uvm_fault.c revision 1.56.2.13 1 /* $NetBSD: uvm_fault.c,v 1.56.2.13 2002/10/30 19:13:31 thorpej Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.56.2.13 2002/10/30 19:13:31 thorpej Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/user.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 *
58 * a word on page faults:
59 *
60 * types of page faults we handle:
61 *
62 * CASE 1: upper layer faults CASE 2: lower layer faults
63 *
64 * CASE 1A CASE 1B CASE 2A CASE 2B
65 * read/write1 write>1 read/write +-cow_write/zero
66 * | | | |
67 * +--|--+ +--|--+ +-----+ + | + | +-----+
68 * amap | V | | ----------->new| | | | ^ |
69 * +-----+ +-----+ +-----+ + | + | +--|--+
70 * | | |
71 * +-----+ +-----+ +--|--+ | +--|--+
72 * uobj | d/c | | d/c | | V | +----| |
73 * +-----+ +-----+ +-----+ +-----+
74 *
75 * d/c = don't care
76 *
77 * case [0]: layerless fault
78 * no amap or uobj is present. this is an error.
79 *
80 * case [1]: upper layer fault [anon active]
81 * 1A: [read] or [write with anon->an_ref == 1]
82 * I/O takes place in top level anon and uobj is not touched.
83 * 1B: [write with anon->an_ref > 1]
84 * new anon is alloc'd and data is copied off ["COW"]
85 *
86 * case [2]: lower layer fault [uobj]
87 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
88 * I/O takes place directly in object.
89 * 2B: [write to copy_on_write] or [read on NULL uobj]
90 * data is "promoted" from uobj to a new anon.
91 * if uobj is null, then we zero fill.
92 *
93 * we follow the standard UVM locking protocol ordering:
94 *
95 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
96 * we hold a PG_BUSY page if we unlock for I/O
97 *
98 *
99 * the code is structured as follows:
100 *
101 * - init the "IN" params in the ufi structure
102 * ReFault:
103 * - do lookups [locks maps], check protection, handle needs_copy
104 * - check for case 0 fault (error)
105 * - establish "range" of fault
106 * - if we have an amap lock it and extract the anons
107 * - if sequential advice deactivate pages behind us
108 * - at the same time check pmap for unmapped areas and anon for pages
109 * that we could map in (and do map it if found)
110 * - check object for resident pages that we could map in
111 * - if (case 2) goto Case2
112 * - >>> handle case 1
113 * - ensure source anon is resident in RAM
114 * - if case 1B alloc new anon and copy from source
115 * - map the correct page in
116 * Case2:
117 * - >>> handle case 2
118 * - ensure source page is resident (if uobj)
119 * - if case 2B alloc new anon and copy from source (could be zero
120 * fill if uobj == NULL)
121 * - map the correct page in
122 * - done!
123 *
124 * note on paging:
125 * if we have to do I/O we place a PG_BUSY page in the correct object,
126 * unlock everything, and do the I/O. when I/O is done we must reverify
127 * the state of the world before assuming that our data structures are
128 * valid. [because mappings could change while the map is unlocked]
129 *
130 * alternative 1: unbusy the page in question and restart the page fault
131 * from the top (ReFault). this is easy but does not take advantage
132 * of the information that we already have from our previous lookup,
133 * although it is possible that the "hints" in the vm_map will help here.
134 *
135 * alternative 2: the system already keeps track of a "version" number of
136 * a map. [i.e. every time you write-lock a map (e.g. to change a
137 * mapping) you bump the version number up by one...] so, we can save
138 * the version number of the map before we release the lock and start I/O.
139 * then when I/O is done we can relock and check the version numbers
140 * to see if anything changed. this might save us some over 1 because
141 * we don't have to unbusy the page and may be less compares(?).
142 *
143 * alternative 3: put in backpointers or a way to "hold" part of a map
144 * in place while I/O is in progress. this could be complex to
145 * implement (especially with structures like amap that can be referenced
146 * by multiple map entries, and figuring out what should wait could be
147 * complex as well...).
148 *
149 * given that we are not currently multiprocessor or multithreaded we might
150 * as well choose alternative 2 now. maybe alternative 3 would be useful
151 * in the future. XXX keep in mind for future consideration//rechecking.
152 */
153
154 /*
155 * local data structures
156 */
157
158 struct uvm_advice {
159 int advice;
160 int nback;
161 int nforw;
162 };
163
164 /*
165 * page range array:
166 * note: index in array must match "advice" value
167 * XXX: borrowed numbers from freebsd. do they work well for us?
168 */
169
170 static struct uvm_advice uvmadvice[] = {
171 { MADV_NORMAL, 3, 4 },
172 { MADV_RANDOM, 0, 0 },
173 { MADV_SEQUENTIAL, 8, 7},
174 };
175
176 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
177
178 /*
179 * private prototypes
180 */
181
182 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
183 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
184
185 /*
186 * inline functions
187 */
188
189 /*
190 * uvmfault_anonflush: try and deactivate pages in specified anons
191 *
192 * => does not have to deactivate page if it is busy
193 */
194
195 static __inline void
196 uvmfault_anonflush(anons, n)
197 struct vm_anon **anons;
198 int n;
199 {
200 int lcv;
201 struct vm_page *pg;
202
203 for (lcv = 0 ; lcv < n ; lcv++) {
204 if (anons[lcv] == NULL)
205 continue;
206 simple_lock(&anons[lcv]->an_lock);
207 pg = anons[lcv]->u.an_page;
208 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
209 uvm_lock_pageq();
210 if (pg->wire_count == 0) {
211 pmap_clear_reference(pg);
212 uvm_pagedeactivate(pg);
213 }
214 uvm_unlock_pageq();
215 }
216 simple_unlock(&anons[lcv]->an_lock);
217 }
218 }
219
220 /*
221 * normal functions
222 */
223
224 /*
225 * uvmfault_amapcopy: clear "needs_copy" in a map.
226 *
227 * => called with VM data structures unlocked (usually, see below)
228 * => we get a write lock on the maps and clear needs_copy for a VA
229 * => if we are out of RAM we sleep (waiting for more)
230 */
231
232 static void
233 uvmfault_amapcopy(ufi)
234 struct uvm_faultinfo *ufi;
235 {
236 for (;;) {
237
238 /*
239 * no mapping? give up.
240 */
241
242 if (uvmfault_lookup(ufi, TRUE) == FALSE)
243 return;
244
245 /*
246 * copy if needed.
247 */
248
249 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
250 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
251 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
252
253 /*
254 * didn't work? must be out of RAM. unlock and sleep.
