the queues at return time
283 * => for pages which are on loan from a uvm_object (and thus are not
284 * owned by the anon): if successful, we return with the owning object
285 * locked. the caller must unlock this object when it unlocks everything
286 * else.
287 */
288
289 int
290 uvmfault_anonget(ufi, amap, anon)
291 struct uvm_faultinfo *ufi;
292 struct vm_amap *amap;
293 struct vm_anon *anon;
294 {
295 boolean_t we_own; /* we own anon's page? */
296 boolean_t locked; /* did we relock? */
297 struct vm_page *pg;
298 int error;
299 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
300
301 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
302
303 error = 0;
304 uvmexp.fltanget++;
305 /* bump rusage counters */
306 if (anon->u.an_page)
307 curproc->p_stats->p_ru.ru_minflt++;
308 else
309 curproc->p_stats->p_ru.ru_majflt++;
310
311 /*
312 * loop until we get it, or fail.
313 */
314
315 for (;;) {
316 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
317 pg = anon->u.an_page;
318
319 /*
320 * if there is a resident page and it is loaned, then anon
321 * may not own it. call out to uvm_anon_lockpage() to ensure
322 * the real owner of the page has been identified and locked.
323 */
324
325 if (pg && pg->loan_count)
326 pg = uvm_anon_lockloanpg(anon);
327
328 /*
329 * page there? make sure it is not busy/released.
330 */
331
332 if (pg) {
333
334 /*
335 * at this point, if the page has a uobject [meaning
336 * we have it on loan], then that uobject is locked
337 * by us! if the page is busy, we drop all the
338 * locks (including uobject) and try again.
339 */
340
341 if ((pg->flags & PG_BUSY) == 0) {
342 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
343 return (0);
344 }
345 pg->flags |= PG_WANTED;
346 uvmexp.fltpgwait++;
347
348 /*
349 * the last unlock must be an atomic unlock+wait on
350 * the owner of page
351 */
352
353 if (pg->uobject) { /* owner is uobject ? */
354 uvmfault_unlockall(ufi, amap, NULL, anon);
355 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
356 0,0,0);
357 UVM_UNLOCK_AND_WAIT(pg,
358 &pg->uobject->vmobjlock,
359 FALSE, "anonget1",0);
360 } else {
361 /* anon owns page */
362 uvmfault_unlockall(ufi, amap, NULL, NULL);
363 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
364 0,0,0);
365 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
366 "anonget2",0);
367 }
368 } else {
369
370 /*
371 * no page, we must try and bring it in.
372 */
373
374 pg = uvm_pagealloc(NULL, 0, anon, 0);
375 if (pg == NULL) { /* out of RAM. */
376 uvmfault_unlockall(ufi, amap, NULL, anon);
377 uvmexp.fltnoram++;
378 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
379 0,0,0);
380 uvm_wait("flt_noram1");
381 } else {
382 /* we set the PG_BUSY bit */
383 we_own = TRUE;
384 uvmfault_unlockall(ufi, amap, NULL, anon);
385
386 /*
387 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
388 * page into the uvm_swap_get function with
389 * all data structures unlocked. note that
390 * it is ok to read an_swslot here because
391 * we hold PG_BUSY on the page.
392 */
393 uvmexp.pageins++;
394 error = uvm_swap_get(pg, anon->an_swslot,
395 PGO_SYNCIO);
396
397 /*
398 * we clean up after the i/o below in the
399 * "we_own" case
400 */
401 }
402 }
403
404 /*
405 * now relock and try again
406 */
407
408 locked = uvmfault_relock(ufi);
409 if (locked && amap != NULL) {
410 amap_lock(amap);
411 }
412 if (locked || we_own)
413 simple_lock(&anon->an_lock);
414
415 /*
416 * if we own the page (i.e. we set PG_BUSY), then we need
417 * to clean up after the I/O. there are three cases to
418 * consider:
419 * [1] page released during I/O: free anon and ReFault.
420 * [2] I/O not OK. free the page and cause the fault
421 * to fail.
422 * [3] I/O OK! activate the page and sync with the
423 * non-we_own case (i.e. drop anon lock if not locked).
424 */
425
426 if (we_own) {
427 if (pg->flags & PG_WANTED) {
428 wakeup(pg);
429 }
430 if (error) {
431 /* remove page from anon */
432 anon->u.an_page = NULL;
433
434 /*
435 * remove the swap slot from the anon
436 * and mark the anon as having no real slot.
437 * don't free the swap slot, thus preventing
438 * it from being used again.
439 */
440
441 uvm_swap_markbad(anon->an_swslot, 1);
442 anon->an_swslot = SWSLOT_BAD;
443
444 /*
445 * note: page was never !PG_BUSY, so it
446 * can't be mapped and thus no need to
447 * pmap_page_protect it...
448 */
449
450 uvm_lock_pageq();
451 uvm_pagefree(pg);
452 uvm_unlock_pageq();
453
454 if (locked)
455 uvmfault_unlockall(ufi, amap, NULL,
456 anon);
457 else
458 simple_unlock(&anon->an_lock);
459 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
460 return error;
461 }
462
463 /*
464 * we've successfully read the page, activate it.
465 */
466
467 uvm_lock_pageq();
468 uvm_pageactivate(pg);
469 uvm_unlock_pageq();
470 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
471 UVM_PAGE_OWN(pg, NULL);
472 if (!locked)
473 simple_unlock(&anon->an_lock);
474 }
475
476 /*
477 * we were not able to relock. restart fault.
478 */
479
480 if (!locked) {
481 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
482 return (ERESTART);
483 }
484
485 /*
486 * verify no one has touched the amap and moved the anon on us.