255 */
256
257 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
258 uvmfault_unlockmaps(ufi, TRUE);
259 uvm_wait("fltamapcopy");
260 continue;
261 }
262
263 /*
264 * got it! unlock and return.
265 */
266
267 uvmfault_unlockmaps(ufi, TRUE);
268 return;
269 }
270 /*NOTREACHED*/
271 }
272
273 /*
274 * uvmfault_anonget: get data in an anon into a non-busy, non-released
275 * page in that anon.
276 *
277 * => maps, amap, and anon locked by caller.
278 * => if we fail (result != 0) we unlock everything.
279 * => if we are successful, we return with everything still locked.
280 * => we don't move the page on the queues [gets moved later]
281 * => if we allocate a new page [we_own], it gets put on the queues.
282 * either way, the result is that the page is on the queues at return time
283 * => for pages which are on loan from a uvm_object (and thus are not
284 * owned by the anon): if successful, we return with the owning object
285 * locked. the caller must unlock this object when it unlocks everything
286 * else.
287 */
288
289 int
290 uvmfault_anonget(ufi, amap, anon)
291 struct uvm_faultinfo *ufi;
292 struct vm_amap *amap;
293 struct vm_anon *anon;
294 {
295 boolean_t we_own; /* we own anon's page? */
296 boolean_t locked; /* did we relock? */
297 struct vm_page *pg;
298 int error;
299 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
300
301 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
302
303 error = 0;
304 uvmexp.fltanget++;
305 /* bump rusage counters */
306 if (anon->u.an_page)
307 curproc->p_stats->p_ru.ru_minflt++;
308 else
309 curproc->p_stats->p_ru.ru_majflt++;
310
311 /*
312 * loop until we get it, or fail.
313 */
314
315 for (;;) {
316 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
317 pg = anon->u.an_page;
318
319 /*
320 * if there is a resident page and it is loaned, then anon
321 * may not own it. call out to uvm_anon_lockpage() to ensure
322 * the real owner of the page has been identified and locked.
323 */
324
325 if (pg && pg->loan_count)
326 pg = uvm_anon_lockloanpg(anon);
327
328 /*
329 * page there? make sure it is not busy/released.
330 */
331
332 if (pg) {
333
334 /*
335 * at this point, if the page has a uobject [meaning
336 * we have it on loan], then that uobject is locked
337 * by us! if the page is busy, we drop all the
338 * locks (including uobject) and try again.
339 */
340
341 if ((pg->flags & PG_BUSY) == 0) {
342 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
343 return (0);
344 }
345 pg->flags |= PG_WANTED;
346 uvmexp.fltpgwait++;
347
348 /*
349 * the last unlock must be an atomic unlock+wait on
350 * the owner of page
351 */
352
353 if (pg->uobject) { /* owner is uobject ? */
354 uvmfault_unlockall(ufi, amap, NULL, anon);
355 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
356 0,0,0);
357 UVM_UNLOCK_AND_WAIT(pg,
358 &pg->uobject->vmobjlock,
359 FALSE, "anonget1",0);
360 } else {
361 /* anon owns page */
362 uvmfault_unlockall(ufi, amap, NULL, NULL);
363 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
364 0,0,0);
365 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
366 "anonget2",0);
367 }
368 } else {
369
370 /*
371 * no page, we must try and bring it in.
372 */
373
374 pg = uvm_pagealloc(NULL, 0, anon, 0);
375 if (pg == NULL) { /* out of RAM. */
376 uvmfault_unlockall(ufi, amap, NULL, anon);
377 uvmexp.fltnoram++;
378 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
379 0,0,0);
380 uvm_wait("flt_noram1");
381 } else {
382 /* we set the PG_BUSY bit */
383 we_own = TRUE;
384 uvmfault_unlockall(ufi, amap, NULL, anon);
385
386 /*
387 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
388 * page into the uvm_swap_get function with
389 * all data structures unlocked. note that
390 * it is ok to read an_swslot here because
391 * we hold PG_BUSY on the page.
392 */
393 uvmexp.pageins++;
394 error = uvm_swap_get(pg, anon->an_swslot,
395 PGO_SYNCIO);
396
397 /*
398 * we clean up after the i/o below in the
399 * "we_own" case
400 */
401 }
402 }
403
404 /*
405 * now relock and try again
406 */
407
408 locked = uvmfault_relock(ufi);
409 if (locked && amap != NULL) {
410 amap_lock(amap);
411 }
412 if (locked || we_own)
413 simple_lock(&anon->an_lock);
414
415 /*
416 * if we own the page (i.e. we set PG_BUSY), then we need
417 * to clean up after the I/O. there are three cases to
418 * consider:
419 * [1] page released during I/O: free anon and ReFault.
420 * [2] I/O not OK. free the page and cause the fault
421 * to fail.
422 * [3] I/O OK! activate the page and sync with the
423 * non-we_own case (i.e. drop anon lock if not locked).
424 */
425
426 if (we_own) {
427 if (pg->flags & PG_WANTED) {
428 wakeup(pg);
429 }
430 if (error) {
431 /* remove page from anon */
432 anon->u.an_page = NULL;
433
434 /*
435 * remove the swap slot from the anon
436 * and mark the anon as having no real slot.
437 * don't free the swap slot, thus preventing
438 * it from being used again.
439 */
440
441 uvm_swap_markbad(anon->an_swslot, 1);
442 anon->an_swslot = SWSLOT_BAD;
443
444 /*
445 * note: page was never !PG_BUSY, so it
446 * can't be mapped and thus no need to
447 * pmap_page_protect it...
448 */
449
450 uvm_lock_pageq();
451 uvm_pagefree(pg);
452 uvm_unlock_pageq();
453
454 if (locked)
455 uvmfault_unlockall(ufi, amap, NULL,
456 anon);
457 else
458 simple_unlock(&anon->an_lock);
459 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
460 return error;
461 }
462
463 /*
464 * we've successfully read the page, activate it.
465 */
466
467 uvm_lock_pageq();
468 uvm_pageactivate(pg);
469 uvm_unlock_pageq();
470 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
471 UVM_PAGE_OWN(pg, NULL);
472 if (!locked)
473 simple_unlock(&anon->an_lock);
474 }
475
476 /*
477 * we were not able to relock. restart fault.
478 */
479
480 if (!locked) {
481 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
482 return (ERESTART);
483 }
484
485 /*
486 * verify no one has touched the amap and moved the anon on us.
487 */
488
489 if (ufi != NULL &&
490 amap_lookup(&ufi->entry->aref,
491 ufi->orig_rvaddr - ufi->entry->start) != anon) {
492
493 uvmfault_unlockall(ufi, amap, NULL, anon);
494 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
495 return (ERESTART);
496 }
497
498 /*
499 * try it again!
500 */
501
502 uvmexp.fltanretry++;
503 continue;
504 }
505 /*NOTREACHED*/
506 }
507
508 /*
509 * F A U L T - m a i n e n t r y p o i n t
510 */
511
512 /*
513 * uvm_fault: page fault handler
514 *
515 * => called from MD code to resolve a page fault
516 * => VM data structures usually should be unlocked. however, it is
517 * possible to call here with the main map locked if the caller
518 * gets a write lock, sets it recusive, and then calls us (c.f.
519 * uvm_map_pageable). this should be avoided because it keeps
520 * the map locked off during I/O.
521 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
522 */
523
524 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
525 ~VM_PROT_WRITE : VM_PROT_ALL)
526
527 int
528 uvm_fault(orig_map, vaddr, fault_type, access_type)
529 struct vm_map *orig_map;
530 vaddr_t vaddr;
531 vm_fault_t fault_type;
532 vm_prot_t access_type;
533 {
534 struct uvm_faultinfo ufi;
535 vm_prot_t enter_prot, check_prot;
536 boolean_t wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
537 int npages, nback, nforw, centeridx, error, lcv, gotpages;
538 vaddr_t startva, objaddr, currva, offset;
539 voff_t uoff;
540 paddr_t pa;
541 struct vm_amap *amap;
542 struct uvm_object *uobj;
543 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
544 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
545 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
546
547 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
548 orig_map, vaddr, fault_type, access_type);
549
550 anon = NULL;
551 pg = NULL;
552
553 uvmexp.faults++; /* XXX: locking? */
554
555 /*
556 * init the IN parameters in the ufi
557 */
558
559 ufi.orig_map = orig_map;
560 ufi.orig_rvaddr = trunc_page(vaddr);
561 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
562 wire_fault = fault_type == VM_FAULT_WIRE ||
563 fault_type == VM_FAULT_WIREMAX;
564 if (wire_fault)
565 narrow = TRUE; /* don't look for neighborhood
566 * pages on wire */
567 else
568 narrow = FALSE; /* normal fault */
569
570 /*
571 * "goto ReFault" means restart the page fault from ground zero.
572 */
573 ReFault:
574
575 /*
576 * lookup and lock the maps
577 */
578
579 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
580 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
581 return (EFAULT);
582 }
583 /* locked: maps(read) */
584
585 #ifdef DIAGNOSTIC
586 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
587 printf("Page fault on non-pageable map:\n");
588 printf("ufi.map = %p\n", ufi.map);
589 printf("ufi.orig_map = %p\n", ufi.orig_map);
590 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
591 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
592 }
593 #endif
594
595 /*
596 * check protection
597 */
598
599 check_prot = fault_type == VM_FAULT_WIREMAX ?
600 ufi.entry->max_protection : ufi.entry->protection;
601 if ((check_prot & access_type) != access_type) {
602 UVMHIST_LOG(maphist,
603 "<- protection failure (prot=0x%x, access=0x%x)",
604 ufi.entry->protection, access_type, 0, 0);
605 uvmfault_unlockmaps(&ufi, FALSE);
606 return EACCES;
607 }
608
609 /*
610 * "enter_prot" is the protection we want to enter the page in at.
611 * for certain pages (e.g. copy-on-write pages) this protection can
612 * be more strict than ufi.entry->protection. "wired" means either
613 * the entry is wired or we are fault-wiring the pg.
614 */
615
616 enter_prot = ufi.entry->protection;
617 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
618 if (wired) {
619 access_type = enter_prot; /* full access for wired */
620 cow_now = (check_prot & VM_PROT_WRITE) != 0;
621 } else {
622 cow_now = (access_type & VM_PROT_WRITE) != 0;
623 }
624
625 /*
626 * handle "needs_copy" case. if we need to copy the amap we will
627 * have to drop our readlock and relock it with a write lock. (we
628 * need a write lock to change anything in a map entry [e.g.
629 * needs_copy]).
630 */
631
632 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
633 KASSERT(fault_type != VM_FAULT_WIREMAX);
634 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
635 /* need to clear */
636 UVMHIST_LOG(maphist,
637 " need to clear needs_copy and refault",0,0,0,0);
638 uvmfault_unlockmaps(&ufi, FALSE);
639 uvmfault_amapcopy(&ufi);
640 uvmexp.fltamcopy++;
641 goto ReFault;
642
643 } else {
644
645 /*
646 * ensure that we pmap_enter page R/O since
647 * needs_copy is still true
648 */
649
650 enter_prot &= ~VM_PROT_WRITE;
651 }
652 }
653
654 /*
655 * identify the players
656 */
657
658 amap = ufi.entry->aref.ar_amap; /* top layer */
659 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
660
661 /*
662 * check for a case 0 fault. if nothing backing the entry then
663 * error now.
664 */
665
666 if (amap == NULL && uobj == NULL) {
667 uvmfault_unlockmaps(&ufi, FALSE);
668 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
669 return (EFAULT);
670 }
671
672 /*
673 * establish range of interest based on advice from mapper
674 * and then clip to fit map entry. note that we only want
675 * to do this the first time through the fault. if we
676 * ReFault we will disable this by setting "narrow" to true.
677 */
678
679 if (narrow == FALSE) {
680
681 /* wide fault (!narrow) */
682 KASSERT(uvmadvice[ufi.entry->advice].advice ==
683 ufi.entry->advice);
684 nback = MIN(uvmadvice[ufi.entry->advice].nback,
685 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
686 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
687 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
688 ((ufi.entry->end - ufi.orig_rvaddr) >>
689 PAGE_SHIFT) - 1);
690 /*
691 * note: "-1" because we don't want to count the
692 * faulting page as forw
693 */
694 npages = nback + nforw + 1;
695 centeridx = nback;
696
697 narrow = TRUE; /* ensure only once per-fault */
698
699 } else {
700
701 /* narrow fault! */
702 nback = nforw = 0;
703 startva = ufi.orig_rvaddr;
704 npages = 1;
705 centeridx = 0;
706
707 }
708
709 /* locked: maps(read) */
710 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
711 narrow, nback, nforw, startva);
712 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
713 amap, uobj, 0);
714
715 /*
716 * if we've got an amap, lock it and extract current anons.
717 */
718
719 if (amap) {
720 amap_lock(amap);
721 anons = anons_store;
722 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
723 anons, npages);
724 } else {
725 anons = NULL; /* to be safe */
726 }
727
728 /* locked: maps(read), amap(if there) */
729
730 /*
731 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
732 * now and then forget about them (for the rest of the fault).