487 */
488
489 if (ufi != NULL &&
490 amap_lookup(&ufi->entry->aref,
491 ufi->orig_rvaddr - ufi->entry->start) != anon) {
492
493 uvmfault_unlockall(ufi, amap, NULL, anon);
494 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
495 return (ERESTART);
496 }
497
498 /*
499 * try it again!
500 */
501
502 uvmexp.fltanretry++;
503 continue;
504 }
505 /*NOTREACHED*/
506 }
507
508 /*
509 * F A U L T - m a i n e n t r y p o i n t
510 */
511
512 /*
513 * uvm_fault: page fault handler
514 *
515 * => called from MD code to resolve a page fault
516 * => VM data structures usually should be unlocked. however, it is
517 * possible to call here with the main map locked if the caller
518 * gets a write lock, sets it recusive, and then calls us (c.f.
519 * uvm_map_pageable). this should be avoided because it keeps
520 * the map locked off during I/O.
521 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
522 */
523
524 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
525 ~VM_PROT_WRITE : VM_PROT_ALL)
526
527 int
528 uvm_fault(orig_map, vaddr, fault_type, access_type)
529 struct vm_map *orig_map;
530 vaddr_t vaddr;
531 vm_fault_t fault_type;
532 vm_prot_t access_type;
533 {
534 struct uvm_faultinfo ufi;
535 vm_prot_t enter_prot, check_prot;
536 boolean_t wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
537 int npages, nback, nforw, centeridx, error, lcv, gotpages;
538 vaddr_t startva, objaddr, currva, offset, uoff;
539 paddr_t pa;
540 struct vm_amap *amap;
541 struct uvm_object *uobj;
542 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
543 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
544 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
545
546 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
547 orig_map, vaddr, fault_type, access_type);
548
549 anon = NULL;
550 pg = NULL;
551
552 uvmexp.faults++; /* XXX: locking? */
553
554 /*
555 * init the IN parameters in the ufi
556 */
557
558 ufi.orig_map = orig_map;
559 ufi.orig_rvaddr = trunc_page(vaddr);
560 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
561 wire_fault = fault_type == VM_FAULT_WIRE ||
562 fault_type == VM_FAULT_WIREMAX;
563 if (wire_fault)
564 narrow = TRUE; /* don't look for neighborhood
565 * pages on wire */
566 else
567 narrow = FALSE; /* normal fault */
568
569 /*
570 * "goto ReFault" means restart the page fault from ground zero.
571 */
572 ReFault:
573
574 /*
575 * lookup and lock the maps
576 */
577
578 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
579 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
580 return (EFAULT);
581 }
582 /* locked: maps(read) */
583
584 #ifdef DIAGNOSTIC
585 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
586 printf("Page fault on non-pageable map:\n");
587 printf("ufi.map = %p\n", ufi.map);
588 printf("ufi.orig_map = %p\n", ufi.orig_map);
589 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
590 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
591 }
592 #endif
593
594 /*
595 * check protection
596 */
597
598 check_prot = fault_type == VM_FAULT_WIREMAX ?
599 ufi.entry->max_protection : ufi.entry->protection;
600 if ((check_prot & access_type) != access_type) {
601 UVMHIST_LOG(maphist,
602 "<- protection failure (prot=0x%x, access=0x%x)",
603 ufi.entry->protection, access_type, 0, 0);
604 uvmfault_unlockmaps(&ufi, FALSE);
605 return EACCES;
606 }
607
608 /*
609 * "enter_prot" is the protection we want to enter the page in at.
610 * for certain pages (e.g. copy-on-write pages) this protection can
611 * be more strict than ufi.entry->protection. "wired" means either
612 * the entry is wired or we are fault-wiring the pg.
613 */
614
615 enter_prot = ufi.entry->protection;
616 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
617 if (wired) {
618 access_type = enter_prot; /* full access for wired */
619 cow_now = (check_prot & VM_PROT_WRITE) != 0;
620 } else {
621 cow_now = (access_type & VM_PROT_WRITE) != 0;
622 }
623
624 /*
625 * handle "needs_copy" case. if we need to copy the amap we will
626 * have to drop our readlock and relock it with a write lock. (we
627 * need a write lock to change anything in a map entry [e.g.
628 * needs_copy]).
629 */
630
631 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
632 KASSERT(fault_type != VM_FAULT_WIREMAX);
633 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
634 /* need to clear */
635 UVMHIST_LOG(maphist,
636 " need to clear needs_copy and refault",0,0,0,0);
637 uvmfault_unlockmaps(&ufi, FALSE);
638 uvmfault_amapcopy(&ufi);
639 uvmexp.fltamcopy++;
640 goto ReFault;
641
642 } else {
643
644 /*
645 * ensure that we pmap_enter page R/O since
646 * needs_copy is still true
647 */
648
649 enter_prot &= ~VM_PROT_WRITE;
650 }
651 }
652
653 /*
654 * identify the players
655 */
656
657 amap = ufi.entry->aref.ar_amap; /* top layer */
658 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
659
660 /*
661 * check for a case 0 fault. if nothing backing the entry then
662 * error now.
663 */
664
665 if (amap == NULL && uobj == NULL) {
666 uvmfault_unlockmaps(&ufi, FALSE);
667 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
668 return (EFAULT);
669 }
670
671 /*
672 * establish range of interest based on advice from mapper
673 * and then clip to fit map entry. note that we only want
674 * to do this the first time through the fault. if we
675 * ReFault we will disable this by setting "narrow" to true.