733 */
734
735 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
736
737 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
738 0,0,0,0);
739 /* flush back-page anons? */
740 if (amap)
741 uvmfault_anonflush(anons, nback);
742
743 /* flush object? */
744 if (uobj) {
745 objaddr =
746 (startva - ufi.entry->start) + ufi.entry->offset;
747 simple_lock(&uobj->vmobjlock);
748 (void) (uobj->pgops->pgo_put)(uobj, objaddr, objaddr +
749 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
750 }
751
752 /* now forget about the backpages */
753 if (amap)
754 anons += nback;
755 startva += (nback << PAGE_SHIFT);
756 npages -= nback;
757 nback = centeridx = 0;
758 }
759
760 /* locked: maps(read), amap(if there) */
761
762 /*
763 * map in the backpages and frontpages we found in the amap in hopes
764 * of preventing future faults. we also init the pages[] array as
765 * we go.
766 */
767
768 currva = startva;
769 shadowed = FALSE;
770 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
771
772 /*
773 * dont play with VAs that are already mapped
774 * except for center)
775 */
776 if (lcv != centeridx &&
777 pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
778 pages[lcv] = PGO_DONTCARE;
779 continue;
780 }
781
782 /*
783 * unmapped or center page. check if any anon at this level.
784 */
785 if (amap == NULL || anons[lcv] == NULL) {
786 pages[lcv] = NULL;
787 continue;
788 }
789
790 /*
791 * check for present page and map if possible. re-activate it.
792 */
793
794 pages[lcv] = PGO_DONTCARE;
795 if (lcv == centeridx) { /* save center for later! */
796 shadowed = TRUE;
797 continue;
798 }
799 anon = anons[lcv];
800 simple_lock(&anon->an_lock);
801 /* ignore loaned pages */
802 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
803 (anon->u.an_page->flags & PG_BUSY) == 0) {
804 uvm_lock_pageq();
805 uvm_pageactivate(anon->u.an_page);
806 uvm_unlock_pageq();
807 UVMHIST_LOG(maphist,
808 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
809 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
810 uvmexp.fltnamap++;
811
812 /*
813 * Since this isn't the page that's actually faulting,
814 * ignore pmap_enter() failures; it's not critical
815 * that we enter these right now.
816 */
817
818 (void) pmap_enter(ufi.orig_map->pmap, currva,
819 VM_PAGE_TO_PHYS(anon->u.an_page),
820 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
821 enter_prot,
822 PMAP_CANFAIL |
823 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
824 }
825 simple_unlock(&anon->an_lock);
826 pmap_update(ufi.orig_map->pmap);
827 }
828
829 /* locked: maps(read), amap(if there) */
830 /* (shadowed == TRUE) if there is an anon at the faulting address */
831 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
832 (uobj && shadowed == FALSE),0,0);
833
834 /*
835 * note that if we are really short of RAM we could sleep in the above
836 * call to pmap_enter with everything locked. bad?
837 *
838 * XXX Actually, that is bad; pmap_enter() should just fail in that
839 * XXX case. --thorpej
840 */
841
842 /*
843 * if the desired page is not shadowed by the amap and we have a
844 * backing object, then we check to see if the backing object would
845 * prefer to handle the fault itself (rather than letting us do it
846 * with the usual pgo_get hook). the backing object signals this by
847 * providing a pgo_fault routine.
848 */
849
850 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
851 simple_lock(&uobj->vmobjlock);
852
853 /* locked: maps(read), amap (if there), uobj */
854 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
855 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
856
857 /* locked: nothing, pgo_fault has unlocked everything */
858
859 if (error == ERESTART)
860 goto ReFault; /* try again! */
861 /*
862 * object fault routine responsible for pmap_update().
863 */
864 return error;
865 }
866
867 /*
868 * now, if the desired page is not shadowed by the amap and we have
869 * a backing object that does not have a special fault routine, then
870 * we ask (with pgo_get) the object for resident pages that we care
871 * about and attempt to map them in. we do not let pgo_get block
872 * (PGO_LOCKED).
873 */
874
875 if (uobj && shadowed == FALSE) {
876 simple_lock(&uobj->vmobjlock);
877
878 /* locked (!shadowed): maps(read), amap (if there), uobj */
879 /*
880 * the following call to pgo_get does _not_ change locking state
881 */
882
883 uvmexp.fltlget++;
884 gotpages = npages;
885 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
886 (startva - ufi.entry->start),
887 pages, &gotpages, centeridx,
888 access_type & MASK(ufi.entry),
889 ufi.entry->advice, PGO_LOCKED);
890
891 /*
892 * check for pages to map, if we got any
893 */
894
895 uobjpage = NULL;
896
897 if (gotpages) {
898 currva = startva;
899 for (lcv = 0; lcv < npages;
900 lcv++, currva += PAGE_SIZE) {
901 if (pages[lcv] == NULL ||
902 pages[lcv] == PGO_DONTCARE) {
903 continue;
904 }
905
906 /*
907 * if center page is resident and not
908 * PG_BUSY|PG_RELEASED then pgo_get
909 * made it PG_BUSY for us and gave
910 * us a handle to it. remember this
911 * page as "uobjpage." (for later use).
912 */
913
914 if (lcv == centeridx) {
915 uobjpage = pages[lcv];
916 UVMHIST_LOG(maphist, " got uobjpage "
917 "(0x%x) with locked get",
918 uobjpage, 0,0,0);
919 continue;
920 }
921
922 /*
923 * calling pgo_get with PGO_LOCKED returns us
924 * pages which are neither busy nor released,
925 * so we don't need to check for this.
926 * we can just directly enter the pages.
927 */
928
929 uvm_lock_pageq();
930 uvm_pageactivate(pages[lcv]);
931 uvm_unlock_pageq();
932 UVMHIST_LOG(maphist,
933 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
934 ufi.orig_map->pmap, currva, pages[lcv], 0);
935 uvmexp.fltnomap++;
936
937 /*
938 * Since this page isn't the page that's
939 * actually fauling, ignore pmap_enter()
940 * failures; it's not critical that we
941 * enter these right now.
942 */
943
944 (void) pmap_enter(ufi.orig_map->pmap, currva,
945 VM_PAGE_TO_PHYS(pages[lcv]),
946 pages[lcv]->flags & PG_RDONLY ?
947 enter_prot & ~VM_PROT_WRITE :
948 enter_prot & MASK(ufi.entry),
949 PMAP_CANFAIL |
950 (wired ? PMAP_WIRED : 0));
951
952 /*
953 * NOTE: page can't be PG_WANTED or PG_RELEASED
954 * because we've held the lock the whole time
955 * we've had the handle.