676 */
677
678 if (narrow == FALSE) {
679
680 /* wide fault (!narrow) */
681 KASSERT(uvmadvice[ufi.entry->advice].advice ==
682 ufi.entry->advice);
683 nback = MIN(uvmadvice[ufi.entry->advice].nback,
684 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
685 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
686 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
687 ((ufi.entry->end - ufi.orig_rvaddr) >>
688 PAGE_SHIFT) - 1);
689 /*
690 * note: "-1" because we don't want to count the
691 * faulting page as forw
692 */
693 npages = nback + nforw + 1;
694 centeridx = nback;
695
696 narrow = TRUE; /* ensure only once per-fault */
697
698 } else {
699
700 /* narrow fault! */
701 nback = nforw = 0;
702 startva = ufi.orig_rvaddr;
703 npages = 1;
704 centeridx = 0;
705
706 }
707
708 /* locked: maps(read) */
709 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
710 narrow, nback, nforw, startva);
711 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
712 amap, uobj, 0);
713
714 /*
715 * if we've got an amap, lock it and extract current anons.
716 */
717
718 if (amap) {
719 amap_lock(amap);
720 anons = anons_store;
721 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
722 anons, npages);
723 } else {
724 anons = NULL; /* to be safe */
725 }
726
727 /* locked: maps(read), amap(if there) */
728
729 /*
730 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
731 * now and then forget about them (for the rest of the fault).
732 */
733
734 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
735
736 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
737 0,0,0,0);
738 /* flush back-page anons? */
739 if (amap)
740 uvmfault_anonflush(anons, nback);
741
742 /* flush object? */
743 if (uobj) {
744 objaddr =
745 (startva - ufi.entry->start) + ufi.entry->offset;
746 simple_lock(&uobj->vmobjlock);
747 (void) (uobj->pgops->pgo_put)(uobj, objaddr, objaddr +
748 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
749 }
750
751 /* now forget about the backpages */
752 if (amap)
753 anons += nback;
754 startva += (nback << PAGE_SHIFT);
755 npages -= nback;
756 nback = centeridx = 0;
757 }
758
759 /* locked: maps(read), amap(if there) */
760
761 /*
762 * map in the backpages and frontpages we found in the amap in hopes
763 * of preventing future faults. we also init the pages[] array as
764 * we go.
765 */
766
767 currva = startva;
768 shadowed = FALSE;
769 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
770
771 /*
772 * dont play with VAs that are already mapped
773 * except for center)
774 */
775 if (lcv != centeridx &&
776 pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
777 pages[lcv] = PGO_DONTCARE;
778 continue;
779 }
780
781 /*
782 * unmapped or center page. check if any anon at this level.
783 */
784 if (amap == NULL || anons[lcv] == NULL) {
785 pages[lcv] = NULL;
786 continue;
787 }
788
789 /*
790 * check for present page and map if possible. re-activate it.
791 */
792
793 pages[lcv] = PGO_DONTCARE;
794 if (lcv == centeridx) { /* save center for later! */
795 shadowed = TRUE;
796 continue;
797 }
798 anon = anons[lcv];
799 simple_lock(&anon->an_lock);
800 /* ignore loaned pages */
801 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
802 (anon->u.an_page->flags & PG_BUSY) == 0) {
803 uvm_lock_pageq();
804 uvm_pageactivate(anon->u.an_page);
805 uvm_unlock_pageq();
806 UVMHIST_LOG(maphist,
807 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
808 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
809 uvmexp.fltnamap++;
810
811 /*
812 * Since this isn't the page that's actually faulting,
813 * ignore pmap_enter() failures; it's not critical
814 * that we enter these right now.
815 */
816
817 (void) pmap_enter(ufi.orig_map->pmap, currva,
818 VM_PAGE_TO_PHYS(anon->u.an_page),
819 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
820 enter_prot,
821 PMAP_CANFAIL |
822 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
823 }
824 simple_unlock(&anon->an_lock);
825 pmap_update(ufi.orig_map->pmap);
826 }
827
828 /* locked: maps(read), amap(if there) */
829 /* (shadowed == TRUE) if there is an anon at the faulting address */
830 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
831 (uobj && shadowed == FALSE),0,0);
832
833 /*
834 * note that if we are really short of RAM we could sleep in the above
835 * call to pmap_enter with everything locked. bad?
836 *
837 * XXX Actually, that is bad; pmap_enter() should just fail in that
838 * XXX case. --thorpej
839 */
840
841 /*
842 * if the desired page is not shadowed by the amap and we have a
843 * backing object, then we check to see if the backing object would
844 * prefer to handle the fault itself (rather than letting us do it
845 * with the usual pgo_get hook). the backing object signals this by
846 * providing a pgo_fault routine.
847 */
848
849 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
850 simple_lock(&uobj->vmobjlock);
851
852 /* locked: maps(read), amap (if there), uobj */
853 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
854 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
855
856 /* locked: nothing, pgo_fault has unlocked everything */
857
858 if (error == ERESTART)
859 goto ReFault; /* try again! */
860 /*
861 * object fault routine responsible for pmap_update().
862 */
863 return error;
864 }
865
866 /*
867 * now, if the desired page is not shadowed by the amap and we have
868 * a backing object that does not have a special fault routine, then
869 * we ask (with pgo_get) the object for resident pages that we care
870 * about and attempt to map them in. we do not let pgo_get block
871 * (PGO_LOCKED).
872 */
873
874 if (uobj && shadowed == FALSE) {
875 simple_lock(&uobj->vmobjlock);
876
877 /* locked (!shadowed): maps(read), amap (if there), uobj */
878 /*
879 * the following call to pgo_get does _not_ change locking state
880 */
881
882 uvmexp.fltlget++;
883 gotpages = npages;
884 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
885 (startva - ufi.entry->start),
886 pages, &gotpages, centeridx,
887 access_type & MASK(ufi.entry),
888 ufi.entry->advice, PGO_LOCKED);
889
890 /*
891 * check for pages to map, if we got any
892 */
893
894 uobjpage = NULL;
895
896 if (gotpages) {
897 currva = startva;
898 for (lcv = 0; lcv < npages;
899 lcv++, currva += PAGE_SIZE) {
900 if (pages[lcv] == NULL ||
901 pages[lcv] == PGO_DONTCARE) {
902 continue;
903 }
904
905 /*
906 * if center page is resident and not
907 * PG_BUSY|PG_RELEASED then pgo_get
908 * made it PG_BUSY for us and gave
909 * us a handle to it. remember this
910 * page as "uobjpage." (for later use).
911 */
912
913 if (lcv == centeridx) {
914 uobjpage = pages[lcv];
915 UVMHIST_LOG(maphist, " got uobjpage "
916 "(0x%x) with locked get",
917 uobjpage, 0,0,0);
918 continue;
919 }
920
921 /*
922 * calling pgo_get with PGO_LOCKED returns us
923 * pages which are neither busy nor released,
924 * so we don't need to check for this.
925 * we can just directly enter the pages.
926 */
927
928 uvm_lock_pageq();
929 uvm_pageactivate(pages[lcv]);
930 uvm_unlock_pageq();
931 UVMHIST_LOG(maphist,
932 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
933 ufi.orig_map->pmap, currva, pages[lcv], 0);
934 uvmexp.fltnomap++;
935
936 /*
937 * Since this page isn't the page that's
938 * actually fauling, ignore pmap_enter()
939 * failures; it's not critical that we
940 * enter these right now.
941 */
942
943 (void) pmap_enter(ufi.orig_map->pmap, currva,
944 VM_PAGE_TO_PHYS(pages[lcv]),
945 pages[lcv]->flags & PG_RDONLY ?
946 enter_prot & ~VM_PROT_WRITE :
947 enter_prot & MASK(ufi.entry),
948 PMAP_CANFAIL |
949 (wired ? PMAP_WIRED : 0));
950
951 /*
952 * NOTE: page can't be PG_WANTED or PG_RELEASED
953 * because we've held the lock the whole time
954 * we've had the handle.
955 */
956
957 pages[lcv]->flags &= ~(PG_BUSY);
958 UVM_PAGE_OWN(pages[lcv], NULL);
959 }
960 pmap_update(ufi.orig_map->pmap);
961 }
962 } else {
963 uobjpage = NULL;
964 }
965
966 /* locked (shadowed): maps(read), amap */
967 /* locked (!shadowed): maps(read), amap(if there),
968 uobj(if !null), uobjpage(if !null) */
969
970 /*
971 * note that at this point we are done with any front or back pages.
972 * we are now going to focus on the center page (i.e. the one we've
973 * faulted on). if we have faulted on the top (anon) layer
974 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
975 * not touched it yet). if we have faulted on the bottom (uobj)
976 * layer [i.e. case 2] and the page was both present and available,
977 * then we've got a pointer to it as "uobjpage" and we've already
978 * made it BUSY.
979 */
980
981 /*
982 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
983 */
984
985 /*
986 * redirect case 2: if we are not shadowed, go to case 2.
987 */
988
989 if (shadowed == FALSE)
990 goto Case2;
991
992 /* locked: maps(read), amap */
993
994 /*
995 * handle case 1: fault on an anon in our amap
996 */
997
998 anon = anons[centeridx];
999 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1000 simple_lock(&anon->an_lock);
1001
1002 /* locked: maps(read), amap, anon */
1003
1004 /*
1005 * no matter if we have case 1A or case 1B we are going to need to
1006 * have the anon's memory resident. ensure that now.
1007 */
1008
1009 /*
1010 * let uvmfault_anonget do the dirty work.
1011 * if it fails (!OK) it will unlock everything for us.
1012 * if it succeeds, locks are still valid and locked.
1013 * also, if it is OK, then the anon's page is on the queues.
1014 * if the page is on loan from a uvm_object, then anonget will
1015 * lock that object for us if it does not fail.
1016 */
1017
1018 error = uvmfault_anonget(&ufi, amap, anon);
1019 switch (error) {
1020 case 0:
1021 break;
1022
1023 case ERESTART:
1024 goto ReFault;
1025
1026 case EAGAIN:
1027 tsleep(&lbolt, PVM, "fltagain1", 0);
1028 goto ReFault;
1029
1030 default:
1031 return error;
1032 }
1033
1034 /*
1035 * uobj is non null if the page is on loan from an object (i.e. uobj)
1036 */
1037
1038 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1039
1040 /* locked: maps(read), amap, anon, uobj(if one) */
1041
1042 /*
1043 * special handling for loaned pages
1044 */
1045
1046 if (anon->u.an_page->loan_count) {
1047
1048 if (!cow_now) {
1049
1050 /*
1051 * for read faults on loaned pages we just cap the
1052 * protection at read-only.
1053 */
1054
1055 enter_prot = enter_prot & ~VM_PROT_WRITE;
1056
1057 } else {
1058 /*
1059 * note that we can't allow writes into a loaned page!
1060 *
1061 * if we have a write fault on a loaned page in an
1062 * anon then we need to look at the anon's ref count.
1063 * if it is greater than one then we are going to do
1064 * a normal copy-on-write fault into a new anon (this
1065 * is not a problem). however, if the reference count
1066 * is one (a case where we would normally allow a
1067 * write directly to the page) then we need to kill
1068 * the loan before we continue.