956 */
957
958 pages[lcv]->flags &= ~(PG_BUSY);
959 UVM_PAGE_OWN(pages[lcv], NULL);
960 }
961 pmap_update(ufi.orig_map->pmap);
962 }
963 } else {
964 uobjpage = NULL;
965 }
966
967 /* locked (shadowed): maps(read), amap */
968 /* locked (!shadowed): maps(read), amap(if there),
969 uobj(if !null), uobjpage(if !null) */
970
971 /*
972 * note that at this point we are done with any front or back pages.
973 * we are now going to focus on the center page (i.e. the one we've
974 * faulted on). if we have faulted on the top (anon) layer
975 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
976 * not touched it yet). if we have faulted on the bottom (uobj)
977 * layer [i.e. case 2] and the page was both present and available,
978 * then we've got a pointer to it as "uobjpage" and we've already
979 * made it BUSY.
980 */
981
982 /*
983 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
984 */
985
986 /*
987 * redirect case 2: if we are not shadowed, go to case 2.
988 */
989
990 if (shadowed == FALSE)
991 goto Case2;
992
993 /* locked: maps(read), amap */
994
995 /*
996 * handle case 1: fault on an anon in our amap
997 */
998
999 anon = anons[centeridx];
1000 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1001 simple_lock(&anon->an_lock);
1002
1003 /* locked: maps(read), amap, anon */
1004
1005 /*
1006 * no matter if we have case 1A or case 1B we are going to need to
1007 * have the anon's memory resident. ensure that now.
1008 */
1009
1010 /*
1011 * let uvmfault_anonget do the dirty work.
1012 * if it fails (!OK) it will unlock everything for us.
1013 * if it succeeds, locks are still valid and locked.
1014 * also, if it is OK, then the anon's page is on the queues.
1015 * if the page is on loan from a uvm_object, then anonget will
1016 * lock that object for us if it does not fail.
1017 */
1018
1019 error = uvmfault_anonget(&ufi, amap, anon);
1020 switch (error) {
1021 case 0:
1022 break;
1023
1024 case ERESTART:
1025 goto ReFault;
1026
1027 case EAGAIN:
1028 tsleep(&lbolt, PVM, "fltagain1", 0);
1029 goto ReFault;
1030
1031 default:
1032 return error;
1033 }
1034
1035 /*
1036 * uobj is non null if the page is on loan from an object (i.e. uobj)
1037 */
1038
1039 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1040
1041 /* locked: maps(read), amap, anon, uobj(if one) */
1042
1043 /*
1044 * special handling for loaned pages
1045 */
1046
1047 if (anon->u.an_page->loan_count) {
1048
1049 if (!cow_now) {
1050
1051 /*
1052 * for read faults on loaned pages we just cap the
1053 * protection at read-only.
1054 */
1055
1056 enter_prot = enter_prot & ~VM_PROT_WRITE;
1057
1058 } else {
1059 /*
1060 * note that we can't allow writes into a loaned page!
1061 *
1062 * if we have a write fault on a loaned page in an
1063 * anon then we need to look at the anon's ref count.
1064 * if it is greater than one then we are going to do
1065 * a normal copy-on-write fault into a new anon (this
1066 * is not a problem). however, if the reference count
1067 * is one (a case where we would normally allow a
1068 * write directly to the page) then we need to kill
1069 * the loan before we continue.
1070 */
1071
1072 /* >1 case is already ok */
1073 if (anon->an_ref == 1) {
1074
1075 /* get new un-owned replacement page */
1076 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1077 if (pg == NULL) {
1078 uvmfault_unlockall(&ufi, amap, uobj,
1079 anon);
1080 uvm_wait("flt_noram2");
1081 goto ReFault;
1082 }
1083
1084 /*
1085 * copy data, kill loan, and drop uobj lock
1086 * (if any)
1087 */
1088 /* copy old -> new */
1089 uvm_pagecopy(anon->u.an_page, pg);
1090
1091 /* force reload */
1092 pmap_page_protect(anon->u.an_page,
1093 VM_PROT_NONE);
1094 uvm_lock_pageq(); /* KILL loan */
1095
1096 anon->u.an_page->uanon = NULL;
1097 /* in case we owned */
1098 anon->u.an_page->pqflags &= ~PQ_ANON;
1099
1100 if (uobj) {
1101 /* if we were receiver of loan */
1102 anon->u.an_page->loan_count--;
1103 } else {
1104 /*
1105 * we were the lender (A->K); need
1106 * to remove the page from pageq's.
1107 */
1108 uvm_pagedequeue(anon->u.an_page);
1109 }
1110
1111 uvm_pageactivate(pg);
1112 uvm_unlock_pageq();
1113 if (uobj) {
1114 simple_unlock(&uobj->vmobjlock);
1115 uobj = NULL;
1116 }
1117
1118 /* install new page in anon */
1119 anon->u.an_page = pg;
1120 pg->uanon = anon;
1121 pg->pqflags |= PQ_ANON;
1122 pg->flags &= ~(PG_BUSY|PG_FAKE);
1123 UVM_PAGE_OWN(pg, NULL);
1124
1125 /* done! */
1126 } /* ref == 1 */
1127 } /* write fault */
1128 } /* loan count */
1129
1130 /*
1131 * if we are case 1B then we will need to allocate a new blank
1132 * anon to transfer the data into. note that we have a lock
1133 * on anon, so no one can busy or release the page until we are done.
1134 * also note that the ref count can't drop to zero here because
1135 * it is > 1 and we are only dropping one ref.
1136 *
1137 * in the (hopefully very rare) case that we are out of RAM we
1138 * will unlock, wait for more RAM, and refault.
1139 *
1140 * if we are out of anon VM we kill the process (XXX: could wait?).
1141 */
1142
1143 if (cow_now && anon->an_ref > 1) {
1144
1145 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1146 uvmexp.flt_acow++;
1147 oanon = anon; /* oanon = old, locked anon */
1148 anon = uvm_analloc();
1149 if (anon) {
1150 /* new anon is locked! */
1151 pg = uvm_pagealloc(NULL, 0, anon, 0);
1152 }
1153
1154 /* check for out of RAM */
1155 if (anon == NULL || pg == NULL) {
1156 if (anon) {
1157 anon->an_ref--;
1158 simple_unlock(&anon->an_lock);
1159 uvm_anfree(anon);
1160 }
1161 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1162 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1163 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1164 UVMHIST_LOG(maphist,
1165 "<- failed. out of VM",0,0,0,0);
1166 uvmexp.fltnoanon++;
1167 return ENOMEM;
1168 }
1169
1170 uvmexp.fltnoram++;
1171 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1172 goto ReFault;
1173 }
1174
1175 /* got all resources, replace anon with nanon */
1176 uvm_pagecopy(oanon->u.an_page, pg);
1177 uvm_pageactivate(pg);
1178 pg->flags &= ~(PG_BUSY|PG_FAKE);
1179 UVM_PAGE_OWN(pg, NULL);
1180 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1181 anon, 1);
1182
1183 /* deref: can not drop to zero here by defn! */
1184 oanon->an_ref--;
1185
1186 /*
1187 * note: oanon is still locked, as is the new anon. we
1188 * need to check for this later when we unlock oanon; if
1189 * oanon != anon, we'll have to unlock anon, too.
1190 */
1191
1192 } else {
1193
1194 uvmexp.flt_anon++;
1195 oanon = anon; /* old, locked anon is same as anon */
1196 pg = anon->u.an_page;
1197 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1198 enter_prot = enter_prot & ~VM_PROT_WRITE;
1199
1200 }
1201
1202 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1203
1204 /*
1205 * now map the page in.
1206 */
1207
1208 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1209 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1210 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1211 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1212 != 0) {
1213
1214 /*
1215 * No need to undo what we did; we can simply think of
1216 * this as the pmap throwing away the mapping information.
1217 *
1218 * We do, however, have to go through the ReFault path,
1219 * as the map may change while we're asleep.
1220 */
1221
1222 if (anon != oanon)
1223 simple_unlock(&anon->an_lock);
1224 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1225 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1226 if (uvmexp.swpgonly == uvmexp.swpages) {
1227 UVMHIST_LOG(maphist,
1228 "<- failed. out of VM",0,0,0,0);
1229 /* XXX instrumentation */
1230 return ENOMEM;
1231 }
1232 /* XXX instrumentation */
1233 uvm_wait("flt_pmfail1");
1234 goto ReFault;
1235 }
1236
1237 /*
1238 * ... update the page queues.
1239 */
1240
1241 uvm_lock_pageq();
1242 if (wire_fault) {
1243 uvm_pagewire(pg);
1244
1245 /*
1246 * since the now-wired page cannot be paged out,
1247 * release its swap resources for others to use.
1248 * since an anon with no swap cannot be PG_CLEAN,
1249 * clear its clean flag now.
1250 */
1251
1252 pg->flags &= ~(PG_CLEAN);
1253 uvm_anon_dropswap(anon);
1254 } else {
1255 uvm_pageactivate(pg);
1256 }
1257 uvm_unlock_pageq();
1258
1259 /*
1260 * done case 1! finish up by unlocking everything and returning success
1261 */
1262
1263 if (anon != oanon)
1264 simple_unlock(&anon->an_lock);
1265 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1266 pmap_update(ufi.orig_map->pmap);
1267 return 0;
1268
1269 Case2:
1270 /*
1271 * handle case 2: faulting on backing object or zero fill
1272 */
1273
1274 /*
1275 * locked:
1276 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1277 */
1278
1279 /*
1280 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1281 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1282 * have a backing object, check and see if we are going to promote
1283 * the data up to an anon during the fault.
1284 */
1285
1286 if (uobj == NULL) {
1287 uobjpage = PGO_DONTCARE;
1288 promote = TRUE; /* always need anon here */
1289 } else {
1290 KASSERT(uobjpage != PGO_DONTCARE);
1291 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1292 }
1293 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1294 promote, (uobj == NULL), 0,0);
1295
1296 /*
1297 * if uobjpage is not null then we do not need to do I/O to get the
1298 * uobjpage.
1299 *
1300 * if uobjpage is null, then we need to unlock and ask the pager to
1301 * get the data for us. once we have the data, we need to reverify
1302 * the state the world. we are currently not holding any resources.
1303 */
1304
1305 if (uobjpage) {
1306 /* update rusage counters */
1307 curproc->p_stats->p_ru.ru_minflt++;
1308 } else {
1309 /* update rusage counters */
1310 curproc->p_stats->p_ru.ru_majflt++;
1311
1312 /* locked: maps(read), amap(if there), uobj */
1313 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1314 /* locked: uobj */
1315
1316 uvmexp.fltget++;
1317 gotpages = 1;
1318 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1319 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1320 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1321 PGO_SYNCIO);
1322 /* locked: uobjpage(if no error) */
1323
1324 /*
1325 * recover from I/O
1326 */
1327
1328 if (error) {
1329 if (error == EAGAIN) {
1330 UVMHIST_LOG(maphist,
1331 " pgo_get says TRY AGAIN!",0,0,0,0);
1332 tsleep(&lbolt, PVM, "fltagain2", 0);
1333 goto ReFault;
1334 }
1335
1336 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1337 error, 0,0,0);
1338 return error;
1339 }
1340
1341 /* locked: uobjpage */
1342
1343 uvm_lock_pageq();
1344 uvm_pageactivate(uobjpage);
1345 uvm_unlock_pageq();
1346
1347 /*
1348 * re-verify the state of the world by first trying to relock
1349 * the maps. always relock the object.
1350 */
1351
1352 locked = uvmfault_relock(&ufi);
1353 if (locked && amap)
1354 amap_lock(amap);
1355 simple_lock(&uobj->vmobjlock);
1356
1357 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1358 /* locked(!locked): uobj, uobjpage */
1359
1360 /*
1361 * verify that the page has not be released and re-verify
1362 * that amap slot is still free. if there is a problem,
1363 * we unlock and clean up.
1364 */
1365
1366 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1367 (locked && amap &&
1368 amap_lookup(&ufi.entry->aref,
1369 ufi.orig_rvaddr - ufi.entry->start))) {
1370 if (locked)
1371 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1372 locked = FALSE;
1373 }
1374
1375 /*
1376 * didn't get the lock? release the page and retry.
1377 */
1378
1379 if (locked == FALSE) {
1380 UVMHIST_LOG(maphist,
1381 " wasn't able to relock after fault: retry",
1382 0,0,0,0);
1383 if (uobjpage->flags & PG_WANTED)
1384 wakeup(uobjpage);
1385 if (uobjpage->flags & PG_RELEASED) {
1386 uvmexp.fltpgrele++;
1387 uvm_pagefree(uobjpage);
1388 goto ReFault;
1389 }
1390 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1391 UVM_PAGE_OWN(uobjpage, NULL);
1392 simple_unlock(&uobj->vmobjlock);
1393 goto ReFault;
1394 }
1395
1396 /*
1397 * we have the data in uobjpage which is busy and
1398 * not released. we are holding object lock (so the page
1399 * can't be released on us).