1069 */
1070
1071 /* >1 case is already ok */
1072 if (anon->an_ref == 1) {
1073
1074 /* get new un-owned replacement page */
1075 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1076 if (pg == NULL) {
1077 uvmfault_unlockall(&ufi, amap, uobj,
1078 anon);
1079 uvm_wait("flt_noram2");
1080 goto ReFault;
1081 }
1082
1083 /*
1084 * copy data, kill loan, and drop uobj lock
1085 * (if any)
1086 */
1087 /* copy old -> new */
1088 uvm_pagecopy(anon->u.an_page, pg);
1089
1090 /* force reload */
1091 pmap_page_protect(anon->u.an_page,
1092 VM_PROT_NONE);
1093 uvm_lock_pageq(); /* KILL loan */
1094
1095 anon->u.an_page->uanon = NULL;
1096 /* in case we owned */
1097 anon->u.an_page->pqflags &= ~PQ_ANON;
1098
1099 if (uobj) {
1100 /* if we were receiver of loan */
1101 anon->u.an_page->loan_count--;
1102 } else {
1103 /*
1104 * we were the lender (A->K); need
1105 * to remove the page from pageq's.
1106 */
1107 uvm_pagedequeue(anon->u.an_page);
1108 }
1109
1110 uvm_pageactivate(pg);
1111 uvm_unlock_pageq();
1112 if (uobj) {
1113 simple_unlock(&uobj->vmobjlock);
1114 uobj = NULL;
1115 }
1116
1117 /* install new page in anon */
1118 anon->u.an_page = pg;
1119 pg->uanon = anon;
1120 pg->pqflags |= PQ_ANON;
1121 pg->flags &= ~(PG_BUSY|PG_FAKE);
1122 UVM_PAGE_OWN(pg, NULL);
1123
1124 /* done! */
1125 } /* ref == 1 */
1126 } /* write fault */
1127 } /* loan count */
1128
1129 /*
1130 * if we are case 1B then we will need to allocate a new blank
1131 * anon to transfer the data into. note that we have a lock
1132 * on anon, so no one can busy or release the page until we are done.
1133 * also note that the ref count can't drop to zero here because
1134 * it is > 1 and we are only dropping one ref.
1135 *
1136 * in the (hopefully very rare) case that we are out of RAM we
1137 * will unlock, wait for more RAM, and refault.
1138 *
1139 * if we are out of anon VM we kill the process (XXX: could wait?).
1140 */
1141
1142 if (cow_now && anon->an_ref > 1) {
1143
1144 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1145 uvmexp.flt_acow++;
1146 oanon = anon; /* oanon = old, locked anon */
1147 anon = uvm_analloc();
1148 if (anon) {
1149 /* new anon is locked! */
1150 pg = uvm_pagealloc(NULL, 0, anon, 0);
1151 }
1152
1153 /* check for out of RAM */
1154 if (anon == NULL || pg == NULL) {
1155 if (anon) {
1156 anon->an_ref--;
1157 simple_unlock(&anon->an_lock);
1158 uvm_anfree(anon);
1159 }
1160 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1161 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1162 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1163 UVMHIST_LOG(maphist,
1164 "<- failed. out of VM",0,0,0,0);
1165 uvmexp.fltnoanon++;
1166 return ENOMEM;
1167 }
1168
1169 uvmexp.fltnoram++;
1170 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1171 goto ReFault;
1172 }
1173
1174 /* got all resources, replace anon with nanon */
1175 uvm_pagecopy(oanon->u.an_page, pg);
1176 uvm_pageactivate(pg);
1177 pg->flags &= ~(PG_BUSY|PG_FAKE);
1178 UVM_PAGE_OWN(pg, NULL);
1179 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1180 anon, 1);
1181
1182 /* deref: can not drop to zero here by defn! */
1183 oanon->an_ref--;
1184
1185 /*
1186 * note: oanon is still locked, as is the new anon. we
1187 * need to check for this later when we unlock oanon; if
1188 * oanon != anon, we'll have to unlock anon, too.
1189 */
1190
1191 } else {
1192
1193 uvmexp.flt_anon++;
1194 oanon = anon; /* old, locked anon is same as anon */
1195 pg = anon->u.an_page;
1196 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1197 enter_prot = enter_prot & ~VM_PROT_WRITE;
1198
1199 }
1200
1201 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1202
1203 /*
1204 * now map the page in.
1205 */
1206
1207 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1208 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1209 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1210 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1211 != 0) {
1212
1213 /*
1214 * No need to undo what we did; we can simply think of
1215 * this as the pmap throwing away the mapping information.
1216 *
1217 * We do, however, have to go through the ReFault path,
1218 * as the map may change while we're asleep.
1219 */
1220
1221 if (anon != oanon)
1222 simple_unlock(&anon->an_lock);
1223 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1224 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1225 if (uvmexp.swpgonly == uvmexp.swpages) {
1226 UVMHIST_LOG(maphist,
1227 "<- failed. out of VM",0,0,0,0);
1228 /* XXX instrumentation */
1229 return ENOMEM;
1230 }
1231 /* XXX instrumentation */
1232 uvm_wait("flt_pmfail1");
1233 goto ReFault;
1234 }
1235
1236 /*
1237 * ... update the page queues.
1238 */
1239
1240 uvm_lock_pageq();
1241 if (wire_fault) {
1242 uvm_pagewire(pg);
1243
1244 /*
1245 * since the now-wired page cannot be paged out,
1246 * release its swap resources for others to use.
1247 * since an anon with no swap cannot be PG_CLEAN,
1248 * clear its clean flag now.
1249 */
1250
1251 pg->flags &= ~(PG_CLEAN);
1252 uvm_anon_dropswap(anon);
1253 } else {
1254 uvm_pageactivate(pg);
1255 }
1256 uvm_unlock_pageq();
1257
1258 /*
1259 * done case 1! finish up by unlocking everything and returning success
1260 */
1261
1262 if (anon != oanon)
1263 simple_unlock(&anon->an_lock);
1264 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1265 pmap_update(ufi.orig_map->pmap);
1266 return 0;
1267
1268 Case2:
1269 /*
1270 * handle case 2: faulting on backing object or zero fill
1271 */
1272
1273 /*
1274 * locked:
1275 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1276 */
1277
1278 /*
1279 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1280 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1281 * have a backing object, check and see if we are going to promote
1282 * the data up to an anon during the fault.