1400 */
1401
1402 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1403 }
1404
1405 /*
1406 * locked:
1407 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1408 */
1409
1410 /*
1411 * notes:
1412 * - at this point uobjpage can not be NULL
1413 * - at this point uobjpage can not be PG_RELEASED (since we checked
1414 * for it above)
1415 * - at this point uobjpage could be PG_WANTED (handle later)
1416 */
1417
1418 if (promote == FALSE) {
1419
1420 /*
1421 * we are not promoting. if the mapping is COW ensure that we
1422 * don't give more access than we should (e.g. when doing a read
1423 * fault on a COPYONWRITE mapping we want to map the COW page in
1424 * R/O even though the entry protection could be R/W).
1425 *
1426 * set "pg" to the page we want to map in (uobjpage, usually)
1427 */
1428
1429 /* no anon in this case. */
1430 anon = NULL;
1431
1432 uvmexp.flt_obj++;
1433 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1434 enter_prot &= ~VM_PROT_WRITE;
1435 pg = uobjpage; /* map in the actual object */
1436
1437 /* assert(uobjpage != PGO_DONTCARE) */
1438
1439 /*
1440 * we are faulting directly on the page. be careful
1441 * about writing to loaned pages...
1442 */
1443
1444 if (uobjpage->loan_count) {
1445 if (!cow_now) {
1446 /* read fault: cap the protection at readonly */
1447 /* cap! */
1448 enter_prot = enter_prot & ~VM_PROT_WRITE;
1449 } else {
1450 /* write fault: must break the loan here */
1451
1452 /* alloc new un-owned page */
1453 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1454
1455 if (pg == NULL) {
1456
1457 /*
1458 * drop ownership of page, it can't
1459 * be released
1460 */
1461
1462 if (uobjpage->flags & PG_WANTED)
1463 wakeup(uobjpage);
1464 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1465 UVM_PAGE_OWN(uobjpage, NULL);
1466
1467 uvmfault_unlockall(&ufi, amap, uobj,
1468 NULL);
1469 UVMHIST_LOG(maphist,
1470 " out of RAM breaking loan, waiting",
1471 0,0,0,0);
1472 uvmexp.fltnoram++;
1473 uvm_wait("flt_noram4");
1474 goto ReFault;
1475 }
1476
1477 /*
1478 * copy the data from the old page to the new
1479 * one and clear the fake/clean flags on the
1480 * new page (keep it busy). force a reload
1481 * of the old page by clearing it from all
1482 * pmaps. then lock the page queues to
1483 * rename the pages.
1484 */
1485
1486 uvm_pagecopy(uobjpage, pg); /* old -> new */
1487 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1488 pmap_page_protect(uobjpage, VM_PROT_NONE);
1489 if (uobjpage->flags & PG_WANTED)
1490 wakeup(uobjpage);
1491 /* uobj still locked */
1492 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1493 UVM_PAGE_OWN(uobjpage, NULL);
1494
1495 uvm_lock_pageq();
1496 offset = uobjpage->offset;
1497 uvm_pagerealloc(uobjpage, NULL, 0);
1498
1499 /*
1500 * if the page is no longer referenced by
1501 * an anon (i.e. we are breaking an O->K
1502 * loan), then remove it from any pageq's.
1503 */
1504 if (uobjpage->uanon == NULL)
1505 uvm_pagedequeue(uobjpage);
1506
1507 /*
1508 * at this point we have absolutely no
1509 * control over uobjpage
1510 */
1511
1512 /* install new page */
1513 uvm_pageactivate(pg);
1514 uvm_pagerealloc(pg, uobj, offset);
1515 uvm_unlock_pageq();
1516
1517 /*
1518 * done! loan is broken and "pg" is
1519 * PG_BUSY. it can now replace uobjpage.
1520 */
1521
1522 uobjpage = pg;
1523 }
1524 }
1525 } else {
1526
1527 /*
1528 * if we are going to promote the data to an anon we
1529 * allocate a blank anon here and plug it into our amap.
1530 */
1531 #if DIAGNOSTIC
1532 if (amap == NULL)
1533 panic("uvm_fault: want to promote data, but no anon");
1534 #endif
1535
1536 anon = uvm_analloc();
1537 if (anon) {
1538
1539 /*
1540 * The new anon is locked.
1541 *
1542 * In `Fill in data...' below, if
1543 * uobjpage == PGO_DONTCARE, we want
1544 * a zero'd, dirty page, so have
1545 * uvm_pagealloc() do that for us.
1546 */
1547
1548 pg = uvm_pagealloc(NULL, 0, anon,
1549 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1550 }
1551
1552 /*
1553 * out of memory resources?
1554 */
1555
1556 if (anon == NULL || pg == NULL) {
1557 if (anon != NULL) {
1558 anon->an_ref--;
1559 simple_unlock(&anon->an_lock);
1560 uvm_anfree(anon);
1561 }
1562
1563 /*
1564 * arg! must unbusy our page and fail or sleep.
1565 */
1566
1567 if (uobjpage != PGO_DONTCARE) {
1568 if (uobjpage->flags & PG_WANTED)
1569 /* still holding object lock */
1570 wakeup(uobjpage);
1571
1572 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1573 UVM_PAGE_OWN(uobjpage, NULL);
1574 }
1575
1576 /* unlock and fail ... */
1577 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1578 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1579 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1580 UVMHIST_LOG(maphist, " promote: out of VM",
1581 0,0,0,0);
1582 uvmexp.fltnoanon++;
1583 return ENOMEM;
1584 }
1585
1586 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1587 0,0,0,0);
1588 uvmexp.fltnoram++;
1589 uvm_wait("flt_noram5");
1590 goto ReFault;
1591 }
1592
1593 /*
1594 * fill in the data
1595 */
1596
1597 if (uobjpage != PGO_DONTCARE) {
1598 uvmexp.flt_prcopy++;
1599 /* copy page [pg now dirty] */
1600 uvm_pagecopy(uobjpage, pg);
1601
1602 /*
1603 * promote to shared amap? make sure all sharing
1604 * procs see it
1605 */
1606
1607 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1608 pmap_page_protect(uobjpage, VM_PROT_NONE);
1609 /*
1610 * XXX: PAGE MIGHT BE WIRED!
1611 */
1612 }
1613
1614 /*
1615 * dispose of uobjpage. it can't be PG_RELEASED
1616 * since we still hold the object lock.
1617 * drop handle to uobj as well.