1283 */
1284
1285 if (uobj == NULL) {
1286 uobjpage = PGO_DONTCARE;
1287 promote = TRUE; /* always need anon here */
1288 } else {
1289 KASSERT(uobjpage != PGO_DONTCARE);
1290 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1291 }
1292 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1293 promote, (uobj == NULL), 0,0);
1294
1295 /*
1296 * if uobjpage is not null then we do not need to do I/O to get the
1297 * uobjpage.
1298 *
1299 * if uobjpage is null, then we need to unlock and ask the pager to
1300 * get the data for us. once we have the data, we need to reverify
1301 * the state the world. we are currently not holding any resources.
1302 */
1303
1304 if (uobjpage) {
1305 /* update rusage counters */
1306 curproc->p_stats->p_ru.ru_minflt++;
1307 } else {
1308 /* update rusage counters */
1309 curproc->p_stats->p_ru.ru_majflt++;
1310
1311 /* locked: maps(read), amap(if there), uobj */
1312 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1313 /* locked: uobj */
1314
1315 uvmexp.fltget++;
1316 gotpages = 1;
1317 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1318 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1319 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1320 PGO_SYNCIO);
1321 /* locked: uobjpage(if no error) */
1322
1323 /*
1324 * recover from I/O
1325 */
1326
1327 if (error) {
1328 if (error == EAGAIN) {
1329 UVMHIST_LOG(maphist,
1330 " pgo_get says TRY AGAIN!",0,0,0,0);
1331 tsleep(&lbolt, PVM, "fltagain2", 0);
1332 goto ReFault;
1333 }
1334
1335 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1336 error, 0,0,0);
1337 return error;
1338 }
1339
1340 /* locked: uobjpage */
1341
1342 uvm_lock_pageq();
1343 uvm_pageactivate(uobjpage);
1344 uvm_unlock_pageq();
1345
1346 /*
1347 * re-verify the state of the world by first trying to relock
1348 * the maps. always relock the object.
1349 */
1350
1351 locked = uvmfault_relock(&ufi);
1352 if (locked && amap)
1353 amap_lock(amap);
1354 simple_lock(&uobj->vmobjlock);
1355
1356 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1357 /* locked(!locked): uobj, uobjpage */
1358
1359 /*
1360 * verify that the page has not be released and re-verify
1361 * that amap slot is still free. if there is a problem,
1362 * we unlock and clean up.
1363 */
1364
1365 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1366 (locked && amap &&
1367 amap_lookup(&ufi.entry->aref,
1368 ufi.orig_rvaddr - ufi.entry->start))) {
1369 if (locked)
1370 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1371 locked = FALSE;
1372 }
1373
1374 /*
1375 * didn't get the lock? release the page and retry.
1376 */
1377
1378 if (locked == FALSE) {
1379 UVMHIST_LOG(maphist,
1380 " wasn't able to relock after fault: retry",
1381 0,0,0,0);
1382 if (uobjpage->flags & PG_WANTED)
1383 wakeup(uobjpage);
1384 if (uobjpage->flags & PG_RELEASED) {
1385 uvmexp.fltpgrele++;
1386 uvm_pagefree(uobjpage);
1387 goto ReFault;
1388 }
1389 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1390 UVM_PAGE_OWN(uobjpage, NULL);
1391 simple_unlock(&uobj->vmobjlock);
1392 goto ReFault;
1393 }
1394
1395 /*
1396 * we have the data in uobjpage which is busy and
1397 * not released. we are holding object lock (so the page
1398 * can't be released on us).
1399 */
1400
1401 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1402 }
1403
1404 /*
1405 * locked:
1406 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1407 */
1408
1409 /*
1410 * notes:
1411 * - at this point uobjpage can not be NULL
1412 * - at this point uobjpage can not be PG_RELEASED (since we checked
1413 * for it above)
1414 * - at this point uobjpage could be PG_WANTED (handle later)
1415 */
1416
1417 if (promote == FALSE) {
1418
1419 /*
1420 * we are not promoting. if the mapping is COW ensure that we
1421 * don't give more access than we should (e.g. when doing a read
1422 * fault on a COPYONWRITE mapping we want to map the COW page in
1423 * R/O even though the entry protection could be R/W).
1424 *
1425 * set "pg" to the page we want to map in (uobjpage, usually)
1426 */
1427
1428 /* no anon in this case. */
1429 anon = NULL;
1430
1431 uvmexp.flt_obj++;
1432 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1433 enter_prot &= ~VM_PROT_WRITE;
1434 pg = uobjpage; /* map in the actual object */
1435
1436 /* assert(uobjpage != PGO_DONTCARE) */
1437
1438 /*
1439 * we are faulting directly on the page. be careful
1440 * about writing to loaned pages...
1441 */
1442
1443 if (uobjpage->loan_count) {
1444 if (!cow_now) {
1445 /* read fault: cap the protection at readonly */
1446 /* cap! */
1447 enter_prot = enter_prot & ~VM_PROT_WRITE;
1448 } else {
1449 /* write fault: must break the loan here */
1450
1451 /* alloc new un-owned page */
1452 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1453
1454 if (pg == NULL) {
1455
1456 /*
1457 * drop ownership of page, it can't
1458 * be released
1459 */
1460
1461 if (uobjpage->flags & PG_WANTED)
1462 wakeup(uobjpage);
1463 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1464 UVM_PAGE_OWN(uobjpage, NULL);
1465
1466 uvmfault_unlockall(&ufi, amap, uobj,
1467 NULL);
1468 UVMHIST_LOG(maphist,
1469 " out of RAM breaking loan, waiting",
1470 0,0,0,0);
1471 uvmexp.fltnoram++;
1472 uvm_wait("flt_noram4");
1473 goto ReFault;
1474 }
1475
1476 /*
1477 * copy the data from the old page to the new
1478 * one and clear the fake/clean flags on the
1479 * new page (keep it busy). force a reload
1480 * of the old page by clearing it from all
1481 * pmaps. then lock the page queues to
1482 * rename the pages.
1483 */
1484
1485 uvm_pagecopy(uobjpage, pg); /* old -> new */
1486 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1487 pmap_page_protect(uobjpage, VM_PROT_NONE);
1488 if (uobjpage->flags & PG_WANTED)
1489 wakeup(uobjpage);
1490 /* uobj still locked */
1491 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1492 UVM_PAGE_OWN(uobjpage, NULL);
1493
1494 uvm_lock_pageq();
1495 offset = uobjpage->offset;
1496 uvm_pagerealloc(uobjpage, NULL, 0);
1497
1498 /*
1499 * if the page is no longer referenced by
1500 * an anon (i.e. we are breaking an O->K
1501 * loan), then remove it from any pageq's.
1502 */
1503 if (uobjpage->uanon == NULL)
1504 uvm_pagedequeue(uobjpage);
1505
1506 /*
1507 * at this point we have absolutely no
1508 * control over uobjpage
1509 */
1510
1511 /* install new page */
1512 uvm_pageactivate(pg);
1513 uvm_pagerealloc(pg, uobj, offset);
1514 uvm_unlock_pageq();
1515
1516 /*
1517 * done! loan is broken and "pg" is
1518 * PG_BUSY. it can now replace uobjpage.
1519 */
1520
1521 uobjpage = pg;
1522 }
1523 }
1524 } else {
1525
1526 /*
1527 * if we are going to promote the data to an anon we
1528 * allocate a blank anon here and plug it into our amap.
1529 */
1530 #if DIAGNOSTIC
1531 if (amap == NULL)
1532 panic("uvm_fault: want to promote data, but no anon");
1533 #endif
1534
1535 anon = uvm_analloc();
1536 if (anon) {
1537
1538 /*
1539 * The new anon is locked.
1540 *
1541 * In `Fill in data...' below, if
1542 * uobjpage == PGO_DONTCARE, we want
1543 * a zero'd, dirty page, so have
1544 * uvm_pagealloc() do that for us.
1545 */
1546
1547 pg = uvm_pagealloc(NULL, 0, anon,
1548 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1549 }
1550
1551 /*
1552 * out of memory resources?
1553 */
1554
1555 if (anon == NULL || pg == NULL) {
1556 if (anon != NULL) {
1557 anon->an_ref--;
1558 simple_unlock(&anon->an_lock);
1559 uvm_anfree(anon);
1560 }
1561
1562 /*
1563 * arg! must unbusy our page and fail or sleep.
1564 */
1565
1566 if (uobjpage != PGO_DONTCARE) {
1567 if (uobjpage->flags & PG_WANTED)
1568 /* still holding object lock */
1569 wakeup(uobjpage);
1570
1571 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1572 UVM_PAGE_OWN(uobjpage, NULL);
1573 }
1574
1575 /* unlock and fail ... */
1576 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1577 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1578 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1579 UVMHIST_LOG(maphist, " promote: out of VM",
1580 0,0,0,0);
1581 uvmexp.fltnoanon++;
1582 return ENOMEM;
1583 }
1584
1585 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1586 0,0,0,0);
1587 uvmexp.fltnoram++;
1588 uvm_wait("flt_noram5");
1589 goto ReFault;
1590 }
1591
1592 /*
1593 * fill in the data
1594 */
1595
1596 if (uobjpage != PGO_DONTCARE) {
1597 uvmexp.flt_prcopy++;
1598 /* copy page [pg now dirty] */
1599 uvm_pagecopy(uobjpage, pg);
1600
1601 /*
1602 * promote to shared amap? make sure all sharing
1603 * procs see it
1604 */
1605
1606 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1607 pmap_page_protect(uobjpage, VM_PROT_NONE);
1608 /*
1609 * XXX: PAGE MIGHT BE WIRED!
1610 */
1611 }
1612
1613 /*
1614 * dispose of uobjpage. it can't be PG_RELEASED
1615 * since we still hold the object lock.
1616 * drop handle to uobj as well.
1617 */
1618
1619 if (uobjpage->flags & PG_WANTED)
1620 /* still have the obj lock */
1621 wakeup(uobjpage);
1622 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1623 UVM_PAGE_OWN(uobjpage, NULL);
1624 simple_unlock(&uobj->vmobjlock);
1625 uobj = NULL;
1626
1627 UVMHIST_LOG(maphist,
1628 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1629 uobjpage, anon, pg, 0);
1630
1631 } else {
1632 uvmexp.flt_przero++;
1633
1634 /*
1635 * Page is zero'd and marked dirty by uvm_pagealloc()
1636 * above.
1637 */
1638
1639 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1640 anon, pg, 0, 0);
1641 }
1642 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1643 anon, 0);
1644 }
1645
1646 /*
1647 * locked:
1648 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1649 * anon(if !null), pg(if anon)
1650 *
1651 * note: pg is either the uobjpage or the new page in the new anon
1652 */
1653
1654 /*
1655 * all resources are present. we can now map it in and free our
1656 * resources.