1618 */
1619
1620 if (uobjpage->flags & PG_WANTED)
1621 /* still have the obj lock */
1622 wakeup(uobjpage);
1623 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1624 UVM_PAGE_OWN(uobjpage, NULL);
1625 simple_unlock(&uobj->vmobjlock);
1626 uobj = NULL;
1627
1628 UVMHIST_LOG(maphist,
1629 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1630 uobjpage, anon, pg, 0);
1631
1632 } else {
1633 uvmexp.flt_przero++;
1634
1635 /*
1636 * Page is zero'd and marked dirty by uvm_pagealloc()
1637 * above.
1638 */
1639
1640 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1641 anon, pg, 0, 0);
1642 }
1643 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1644 anon, 0);
1645 }
1646
1647 /*
1648 * locked:
1649 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1650 * anon(if !null), pg(if anon)
1651 *
1652 * note: pg is either the uobjpage or the new page in the new anon
1653 */
1654
1655 /*
1656 * all resources are present. we can now map it in and free our
1657 * resources.
1658 */
1659
1660 UVMHIST_LOG(maphist,
1661 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1662 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1663 KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1664 (pg->flags & PG_RDONLY) == 0);
1665 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1666 pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1667 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1668
1669 /*
1670 * No need to undo what we did; we can simply think of
1671 * this as the pmap throwing away the mapping information.
1672 *
1673 * We do, however, have to go through the ReFault path,
1674 * as the map may change while we're asleep.
1675 */
1676
1677 if (pg->flags & PG_WANTED)
1678 wakeup(pg);
1679
1680 /*
1681 * note that pg can't be PG_RELEASED since we did not drop
1682 * the object lock since the last time we checked.
1683 */
1684
1685 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1686 UVM_PAGE_OWN(pg, NULL);
1687 uvmfault_unlockall(&ufi, amap, uobj, anon);
1688 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1689 if (uvmexp.swpgonly == uvmexp.swpages) {
1690 UVMHIST_LOG(maphist,
1691 "<- failed. out of VM",0,0,0,0);
1692 /* XXX instrumentation */
1693 return ENOMEM;
1694 }
1695 /* XXX instrumentation */
1696 uvm_wait("flt_pmfail2");
1697 goto ReFault;
1698 }
1699
1700 uvm_lock_pageq();
1701 if (wire_fault) {
1702 uvm_pagewire(pg);
1703 if (pg->pqflags & PQ_AOBJ) {
1704
1705 /*
1706 * since the now-wired page cannot be paged out,
1707 * release its swap resources for others to use.
1708 * since an aobj page with no swap cannot be PG_CLEAN,
1709 * clear its clean flag now.
1710 */
1711
1712 pg->flags &= ~(PG_CLEAN);
1713 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1714 }
1715 } else {
1716 uvm_pageactivate(pg);
1717 }
1718 uvm_unlock_pageq();
1719 if (pg->flags & PG_WANTED)
1720 wakeup(pg);
1721
1722 /*
1723 * note that pg can't be PG_RELEASED since we did not drop the object
1724 * lock since the last time we checked.
1725 */
1726
1727 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1728 UVM_PAGE_OWN(pg, NULL);
1729 uvmfault_unlockall(&ufi, amap, uobj, anon);
1730 pmap_update(ufi.orig_map->pmap);
1731 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1732 return 0;
1733 }
1734
1735 /*
1736 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1737 *
1738 * => map may be read-locked by caller, but MUST NOT be write-locked.
1739 * => if map is read-locked, any operations which may cause map to
1740 * be write-locked in uvm_fault() must be taken care of by
1741 * the caller. See uvm_map_pageable().
1742 */
1743
1744 int
1745 uvm_fault_wire(map, start, end, fault_type, access_type)
1746 struct vm_map *map;
1747 vaddr_t start, end;
1748 vm_fault_t fault_type;
1749 vm_prot_t access_type;
1750 {
1751 vaddr_t va;
1752 int error;
1753
1754 /*
1755 * now fault it in a page at a time. if the fault fails then we have
1756 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1757 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1758 */
1759
1760 /*
1761 * XXX work around overflowing a vaddr_t. this prevents us from
1762 * wiring the last page in the address space, though.
1763 */
1764 if (start > end) {
1765 return EFAULT;
1766 }
1767
1768 for (va = start ; va < end ; va += PAGE_SIZE) {
1769 error = uvm_fault(map, va, fault_type, access_type);
1770 if (error) {
1771 if (va != start) {
1772 uvm_fault_unwire(map, start, va);
1773 }
1774 return error;
1775 }
1776 }
1777 return 0;
1778 }
1779
1780 /*
1781 * uvm_fault_unwire(): unwire range of virtual space.
1782 */
1783
1784 void
1785 uvm_fault_unwire(map, start, end)
1786 struct vm_map *map;
1787 vaddr_t start, end;
1788 {
1789 vm_map_lock_read(map);
1790 uvm_fault_unwire_locked(map, start, end);
1791 vm_map_unlock_read(map);
1792 }
1793
1794 /*
1795 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1796 *
1797 * => map must be at least read-locked.
1798 */
1799
1800 void
1801 uvm_fault_unwire_locked(map, start, end)
1802 struct vm_map *map;
1803 vaddr_t start, end;
1804 {
1805 struct vm_map_entry *entry;
1806 pmap_t pmap = vm_map_pmap(map);
1807 vaddr_t va;
1808 paddr_t pa;
1809 struct vm_page *pg;
1810
1811 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1812
1813 /*
1814 * we assume that the area we are unwiring has actually been wired
1815 * in the first place. this means that we should be able to extract
1816 * the PAs from the pmap. we also lock out the page daemon so that
1817 * we can call uvm_pageunwire.
1818 */
1819
1820 uvm_lock_pageq();
1821
1822 /*
1823 * find the beginning map entry for the region.
1824 */
1825
1826 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1827 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1828 panic("uvm_fault_unwire_locked: address not in map");
1829
1830 for (va = start; va < end; va += PAGE_SIZE) {
1831 if (pmap_extract(pmap, va, &pa) == FALSE)
1832 continue;
1833
1834 /*
1835 * find the map entry for the current address.
1836 */
1837
1838 KASSERT(va >= entry->start);
1839 while (va >= entry->end) {
1840 KASSERT(entry->next != &map->header &&
1841 entry->next->start <= entry->end);
1842 entry = entry->next;
1843 }
1844
1845 /*
1846 * if the entry is no longer wired, tell the pmap.
1847 */
1848
1849 if (VM_MAPENT_ISWIRED(entry) == 0)
1850 pmap_unwire(pmap, va);
1851
1852 pg = PHYS_TO_VM_PAGE(pa);
1853 if (pg)
1854 uvm_pageunwire(pg);
1855 }
1856
1857 uvm_unlock_pageq();
1858 }
1859