1657 */
1658
1659 UVMHIST_LOG(maphist,
1660 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1661 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1662 KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1663 (pg->flags & PG_RDONLY) == 0);
1664 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1665 pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1666 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1667
1668 /*
1669 * No need to undo what we did; we can simply think of
1670 * this as the pmap throwing away the mapping information.
1671 *
1672 * We do, however, have to go through the ReFault path,
1673 * as the map may change while we're asleep.
1674 */
1675
1676 if (pg->flags & PG_WANTED)
1677 wakeup(pg);
1678
1679 /*
1680 * note that pg can't be PG_RELEASED since we did not drop
1681 * the object lock since the last time we checked.
1682 */
1683
1684 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1685 UVM_PAGE_OWN(pg, NULL);
1686 uvmfault_unlockall(&ufi, amap, uobj, anon);
1687 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1688 if (uvmexp.swpgonly == uvmexp.swpages) {
1689 UVMHIST_LOG(maphist,
1690 "<- failed. out of VM",0,0,0,0);
1691 /* XXX instrumentation */
1692 return ENOMEM;
1693 }
1694 /* XXX instrumentation */
1695 uvm_wait("flt_pmfail2");
1696 goto ReFault;
1697 }
1698
1699 uvm_lock_pageq();
1700 if (wire_fault) {
1701 uvm_pagewire(pg);
1702 if (pg->pqflags & PQ_AOBJ) {
1703
1704 /*
1705 * since the now-wired page cannot be paged out,
1706 * release its swap resources for others to use.
1707 * since an aobj page with no swap cannot be PG_CLEAN,
1708 * clear its clean flag now.
1709 */
1710
1711 pg->flags &= ~(PG_CLEAN);
1712 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1713 }
1714 } else {
1715 uvm_pageactivate(pg);
1716 }
1717 uvm_unlock_pageq();
1718 if (pg->flags & PG_WANTED)
1719 wakeup(pg);
1720
1721 /*
1722 * note that pg can't be PG_RELEASED since we did not drop the object
1723 * lock since the last time we checked.
1724 */
1725
1726 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1727 UVM_PAGE_OWN(pg, NULL);
1728 uvmfault_unlockall(&ufi, amap, uobj, anon);
1729 pmap_update(ufi.orig_map->pmap);
1730 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1731 return 0;
1732 }
1733
1734 /*
1735 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1736 *
1737 * => map may be read-locked by caller, but MUST NOT be write-locked.
1738 * => if map is read-locked, any operations which may cause map to
1739 * be write-locked in uvm_fault() must be taken care of by
1740 * the caller. See uvm_map_pageable().
1741 */
1742
1743 int
1744 uvm_fault_wire(map, start, end, fault_type, access_type)
1745 struct vm_map *map;
1746 vaddr_t start, end;
1747 vm_fault_t fault_type;
1748 vm_prot_t access_type;
1749 {
1750 vaddr_t va;
1751 int error;
1752
1753 /*
1754 * now fault it in a page at a time. if the fault fails then we have
1755 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1756 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1757 */
1758
1759 /*
1760 * XXX work around overflowing a vaddr_t. this prevents us from
1761 * wiring the last page in the address space, though.
1762 */
1763 if (start > end) {
1764 return EFAULT;
1765 }
1766
1767 for (va = start ; va < end ; va += PAGE_SIZE) {
1768 error = uvm_fault(map, va, fault_type, access_type);
1769 if (error) {
1770 if (va != start) {
1771 uvm_fault_unwire(map, start, va);
1772 }
1773 return error;
1774 }
1775 }
1776 return 0;
1777 }
1778
1779 /*
1780 * uvm_fault_unwire(): unwire range of virtual space.
1781 */
1782
1783 void
1784 uvm_fault_unwire(map, start, end)
1785 struct vm_map *map;
1786 vaddr_t start, end;
1787 {
1788 vm_map_lock_read(map);
1789 uvm_fault_unwire_locked(map, start, end);
1790 vm_map_unlock_read(map);
1791 }
1792
1793 /*
1794 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1795 *
1796 * => map must be at least read-locked.
1797 */
1798
1799 void
1800 uvm_fault_unwire_locked(map, start, end)
1801 struct vm_map *map;
1802 vaddr_t start, end;
1803 {
1804 struct vm_map_entry *entry;
1805 pmap_t pmap = vm_map_pmap(map);
1806 vaddr_t va;
1807 paddr_t pa;
1808 struct vm_page *pg;
1809
1810 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1811
1812 /*
1813 * we assume that the area we are unwiring has actually been wired
1814 * in the first place. this means that we should be able to extract
1815 * the PAs from the pmap. we also lock out the page daemon so that
1816 * we can call uvm_pageunwire.
1817 */
1818
1819 uvm_lock_pageq();
1820
1821 /*
1822 * find the beginning map entry for the region.
1823 */
1824
1825 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1826 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1827 panic("uvm_fault_unwire_locked: address not in map");
1828
1829 for (va = start; va < end; va += PAGE_SIZE) {
1830 if (pmap_extract(pmap, va, &pa) == FALSE)
1831 continue;
1832
1833 /*
1834 * find the map entry for the current address.
1835 */
1836
1837 KASSERT(va >= entry->start);
1838 while (va >= entry->end) {
1839 KASSERT(entry->next != &map->header &&
1840 entry->next->start <= entry->end);
1841 entry = entry->next;
1842 }
1843
1844 /*
1845 * if the entry is no longer wired, tell the pmap.
1846 */
1847
1848 if (VM_MAPENT_ISWIRED(entry) == 0)
1849 pmap_unwire(pmap, va);
1850
1851 pg = PHYS_TO_VM_PAGE(pa);
1852 if (pg)
1853 uvm_pageunwire(pg);
1854 }
1855
1856 uvm_unlock_pageq();
1857 }
1858